code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import math class lowerCamelCase : '''simple docstring''' def __init__( self: List[Any] , snake_case: int=0 ) -> int: # a graph with Node 0,1,...,N-1 snake_case_ :List[str] = n snake_case_ :int = [ [math.inf for j in range(0 , snake_case )] for i in range(0 , snake_case ) ] # adjacency matrix for weight snake_case_ :str = [ [math.inf for j in range(0 , snake_case )] for i in range(0 , snake_case ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self: Optional[int] , snake_case: str , snake_case: Optional[Any] , snake_case: str ) -> Tuple: snake_case_ :List[Any] = w def lowerCAmelCase_ ( self: List[str] ) -> str: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): snake_case_ :Any = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self: int , snake_case: List[Any] , snake_case: Optional[Any] ) -> Union[str, Any]: return self.dp[u][v] if __name__ == "__main__": __a = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
66
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = 1 @register_to_config def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]: _A : Dict = None _A : List[Any] = None _A : Dict = None def a__ ( self , _a , _a = None ) -> Union[str, Any]: _A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def a__ ( self , _a , _a , _a , _a=None ) -> Dict: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _A : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _A : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): _A : List[Any] = std.unsqueeze(-1 ) _A : int = -score / std # compute _A : Tuple = -1.0 / len(self.timesteps ) _A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _A : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _A : Union[str, Any] = beta_t.unsqueeze(-1 ) _A : Tuple = -0.5 * beta_t * x _A : Tuple = torch.sqrt(_a ) _A : Dict = drift - diffusion**2 * score _A : Dict = x + drift * dt # add noise _A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) _A : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
26
0
'''simple docstring''' from ....utils import logging lowercase__ : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=2048): '''simple docstring''' __A : Dict = config.__dict__ __A : Any = modal_hidden_size if num_labels: __A : Dict = num_labels
190
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 0 @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __A : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(_UpperCAmelCase) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(_UpperCAmelCase) , 0) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 20) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = AutoConfig.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) # Check that tokenizer_type ≠ model_type __A : Optional[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_UpperCAmelCase , 'vocab.txt')) __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='bert' , use_fast=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_UpperCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_UpperCAmelCase , 'merges.txt')) __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='gpt2' , use_fast=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_UpperCAmelCase , 'vocab.txt')) __A : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='bert') self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_UpperCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_UpperCAmelCase , 'merges.txt')) __A : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='gpt2') self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with pytest.raises(_UpperCAmelCase): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx') @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __A : List[Any] = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased') self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) if isinstance(_UpperCAmelCase , _UpperCAmelCase): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _UpperCAmelCase) else: self.assertEqual(tokenizer.do_lower_case , _UpperCAmelCase) self.assertEqual(tokenizer.model_max_length , 512) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _UpperCAmelCase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): __A : str = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = TOKENIZER_MAPPING.values() __A : Union[str, Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_UpperCAmelCase) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_UpperCAmelCase) , _UpperCAmelCase) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased') , _UpperCAmelCase) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=_UpperCAmelCase) __A : str = 'Hello, world. How are you?' __A : List[str] = tokenizer.tokenize(_UpperCAmelCase) self.assertEqual('[UNK]' , tokens[0]) __A : Dict = AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=_UpperCAmelCase) __A : List[Any] = tokenizer.tokenize(_UpperCAmelCase) self.assertEqual('[UNK]' , tokens[0]) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config') self.assertEqual(type(_UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(tokenizer.model_max_length , 512) self.assertEqual(tokenizer.vocab_size , 3_0000) self.assertEqual(tokenizer.unk_token , '[UNK]') self.assertEqual(tokenizer.padding_side , 'right') self.assertEqual(tokenizer.truncation_side , 'right') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 12) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = AutoTokenizer.from_pretrained('ctrl') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = get_tokenizer_config('bert-base-cased') __A : Optional[int] = config.pop('_commit_hash' , _UpperCAmelCase) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_UpperCAmelCase , {'do_lower_case': False}) # This model does not have a tokenizer_config so we get back an empty dict. __A : Dict = get_tokenizer_config(_UpperCAmelCase) self.assertDictEqual(_UpperCAmelCase , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Any = get_tokenizer_config(_UpperCAmelCase) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' try: AutoConfig.register('custom' , _UpperCAmelCase) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase): AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) __A : Optional[Any] = CustomTokenizer.from_pretrained(_UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : int = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' try: AutoConfig.register('custom' , _UpperCAmelCase) # Can register in two steps AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase): AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __A : Optional[int] = BertTokenizerFast.from_pretrained(_UpperCAmelCase) bert_tokenizer.save_pretrained(_UpperCAmelCase) __A : Dict = CustomTokenizerFast.from_pretrained(_UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaises(_UpperCAmelCase): __A : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase): __A : Dict = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) __A : str = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Dict = AutoTokenizer.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __A : Union[str, Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = False class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = NewTokenizer lowerCAmelCase = False try: AutoConfig.register('custom' , _UpperCAmelCase) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) # If remote code is not set, the default is to use local __A : List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __A : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. __A : Optional[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __A : Any = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub __A : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertTrue(tokenizer.special_attribute_present) __A : Optional[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __A : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , 'bert-base is not a local folder and is not a valid model identifier'): __A : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , revision='aaaaaa') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: __A : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
190
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Optional[Any] = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase : List[Any] = 4 _UpperCamelCase : Optional[Any] = 3 class a ( a_ ): pass def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): '''simple docstring''' for shard in shards: for i in range(__snake_case ): yield {"i": i, "shard": shard} def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = int(os.environ['RANK'] ) lowercase = int(os.environ['WORLD_SIZE'] ) lowercase = ArgumentParser() parser.add_argument('--streaming' , type=__snake_case ) parser.add_argument('--local_rank' , type=__snake_case ) parser.add_argument('--num_workers' , type=__snake_case , default=0 ) lowercase = parser.parse_args() lowercase = args.streaming lowercase = args.num_workers lowercase = {'shards': [f'shard_{shard_idx}' for shard_idx in range(__snake_case )]} lowercase = IterableDataset.from_generator(__snake_case , gen_kwargs=__snake_case ) if not streaming: lowercase = Dataset.from_list(list(__snake_case ) ) lowercase = split_dataset_by_node(__snake_case , rank=__snake_case , world_size=__snake_case ) lowercase = torch.utils.data.DataLoader(__snake_case , num_workers=__snake_case ) lowercase = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
220
1
lowercase_ = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) lowercase_ = frozenset(["prompt", "negative_prompt"]) lowercase_ = frozenset([]) lowercase_ = frozenset(["image"]) lowercase_ = frozenset( [ "image", "height", "width", "guidance_scale", ] ) lowercase_ = frozenset(["image"]) lowercase_ = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) lowercase_ = frozenset(["prompt", "image", "negative_prompt"]) lowercase_ = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) lowercase_ = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) lowercase_ = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) lowercase_ = frozenset(["image", "mask_image"]) lowercase_ = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) lowercase_ = frozenset(["example_image", "image", "mask_image"]) lowercase_ = frozenset(["class_labels"]) lowercase_ = frozenset(["class_labels"]) lowercase_ = frozenset(["batch_size"]) lowercase_ = frozenset([]) lowercase_ = frozenset(["batch_size"]) lowercase_ = frozenset([]) lowercase_ = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) lowercase_ = frozenset(["prompt", "negative_prompt"]) lowercase_ = frozenset(["input_tokens"]) lowercase_ = frozenset(["input_tokens"])
354
def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: '''simple docstring''' def update_area_of_max_square(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 A__ = update_area_of_max_square(SCREAMING_SNAKE_CASE__ , col + 1 ) A__ = update_area_of_max_square(row + 1 , col + 1 ) A__ = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: A__ = 1 + min([right, diagonal, down] ) A__ = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) return sub_problem_sol else: return 0 A__ = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: '''simple docstring''' def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] A__ = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) A__ = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE__ ) A__ = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: A__ = 1 + min([right, diagonal, down] ) A__ = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) A__ = sub_problem_sol return sub_problem_sol else: return 0 A__ = [0] A__ = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE__ )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE__ ) return largest_square_area[0] def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: '''simple docstring''' A__ = [[0] * (cols + 1) for _ in range(rows + 1 )] A__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): A__ = dp_array[row][col + 1] A__ = dp_array[row + 1][col + 1] A__ = dp_array[row + 1][col] if mat[row][col] == 1: A__ = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = max(dp_array[row][col] , SCREAMING_SNAKE_CASE__ ) else: A__ = 0 return largest_square_area def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: '''simple docstring''' A__ = [0] * (cols + 1) A__ = [0] * (cols + 1) A__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): A__ = current_row[col + 1] A__ = next_row[col + 1] A__ = next_row[col] if mat[row][col] == 1: A__ = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = max(current_row[col] , SCREAMING_SNAKE_CASE__ ) else: A__ = 0 A__ = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
282
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict=None ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(add_help=__UpperCamelCase , allow_abbrev=__UpperCamelCase ) # The main config parser SCREAMING_SNAKE_CASE__ = config_command_parser(__UpperCamelCase ) # The subparser to add commands to SCREAMING_SNAKE_CASE__ = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(__UpperCamelCase , parents=[parent_parser] ) update_command_parser(__UpperCamelCase , parents=[parent_parser] ) return config_parser def __SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_config_parser() SCREAMING_SNAKE_CASE__ = config_parser.parse_args() if not hasattr(__UpperCamelCase , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(__UpperCamelCase ) if __name__ == "__main__": main()
219
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __lowerCamelCase : Union[str, Any] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
219
1
import os def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: """simple docstring""" UpperCamelCase :Dict = os.path.dirname(os.path.realpath(__magic_name__ ) ) UpperCamelCase :List[str] = os.path.join(__magic_name__ , """triangle.txt""" ) with open(__magic_name__ ) as f: UpperCamelCase :List[Any] = f.readlines() UpperCamelCase :Union[str, Any] = [] for line in triangle: UpperCamelCase :Dict = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(__magic_name__ ) ) a.append(__magic_name__ ) for i in range(1 , len(__magic_name__ ) ): for j in range(len(a[i] ) ): UpperCamelCase :Dict = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCamelCase :Any = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__magic_name__ , __magic_name__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
62
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : str = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : List[Any] = DebertaVaTokenizer snake_case__ : Any = DebertaVaTokenizerFast snake_case__ : Union[str, Any] = True snake_case__ : Tuple = True def _A ( self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase :Tuple = DebertaVaTokenizer(__lowerCamelCase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self : int , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :str = """this is a test""" UpperCamelCase :Dict = """this is a test""" return input_text, output_text def _A ( self : Tuple ): UpperCamelCase :Optional[Any] = """<pad>""" UpperCamelCase :Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def _A ( self : int ): UpperCamelCase :Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(__lowerCamelCase ) , 30_001 ) def _A ( self : Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def _A ( self : str ): # fmt: off UpperCamelCase :Optional[int] = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase :Any = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on UpperCamelCase :Optional[Any] = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase ) UpperCamelCase :Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase ) UpperCamelCase :List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def _A ( self : Dict ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def _A ( self : Optional[Any] ): pass def _A ( self : Optional[int] ): # fmt: off UpperCamelCase :Union[str, Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase :int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase :int = DebertaVaTokenizer(__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :int = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = DebertaVaTokenizerFast(__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : int ): # fmt: off UpperCamelCase :Union[str, Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase :Any = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase :Tuple = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Any ): # fmt: off UpperCamelCase :Union[str, Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase :List[Any] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase :Tuple = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : str ): # fmt: off UpperCamelCase :List[str] = """I was born in 92000, and this is falsé.""" UpperCamelCase :int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase :List[str] = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[str] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[Any] ): # fmt: off UpperCamelCase :Optional[Any] = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase :Dict = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on UpperCamelCase :int = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : int ): UpperCamelCase :int = self.get_tokenizer() UpperCamelCase :str = self.get_rust_tokenizer() UpperCamelCase :Dict = """I was born in 92000, and this is falsé.""" UpperCamelCase :List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) UpperCamelCase :Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[str] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) UpperCamelCase :Optional[int] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :int = self.get_rust_tokenizer() UpperCamelCase :Tuple = tokenizer.encode(__lowerCamelCase ) UpperCamelCase :Dict = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Dict ): UpperCamelCase :Optional[int] = """This is a test""" UpperCamelCase :str = [13, 1, 4_398, 25, 21, 1_289] UpperCamelCase :int = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase :Any = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase :str = DebertaVaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) UpperCamelCase :Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , keep_accents=__lowerCamelCase ) UpperCamelCase :Optional[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[Any] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :int = rust_tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # fmt: off UpperCamelCase :Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase :Any = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] UpperCamelCase :Union[str, Any] = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] UpperCamelCase :Optional[Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase :str = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :int = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Dict = rust_tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :str = DebertaVaTokenizer(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = tokenizer.encode("""sequence builders""" ) UpperCamelCase :Any = tokenizer.encode("""multi-sequence build""" ) UpperCamelCase :Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) UpperCamelCase :str = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __lowerCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __lowerCamelCase , ) @slow def _A ( self : List[Any] ): # fmt: off UpperCamelCase :Union[str, Any] = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
62
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _lowercase = { '''squeezebert/squeezebert-uncased''': 5_12, '''squeezebert/squeezebert-mnli''': 5_12, '''squeezebert/squeezebert-mnli-headless''': 5_12, } _lowercase = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = VOCAB_FILES_NAMES _lowerCamelCase: Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: List[Any] = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: List[str] = SqueezeBertTokenizer def __init__( self : List[Any] ,A_ : Optional[Any]=None ,A_ : Any=None ,A_ : Optional[Any]=True ,A_ : str="[UNK]" ,A_ : Optional[int]="[SEP]" ,A_ : Dict="[PAD]" ,A_ : Tuple="[CLS]" ,A_ : Dict="[MASK]" ,A_ : Tuple=True ,A_ : Tuple=None ,**A_ : int ,) -> Union[str, Any]: super().__init__( A_ ,tokenizer_file=A_ ,do_lower_case=A_ ,unk_token=A_ ,sep_token=A_ ,pad_token=A_ ,cls_token=A_ ,mask_token=A_ ,tokenize_chinese_chars=A_ ,strip_accents=A_ ,**A_ ,) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,A_ ) != do_lower_case or normalizer_state.get('strip_accents' ,A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,A_ ) != tokenize_chinese_chars ): A = getattr(A_ ,normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**A_ ) A = do_lower_case def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str] ,A_ : Optional[int]=None ) -> str: A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: A = self._tokenizer.model.save(A_ ,name=A_ ) return tuple(A_ )
74
def _a ( a :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence a = gray_code_sequence_string(a ) # # convert them to integers for i in range(len(a ) ): a = int(sequence[i] , 2 ) return sequence def _a ( a :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] a = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits a = gray_code_sequence_string(bit_count - 1 ) a = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): a = '''0''' + smaller_sequence[i] sequence.append(a ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): a = '''1''' + smaller_sequence[i] sequence.append(a ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
0
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCamelCase ( SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if subparsers is not None: __UpperCamelCase :List[Any] = subparsers.add_parser('''env''' ) else: __UpperCamelCase :List[str] = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=SCREAMING_SNAKE_CASE , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = torch.__version__ __UpperCamelCase :Optional[int] = torch.cuda.is_available() __UpperCamelCase :Tuple = is_xpu_available() __UpperCamelCase :Optional[Any] = is_npu_available() __UpperCamelCase :int = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[str] = load_config_from_file(args.config_file ).to_dict() __UpperCamelCase :List[str] = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''PyTorch XPU available''': str(SCREAMING_SNAKE_CASE ), '''PyTorch NPU available''': str(SCREAMING_SNAKE_CASE ), '''System RAM''': f"""{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB""", } if pt_cuda_available: __UpperCamelCase :Optional[Any] = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([f"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCamelCase :str = ( '''\n'''.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else f"""\t{accelerate_config}""" ) print(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = accelerate_config return info def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = env_command_parser() __UpperCamelCase :List[Any] = parser.parse_args() env_command(SCREAMING_SNAKE_CASE ) return 0 if __name__ == "__main__": raise SystemExit(main())
105
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowercase = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: __UpperCamelCase :Dict = XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :int = XLMProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = ['''key_proj''', '''value_proj''', '''query_proj'''] __UpperCamelCase :Optional[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __UpperCamelCase :Tuple = key.split('''.''' ) if attributes[0] == "lm_head": __UpperCamelCase :Union[str, Any] = prophet __UpperCamelCase :Any = prophet_old else: __UpperCamelCase :Any = prophet.prophetnet __UpperCamelCase :int = prophet_old.model __UpperCamelCase :Optional[Any] = False for attribute in attributes: if attribute in mapping: __UpperCamelCase :str = mapping[attribute] if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0: __UpperCamelCase :Optional[int] = attribute elif hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __UpperCamelCase :Tuple = old_model.weight logger.info(f"""{attribute} is initialized.""" ) __UpperCamelCase :Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __UpperCamelCase :Union[str, Any] = old_model.bias logger.info(f"""{attribute} is initialized""" ) __UpperCamelCase :List[Any] = True break elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE , '''in_proj_weight''' ): __UpperCamelCase :str = old_model.in_proj_weight.shape[0] // 3 __UpperCamelCase :Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __UpperCamelCase :Optional[int] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __UpperCamelCase :Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __UpperCamelCase :List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __UpperCamelCase :Dict = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __UpperCamelCase :Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __UpperCamelCase :Dict = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __UpperCamelCase :Optional[int] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __UpperCamelCase :Optional[int] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __UpperCamelCase :List[Any] = True break if attribute.isdigit(): __UpperCamelCase :List[Any] = model[int(SCREAMING_SNAKE_CASE )] __UpperCamelCase :Optional[int] = old_model[int(SCREAMING_SNAKE_CASE )] else: __UpperCamelCase :Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if old_attribute == "": __UpperCamelCase :Any = old_model else: if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
105
1
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=16 , UpperCamelCase_=[32, 64, 1_28] , UpperCamelCase_=[1, 2, 1] , UpperCamelCase_=[2, 2, 4] , UpperCamelCase_=2 , UpperCamelCase_=2.0 , UpperCamelCase_=True , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_="gelu" , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=10 , UpperCamelCase_=8 , UpperCamelCase_=["stage1", "stage2"] , UpperCamelCase_=[1, 2] , ) -> Optional[int]: __lowercase : Dict = parent __lowercase : Optional[Any] = batch_size __lowercase : Optional[Any] = image_size __lowercase : Any = patch_size __lowercase : str = num_channels __lowercase : Any = embed_dim __lowercase : Dict = hidden_sizes __lowercase : Dict = depths __lowercase : Any = num_heads __lowercase : str = window_size __lowercase : str = mlp_ratio __lowercase : Tuple = qkv_bias __lowercase : int = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : Optional[int] = drop_path_rate __lowercase : Any = hidden_act __lowercase : int = use_absolute_embeddings __lowercase : List[Any] = patch_norm __lowercase : Optional[int] = layer_norm_eps __lowercase : str = initializer_range __lowercase : Dict = is_training __lowercase : List[str] = scope __lowercase : Dict = use_labels __lowercase : Union[str, Any] = type_sequence_label_size __lowercase : List[Any] = encoder_stride __lowercase : List[Any] = out_features __lowercase : str = out_indices def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Dict = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[str] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ) -> Any: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: __lowercase : Optional[int] = FocalNetModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Optional[Any] = model(UpperCamelCase_ ) __lowercase : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowercase : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: __lowercase : Tuple = FocalNetBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Any = model(UpperCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __lowercase : Any = None __lowercase : int = FocalNetBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : int = model(UpperCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: __lowercase : str = FocalNetForMaskedImageModeling(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowercase : Tuple = 1 __lowercase : Optional[Any] = FocalNetForMaskedImageModeling(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase : Tuple = model(UpperCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: __lowercase : int = self.type_sequence_label_size __lowercase : Optional[Any] = FocalNetForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : int = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase : List[Any] = 1 __lowercase : Optional[int] = FocalNetForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self ) -> str: __lowercase : List[Any] = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase : Optional[Any] = config_and_inputs __lowercase : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase =( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase =False UpperCamelCase =False UpperCamelCase =False UpperCamelCase =False UpperCamelCase =False def _lowerCamelCase ( self ) -> List[Any]: __lowercase : List[str] = FocalNetModelTester(self ) __lowercase : int = ConfigTester(self , config_class=UpperCamelCase_ , embed_dim=37 , has_text_modality=UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self ) -> str: return def _lowerCamelCase ( self ) -> List[Any]: __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def _lowerCamelCase ( self ) -> List[Any]: pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def _lowerCamelCase ( self ) -> Any: pass def _lowerCamelCase ( self ) -> Optional[int]: __lowercase ,__lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowercase : Tuple = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def _lowerCamelCase ( self ) -> Any: __lowercase ,__lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowercase : Optional[int] = model_class(UpperCamelCase_ ) __lowercase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Tuple = [*signature.parameters.keys()] __lowercase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: __lowercase : Any = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) __lowercase : Dict = outputs.hidden_states __lowercase : Tuple = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # FocalNet has a different seq_length __lowercase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowercase : int = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) __lowercase ,__lowercase ,__lowercase ,__lowercase : Tuple = reshaped_hidden_states[0].shape __lowercase : Dict = ( reshaped_hidden_states[0].view(UpperCamelCase_ , UpperCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self ) -> str: __lowercase ,__lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __lowercase : Any = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : int = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: __lowercase ,__lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = 3 __lowercase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowercase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowercase : List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __lowercase : Optional[int] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : int = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) ) @slow def _lowerCamelCase ( self ) -> List[str]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : int = FocalNetModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase ,__lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[int] = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: __lowercase : Dict = model_class(config=UpperCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ) -> Union[str, Any]: # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def _lowerCamelCase ( self ) -> Tuple: __lowercase : Tuple = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(UpperCamelCase_ ) __lowercase : Any = self.default_image_processor __lowercase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __lowercase : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): __lowercase : List[Any] = model(**UpperCamelCase_ ) # verify the logits __lowercase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __lowercase : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class UpperCAmelCase_ ( snake_case , unittest.TestCase ): UpperCamelCase =(FocalNetBackbone,) if is_torch_available() else () UpperCamelCase =FocalNetConfig UpperCamelCase =False def _lowerCamelCase ( self ) -> Dict: __lowercase : Optional[int] = FocalNetModelTester(self )
249
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast a_ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): UpperCamelCase =1_00_00 UpperCamelCase =None UpperCamelCase =None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): UpperCamelCase =ParquetConfig def _lowerCamelCase ( self ) -> List[str]: return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Tuple: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase_ , (str, list, tuple) ): __lowercase : str = data_files if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowercase : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : int = [dl_manager.iter_files(UpperCamelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __lowercase : int = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowercase : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : Any = [dl_manager.iter_files(UpperCamelCase_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCamelCase_ ): with open(UpperCamelCase_ , '''rb''' ) as f: __lowercase : Any = datasets.Features.from_arrow_schema(pq.read_schema(UpperCamelCase_ ) ) break splits.append(datasets.SplitGenerator(name=UpperCamelCase_ , gen_kwargs={'''files''': files} ) ) return splits def _lowerCamelCase ( self , UpperCamelCase_ ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowercase : Tuple = table_cast(UpperCamelCase_ , self.info.features.arrow_schema ) return pa_table def _lowerCamelCase ( self , UpperCamelCase_ ) -> Tuple: __lowercase : Union[str, Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase_ ) ): with open(UpperCamelCase_ , '''rb''' ) as f: __lowercase : Union[str, Any] = pq.ParquetFile(UpperCamelCase_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __lowercase : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(UpperCamelCase_ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCamelCase_ )}: {e}""" ) raise
249
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCAmelCase_ : def __init__( self : Dict , A : List[str] , A : Dict=1_3 , A : List[Any]=7 , A : Dict=True , A : Tuple=True , A : Tuple=False , A : List[str]=True , A : Any=9_9 , A : Optional[Any]=3_2 , A : Union[str, Any]=5 , A : str=4 , A : Tuple=3_7 , A : Union[str, Any]="gelu" , A : Optional[Any]=0.1 , A : Dict=0.1 , A : Optional[int]=5_1_2 , A : Optional[int]=1_6 , A : Dict=2 , A : Dict=0.02 , A : List[Any]=3 , A : Tuple=4 , A : Any=None , ): _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Any = seq_length _UpperCAmelCase : str = is_training _UpperCAmelCase : Optional[int] = use_input_mask _UpperCAmelCase : List[Any] = use_token_type_ids _UpperCAmelCase : Any = use_labels _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : Optional[Any] = type_vocab_size _UpperCAmelCase : int = type_sequence_label_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Optional[Any] = num_labels _UpperCAmelCase : List[Any] = num_choices _UpperCAmelCase : List[str] = scope def snake_case_ ( self : str ): _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[Any] = None if self.use_input_mask: _UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[int] = None if self.use_token_type_ids: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Dict = None _UpperCAmelCase : Any = None if self.use_labels: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self : Optional[int] ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def snake_case_ ( self : Optional[Any] , A : int , A : Tuple , A : Union[str, Any] , A : List[str] , A : int , A : str , A : Optional[Any] ): _UpperCAmelCase : Tuple = LlamaModel(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Any = model(A , attention_mask=A ) _UpperCAmelCase : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : Tuple , A : Optional[Any] , A : Tuple , A : Optional[Any] , A : List[str] , A : Union[str, Any] , A : Optional[Any] , A : Union[str, Any] , A : Union[str, Any] , A : Any , ): _UpperCAmelCase : int = True _UpperCAmelCase : int = LlamaModel(A ) model.to(A ) model.eval() _UpperCAmelCase : Tuple = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _UpperCAmelCase : int = model( A , attention_mask=A , encoder_hidden_states=A , ) _UpperCAmelCase : Optional[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : List[str] , A : Tuple , A : Any , A : int , A : Optional[Any] , A : Tuple , A : Any , A : List[str] , A : Any , A : Dict , ): _UpperCAmelCase : Any = LlamaForCausalLM(config=A ) model.to(A ) model.eval() _UpperCAmelCase : str = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self : Any , A : Tuple , A : str , A : List[str] , A : Optional[Any] , A : Any , A : Dict , A : Dict , A : List[str] , A : Optional[Any] , ): _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True _UpperCAmelCase : Optional[Any] = LlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase : Dict = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["hidden_states"][0] _UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["hidden_states"][0] # select random slice _UpperCAmelCase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def snake_case_ ( self : Dict ): _UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[str] = config_and_inputs _UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[int] = (LlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : int = False def snake_case_ ( self : Dict ): _UpperCAmelCase : str = LlamaModelTester(self ) _UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A , hidden_size=3_7 ) def snake_case_ ( self : Optional[int] ): self.config_tester.run_common_tests() def snake_case_ ( self : Tuple ): _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def snake_case_ ( self : Any ): _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*A ) def snake_case_ ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = 3 _UpperCAmelCase : Any = input_dict["input_ids"] _UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(A ) _UpperCAmelCase : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : Any = LlamaForSequenceClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self : Tuple ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : List[str] = "single_label_classification" _UpperCAmelCase : Optional[Any] = input_dict["input_ids"] _UpperCAmelCase : Any = input_ids.ne(1 ).to(A ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : Tuple = LlamaForSequenceClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : int = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : List[Any] = "multi_label_classification" _UpperCAmelCase : Union[str, Any] = input_dict["input_ids"] _UpperCAmelCase : Dict = input_ids.ne(1 ).to(A ) _UpperCAmelCase : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase : str = LlamaForSequenceClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def snake_case_ ( self : str ): pass @parameterized.expand([("linear",), ("dynamic",)] ) def snake_case_ ( self : Tuple , A : Tuple ): _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = ids_tensor([1, 1_0] , config.vocab_size ) _UpperCAmelCase : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase : Union[str, Any] = LlamaModel(A ) original_model.to(A ) original_model.eval() _UpperCAmelCase : Dict = original_model(A ).last_hidden_state _UpperCAmelCase : Dict = original_model(A ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase : Any = {"type": scaling_type, "factor": 10.0} _UpperCAmelCase : List[Any] = LlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state _UpperCAmelCase : str = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _UpperCAmelCase : Any = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) _UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _UpperCAmelCase : Optional[Any] = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _UpperCAmelCase : Optional[int] = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , A , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def snake_case_ ( self : Any ): _UpperCAmelCase : List[str] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _UpperCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) _UpperCAmelCase : Tuple = model(torch.tensor(A ) ) # Expected mean on dim = -1 _UpperCAmelCase : Dict = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _UpperCAmelCase : Dict = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , A , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def snake_case_ ( self : Dict ): _UpperCAmelCase : Tuple = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) _UpperCAmelCase : Optional[Any] = model(torch.tensor(A ) ) # Expected mean on dim = -1 _UpperCAmelCase : str = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _UpperCAmelCase : Any = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : List[str] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) _UpperCAmelCase : str = model(torch.tensor(A ) ) _UpperCAmelCase : Tuple = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # fmt: off _UpperCAmelCase : List[str] = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , A , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Model is curently gated" ) @slow def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : Optional[int] = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" _UpperCAmelCase : str = "Simply put, the theory of relativity states that " _UpperCAmelCase : str = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) _UpperCAmelCase : Any = tokenizer.encode(A , return_tensors="pt" ) _UpperCAmelCase : List[str] = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=A ) # greedy generation outputs _UpperCAmelCase : str = model.generate(A , max_new_tokens=6_4 , top_p=A , temperature=1 , do_sample=A ) _UpperCAmelCase : Any = tokenizer.decode(generated_ids[0] , skip_special_tokens=A ) self.assertEqual(A , A )
202
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _lowerCAmelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : int = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase : List[Any] = { "google/electra-small-generator": 5_12, "google/electra-base-generator": 5_12, "google/electra-large-generator": 5_12, "google/electra-small-discriminator": 5_12, "google/electra-base-discriminator": 5_12, "google/electra-large-discriminator": 5_12, } _lowerCAmelCase : Optional[Any] = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Tuple = ElectraTokenizer def __init__( self : Dict , A : Dict=None , A : Optional[int]=None , A : Dict=True , A : Optional[Any]="[UNK]" , A : Any="[SEP]" , A : str="[PAD]" , A : Tuple="[CLS]" , A : Optional[Any]="[MASK]" , A : Any=True , A : Tuple=None , **A : Any , ): super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) _UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , A ) != do_lower_case or normalizer_state.get("strip_accents" , A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , A ) != tokenize_chinese_chars ): _UpperCAmelCase : Union[str, Any] = getattr(A , normalizer_state.pop("type" ) ) _UpperCAmelCase : Dict = do_lower_case _UpperCAmelCase : Optional[int] = strip_accents _UpperCAmelCase : Any = tokenize_chinese_chars _UpperCAmelCase : Optional[Any] = normalizer_class(**A ) _UpperCAmelCase : int = do_lower_case def snake_case_ ( self : Tuple , A : str , A : int=None ): _UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self : Any , A : List[int] , A : Optional[List[int]] = None ): _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self : Any , A : str , A : Optional[str] = None ): _UpperCAmelCase : List[Any] = self._tokenizer.model.save(A , name=A ) return tuple(A )
202
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCAmelCase = None __lowerCAmelCase = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCAmelCase = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class __magic_name__ : lowerCAmelCase : bool = True lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "PIL.Image.Image" lowerCAmelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase : str = field(default='Image' , init=_UpperCamelCase , repr=_UpperCamelCase ) def __call__( self : Union[str, Any] ): return self.pa_type def __lowercase ( self : Any ,_UpperCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Optional[Any] = np.array(_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_UpperCAmelCase ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_UpperCAmelCase ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : dict ,_UpperCAmelCase : Optional[int]=None ): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: _a : Dict = {} _a , _a : str = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(_UpperCAmelCase ): _a : Any = PIL.Image.open(_UpperCAmelCase ) else: _a : List[Any] = path.split('::' )[-1] try: _a : str = string_to_dict(_UpperCAmelCase ,config.HUB_DATASETS_URL )['repo_id'] _a : Optional[Any] = token_per_repo_id.get(_UpperCAmelCase ) except ValueError: _a : int = None with xopen(_UpperCAmelCase ,'rb' ,use_auth_token=_UpperCAmelCase ) as f: _a : Tuple = BytesIO(f.read() ) _a : Union[str, Any] = PIL.Image.open(bytes_ ) else: _a : Optional[int] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowercase ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def __lowercase ( self : str ,_UpperCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): _a : Union[str, Any] = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.binary() ) _a : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] ,['bytes', 'path'] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _a : List[str] = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.string() ) _a : Any = pa.StructArray.from_arrays([storage, path_array] ,['bytes', 'path'] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: _a : Union[str, Any] = storage.field('bytes' ) else: _a : Tuple = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: _a : Union[str, Any] = storage.field('path' ) else: _a : Dict = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.string() ) _a : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['bytes', 'path'] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _a : List[str] = pa.array( [encode_np_array(np.array(_UpperCAmelCase ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) _a : int = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.string() ) _a : Optional[Any] = pa.StructArray.from_arrays( [bytes_array, path_array] ,['bytes', 'path'] ,mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase ,self.pa_type ) def __lowercase ( self : Dict ,_UpperCAmelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_UpperCAmelCase : Tuple ): with xopen(_UpperCAmelCase ,'rb' ) as f: _a : int = f.read() return bytes_ _a : Any = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) _a : Optional[Any] = pa.array( [os.path.basename(_UpperCAmelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] ,type=pa.string() ,) _a : Dict = pa.StructArray.from_arrays([bytes_array, path_array] ,['bytes', 'path'] ,mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase ,self.pa_type ) def __lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _a : Dict = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCamelCase ( lowerCAmelCase_ ) -> bytes: _a : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): _a : Optional[Any] = image.format else: _a : str = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowerCAmelCase_ , format=lowerCAmelCase_ ) return buffer.getvalue() def __lowerCamelCase ( lowerCAmelCase_ ) -> dict: if hasattr(lowerCAmelCase_ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowerCAmelCase_ )} def __lowerCamelCase ( lowerCAmelCase_ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) _a : List[Any] = array.dtype _a : Optional[int] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER _a : Union[str, Any] = dtype.kind _a : Union[str, Any] = dtype.itemsize _a : List[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _a : Optional[int] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _a : Union[str, Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _a : str = dtype_byteorder + dtype_kind + str(lowerCAmelCase_ ) _a : List[Any] = np.dtype(lowerCAmelCase_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _a : Union[str, Any] = PIL.Image.fromarray(array.astype(lowerCAmelCase_ ) ) return {"path": None, "bytes": image_to_bytes(lowerCAmelCase_ )} def __lowerCamelCase ( lowerCAmelCase_ ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: _a , _a : Optional[Any] = first_non_null_value(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowerCAmelCase_ , np.ndarray ): _a : List[str] = no_op_if_value_is_null(lowerCAmelCase_ ) return [obj_to_image_dict_func(lowerCAmelCase_ ) for obj in objs] elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): _a : List[str] = no_op_if_value_is_null(lowerCAmelCase_ ) return [obj_to_image_dict_func(lowerCAmelCase_ ) for obj in objs] else: return objs else: return objs
89
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : int = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class a__ ( UpperCamelCase__ , UpperCamelCase__ ): a : Any = """swin""" a : Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , A=224 , A=4 , A=3 , A=96 , A=[2, 2, 6, 2] , A=[3, 6, 12, 24] , A=7 , A=4.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=0.0_2 , A=1e-5 , A=32 , A=None , A=None , **A , ) -> Dict: '''simple docstring''' super().__init__(**__a ) a = image_size a = patch_size a = num_channels a = embed_dim a = depths a = len(__a ) a = num_heads a = window_size a = mlp_ratio a = qkv_bias a = hidden_dropout_prob a = attention_probs_dropout_prob a = drop_path_rate a = hidden_act a = use_absolute_embeddings a = layer_norm_eps a = initializer_range a = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a = int(embed_dim * 2 ** (len(__a ) - 1) ) a = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(__a ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names ) class a__ ( UpperCamelCase__ ): a : Tuple = version.parse("""1.11""" ) @property def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' return 1e-4
368
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> list[int]: a = 2 a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__UpperCamelCase) if n > 1: factors.append(__UpperCamelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
180
0
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Dict = WavaVecaPhonemeCTCTokenizer SCREAMING_SNAKE_CASE_ : str = False def _UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE :str = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE__ ,range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __SCREAMING_SNAKE_CASE :Tuple = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} __SCREAMING_SNAKE_CASE :Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=20 ,SCREAMING_SNAKE_CASE__=5 ) -> Tuple[str, list]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = [(i, tokenizer.decode([i] ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] __SCREAMING_SNAKE_CASE :Union[str, Any] = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] ,do_phonemize=SCREAMING_SNAKE_CASE__ ) ,SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: __SCREAMING_SNAKE_CASE :Optional[int] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: __SCREAMING_SNAKE_CASE :List[Any] = toks + toks # toks_str = [t[1] for t in toks] __SCREAMING_SNAKE_CASE :Union[str, Any] = [t[0] for t in toks] # Ensure consistency __SCREAMING_SNAKE_CASE :Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE__ ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: __SCREAMING_SNAKE_CASE :List[str] = ( tokenizer.decode([toks_ids[0]] ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: __SCREAMING_SNAKE_CASE :Any = ''' ''' + output_txt __SCREAMING_SNAKE_CASE :Dict = tokenizer.encode(SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ,**SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = tokenizer('''m xxx ɪ''' ,do_phonemize=SCREAMING_SNAKE_CASE__ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE__ ,[13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer('''m aaa ɪ ccc''' ,do_phonemize=SCREAMING_SNAKE_CASE__ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE__ ,[13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa __SCREAMING_SNAKE_CASE :str = tokenizer('''maɪ c''' ,do_phonemize=SCREAMING_SNAKE_CASE__ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE__ ,[3, 2_00] ) # mai should be <unk> (=3) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __SCREAMING_SNAKE_CASE :int = '''Hello how are you''' __SCREAMING_SNAKE_CASE :str = tokenizer.phonemize(SCREAMING_SNAKE_CASE__ ,phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,'''h ə l oʊ h aʊ ɑːɹ j uː''' ) def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = '''Hello how are you''' __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.phonemize(SCREAMING_SNAKE_CASE__ ,phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE__ ).input_ids ,tokenizer(SCREAMING_SNAKE_CASE__ ,do_phonemize=SCREAMING_SNAKE_CASE__ ).input_ids ) def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __SCREAMING_SNAKE_CASE :Dict = '''Hello how are you''' __SCREAMING_SNAKE_CASE :str = tokenizer.phonemize(SCREAMING_SNAKE_CASE__ ,phonemizer_lang='''en-us''' ) __SCREAMING_SNAKE_CASE :str = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE__ ).input_ids ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __SCREAMING_SNAKE_CASE :List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] __SCREAMING_SNAKE_CASE :List[str] = tokenizer.decode(sample_ids[0] ) __SCREAMING_SNAKE_CASE :Any = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' ,word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __SCREAMING_SNAKE_CASE :List[str] = '''Hello how are you''' __SCREAMING_SNAKE_CASE :Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE__ ,phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,'''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' ,word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = '''Hello how are you''' __SCREAMING_SNAKE_CASE :int = tokenizer.phonemize(SCREAMING_SNAKE_CASE__ ,phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE__ ).input_ids ,tokenizer(SCREAMING_SNAKE_CASE__ ,do_phonemize=SCREAMING_SNAKE_CASE__ ).input_ids ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' ,word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off __SCREAMING_SNAKE_CASE :Any = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter __SCREAMING_SNAKE_CASE :str = tokenizer.decode(sample_ids[0] ) __SCREAMING_SNAKE_CASE :int = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.decode(sample_ids[0] ,filter_word_delimiter_token=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ,filter_word_delimiter_token=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' ,word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = '''Hello how are you''' __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.phonemize(SCREAMING_SNAKE_CASE__ ,phonemizer_lang='''en-us''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE__ ).input_ids ,filter_word_delimiter_token=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' ,word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __SCREAMING_SNAKE_CASE :Tuple = '''Hello how are you''' __SCREAMING_SNAKE_CASE :List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE__ ,phonemizer_lang='''en-us''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE__ ).input_ids ,filter_word_delimiter_token=SCREAMING_SNAKE_CASE__ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' ,word_delimiter_token=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = '''Hello how are you''' __SCREAMING_SNAKE_CASE :str = tokenizer(SCREAMING_SNAKE_CASE__ ,phonemizer_lang='''en-us''' ).input_ids __SCREAMING_SNAKE_CASE :List[str] = tokenizer(SCREAMING_SNAKE_CASE__ ,phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,'''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,'''ɛ l o h aʊ a ʁ j u''' ) def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = '''Hello how Are you''' __SCREAMING_SNAKE_CASE :Tuple = '''hello how are you''' __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ ).input_ids __SCREAMING_SNAKE_CASE :Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off __SCREAMING_SNAKE_CASE :Union[str, Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on __SCREAMING_SNAKE_CASE :List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = [d[key] for d in offsets] return retrieved_list def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __SCREAMING_SNAKE_CASE :Optional[int] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on __SCREAMING_SNAKE_CASE :Dict = tokenizer.decode(SCREAMING_SNAKE_CASE__ ,output_char_offsets=SCREAMING_SNAKE_CASE__ ,filter_word_delimiter_token=SCREAMING_SNAKE_CASE__ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) ,2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] ,'''char''' ) ) ,outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] ,'''char''' ) ,['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] ,'''start_offset''' ) ,[0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] ,'''end_offset''' ) ,[1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): self.assertTrue(isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(isinstance(outputs_list[0] ,SCREAMING_SNAKE_CASE__ ) ) # transform list to ModelOutput __SCREAMING_SNAKE_CASE :int = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] ,outputs_batch_a['''text'''] ) def recursive_check(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): [recursive_check(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for la, la in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] ,outputs_batch_a['''char_offsets'''] ) # fmt: off __SCREAMING_SNAKE_CASE :Dict = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __SCREAMING_SNAKE_CASE :str = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ,output_char_offsets=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE__ ,output_char_offsets=SCREAMING_SNAKE_CASE__ ) for ids in sample_ids] check_list_tuples_equal(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.vocab_size __SCREAMING_SNAKE_CASE :Any = len(SCREAMING_SNAKE_CASE__ ) self.assertNotEqual(SCREAMING_SNAKE_CASE__ ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __SCREAMING_SNAKE_CASE :List[str] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = tokenizer.vocab_size __SCREAMING_SNAKE_CASE :Tuple = len(SCREAMING_SNAKE_CASE__ ) self.assertNotEqual(SCREAMING_SNAKE_CASE__ ,0 ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,len(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,all_size + len(SCREAMING_SNAKE_CASE__ ) ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE__ ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) __SCREAMING_SNAKE_CASE :Optional[Any] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} __SCREAMING_SNAKE_CASE :List[str] = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = tokenizer.vocab_size __SCREAMING_SNAKE_CASE :Dict = len(SCREAMING_SNAKE_CASE__ ) self.assertNotEqual(SCREAMING_SNAKE_CASE__ ,0 ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,len(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,all_size_a + len(SCREAMING_SNAKE_CASE__ ) ) __SCREAMING_SNAKE_CASE :List[str] = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE__ ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _UpperCamelCase ( self ) -> str: """simple docstring""" pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" pass def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ ,do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __SCREAMING_SNAKE_CASE :Dict = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] __SCREAMING_SNAKE_CASE :List[Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(output['''text'''] ,SCREAMING_SNAKE_CASE__ )
191
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): snake_case : Optional[Any] = 'luke' def __init__( self , __lowerCAmelCase=50267 , __lowerCAmelCase=500000 , __lowerCAmelCase=768 , __lowerCAmelCase=256 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = entity_vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = entity_emb_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_entity_aware_attention UpperCamelCase__ = classifier_dropout
358
def _UpperCamelCase (a__ :dict ): """simple docstring""" UpperCamelCase__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCamelCase__ = set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def _UpperCamelCase (a__ :dict , a__ :int , a__ :set , a__ :set ): """simple docstring""" visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
87
0
import sys import turtle def SCREAMING_SNAKE_CASE_ ( __magic_name__ : tuple[float, float] , __magic_name__ : tuple[float, float] ) -> tuple[float, float]: """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : tuple[float, float] , __magic_name__ : tuple[float, float] , __magic_name__ : tuple[float, float] , __magic_name__ : int , ) -> None: """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(__magic_name__ , get_mid(__magic_name__ , __magic_name__ ) , get_mid(__magic_name__ , __magic_name__ ) , depth - 1 ) triangle(__magic_name__ , get_mid(__magic_name__ , __magic_name__ ) , get_mid(__magic_name__ , __magic_name__ ) , depth - 1 ) triangle(__magic_name__ , get_mid(__magic_name__ , __magic_name__ ) , get_mid(__magic_name__ , __magic_name__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) UpperCAmelCase_ : str = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') UpperCAmelCase_ : int = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
38
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''xmod''' def __init__( self : Optional[int] , A : int=3_05_22 , A : Tuple=7_68 , A : Optional[Any]=12 , A : Tuple=12 , A : str=30_72 , A : List[str]="gelu" , A : Any=0.1 , A : int=0.1 , A : Dict=5_12 , A : Optional[Any]=2 , A : Optional[Any]=0.0_2 , A : List[Any]=1E-12 , A : int=1 , A : Tuple=0 , A : Optional[Any]=2 , A : int="absolute" , A : Union[str, Any]=True , A : List[Any]=None , A : Optional[Any]=False , A : List[str]=2 , A : int=False , A : str=True , A : Optional[Any]=True , A : Tuple=("en_XX",) , A : Optional[int]=None , **A : List[str] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout _UpperCAmelCase = pre_norm _UpperCAmelCase = adapter_reduction_factor _UpperCAmelCase = adapter_layer_norm _UpperCAmelCase = adapter_reuse_layer_norm _UpperCAmelCase = ln_before_adapter _UpperCAmelCase = list(A) _UpperCAmelCase = default_language class __lowerCAmelCase ( A ): @property def _lowerCamelCase ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
290
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def A ( ) -> tuple[list[int], int]: '''simple docstring''' _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) UpperCAmelCase__ = make_dataset() def A ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(_UpperCAmelCase , 3 ): if sum(_UpperCAmelCase ) == target: return tuple(sorted(_UpperCAmelCase ) ) return (0, 0, 0) def A ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() _UpperCAmelCase = len(_UpperCAmelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def A ( ) -> tuple[float, float]: '''simple docstring''' _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=_UpperCAmelCase , stmt=_UpperCAmelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=_UpperCAmelCase , stmt=_UpperCAmelCase , repeat=5 , number=10_000 ) return (min(_UpperCAmelCase ), min(_UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase__ = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
290
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''')) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''') @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ]) class _a ( unittest.TestCase): def UpperCAmelCase__( self : List[str] )-> int: if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , '''env''' ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Optional[int]=1 )-> int: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-single' , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Dict: TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) def UpperCAmelCase__( self : Dict )-> str: # create estimator lowerCAmelCase__ : Any = self.create_estimator() # run training estimator.fit() # result dataframe lowerCAmelCase__ : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowerCAmelCase__ : Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ : Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _SCREAMING_SNAKE_CASE )
131
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Dict = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_a )[0] @deprecated(_a , '''Please use tf.data to implement this functionality.''' ) def lowerCamelCase_ ( _a ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: lowerCAmelCase__ : Any = _readaa(_a ) if magic != 2_051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) lowerCAmelCase__ : Any = _readaa(_a ) lowerCAmelCase__ : Tuple = _readaa(_a ) lowerCAmelCase__ : List[Any] = _readaa(_a ) lowerCAmelCase__ : Union[str, Any] = bytestream.read(rows * cols * num_images ) lowerCAmelCase__ : List[Any] = numpy.frombuffer(_a , dtype=numpy.uinta ) lowerCAmelCase__ : int = data.reshape(_a , _a , _a , 1 ) return data @deprecated(_a , '''Please use tf.one_hot on tensors.''' ) def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[Any] = labels_dense.shape[0] lowerCAmelCase__ : Optional[Any] = numpy.arange(_a ) * num_classes lowerCAmelCase__ : str = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase__ : Optional[Any] = 1 return labels_one_hot @deprecated(_a , '''Please use tf.data to implement this functionality.''' ) def lowerCamelCase_ ( _a , _a=False , _a=10 ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: lowerCAmelCase__ : Optional[int] = _readaa(_a ) if magic != 2_049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) lowerCAmelCase__ : Union[str, Any] = _readaa(_a ) lowerCAmelCase__ : Tuple = bytestream.read(_a ) lowerCAmelCase__ : Dict = numpy.frombuffer(_a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_a , _a ) return labels class _a : @deprecated( _SCREAMING_SNAKE_CASE , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Optional[Any]=dtypes.floataa , _SCREAMING_SNAKE_CASE : List[str]=True , _SCREAMING_SNAKE_CASE : List[str]=None , )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = random_seed.get_seed(_SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase__ : Optional[int] = dtypes.as_dtype(_SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: lowerCAmelCase__ : int = 1_0000 lowerCAmelCase__ : List[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' lowerCAmelCase__ : List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase__ : Tuple = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase__ : Any = images.astype(numpy.floataa ) lowerCAmelCase__ : Any = numpy.multiply(_SCREAMING_SNAKE_CASE , 1.0 / 255.0 ) lowerCAmelCase__ : Tuple = images lowerCAmelCase__ : Tuple = labels lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Tuple = 0 @property def UpperCAmelCase__( self : Tuple )-> Dict: return self._images @property def UpperCAmelCase__( self : Tuple )-> Optional[int]: return self._labels @property def UpperCAmelCase__( self : Tuple )-> Dict: return self._num_examples @property def UpperCAmelCase__( self : Tuple )-> Any: return self._epochs_completed def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict=False , _SCREAMING_SNAKE_CASE : Optional[int]=True )-> List[str]: if fake_data: lowerCAmelCase__ : Dict = [1] * 784 lowerCAmelCase__ : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_SCREAMING_SNAKE_CASE )], [fake_label for _ in range(_SCREAMING_SNAKE_CASE )], ) lowerCAmelCase__ : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = self.images[perma] lowerCAmelCase__ : Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase__ : Any = self._num_examples - start lowerCAmelCase__ : List[str] = self._images[start : self._num_examples] lowerCAmelCase__ : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = self.images[perm] lowerCAmelCase__ : List[Any] = self.labels[perm] # Start next epoch lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Union[str, Any] = batch_size - rest_num_examples lowerCAmelCase__ : Any = self._index_in_epoch lowerCAmelCase__ : Optional[Any] = self._images[start:end] lowerCAmelCase__ : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase__ : Dict = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_a , '''Please write your own downloading logic.''' ) def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" if not gfile.Exists(_a ): gfile.MakeDirs(_a ) lowerCAmelCase__ : str = os.path.join(_a , _a ) if not gfile.Exists(_a ): urllib.request.urlretrieve(_a , _a ) # noqa: S310 with gfile.GFile(_a ) as f: lowerCAmelCase__ : Optional[Any] = f.size() print('''Successfully downloaded''' , _a , _a , '''bytes.''' ) return filepath @deprecated( _a , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def lowerCamelCase_ ( _a , _a=False , _a=False , _a=dtypes.floataa , _a=True , _a=5_000 , _a=None , _a=DEFAULT_SOURCE_URL , ): """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_a , one_hot=_a , dtype=_a , seed=_a ) lowerCAmelCase__ : Tuple = fake() lowerCAmelCase__ : Union[str, Any] = fake() lowerCAmelCase__ : Tuple = fake() return _Datasets(train=_a , validation=_a , test=_a ) if not source_url: # empty string check lowerCAmelCase__ : Optional[Any] = DEFAULT_SOURCE_URL lowerCAmelCase__ : Tuple = '''train-images-idx3-ubyte.gz''' lowerCAmelCase__ : Dict = '''train-labels-idx1-ubyte.gz''' lowerCAmelCase__ : List[str] = '''t10k-images-idx3-ubyte.gz''' lowerCAmelCase__ : Optional[int] = '''t10k-labels-idx1-ubyte.gz''' lowerCAmelCase__ : Optional[Any] = _maybe_download( _a , _a , source_url + train_images_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : Optional[Any] = _extract_images(_a ) lowerCAmelCase__ : Any = _maybe_download( _a , _a , source_url + train_labels_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : Any = _extract_labels(_a , one_hot=_a ) lowerCAmelCase__ : Any = _maybe_download( _a , _a , source_url + test_images_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : str = _extract_images(_a ) lowerCAmelCase__ : Dict = _maybe_download( _a , _a , source_url + test_labels_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : int = _extract_labels(_a , one_hot=_a ) if not 0 <= validation_size <= len(_a ): lowerCAmelCase__ : Dict = ( '''Validation size should be between 0 and ''' f'{len(_a )}. Received: {validation_size}.' ) raise ValueError(_a ) lowerCAmelCase__ : List[str] = train_images[:validation_size] lowerCAmelCase__ : Any = train_labels[:validation_size] lowerCAmelCase__ : Optional[Any] = train_images[validation_size:] lowerCAmelCase__ : Optional[int] = train_labels[validation_size:] lowerCAmelCase__ : Optional[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} lowerCAmelCase__ : List[str] = _DataSet(_a , _a , **_a ) lowerCAmelCase__ : Dict = _DataSet(_a , _a , **_a ) lowerCAmelCase__ : Dict = _DataSet(_a , _a , **_a ) return _Datasets(train=_a , validation=_a , test=_a )
131
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=2 , UpperCamelCase_: Optional[Any]=8 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Any=99 , UpperCamelCase_: int=16 , UpperCamelCase_: Optional[int]=5 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Any=36 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: Any=512 , UpperCamelCase_: int=16 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: str=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: str=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = self.get_config() lowercase__ = 300 return config def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.prepare_config_and_inputs() lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple ) -> Any: """simple docstring""" lowercase__ = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) lowercase__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) lowercase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = True lowercase__ = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) lowercase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) lowercase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.num_labels lowercase__ = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.num_labels lowercase__ = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase__ , unittest.TestCase ): _lowercase : Dict = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _lowercase : List[str] = False _lowercase : Dict = False _lowercase : Optional[int] = False _lowercase : Any = False _lowercase : int = () def lowerCamelCase_ ( self: List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = MraModelTester(self ) lowercase__ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase_ ( self: Any ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase_ ( self: Optional[Any] ) -> str: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" return @require_torch class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) lowercase__ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ = model(__UpperCAmelCase )[0] lowercase__ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowercase__ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" lowercase__ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) lowercase__ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ = model(__UpperCAmelCase )[0] lowercase__ = 50_265 lowercase__ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowercase__ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" lowercase__ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) lowercase__ = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ = model(__UpperCAmelCase )[0] lowercase__ = 50_265 lowercase__ = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowercase__ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
110
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): def get_masked_lm_array(lowerCamelCase__ ): lowerCamelCase_ = F'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' lowerCamelCase_ = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) if "kernel" in name: lowerCamelCase_ = array.transpose() return torch.from_numpy(lowerCamelCase__ ) def get_encoder_array(lowerCamelCase__ ): lowerCamelCase_ = F'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' lowerCamelCase_ = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) if "kernel" in name: lowerCamelCase_ = array.transpose() return torch.from_numpy(lowerCamelCase__ ) def get_encoder_layer_array(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = F'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' lowerCamelCase_ = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) if "kernel" in name: lowerCamelCase_ = array.transpose() return torch.from_numpy(lowerCamelCase__ ) def get_encoder_attention_layer_array(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = F'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' lowerCamelCase_ = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = array.reshape(lowerCamelCase__ ) if "kernel" in name: lowerCamelCase_ = array.transpose() return torch.from_numpy(lowerCamelCase__ ) print(F'Loading model based on config from {config_path}...' ) lowerCamelCase_ = BertConfig.from_json_file(lowerCamelCase__ ) lowerCamelCase_ = BertForMaskedLM(lowerCamelCase__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowerCamelCase_ = model.bert.encoder.layer[layer_index] # Self-attention lowerCamelCase_ = layer.attention.self lowerCamelCase_ = get_encoder_attention_layer_array( lowerCamelCase__ , "_query_dense/kernel" , self_attn.query.weight.data.shape ) lowerCamelCase_ = get_encoder_attention_layer_array( lowerCamelCase__ , "_query_dense/bias" , self_attn.query.bias.data.shape ) lowerCamelCase_ = get_encoder_attention_layer_array( lowerCamelCase__ , "_key_dense/kernel" , self_attn.key.weight.data.shape ) lowerCamelCase_ = get_encoder_attention_layer_array( lowerCamelCase__ , "_key_dense/bias" , self_attn.key.bias.data.shape ) lowerCamelCase_ = get_encoder_attention_layer_array( lowerCamelCase__ , "_value_dense/kernel" , self_attn.value.weight.data.shape ) lowerCamelCase_ = get_encoder_attention_layer_array( lowerCamelCase__ , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output lowerCamelCase_ = layer.attention.output lowerCamelCase_ = get_encoder_attention_layer_array( lowerCamelCase__ , "_output_dense/kernel" , self_output.dense.weight.data.shape ) lowerCamelCase_ = get_encoder_attention_layer_array( lowerCamelCase__ , "_output_dense/bias" , self_output.dense.bias.data.shape ) lowerCamelCase_ = get_encoder_layer_array(lowerCamelCase__ , "_attention_layer_norm/gamma" ) lowerCamelCase_ = get_encoder_layer_array(lowerCamelCase__ , "_attention_layer_norm/beta" ) # Intermediate lowerCamelCase_ = layer.intermediate lowerCamelCase_ = get_encoder_layer_array(lowerCamelCase__ , "_intermediate_dense/kernel" ) lowerCamelCase_ = get_encoder_layer_array(lowerCamelCase__ , "_intermediate_dense/bias" ) # Output lowerCamelCase_ = layer.output lowerCamelCase_ = get_encoder_layer_array(lowerCamelCase__ , "_output_dense/kernel" ) lowerCamelCase_ = get_encoder_layer_array(lowerCamelCase__ , "_output_dense/bias" ) lowerCamelCase_ = get_encoder_layer_array(lowerCamelCase__ , "_output_layer_norm/gamma" ) lowerCamelCase_ = get_encoder_layer_array(lowerCamelCase__ , "_output_layer_norm/beta" ) # Embeddings lowerCamelCase_ = get_encoder_array("_position_embedding_layer/embeddings" ) lowerCamelCase_ = get_encoder_array("_type_embedding_layer/embeddings" ) lowerCamelCase_ = get_encoder_array("_embedding_norm_layer/gamma" ) lowerCamelCase_ = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head lowerCamelCase_ = model.cls.predictions.transform lowerCamelCase_ = get_masked_lm_array("dense/kernel" ) lowerCamelCase_ = get_masked_lm_array("dense/bias" ) lowerCamelCase_ = get_masked_lm_array("layer_norm/gamma" ) lowerCamelCase_ = get_masked_lm_array("layer_norm/beta" ) lowerCamelCase_ = get_masked_lm_array("embedding_table" ) # Pooling lowerCamelCase_ = BertPooler(config=lowerCamelCase__ ) lowerCamelCase_ = get_encoder_array("_pooler_layer/kernel" ) lowerCamelCase_ = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(lowerCamelCase__ ) # Integration test - should load without any errors ;) lowerCamelCase_ = BertForMaskedLM.from_pretrained(lowerCamelCase__ ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) __A =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
47
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
47
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
174
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _UpperCAmelCase : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __snake_case = logging.getLogger(__name__) class lowercase__ ( _UpperCAmelCase ): A__ : Tuple ="""summarization""" A__ : Optional[int] =["""loss"""] A__ : Optional[Any] =ROUGE_KEYS A__ : str ="""rouge2""" def __init__( self : List[str] , UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ): if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE__ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(UpperCAmelCase_ , num_labels=UpperCAmelCase_ , mode=self.mode , **UpperCAmelCase_ ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE__ = Path(self.output_dir ) / 'metrics.json' SCREAMING_SNAKE_CASE__ = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = defaultdict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.config.model_type SCREAMING_SNAKE_CASE__ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size SCREAMING_SNAKE_CASE__ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE__ = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } SCREAMING_SNAKE_CASE__ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE__ = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE__ = get_git_info()['repo_sha'] SCREAMING_SNAKE_CASE__ = hparams.num_workers SCREAMING_SNAKE_CASE__ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE__ = self.decoder_start_token_id SCREAMING_SNAKE_CASE__ = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE__ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE__ = self.model.config.max_length SCREAMING_SNAKE_CASE__ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def A_ ( self : List[str] , UpperCAmelCase_ : Dict[str, torch.Tensor] ): SCREAMING_SNAKE_CASE__ = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(UpperCAmelCase_ , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) SCREAMING_SNAKE_CASE__ = True return readable_batch def A_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): return self.model(UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : List[int] ): SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return lmap(str.strip , UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : dict ): SCREAMING_SNAKE_CASE__ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch['input_ids'], batch['attention_mask'] SCREAMING_SNAKE_CASE__ = batch['labels'] if isinstance(self.model , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = self.model._shift_right(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = shift_tokens_right(UpperCAmelCase_ , UpperCAmelCase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE__ = decoder_input_ids self.save_readable_batch(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE__ = nn.CrossEntropyLoss(ignore_index=UpperCAmelCase_ ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE__ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = nn.functional.log_softmax(UpperCAmelCase_ , dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = label_smoothed_nll_loss( UpperCAmelCase_ , UpperCAmelCase_ , self.hparams.label_smoothing , ignore_index=UpperCAmelCase_ ) return (loss,) @property def A_ ( self : Dict ): return self.tokenizer.pad_token_id def A_ ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE__ = self._step(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dict(zip(self.loss_names , UpperCAmelCase_ ) ) # tokens per batch SCREAMING_SNAKE_CASE__ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() SCREAMING_SNAKE_CASE__ = batch['input_ids'].shape[0] SCREAMING_SNAKE_CASE__ = batch['input_ids'].eq(self.pad ).sum() SCREAMING_SNAKE_CASE__ = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def A_ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ): return self._generative_step(UpperCAmelCase_ ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple="val" ): self.step_count += 1 SCREAMING_SNAKE_CASE__ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE__ = losses['loss'] SCREAMING_SNAKE_CASE__ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } SCREAMING_SNAKE_CASE__ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE__ = torch.tensor(UpperCAmelCase_ ).type_as(UpperCAmelCase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {F'{prefix}_avg_{k}': x for k, x in losses.items()} SCREAMING_SNAKE_CASE__ = self.step_count self.metrics[prefix].append(UpperCAmelCase_ ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE__ = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def A_ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): return calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : str , UpperCAmelCase_ : dict ): SCREAMING_SNAKE_CASE__ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE__ = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=UpperCAmelCase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE__ = (time.time() - ta) / batch['input_ids'].shape[0] SCREAMING_SNAKE_CASE__ = self.ids_to_clean_text(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.ids_to_clean_text(batch['labels'] ) SCREAMING_SNAKE_CASE__ = self._step(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dict(zip(self.loss_names , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = self.calc_generative_metrics(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = np.mean(lmap(UpperCAmelCase_ , UpperCAmelCase_ ) ) base_metrics.update(gen_time=UpperCAmelCase_ , gen_len=UpperCAmelCase_ , preds=UpperCAmelCase_ , target=UpperCAmelCase_ , **UpperCAmelCase_ ) return base_metrics def A_ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): return self._generative_step(UpperCAmelCase_ ) def A_ ( self : Any , UpperCAmelCase_ : List[str] ): return self.validation_epoch_end(UpperCAmelCase_ , prefix='test' ) def A_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = self.n_obs[type_path] SCREAMING_SNAKE_CASE__ = self.target_lens[type_path] SCREAMING_SNAKE_CASE__ = self.dataset_class( self.tokenizer , type_path=UpperCAmelCase_ , n_obs=UpperCAmelCase_ , max_target_length=UpperCAmelCase_ , **self.dataset_kwargs , ) return dataset def A_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = self.get_dataset(UpperCAmelCase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ = dataset.make_sortish_sampler(UpperCAmelCase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase_ , num_workers=self.num_workers , sampler=UpperCAmelCase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCAmelCase_ , batch_sampler=UpperCAmelCase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase_ , num_workers=self.num_workers , sampler=UpperCAmelCase_ , ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=UpperCAmelCase_ ) return dataloader def A_ ( self : str ): return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def A_ ( self : int ): return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def A_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): BaseTransformer.add_model_specific_args(UpperCAmelCase_ , UpperCAmelCase_ ) add_generic_args(UpperCAmelCase_ , UpperCAmelCase_ ) parser.add_argument( '--max_source_length' , default=1024 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=UpperCAmelCase_ ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=UpperCAmelCase_ ) parser.add_argument('--max_tokens_per_batch' , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) parser.add_argument('--logger_name' , type=UpperCAmelCase_ , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=UpperCAmelCase_ , default=500 , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=UpperCAmelCase_ , default='summarization' , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=UpperCAmelCase_ , default=0.0 , required=UpperCAmelCase_ ) parser.add_argument('--src_lang' , type=UpperCAmelCase_ , default='' , required=UpperCAmelCase_ ) parser.add_argument('--tgt_lang' , type=UpperCAmelCase_ , default='' , required=UpperCAmelCase_ ) parser.add_argument('--eval_beams' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ ) parser.add_argument( '--val_metric' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=UpperCAmelCase_ , default=1 , required=UpperCAmelCase_ , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class lowercase__ ( _UpperCAmelCase ): A__ : Optional[Any] ="""translation""" A__ : Dict =["""loss"""] A__ : Optional[int] =["""bleu"""] A__ : Union[str, Any] ="""bleu""" def __init__( self : Tuple , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = hparams.src_lang SCREAMING_SNAKE_CASE__ = hparams.tgt_lang def A_ ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ): return calculate_bleu(UpperCAmelCase_ , UpperCAmelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_=None ) -> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=UpperCamelCase_ ) check_output_dir(UpperCamelCase_ , expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE__ = SummarizationModule(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = TranslationModule(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): SCREAMING_SNAKE_CASE__ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ = os.environ.get('WANDB_PROJECT' , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = WandbLogger(name=model.output_dir.name , project=UpperCamelCase_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE__ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = args.val_metric == 'loss' SCREAMING_SNAKE_CASE__ = generic_train( UpperCamelCase_ , UpperCamelCase_ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , UpperCamelCase_ ) , early_stopping_callback=UpperCamelCase_ , logger=UpperCamelCase_ , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=UpperCamelCase_ ) ) if checkpoints: SCREAMING_SNAKE_CASE__ = checkpoints[-1] SCREAMING_SNAKE_CASE__ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = pl.Trainer.add_argparse_args(parser) __snake_case = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __snake_case = parser.parse_args() main(args)
169
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase__ : @staticmethod def A_ ( *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ): pass @is_pipeline_test @require_vision class lowercase__ ( unittest.TestCase ): @require_torch def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ = image_classifier(UpperCAmelCase_ , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase_ ) , [ [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'c'}, {'score': 0.333, 'label': 'b'}], ] , ) SCREAMING_SNAKE_CASE__ = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], ] , ) @require_tf def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ = image_classifier(UpperCAmelCase_ , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}] , ) SCREAMING_SNAKE_CASE__ = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], ] , ) @slow @require_torch def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ = image_classifier(UpperCAmelCase_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) SCREAMING_SNAKE_CASE__ = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ = image_classifier(UpperCAmelCase_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) SCREAMING_SNAKE_CASE__ = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , )
169
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LongformerTokenizer snake_case_ = True snake_case_ = LongformerTokenizerFast snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __A = dict(zip(A ,range(len(A ) ) ) ) __A = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __A = {"unk_token": "<unk>"} __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(A ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(A ) ) def UpperCamelCase_ ( self : Tuple ,**A : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : int ,**A : Optional[Any] ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Any ,A : Tuple ): __A = "lower newer" __A = "lower newer" return input_text, output_text def UpperCamelCase_ ( self : Dict ): __A = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) __A = "lower newer" __A = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] __A = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A ,A ) __A = tokens + [tokenizer.unk_token] __A = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" ,add_special_tokens=A ) ,[0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" ,add_special_tokens=A ) ,[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] ,) @slow def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) __A = tokenizer.encode("sequence builders" ,add_special_tokens=A ) __A = tokenizer.encode("multi-sequence build" ,add_special_tokens=A ) __A = tokenizer.encode( "sequence builders" ,add_special_tokens=A ,add_prefix_space=A ) __A = tokenizer.encode( "sequence builders" ,"multi-sequence build" ,add_special_tokens=A ,add_prefix_space=A ) __A = tokenizer.build_inputs_with_special_tokens(A ) __A = tokenizer.build_inputs_with_special_tokens(A ,A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_tokenizer() __A = "Encode this sequence." __A = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments __A = tokenizer.encode(A ,add_special_tokens=A ,add_prefix_space=A ) __A = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A ,A ) __A = tokenizer.encode(A ,add_special_tokens=A ,add_prefix_space=A ) __A = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A ,A ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) __A = tokenizer.encode(A ,add_special_tokens=A ) __A = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A ,A ) # Testing spaces after special tokens __A = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(A ,lstrip=A ,rstrip=A )} ) # mask token has a left space __A = tokenizer.convert_tokens_to_ids(A ) __A = "Encode <mask> sequence" __A = "Encode <mask>sequence" __A = tokenizer.encode(A ) __A = encoded.index(A ) __A = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A ,A ) __A = tokenizer.encode(A ) __A = encoded.index(A ) __A = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A ,A ) def UpperCamelCase_ ( self : int ): pass def UpperCamelCase_ ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __A = self.rust_tokenizer_class.from_pretrained(A ,**A ) __A = self.tokenizer_class.from_pretrained(A ,**A ) __A = "A, <mask> AllenNLP sentence." __A = tokenizer_r.encode_plus(A ,add_special_tokens=A ,return_token_type_ids=A ) __A = tokenizer_p.encode_plus(A ,add_special_tokens=A ,return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) ,sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) ,sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) ,) __A = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) __A = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( A ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( A ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def UpperCamelCase_ ( self : int ): for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): __A = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=A ,add_prefix_space=A ,trim_offsets=A ) __A = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __A = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] ,A ) self.assertEqual(post_processor_state["add_prefix_space"] ,A ) self.assertEqual(post_processor_state["trim_offsets"] ,A ) def UpperCamelCase_ ( self : Any ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __A = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __A = f'''{text_of_1_token} {text_of_1_token}''' __A = self.rust_tokenizer_class.from_pretrained( A ,use_fast=A ,add_prefix_space=A ,trim_offsets=A ) __A = tokenizer_r(A ,return_offsets_mapping=A ,add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(A ) + 1, len(A ) + 1 + len(A )) ,) __A = self.rust_tokenizer_class.from_pretrained( A ,use_fast=A ,add_prefix_space=A ,trim_offsets=A ) __A = tokenizer_r(A ,return_offsets_mapping=A ,add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(A ) + 1, len(A ) + 1 + len(A )) ,) __A = self.rust_tokenizer_class.from_pretrained( A ,use_fast=A ,add_prefix_space=A ,trim_offsets=A ) __A = tokenizer_r(A ,return_offsets_mapping=A ,add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(A ), len(A ) + 1 + len(A )) ,) __A = self.rust_tokenizer_class.from_pretrained( A ,use_fast=A ,add_prefix_space=A ,trim_offsets=A ) __A = tokenizer_r(A ,return_offsets_mapping=A ,add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(A ), len(A ) + 1 + len(A )) ,) __A = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __A = self.rust_tokenizer_class.from_pretrained( A ,use_fast=A ,add_prefix_space=A ,trim_offsets=A ) __A = tokenizer_r(A ,return_offsets_mapping=A ,add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )) ,) __A = self.rust_tokenizer_class.from_pretrained( A ,use_fast=A ,add_prefix_space=A ,trim_offsets=A ) __A = tokenizer_r(A ,return_offsets_mapping=A ,add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(A ), 1 + len(A ) + 1 + len(A )) ,) __A = self.rust_tokenizer_class.from_pretrained( A ,use_fast=A ,add_prefix_space=A ,trim_offsets=A ) __A = tokenizer_r(A ,return_offsets_mapping=A ,add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(A ), 1 + len(A ) + 1 + len(A )) ,)
15
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel snake_case_ : Any = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __a (unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def UpperCAmelCase__ ( cls : List[Any] ) -> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(__magic_name__ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__magic_name__ , repo_id='''test-model-flax''' , push_to_hub=__magic_name__ , use_auth_token=self._token ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase_ : str = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=F"""{key} not identical""" ) def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" UpperCAmelCase_ : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Tuple = FlaxBertModel(__magic_name__ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __magic_name__ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__magic_name__ , use_auth_token=self._token ) UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=F"""{key} not identical""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Union[str, Any] = flatten_dict(modela.params ) UpperCAmelCase_ : List[Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCAmelCase_ : List[str] = False return models_are_equal @require_flax class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(__magic_name__ ) UpperCAmelCase_ : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : int = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel(__magic_name__ ) UpperCAmelCase_ : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) , max_shard_size='''10KB''' ) with self.assertRaises(__magic_name__ ): UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Tuple = '''bert''' UpperCAmelCase_ : str = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__magic_name__ ): UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = '''bert''' UpperCAmelCase_ : str = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__magic_name__ ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ )
125
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) __magic_name__ : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __lowerCAmelCase ( self : int ) -> List[str]: __magic_name__ : Optional[int] = self.dummy_uncond_unet __magic_name__ : Optional[int] = PNDMScheduler() __magic_name__ : Optional[int] = PNDMPipeline(unet=_A , scheduler=_A ) pndm.to(_A ) pndm.set_progress_bar_config(disable=_A ) __magic_name__ : Optional[int] = torch.manual_seed(0 ) __magic_name__ : Dict = pndm(generator=_A , num_inference_steps=20 , output_type='numpy' ).images __magic_name__ : str = torch.manual_seed(0 ) __magic_name__ : Tuple = pndm(generator=_A , num_inference_steps=20 , output_type='numpy' , return_dict=_A )[0] __magic_name__ : Dict = image[0, -3:, -3:, -1] __magic_name__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : Any = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) -> List[str]: __magic_name__ : Optional[Any] = 'google/ddpm-cifar10-32' __magic_name__ : List[str] = UNetaDModel.from_pretrained(_A ) __magic_name__ : Optional[Any] = PNDMScheduler() __magic_name__ : int = PNDMPipeline(unet=_A , scheduler=_A ) pndm.to(_A ) pndm.set_progress_bar_config(disable=_A ) __magic_name__ : Optional[Any] = torch.manual_seed(0 ) __magic_name__ : Any = pndm(generator=_A , output_type='numpy' ).images __magic_name__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : Optional[int] = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
275
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Any=False ): """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : str = len(set_a.intersection(lowerCAmelCase ) ) if alternative_union: __magic_name__ : List[str] = len(lowerCAmelCase ) + len(lowerCAmelCase ) else: __magic_name__ : Any = len(set_a.union(lowerCAmelCase ) ) return intersection / union if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(lowerCAmelCase , (list, tuple) ): __magic_name__ : str = [element for element in set_a if element in set_b] if alternative_union: __magic_name__ : Dict = len(lowerCAmelCase ) + len(lowerCAmelCase ) return len(lowerCAmelCase ) / union else: __magic_name__ : Any = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase ) / len(lowerCAmelCase ) return len(lowerCAmelCase ) / len(lowerCAmelCase ) return None if __name__ == "__main__": lowerCAmelCase :Dict = {'''a''', '''b''', '''c''', '''d''', '''e'''} lowerCAmelCase :Tuple = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
275
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __A =logging.get_logger(__name__) # General docstring __A ='''ResNetConfig''' # Base docstring __A ='''microsoft/resnet-50''' __A =[1, 2_0_4_8, 7, 7] # Image classification docstring __A ='''microsoft/resnet-50''' __A ='''tiger cat''' __A =[ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 3 , lowercase = 1 , lowercase = "relu" ) -> List[Any]: super().__init__() lowerCamelCase_ = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) lowerCamelCase_ = nn.BatchNormad(lowercase ) lowerCamelCase_ = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Tensor: lowerCamelCase_ = self.convolution(lowercase ) lowerCamelCase_ = self.normalization(lowercase ) lowerCamelCase_ = self.activation(lowercase ) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase ) -> List[str]: super().__init__() lowerCamelCase_ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) lowerCamelCase_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) lowerCamelCase_ = config.num_channels def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Tensor: lowerCamelCase_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) lowerCamelCase_ = self.embedder(lowercase ) lowerCamelCase_ = self.pooler(lowercase ) return embedding class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 2 ) -> Dict: super().__init__() lowerCamelCase_ = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) lowerCamelCase_ = nn.BatchNormad(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Tensor: lowerCamelCase_ = self.convolution(lowercase ) lowerCamelCase_ = self.normalization(lowercase ) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 1 , lowercase = "relu" ) -> List[Any]: super().__init__() lowerCamelCase_ = in_channels != out_channels or stride != 1 lowerCamelCase_ = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) lowerCamelCase_ = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) lowerCamelCase_ = ACTaFN[activation] def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Union[str, Any]: lowerCamelCase_ = hidden_state lowerCamelCase_ = self.layer(lowercase ) lowerCamelCase_ = self.shortcut(lowercase ) hidden_state += residual lowerCamelCase_ = self.activation(lowercase ) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 1 , lowercase = "relu" , lowercase = 4 ) -> List[Any]: super().__init__() lowerCamelCase_ = in_channels != out_channels or stride != 1 lowerCamelCase_ = out_channels // reduction lowerCamelCase_ = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) lowerCamelCase_ = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) lowerCamelCase_ = ACTaFN[activation] def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[Any]: lowerCamelCase_ = hidden_state lowerCamelCase_ = self.layer(lowercase ) lowerCamelCase_ = self.shortcut(lowercase ) hidden_state += residual lowerCamelCase_ = self.activation(lowercase ) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , ) -> Union[str, Any]: super().__init__() lowerCamelCase_ = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer lowerCamelCase_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Tensor: lowerCamelCase_ = input for layer in self.layers: lowerCamelCase_ = layer(lowercase ) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase ) -> Union[str, Any]: super().__init__() lowerCamelCase_ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCamelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = False , lowercase = True ) -> BaseModelOutputWithNoAttention: lowerCamelCase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCamelCase_ = hidden_states + (hidden_state,) lowerCamelCase_ = stage_module(lowercase ) if output_hidden_states: lowerCamelCase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = ResNetConfig lowerCAmelCase__ = 'resnet' lowerCAmelCase__ = 'pixel_values' lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Tuple: if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=False ) -> Tuple: if isinstance(lowercase , lowercase ): lowerCamelCase_ = value __A =R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __A =R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , snake_case_ , ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase ) -> Union[str, Any]: super().__init__(lowercase ) lowerCamelCase_ = config lowerCamelCase_ = ResNetEmbeddings(lowercase ) lowerCamelCase_ = ResNetEncoder(lowercase ) lowerCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = None ) -> BaseModelOutputWithPoolingAndNoAttention: lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = self.embedder(lowercase ) lowerCamelCase_ = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) lowerCamelCase_ = encoder_outputs[0] lowerCamelCase_ = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , snake_case_ , ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase ) -> str: super().__init__(lowercase ) lowerCamelCase_ = config.num_labels lowerCamelCase_ = ResNetModel(lowercase ) # classification head lowerCamelCase_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ) -> ImageClassifierOutputWithNoAttention: lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) lowerCamelCase_ = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase_ = self.classifier(lowercase ) lowerCamelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase_ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase_ = "single_label_classification" else: lowerCamelCase_ = "multi_label_classification" if self.config.problem_type == "regression": lowerCamelCase_ = MSELoss() if self.num_labels == 1: lowerCamelCase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase_ = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": lowerCamelCase_ = CrossEntropyLoss() lowerCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase_ = BCEWithLogitsLoss() lowerCamelCase_ = loss_fct(lowercase , lowercase ) if not return_dict: lowerCamelCase_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , snake_case_ , ) class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): def __init__( self , lowercase ) -> Optional[int]: super().__init__(lowercase ) super()._init_backbone(lowercase ) lowerCamelCase_ = [config.embedding_size] + config.hidden_sizes lowerCamelCase_ = ResNetEmbeddings(lowercase ) lowerCamelCase_ = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = None ) -> BackboneOutput: lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = self.embedder(lowercase ) lowerCamelCase_ = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowerCamelCase_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
19
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A ='''Enter the base and the power separated by a comma: ''' __A, __A =map(int, input(prompt).split(''',''')) __A, __A =map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __A =res(xa, ya) __A =res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
19
1
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : str = len(lowerCAmelCase__ ) while cur > 1: # Find the maximum number in arr lowercase : Dict = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowercase : Tuple = arr[mi::-1] + arr[mi + 1 : len(lowerCAmelCase__ )] # Reverse whole list lowercase : Optional[int] = arr[cur - 1 :: -1] + arr[cur : len(lowerCAmelCase__ )] cur -= 1 return arr if __name__ == "__main__": lowercase : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() lowercase : str = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
352
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number_of_steps > 0 ), f"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 lowercase , lowercase : Tuple = 1, 1 for _ in range(number_of_steps - 1 ): lowercase , lowercase : str = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
285
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : List[str] = None ) -> list[list[str]]: UpperCAmelCase_ : Union[str, Any] = word_bank or [] # create a table UpperCAmelCase_ : int = len(SCREAMING_SNAKE_CASE__ ) + 1 UpperCAmelCase_ : list[list[list[str]]] = [] for _ in range(SCREAMING_SNAKE_CASE__ ): table.append([] ) # seed value UpperCAmelCase_ : int = [[]] # because empty string has empty combination # iterate through the indices for i in range(SCREAMING_SNAKE_CASE__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(SCREAMING_SNAKE_CASE__ )] == word: UpperCAmelCase_ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(SCREAMING_SNAKE_CASE__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(SCREAMING_SNAKE_CASE__ )]: combination.reverse() return table[len(SCREAMING_SNAKE_CASE__ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
125
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , A : str , A : List[str]=1_0_0 , A : List[str]=1_3 , A : Union[str, Any]=3_0 , A : Union[str, Any]=2 , A : List[Any]=3 , A : Any=True , A : Tuple=True , A : Tuple=3_2 , A : str=5 , A : Any=4 , A : List[str]=3_7 , A : Tuple="gelu" , A : Union[str, Any]=0.1 , A : Tuple=0.1 , A : Union[str, Any]=1_0 , A : List[str]=0.02 , A : Dict=3 , ) ->int: lowerCamelCase__ : int = parent lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : Dict = batch_size lowerCamelCase__ : str = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : Tuple = use_labels lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : List[Any] = (image_size // patch_size) ** 2 lowerCamelCase__ : Tuple = num_patches + 1 def __lowerCamelCase ( self : Optional[int] ) ->List[Any]: lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[str] = None if self.use_labels: lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Any = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values, labels def __lowerCamelCase ( self : List[Any] , A : str , A : List[Any] , A : Any ) ->Tuple: lowerCamelCase__ : Union[str, Any] = FlaxBeitModel(config=A ) lowerCamelCase__ : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self : Union[str, Any] , A : List[str] , A : Optional[int] , A : Dict ) ->Optional[int]: lowerCamelCase__ : Dict = FlaxBeitForMaskedImageModeling(config=A ) lowerCamelCase__ : Optional[Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowerCamelCase ( self : Union[str, Any] , A : Optional[Any] , A : Optional[int] , A : List[Any] ) ->Any: lowerCamelCase__ : Tuple = self.type_sequence_label_size lowerCamelCase__ : Tuple = FlaxBeitForImageClassification(config=A ) lowerCamelCase__ : Any = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Optional[int] = FlaxBeitForImageClassification(A ) lowerCamelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : List[str] = model(A ) def __lowerCamelCase ( self : Optional[Any] ) ->List[str]: lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : str = config_and_inputs lowerCamelCase__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : int = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __lowerCamelCase ( self : str ) ->None: lowerCamelCase__ : Dict = FlaxBeitModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def __lowerCamelCase ( self : List[str] ) ->Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self : str ) ->List[Any]: lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = model_class(A ) lowerCamelCase__ : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __lowerCamelCase ( self : int ) ->List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Union[str, Any] = self._prepare_for_class(A , A ) lowerCamelCase__ : Optional[int] = model_class(A ) @jax.jit def model_jitted(A : str , **A : Optional[int] ): return model(pixel_values=A , **A ) with self.subTest('''JIT Enabled''' ): lowerCamelCase__ : str = model_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase__ : Dict = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCamelCase ( self : Tuple ) ->Tuple: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __lowerCamelCase ( self : Dict ) ->Any: lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def __lowerCamelCase ( self : Any ) ->str: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __lowerCamelCase ( self : Optional[int] ) ->Tuple: for model_class_name in self.all_model_classes: lowerCamelCase__ : List[str] = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCamelCase__ : Union[str, Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(A ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self : List[Any] ) ->Dict: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCamelCase ( self : str ) ->str: lowerCamelCase__ : List[str] = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) lowerCamelCase__ : Optional[Any] = self.default_image_processor lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=A , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos lowerCamelCase__ : List[str] = np.ones((1, 1_9_6) , dtype=A ) # forward pass lowerCamelCase__ : Optional[int] = model(pixel_values=A , bool_masked_pos=A ) lowerCamelCase__ : Optional[Any] = outputs.logits # verify the logits lowerCamelCase__ : str = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape , A ) lowerCamelCase__ : Any = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A , atol=1e-2 ) ) @slow def __lowerCamelCase ( self : Dict ) ->List[Any]: lowerCamelCase__ : Any = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCamelCase__ : Dict = self.default_image_processor lowerCamelCase__ : List[str] = prepare_img() lowerCamelCase__ : int = image_processor(images=A , return_tensors='''np''' ) # forward pass lowerCamelCase__ : List[str] = model(**A ) lowerCamelCase__ : Optional[int] = outputs.logits # verify the logits lowerCamelCase__ : Union[str, Any] = (1, 1_0_0_0) self.assertEqual(logits.shape , A ) lowerCamelCase__ : Any = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1e-4 ) ) lowerCamelCase__ : Union[str, Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , A ) @slow def __lowerCamelCase ( self : int ) ->Tuple: lowerCamelCase__ : List[Any] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) lowerCamelCase__ : Any = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[Any] = image_processor(images=A , return_tensors='''np''' ) # forward pass lowerCamelCase__ : Union[str, Any] = model(**A ) lowerCamelCase__ : Any = outputs.logits # verify the logits lowerCamelCase__ : List[str] = (1, 2_1_8_4_1) self.assertEqual(logits.shape , A ) lowerCamelCase__ : str = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1e-4 ) ) lowerCamelCase__ : List[Any] = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , A )
142
0
from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: if len(UpperCAmelCase__ ) != 32: raise ValueError("""Input must be of length 32""" ) A_ = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: if i < 0: raise ValueError("""Input must be non-negative""" ) A_ = format(UpperCAmelCase__, """08x""" )[-8:] A_ = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: A_ = b"""""" for char in message: bit_string += format(UpperCAmelCase__, """08b""" ).encode("""utf-8""" ) A_ = format(len(UpperCAmelCase__ ), """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase__ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Generator[list[int], None, None]: if len(UpperCAmelCase__ ) % 5_12 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0, len(UpperCAmelCase__ ), 5_12 ): A_ = bit_string[pos : pos + 5_12] A_ = [] for i in range(0, 5_12, 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ), 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) A_ = format(UpperCAmelCase__, """032b""" ) A_ = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase__, 2 ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: A_ = preprocess(UpperCAmelCase__ ) A_ = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states A_ = 0X67_45_23_01 A_ = 0XEF_CD_AB_89 A_ = 0X98_BA_DC_FE A_ = 0X10_32_54_76 A_ = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase__ ): A_ = aa A_ = ba A_ = ca A_ = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A_ = d ^ (b & (c ^ d)) A_ = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A_ = c ^ (d & (b ^ c)) A_ = (5 * i + 1) % 16 elif i <= 47: A_ = b ^ c ^ d A_ = (3 * i + 5) % 16 else: A_ = c ^ (b | not_aa(UpperCAmelCase__ )) A_ = (7 * i) % 16 A_ = (f + a + added_consts[i] + block_words[g]) % 2**32 A_ = d A_ = c A_ = b A_ = sum_aa(UpperCAmelCase__, left_rotate_aa(UpperCAmelCase__, shift_amounts[i] ) ) # Add hashed chunk to running total A_ = sum_aa(UpperCAmelCase__, UpperCAmelCase__ ) A_ = sum_aa(UpperCAmelCase__, UpperCAmelCase__ ) A_ = sum_aa(UpperCAmelCase__, UpperCAmelCase__ ) A_ = sum_aa(UpperCAmelCase__, UpperCAmelCase__ ) A_ = reformat_hex(UpperCAmelCase__ ) + reformat_hex(UpperCAmelCase__ ) + reformat_hex(UpperCAmelCase__ ) + reformat_hex(UpperCAmelCase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = 1 A_ = 3 A_ = (32, 32) A_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase__ ) return image @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) A_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' def extract(*UpperCamelCase__ , **UpperCamelCase__ ): class A__ : def __init__( self ) -> Dict: '''simple docstring''' A_ = torch.ones([0] ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' self.pixel_values.to(UpperCamelCase__ ) return self return Out() return extract def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ = self.dummy_cond_unet A_ = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) A_ = self.dummy_vae A_ = self.dummy_text_encoder A_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) A_ = 77 A_ = self.dummy_image.to(UpperCamelCase__ ) A_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk A_ = AltDiffusionImgaImgPipeline( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=self.dummy_extractor , ) A_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase__ ) A_ = alt_pipe.to(UpperCamelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """A painting of a squirrel eating a burger""" A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A_ = alt_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase__ , ) A_ = output.images A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A_ = alt_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -3:, -3:, -1] A_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_cond_unet A_ = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) A_ = self.dummy_vae A_ = self.dummy_text_encoder A_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) A_ = 77 A_ = self.dummy_image.to(UpperCamelCase__ ) # put models in fp16 A_ = unet.half() A_ = vae.half() A_ = bert.half() # make sure here that pndm scheduler skips prk A_ = AltDiffusionImgaImgPipeline( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=self.dummy_extractor , ) A_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase__ ) A_ = alt_pipe.to(UpperCamelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """A painting of a squirrel eating a burger""" A_ = torch.manual_seed(0 ) A_ = alt_pipe( [prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 A_ = init_image.resize((760, 504) ) A_ = """BAAI/AltDiffusion""" A_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A_ = """A fantasy landscape, trending on artstation""" A_ = torch.manual_seed(0 ) A_ = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase__ , output_type="""np""" , ) A_ = output.images[0] A_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) A_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> List[str]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) A_ = init_image.resize((768, 512) ) A_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) A_ = """BAAI/AltDiffusion""" A_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A_ = """A fantasy landscape, trending on artstation""" A_ = torch.manual_seed(0 ) A_ = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase__ , output_type="""np""" , ) A_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
101
0
'''simple docstring''' import qiskit def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> qiskit.result.counts.Counts: '''simple docstring''' snake_case_ = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register snake_case_ = qiskit.QuantumCircuit(__UpperCAmelCase, __UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0], [0] ) # Execute the circuit on the simulator snake_case_ = qiskit.execute(__UpperCAmelCase, __UpperCAmelCase, shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
56
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : int = IFInpaintingPipeline __lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __lowercase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowercase : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._get_dummy_components() def __UpperCamelCase ( self , A_ , A_=0 ) -> List[Any]: """simple docstring""" if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCamelCase ( self ) -> str: """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self._test_save_load_local() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
222
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = value lowerCAmelCase__ = None lowerCAmelCase__ = None class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = tree def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
228
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( A , A , A ) -> Optional[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = to_pil_image(A ) lowerCAmelCase__ , lowerCAmelCase__ = pil_image.size lowerCAmelCase__ = pytesseract.image_to_data(A , lang=A , output_type='''dict''' , config=A ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase__ = [idx for idx, word in enumerate(A ) if not word.strip()] lowerCAmelCase__ = [word for idx, word in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ = [] for x, y, w, h in zip(A , A , A , A ): lowerCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(A ) # finally, normalize the bounding boxes lowerCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A , A , A ) ) assert len(A ) == len(A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = ["pixel_values"] def __init__( self , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = True , lowerCamelCase_ = 1 / 2_55 , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = "" , **lowerCamelCase_ , ) -> None: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_value lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ = apply_ocr lowerCAmelCase__ = ocr_lang lowerCAmelCase__ = tesseract_config def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase__ = (size['''height'''], size['''width''']) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = ChannelDimension.FIRST , **lowerCamelCase_ , ) -> PIL.Image.Image: lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowerCamelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for image in images: lowerCAmelCase__ , lowerCAmelCase__ = apply_tesseract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) words_batch.append(lowerCamelCase_ ) boxes_batch.append(lowerCamelCase_ ) if do_resize: lowerCAmelCase__ = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCAmelCase__ = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCamelCase_ ) if apply_ocr: lowerCAmelCase__ = words_batch lowerCAmelCase__ = boxes_batch return data
228
1
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Dict = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase : str = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase : str = Accelerator() lowerCAmelCase : int = accelerator.prepare(UpperCamelCase_ ) try: pickle.loads(pickle.dumps(UpperCamelCase_ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
60
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ConvNextFeatureExtractor'] a_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
249
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def __UpperCamelCase () -> Node | None: lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Sequence[Node | None]: lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Sequence[Node | None]: lowercase__ = [] def populate_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return output def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Sequence[Node | None]: lowercase__ = [] def populate_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return output def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Sequence[Node | None] | list[Any]: if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(_SCREAMING_SNAKE_CASE ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowercase__ = 0 return output def __UpperCamelCase () -> None: # Main function for testing. lowercase__ = make_tree() print(F"""In-order Traversal: {inorder(_SCREAMING_SNAKE_CASE )}""" ) print(F"""Pre-order Traversal: {preorder(_SCREAMING_SNAKE_CASE )}""" ) print(F"""Post-order Traversal: {postorder(_SCREAMING_SNAKE_CASE )}""" , '\n' ) print(F"""Height of Tree: {height(_SCREAMING_SNAKE_CASE )}""" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(_SCREAMING_SNAKE_CASE ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(_SCREAMING_SNAKE_CASE ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(_SCREAMING_SNAKE_CASE , level=_SCREAMING_SNAKE_CASE ) ) print('\nZigZag order Traversal: ' ) print(zigzag(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
269
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) lowercase__ = re.match(R'^mobilenet_v1_([^_]*)_([^_]*)$' , _SCREAMING_SNAKE_CASE ) if matches: lowercase__ = float(matches[1] ) lowercase__ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowercase__ = 1001 lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 'huggingface/label-files' lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} lowercase__ = 'background' lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> int: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: lowercase__ = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model lowercase__ = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowercase__ = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) lowercase__ = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase__ = model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": lowercase__ = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": lowercase__ = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: lowercase__ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print('Pushing to the hub...' ) lowercase__ = 'google/' + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase_ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
269
1
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A =logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A ={ 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A =sorted(arg_to_scheduler.keys()) A ='{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase ) UpperCAmelCase = 0 UpperCAmelCase = Path(self.hparams.output_dir ) UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , ) else: UpperCAmelCase = config UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase , lowercase ): assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , lowercase , getattr(self.hparams , lowercase ) ) if tokenizer is None: UpperCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , ) else: UpperCAmelCase = tokenizer UpperCAmelCase = MODEL_MODES[mode] if model is None: UpperCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , ) else: UpperCAmelCase = model def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase = Adafactor( lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase ) else: UpperCAmelCase = AdamW( lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase = optimizer UpperCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def A ( self : List[Any] , lowercase : int , lowercase : List[str] ): '''simple docstring''' return self.validation_step(lowercase , lowercase ) def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' return self.validation_end(lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A ( self : List[str] , lowercase : Any ): '''simple docstring''' if stage == "test": UpperCAmelCase = len(self.test_dataloader().dataset ) else: UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase ) UpperCAmelCase = len(self.train_dataloader().dataset ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def A ( self : Union[str, Any] ): '''simple docstring''' return self.train_loader def A ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : Any , lowercase : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A ( self : List[str] , lowercase : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' ) UpperCAmelCase = self.step_count self.model.save_pretrained(lowercase ) self.tokenizer.save_pretrained(lowercase ) @staticmethod def A ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _a ( pl.Callback ): def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase ) class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase ) def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log results for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log and save results to file UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase , '''w''' ) as writer: for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def snake_case_ (_a : int , _a : Optional[Any] ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ): pl.seed_everything(args.seed ) # init model UpperCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_a ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_a ) if logging_callback is None: UpperCAmelCase = LoggingCallback() UpperCAmelCase = {} if args.fpaa: UpperCAmelCase = 1_6 if args.gpus > 1: UpperCAmelCase = '''auto''' UpperCAmelCase = '''ddp''' UpperCAmelCase = args.accumulate_grad_batches UpperCAmelCase = None UpperCAmelCase = '''auto''' UpperCAmelCase = pl.Trainer.from_argparse_args( _a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , ) if args.do_train: trainer.fit(_a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
34
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal A =logging.get_logger(__name__) A =TypeVar('DatasetType', Dataset, IterableDataset) def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) else: return _interleave_iterable_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a ) else: return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
34
1
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self ) -> Optional[Any]: _lowerCAmelCase =[] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: self.events.append("""on_init_end""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any: self.events.append("""on_train_begin""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any: self.events.append("""on_train_end""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> str: self.events.append("""on_epoch_begin""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> int: self.events.append("""on_epoch_end""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Dict: self.events.append("""on_step_begin""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Dict: self.events.append("""on_step_end""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: self.events.append("""on_evaluate""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: self.events.append("""on_predict""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: self.events.append("""on_save""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any: self.events.append("""on_log""" ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: self.events.append("""on_prediction_step""" ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =tempfile.mkdtemp() def _lowerCAmelCase ( self ) -> Any: shutil.rmtree(self.output_dir ) def _lowerCAmelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=64 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase=False , **__UpperCAmelCase ) -> List[Any]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. _lowerCAmelCase =RegressionDataset(length=__UpperCAmelCase ) _lowerCAmelCase =RegressionDataset(length=__UpperCAmelCase ) _lowerCAmelCase =RegressionModelConfig(a=__UpperCAmelCase , b=__UpperCAmelCase ) _lowerCAmelCase =RegressionPreTrainedModel(__UpperCAmelCase ) _lowerCAmelCase =TrainingArguments(self.output_dir , disable_tqdm=__UpperCAmelCase , report_to=[] , **__UpperCAmelCase ) return Trainer( __UpperCAmelCase , __UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , callbacks=__UpperCAmelCase , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) # Order doesn't matter _lowerCAmelCase =sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : cb.__name__ if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cb.__class__.__name__ ) _lowerCAmelCase =sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : cb.__name__ if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cb.__class__.__name__ ) for cba, cba in zip(__UpperCAmelCase , __UpperCAmelCase ): if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(__UpperCAmelCase , cba.__class__ ) elif not isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(cba.__class__ , __UpperCAmelCase ) else: self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: _lowerCAmelCase =["""on_init_end""", """on_train_begin"""] _lowerCAmelCase =0 _lowerCAmelCase =len(trainer.get_eval_dataloader() ) _lowerCAmelCase =["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__UpperCAmelCase ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =self.get_trainer() _lowerCAmelCase =DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) # Callbacks passed at init are added to the default callbacks _lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _lowerCAmelCase =self.get_trainer(disable_tqdm=__UpperCAmelCase ) _lowerCAmelCase =DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =DEFAULT_CALLBACKS.copy() + [ProgressCallback] _lowerCAmelCase =self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__UpperCAmelCase ) expected_callbacks.remove(__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) _lowerCAmelCase =self.get_trainer() _lowerCAmelCase =trainer.pop_callback(__UpperCAmelCase ) self.assertEqual(cb.__class__ , __UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) trainer.add_callback(__UpperCAmelCase ) expected_callbacks.insert(0 , __UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) # We can also add, pop, or remove by instance _lowerCAmelCase =self.get_trainer() _lowerCAmelCase =trainer.callback_handler.callbacks[0] trainer.remove_callback(__UpperCAmelCase ) expected_callbacks.remove(__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) _lowerCAmelCase =self.get_trainer() _lowerCAmelCase =trainer.callback_handler.callbacks[0] _lowerCAmelCase =trainer.pop_callback(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) trainer.add_callback(__UpperCAmelCase ) expected_callbacks.insert(0 , __UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Optional[Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=__UpperCAmelCase ) _lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _lowerCAmelCase =trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) # Independent log/save/eval _lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _lowerCAmelCase =trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) _lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _lowerCAmelCase =trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) _lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() _lowerCAmelCase =trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) _lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() _lowerCAmelCase =trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) # A bit of everything _lowerCAmelCase =self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() _lowerCAmelCase =trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: _lowerCAmelCase =self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__UpperCAmelCase ) in warn_mock.call_args[0][0]
363
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __A = datasets.logging.get_logger(__name__) __A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' __A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' __A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict: _lowerCAmelCase ={doc: key_lines} _lowerCAmelCase ={doc: sys_lines} _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) if remove_nested: _lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""" ) return doc_coref_infos def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: _lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 for name, metric in metrics: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: _lowerCAmelCase =(conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"""conll_score""": conll} ) return output_scores def _lowerCamelCase(__UpperCamelCase ) -> Tuple: _lowerCAmelCase =False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: _lowerCAmelCase =line.split()[5] if not parse_col == "-": _lowerCAmelCase =True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]: _lowerCAmelCase =[ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: _lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _lowerCAmelCase =evaluate( key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , ) return score
341
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = KandinskyInpaintPipeline lowerCamelCase__ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] lowerCamelCase__ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] lowerCamelCase__ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCamelCase__ = False @property def A_ ( self ): return 32 @property def A_ ( self ): return 32 @property def A_ ( self ): return self.time_input_dim @property def A_ ( self ): return self.time_input_dim * 4 @property def A_ ( self ): return 100 @property def A_ ( self ): _lowerCamelCase : Tuple = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _lowerCamelCase : str = MultilingualCLIP(lowercase ) _lowerCamelCase : Optional[Any] = text_encoder.eval() return text_encoder @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[str] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCamelCase : Union[str, Any] = UNetaDConditionModel(**lowercase ) return model @property def A_ ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : str = VQModel(**self.dummy_movq_kwargs ) return model def A_ ( self ): _lowerCamelCase : Optional[int] = self.dummy_text_encoder _lowerCamelCase : Optional[Any] = self.dummy_tokenizer _lowerCamelCase : Optional[int] = self.dummy_unet _lowerCamelCase : Tuple = self.dummy_movq _lowerCamelCase : Dict = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowercase , set_alpha_to_one=lowercase , steps_offset=1 , prediction_type='epsilon' , thresholding=lowercase , ) _lowerCamelCase : List[str] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A_ ( self , lowercase , lowercase=0 ): _lowerCamelCase : List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase ) ).to(lowercase ) _lowerCamelCase : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowercase ) # create init_image _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase ) _lowerCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase : List[str] = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCamelCase : Tuple = np.ones((64, 64) , dtype=np.floataa ) _lowerCamelCase : Optional[int] = 0 if str(lowercase ).startswith('mps' ): _lowerCamelCase : List[Any] = torch.manual_seed(lowercase ) else: _lowerCamelCase : List[Any] = torch.Generator(device=lowercase ).manual_seed(lowercase ) _lowerCamelCase : str = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def A_ ( self ): _lowerCamelCase : List[Any] = 'cpu' _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : List[str] = self.pipeline_class(**lowercase ) _lowerCamelCase : Optional[int] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : int = pipe(**self.get_dummy_inputs(lowercase ) ) _lowerCamelCase : List[Any] = output.images _lowerCamelCase : Dict = pipe( **self.get_dummy_inputs(lowercase ) , return_dict=lowercase , )[0] _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCamelCase : str = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) _lowerCamelCase : List[Any] = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def A_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) _lowerCamelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCamelCase : str = np.ones((768, 768) , dtype=np.floataa ) _lowerCamelCase : Any = 0 _lowerCamelCase : Any = 'a hat' _lowerCamelCase : Optional[int] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase ) _lowerCamelCase : List[Any] = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) _lowerCamelCase : Optional[int] = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCamelCase : int = pipeline( lowercase , image=lowercase , mask_image=lowercase , image_embeds=lowercase , negative_image_embeds=lowercase , generator=lowercase , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCamelCase : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase , lowercase )
96
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __a : Optional[Any] = logging.get_logger(__name__) __a : List[str] = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) else: return _interleave_iterable_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = 0 , ): """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase ) else: return _concatenate_iterable_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase )
210
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def A ( a_ ) -> str: __UpperCamelCase : int =args.pruning_method __UpperCamelCase : List[Any] =args.threshold __UpperCamelCase : Union[str, Any] =args.model_name_or_path.rstrip('/' ) __UpperCamelCase : Any =args.target_model_path print(F'Load fine-pruned model from {model_name_or_path}' ) __UpperCamelCase : Tuple =torch.load(os.path.join(a_ ,'pytorch_model.bin' ) ) __UpperCamelCase : Dict ={} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __UpperCamelCase : Optional[Any] =tensor print(F'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: __UpperCamelCase : List[str] =tensor print(F'Copied layer {name}' ) elif "bias" in name: __UpperCamelCase : int =tensor print(F'Copied layer {name}' ) else: if pruning_method == "magnitude": __UpperCamelCase : str =MagnitudeBinarizer.apply(inputs=a_ ,threshold=a_ ) __UpperCamelCase : List[str] =tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue __UpperCamelCase : List[Any] =name[:-6] __UpperCamelCase : str =model[F'{prefix_}mask_scores'] __UpperCamelCase : int =TopKBinarizer.apply(a_ ,a_ ) __UpperCamelCase : Union[str, Any] =tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __UpperCamelCase : List[Any] =name[:-6] __UpperCamelCase : List[str] =model[F'{prefix_}mask_scores'] __UpperCamelCase : Union[str, Any] =ThresholdBinarizer.apply(a_ ,a_ ,a_ ) __UpperCamelCase : Optional[int] =tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue __UpperCamelCase : Dict =name[:-6] __UpperCamelCase : Optional[int] =model[F'{prefix_}mask_scores'] __UpperCamelCase , __UpperCamelCase : Optional[Any] =-0.1, 1.1 __UpperCamelCase : List[Any] =torch.sigmoid(a_ ) __UpperCamelCase : str =s * (r - l) + l __UpperCamelCase : Any =s_bar.clamp(min=0.0 ,max=1.0 ) __UpperCamelCase : Any =tensor * mask print(F'Pruned layer {name}' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: __UpperCamelCase : str =os.path.join( os.path.dirname(a_ ) ,F'bertarized_{os.path.basename(a_ )}' ) if not os.path.isdir(a_ ): shutil.copytree(a_ ,a_ ) print(F'\nCreated folder {target_model_path}' ) torch.save(a_ ,os.path.join(a_ ,'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": A_ :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) A_ :Optional[Any] = parser.parse_args() main(args)
245
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
245
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
208
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
208
1
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Union[str, Any] = logging.get_logger() def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : LevitConfig , lowerCamelCase_ : Path , lowerCamelCase_ : bool = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": UpperCAmelCase_ : int = timm.create_model('levit_128s' , pretrained=A__ ) else: UpperCAmelCase_ : Dict = timm.create_model('levit_128' , pretrained=A__ ) if hidden_sizes == 192: UpperCAmelCase_ : Optional[int] = timm.create_model('levit_192' , pretrained=A__ ) if hidden_sizes == 256: UpperCAmelCase_ : str = timm.create_model('levit_256' , pretrained=A__ ) if hidden_sizes == 384: UpperCAmelCase_ : Optional[int] = timm.create_model('levit_384' , pretrained=A__ ) from_model.eval() UpperCAmelCase_ : List[Any] = LevitForImageClassificationWithTeacher(A__ ).eval() UpperCAmelCase_ : int = OrderedDict() UpperCAmelCase_ : List[str] = from_model.state_dict() UpperCAmelCase_ : List[Any] = list(from_model.state_dict().keys() ) UpperCAmelCase_ : List[str] = list(our_model.state_dict().keys() ) print(len(A__ ) , len(A__ ) ) for i in range(len(A__ ) ): UpperCAmelCase_ : Optional[int] = weights[og_keys[i]] our_model.load_state_dict(A__ ) UpperCAmelCase_ : str = torch.randn((2, 3, 224, 224) ) UpperCAmelCase_ : Dict = from_model(A__ ) UpperCAmelCase_ : List[Any] = our_model(A__ ).logits assert torch.allclose(A__ , A__ ), "The model logits don't match the original one." UpperCAmelCase_ : Optional[int] = name print(A__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCAmelCase_ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def _lowerCamelCase ( lowerCamelCase_ : Path , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = True ): UpperCAmelCase_ : int = """imagenet-1k-id2label.json""" UpperCAmelCase_ : str = 1000 UpperCAmelCase_ : List[Any] = (1, num_labels) UpperCAmelCase_ : str = """huggingface/label-files""" UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Dict = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase_ : int = {int(A__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : int = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ ) UpperCAmelCase_ : Dict = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } UpperCAmelCase_ : int = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , A__ , names_to_config[model_name] , A__ , A__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , A__ , A__ , A__ , A__ ) return config, expected_shape if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) snake_case__ : Any = parser.parse_args() snake_case__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
351
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [0] * len(lowerCamelCase_ ) for i in range(1 , len(lowerCamelCase_ ) ): # use last results for better performance - dynamic programming UpperCAmelCase_ : List[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCAmelCase_ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCAmelCase_ : Any = j return prefix_result def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" return max(prefix_function(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
274
0
"""simple docstring""" def _snake_case ( _snake_case : list ): for i in range(len(_snake_case ) - 1 , 0 , -1 ): lowerCAmelCase : int = False for j in range(_snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCAmelCase, lowerCAmelCase : Tuple = unsorted[j - 1], unsorted[j] lowerCAmelCase : Optional[Any] = True for j in range(_snake_case ): if unsorted[j] > unsorted[j + 1]: lowerCAmelCase, lowerCAmelCase : Any = unsorted[j + 1], unsorted[j] lowerCAmelCase : int = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : List[str] = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ : str = [int(item) for item in user_input.split(''',''')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
60
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = """ylacombe/bark-small""" snake_case_ = tempfile.mkdtemp() snake_case_ = """en_speaker_1""" snake_case_ = """This is a test string""" snake_case_ = """speaker_embeddings_path.json""" snake_case_ = """speaker_embeddings""" def lowerCAmelCase ( self : List[str] , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = BarkProcessor(tokenizer=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) snake_case_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" snake_case_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) snake_case_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" snake_case_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) snake_case_ = 35 snake_case_ = 2 snake_case_ = 8 snake_case_ = { """semantic_prompt""": np.ones(UpperCAmelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset snake_case_ = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) snake_case_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file snake_case_ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) snake_case_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub snake_case_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = BarkProcessor(tokenizer=UpperCAmelCase_ ) snake_case_ = processor(text=self.input_string ) snake_case_ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
347
0
import math def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> int: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): UpperCamelCase :Optional[Any] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__magic_name__ ) if number < 1: UpperCamelCase :Union[str, Any] = f"""Input value of [number={number}] must be > 0""" raise ValueError(__magic_name__ ) elif number == 1: return 3 elif number == 2: return 5 else: UpperCamelCase :Optional[Any] = int(math.log(number // 3 , 2 ) ) + 2 UpperCamelCase :Optional[Any] = [3, 5] UpperCamelCase :Union[str, Any] = 2 UpperCamelCase :Optional[Any] = 3 for block in range(1 , __magic_name__ ): for _ in range(__magic_name__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): UpperCAmelCase_ : Optional[int] = 0 try: UpperCAmelCase_ : int = proth(number) except ValueError: print(F'''ValueError: there is no {number}th Proth number''') continue print(F'''The {number}th Proth number: {value}''')
360
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Union[str, Any] = """char""" snake_case__ : Optional[int] = """bpe""" snake_case__ : Dict = """wp""" UpperCAmelCase_ : List[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : List[Any] = ["""image_processor""", """char_tokenizer"""] snake_case__ : Dict = """ViTImageProcessor""" snake_case__ : List[str] = """MgpstrTokenizer""" def __init__( self : Optional[int] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : Any ): UpperCamelCase :Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowerCamelCase , ) UpperCamelCase :Optional[int] = kwargs.pop("""feature_extractor""" ) UpperCamelCase :List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) UpperCamelCase :Optional[int] = tokenizer UpperCamelCase :int = AutoTokenizer.from_pretrained("""gpt2""" ) UpperCamelCase :int = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : str , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : str=None , **__lowerCamelCase : Dict ): if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: UpperCamelCase :Tuple = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None: UpperCamelCase :Any = self.char_tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: UpperCamelCase :Dict = encodings["""input_ids"""] return inputs def _A ( self : Tuple , __lowerCamelCase : str ): UpperCamelCase , UpperCamelCase , UpperCamelCase :int = sequences UpperCamelCase :Tuple = char_preds.size(0 ) UpperCamelCase , UpperCamelCase :str = self._decode_helper(__lowerCamelCase , """char""" ) UpperCamelCase , UpperCamelCase :List[Any] = self._decode_helper(__lowerCamelCase , """bpe""" ) UpperCamelCase , UpperCamelCase :List[Any] = self._decode_helper(__lowerCamelCase , """wp""" ) UpperCamelCase :Any = [] UpperCamelCase :str = [] for i in range(__lowerCamelCase ): UpperCamelCase :Union[str, Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCamelCase :Any = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCamelCase :str = scores.index(max(__lowerCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCamelCase :Optional[Any] = {} UpperCamelCase :Dict = final_strs UpperCamelCase :Union[str, Any] = final_scores UpperCamelCase :List[str] = char_strs UpperCamelCase :Tuple = bpe_strs UpperCamelCase :Optional[Any] = wp_strs return out def _A ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): if format == DecodeType.CHARACTER: UpperCamelCase :List[str] = self.char_decode UpperCamelCase :Union[str, Any] = 1 UpperCamelCase :Optional[Any] = """[s]""" elif format == DecodeType.BPE: UpperCamelCase :Union[str, Any] = self.bpe_decode UpperCamelCase :str = 2 UpperCamelCase :int = """#""" elif format == DecodeType.WORDPIECE: UpperCamelCase :int = self.wp_decode UpperCamelCase :Any = 102 UpperCamelCase :int = """[SEP]""" else: raise ValueError(F"""Format {format} is not supported.""" ) UpperCamelCase , UpperCamelCase :int = [], [] UpperCamelCase :Any = pred_logits.size(0 ) UpperCamelCase :List[Any] = pred_logits.size(1 ) UpperCamelCase , UpperCamelCase :Optional[int] = pred_logits.topk(1 , dim=-1 , largest=__lowerCamelCase , sorted=__lowerCamelCase ) UpperCamelCase :Optional[Any] = preds_index.view(-1 , __lowerCamelCase )[:, 1:] UpperCamelCase :int = decoder(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[int] = torch.nn.functional.softmax(__lowerCamelCase , dim=2 ).max(dim=2 ) UpperCamelCase :Tuple = preds_max_prob[:, 1:] for index in range(__lowerCamelCase ): UpperCamelCase :Tuple = preds_str[index].find(__lowerCamelCase ) UpperCamelCase :List[Any] = preds_str[index][:pred_eos] UpperCamelCase :List[Any] = preds_index[index].cpu().tolist() UpperCamelCase :Optional[Any] = pred_index.index(__lowerCamelCase ) if eos_token in pred_index else -1 UpperCamelCase :List[str] = preds_max_prob[index][: pred_eos_index + 1] UpperCamelCase :List[str] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCamelCase ) conf_scores.append(__lowerCamelCase ) return dec_strs, conf_scores def _A ( self : Optional[Any] , __lowerCamelCase : str ): UpperCamelCase :Dict = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(__lowerCamelCase )] return decode_strs def _A ( self : Union[str, Any] , __lowerCamelCase : str ): return self.bpe_tokenizer.batch_decode(__lowerCamelCase ) def _A ( self : int , __lowerCamelCase : Optional[int] ): UpperCamelCase :Any = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(__lowerCamelCase )] return decode_strs
62
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[str, Any] = ['''pixel_values'''] def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : str = size if size is not None else {'shortest_edge': 2_5_6} a_ : Any = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) a_ : Dict = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = do_resize a_ : Dict = size a_ : Optional[Any] = resample a_ : Optional[int] = do_center_crop a_ : Dict = crop_size a_ : int = do_rescale a_ : int = rescale_factor a_ : Tuple = do_normalize a_ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a_ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> np.ndarray: a_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) a_ : Tuple = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE__ ) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> np.ndarray: a_ : str = get_size_dict(SCREAMING_SNAKE_CASE__ ) return center_crop(SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[float] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Union[str, Any]: a_ : List[str] = do_resize if do_resize is not None else self.do_resize a_ : Dict = size if size is not None else self.size a_ : Dict = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = resample if resample is not None else self.resample a_ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : int = crop_size if crop_size is not None else self.crop_size a_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ ) a_ : Dict = do_rescale if do_rescale is not None else self.do_rescale a_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : Any = do_normalize if do_normalize is not None else self.do_normalize a_ : str = image_mean if image_mean is not None else self.image_mean a_ : Dict = image_std if image_std is not None else self.image_std a_ : Optional[int] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. a_ : Any = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: a_ : str = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: a_ : int = [self.center_crop(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: a_ : Optional[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: a_ : List[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] a_ : Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] a_ : Tuple = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
32
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case__ : Any = StableDiffusionXLImgaImgPipeline snake_case__ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} snake_case__ : Tuple = PipelineTesterMixin.required_optional_params - {"""latents"""} snake_case__ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def _A ( self : int ): torch.manual_seed(0 ) UpperCamelCase :Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=__lowerCamelCase , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) UpperCamelCase :Tuple = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) UpperCamelCase :Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCamelCase :Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=32 , ) UpperCamelCase :Any = CLIPTextModel(__lowerCamelCase ) UpperCamelCase :List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__lowerCamelCase ) UpperCamelCase :List[Any] = CLIPTextModelWithProjection(__lowerCamelCase ) UpperCamelCase :int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__lowerCamelCase ) UpperCamelCase :Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _A ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=0 ): UpperCamelCase :Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) UpperCamelCase :List[str] = image / 2 + 0.5 if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :Any = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :List[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def _A ( self : str ): UpperCamelCase :List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase :Optional[Any] = self.get_dummy_components() UpperCamelCase :List[Any] = StableDiffusionXLImgaImgPipeline(**__lowerCamelCase ) UpperCamelCase :Any = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = sd_pipe(**__lowerCamelCase ).images UpperCamelCase :Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase :List[Any] = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self : Dict ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _A ( self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _A ( self : Union[str, Any] ): pass def _A ( self : Optional[int] ): UpperCamelCase :Union[str, Any] = self.get_dummy_components() UpperCamelCase :Dict = StableDiffusionXLImgaImgPipeline(**__lowerCamelCase ) UpperCamelCase :List[Any] = sd_pipe.to(__lowerCamelCase ) UpperCamelCase :List[str] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) # forward without prompt embeds UpperCamelCase :List[Any] = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :int = 3 * ["""this is a negative prompt"""] UpperCamelCase :Union[str, Any] = negative_prompt UpperCamelCase :Union[str, Any] = 3 * [inputs["""prompt"""]] UpperCamelCase :Dict = sd_pipe(**__lowerCamelCase ) UpperCamelCase :Union[str, Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds UpperCamelCase :Union[str, Any] = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :Optional[int] = 3 * ["""this is a negative prompt"""] UpperCamelCase :Union[str, Any] = 3 * [inputs.pop("""prompt""" )] ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :Union[str, Any] = sd_pipe.encode_prompt(__lowerCamelCase , negative_prompt=__lowerCamelCase ) UpperCamelCase :Dict = sd_pipe( **__lowerCamelCase , prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , pooled_prompt_embeds=__lowerCamelCase , negative_pooled_prompt_embeds=__lowerCamelCase , ) UpperCamelCase :Union[str, Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict="cpu" , __lowerCamelCase : List[Any]=torch.floataa , __lowerCamelCase : Tuple=0 ): UpperCamelCase :Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Optional[Any] = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase :Dict = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) UpperCamelCase :str = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : Optional[Any] ): UpperCamelCase :Any = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Optional[int] = pipe(**__lowerCamelCase ).images UpperCamelCase :Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase :Union[str, Any] = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
38
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class A__ ( _snake_case ): lowercase = "decision_transformer" lowercase = ["past_key_values"] lowercase = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCamelCase__=17 , UpperCamelCase__=4 , UpperCamelCase__=128 , UpperCamelCase__=4096 , UpperCamelCase__=True , UpperCamelCase__=1 , UpperCamelCase__=1024 , UpperCamelCase__=3 , UpperCamelCase__=1 , UpperCamelCase__=None , UpperCamelCase__="relu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=50256 , UpperCamelCase__=50256 , UpperCamelCase__=False , UpperCamelCase__=False , **UpperCamelCase__ , ) -> str: '''simple docstring''' A_ = state_dim A_ = act_dim A_ = hidden_size A_ = max_ep_len A_ = action_tanh A_ = vocab_size A_ = n_positions A_ = n_layer A_ = n_head A_ = n_inner A_ = activation_function A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = scale_attn_weights A_ = use_cache A_ = scale_attn_by_inverse_layer_idx A_ = reorder_and_upcast_attn A_ = bos_token_id A_ = eos_token_id super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
367
'''simple docstring''' from __future__ import annotations from typing import Any def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if not postfix_notation: return 0 A_ = {"""+""", """-""", """*""", """/"""} A_ = [] for token in postfix_notation: if token in operations: A_ , A_ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
101
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example __snake_case =[ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __snake_case =[[0, 1, 0], [0, 1, 0], [0, 1, 0]] def a_ ( lowerCamelCase : list[list[int]] ): lowerCAmelCase = [] for i in range(len(lowerCamelCase ) ): lowerCAmelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase ) return next_generation def a_ ( lowerCamelCase : list[list[int]] , lowerCamelCase : int ): lowerCAmelCase = [] for _ in range(lowerCamelCase ): # Create output image lowerCAmelCase = Image.new('RGB' , (len(cells[0] ), len(lowerCamelCase )) ) lowerCAmelCase = img.load() # Save cells to image for x in range(len(lowerCamelCase ) ): for y in range(len(cells[0] ) ): lowerCAmelCase = 255 - cells[y][x] * 255 lowerCAmelCase = (colour, colour, colour) # Save image images.append(lowerCamelCase ) lowerCAmelCase = new_generation(lowerCamelCase ) return images if __name__ == "__main__": __snake_case =generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class snake_case_ ( __A ): __A : str = ["pixel_values"] def __init__( self : int , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 2_55 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = True , **lowercase_ : Union[str, Any] , ) -> None: super().__init__(**lowercase_ ) lowercase__ : Tuple = size if size is not None else {"shortest_edge": 2_24} lowercase__ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase__ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} lowercase__ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name="crop_size" ) lowercase__ : Dict = do_resize lowercase__ : List[Any] = size lowercase__ : int = resample lowercase__ : Union[str, Any] = do_center_crop lowercase__ : Optional[int] = crop_size lowercase__ : List[str] = do_rescale lowercase__ : int = rescale_factor lowercase__ : List[Any] = do_normalize lowercase__ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : str = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Dict = do_convert_rgb def __UpperCamelCase ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Union[str, Any] , ) -> np.ndarray: lowercase__ : str = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase__ : Dict = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : int , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ) -> np.ndarray: lowercase__ : Optional[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[Any] , ) -> Any: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : Union[str, Any] , ) -> PIL.Image.Image: lowercase__ : int = do_resize if do_resize is not None else self.do_resize lowercase__ : Dict = size if size is not None else self.size lowercase__ : List[Any] = get_size_dict(lowercase_ , param_name="size" , default_to_square=lowercase_ ) lowercase__ : Dict = resample if resample is not None else self.resample lowercase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Dict = crop_size if crop_size is not None else self.crop_size lowercase__ : List[str] = get_size_dict(lowercase_ , param_name="crop_size" , default_to_square=lowercase_ ) lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : int = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : Union[str, Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : Dict = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. lowercase__ : Optional[Any] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowercase__ : List[Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: lowercase__ : int = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowercase__ : Optional[int] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase__ : List[str] = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
87
0
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( __UpperCAmelCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__, '''embed_dim''' ) ) self.parent.assertTrue(hasattr(UpperCamelCase__, '''num_heads''' ) ) class A : def __init__( self, UpperCamelCase__, UpperCamelCase__=13, UpperCamelCase__=64, UpperCamelCase__=3, UpperCamelCase__=[16, 48, 96], UpperCamelCase__=[1, 3, 6], UpperCamelCase__=[1, 2, 10], UpperCamelCase__=[7, 3, 3], UpperCamelCase__=[4, 2, 2], UpperCamelCase__=[2, 1, 1], UpperCamelCase__=[2, 2, 2], UpperCamelCase__=[False, False, True], UpperCamelCase__=[0.0, 0.0, 0.0], UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=2, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_sizes lowerCAmelCase_ = patch_stride lowerCAmelCase_ = patch_padding lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = num_heads lowerCAmelCase_ = stride_kv lowerCAmelCase_ = depth lowerCAmelCase_ = cls_token lowerCAmelCase_ = attention_drop_rate lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: # create a random int32 tensor of given shape lowerCAmelCase_ = ids_tensor([self.batch_size], self.num_labels ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = TFCvtModel(config=UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__, training=UpperCamelCase__ ) lowerCAmelCase_ = (self.image_size, self.image_size) lowerCAmelCase_ , lowerCAmelCase_ = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCAmelCase_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCAmelCase_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = TFCvtForImageClassification(UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__, labels=UpperCamelCase__, training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () __snake_case = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TFCvtModelTester(self ) lowerCAmelCase_ = TFCvtConfigTester(self, config_class=UpperCamelCase__, has_text_modality=UpperCamelCase__, hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(UpperCamelCase__ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.hidden_states lowerCAmelCase_ = len(self.model_tester.depth ) self.assertEqual(len(UpperCamelCase__ ), UpperCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = TFCvtModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __UpperCamelCase ( ): lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=UpperCamelCase__, return_tensors='''tf''' ) # forward pass lowerCAmelCase_ = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), UpperCamelCase__, atol=1E-4 ) )
167
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase_ = dict(zip(UpperCamelCase__, range(len(UpperCamelCase__ ) ) ) ) lowerCAmelCase_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowerCAmelCase_ = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) lowerCAmelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase_ = os.path.join(self.tmpdirname, UpperCamelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(UpperCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=UpperCamelCase__ ) lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowerCAmelCase_ = self.get_image_processor(do_normalize=UpperCamelCase__, padding_value=1.0 ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=UpperCamelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(images=UpperCamelCase__, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = processor(text=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(images=UpperCamelCase__, visual_prompt=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ )
167
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : List[str] = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any=False ) -> str: SCREAMING_SNAKE_CASE = OmegaConf.load(SCREAMING_SNAKE_CASE_ ) if display: print(yaml.dump(OmegaConf.to_container(SCREAMING_SNAKE_CASE_ ) ) ) return config def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Tuple=None ) -> Any: if conf_path is None: SCREAMING_SNAKE_CASE = './model_checkpoints/vqgan_only.yaml' SCREAMING_SNAKE_CASE = load_config(SCREAMING_SNAKE_CASE_ , display=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = VQModel(**config.model.params ) if ckpt_path is None: SCREAMING_SNAKE_CASE = './model_checkpoints/vqgan_only.pt' SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location=SCREAMING_SNAKE_CASE_ ) if ".ckpt" in ckpt_path: SCREAMING_SNAKE_CASE = sd['state_dict'] model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) del sd return model def lowercase (SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.encode(SCREAMING_SNAKE_CASE_ ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) SCREAMING_SNAKE_CASE = model.decode(SCREAMING_SNAKE_CASE_ ) return xrec def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any=False ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = string.rsplit('.' , 1 ) if reload: SCREAMING_SNAKE_CASE = importlib.import_module(SCREAMING_SNAKE_CASE_ ) importlib.reload(SCREAMING_SNAKE_CASE_ ) return getattr(importlib.import_module(SCREAMING_SNAKE_CASE_ , package=SCREAMING_SNAKE_CASE_ ) , cls ) def lowercase (SCREAMING_SNAKE_CASE_ : Any ) -> Dict: if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : int=True ) -> Any: SCREAMING_SNAKE_CASE = instantiate_from_config(SCREAMING_SNAKE_CASE_ ) if sd is not None: model.load_state_dict(SCREAMING_SNAKE_CASE_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Any: # load the specified checkpoint if ckpt: SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) SCREAMING_SNAKE_CASE = pl_sd['global_step'] print(F'loaded model from global step {global_step}.' ) else: SCREAMING_SNAKE_CASE = {'state_dict': None} SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=SCREAMING_SNAKE_CASE_ , eval_mode=SCREAMING_SNAKE_CASE_ )['model'] return model, global_step
113
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowercase ( _a ): """simple docstring""" UpperCAmelCase = """philschmid/bart-large-cnn-samsum""" UpperCAmelCase = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) UpperCAmelCase = """summarizer""" UpperCAmelCase = AutoTokenizer UpperCAmelCase = AutoModelForSeqaSeqLM UpperCAmelCase = ["""text"""] UpperCAmelCase = ["""text"""] def _snake_case ( self ,a_ ) -> Dict: return self.pre_processor(__lowerCAmelCase ,return_tensors="""pt""" ,truncation=__lowerCAmelCase ) def _snake_case ( self ,a_ ) -> Optional[Any]: return self.model.generate(**__lowerCAmelCase )[0] def _snake_case ( self ,a_ ) -> Optional[int]: return self.pre_processor.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase )
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0
'''simple docstring''' import logging from transformers import PretrainedConfig _lowerCAmelCase = logging.getLogger(__name__) _lowerCAmelCase = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class lowerCAmelCase_( _lowerCAmelCase ): '''simple docstring''' __lowercase : int = "bertabs" def __init__( self ,__UpperCAmelCase=3_0522 ,__UpperCAmelCase=512 ,__UpperCAmelCase=6 ,__UpperCAmelCase=512 ,__UpperCAmelCase=8 ,__UpperCAmelCase=512 ,__UpperCAmelCase=0.2 ,__UpperCAmelCase=6 ,__UpperCAmelCase=768 ,__UpperCAmelCase=8 ,__UpperCAmelCase=2048 ,__UpperCAmelCase=0.2 ,**__UpperCAmelCase ,) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : Optional[Any] = max_pos lowerCAmelCase__ : List[Any] = enc_layers lowerCAmelCase__ : Tuple = enc_hidden_size lowerCAmelCase__ : Dict = enc_heads lowerCAmelCase__ : Optional[int] = enc_ff_size lowerCAmelCase__ : Optional[Any] = enc_dropout lowerCAmelCase__ : Any = dec_layers lowerCAmelCase__ : int = dec_hidden_size lowerCAmelCase__ : Tuple = dec_heads lowerCAmelCase__ : List[str] = dec_ff_size lowerCAmelCase__ : List[str] = dec_dropout
37
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _snake_case : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _snake_case : int = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _snake_case : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _snake_case : List[str] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) _snake_case : Any = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _snake_case : Optional[Any] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) _snake_case : int = tf.keras.preprocessing.image.img_to_array(test_image) _snake_case : Tuple = np.expand_dims(test_image, axis=0) _snake_case : Any = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _snake_case : Any = "Normal" if result[0][0] == 1: _snake_case : List[str] = "Abnormality detected"
123
0
"""simple docstring""" from __future__ import annotations def A_ ( snake_case_ : str ,snake_case_ : list[str] | None = None ,snake_case_ : dict[str, float] | None = None ,snake_case_ : bool = False ,): '''simple docstring''' UpperCamelCase : List[str] = cipher_alphabet or [chr(snake_case_ ) for i in range(9_7 ,1_2_3 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase : str = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase : Dict = frequencies_dict if not case_sensitive: UpperCamelCase : Tuple = ciphertext.lower() # Chi squared statistic values UpperCamelCase : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(snake_case_ ) ): UpperCamelCase : Tuple = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase : Union[str, Any] = (alphabet_letters.index(letter.lower() ) - shift) % len( snake_case_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase : Any = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase : Union[str, Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase : str = decrypted_with_shift.lower().count(snake_case_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase : Any = decrypted_with_shift.count(snake_case_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase : Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(snake_case_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase : int = min( snake_case_ ,key=snake_case_ ,) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Optional[int] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
27
"""simple docstring""" import requests from bsa import BeautifulSoup def A_ ( snake_case_ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' UpperCamelCase : Any = BeautifulSoup(requests.get(snake_case_ ).text ,"""html.parser""" ) UpperCamelCase : Optional[int] = soup.findAll("""h1""" ) UpperCamelCase : List[Any] = soup.findAll("""div""" ,{"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" ,{"""class""": """panel-title"""} ) values += soup.findAll("""div""" ,{"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(snake_case_ ,snake_case_ )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
27
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A__ : str = logging.get_logger(__name__) A__ : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : str = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } A__ : Union[str, Any] = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } A__ : Dict = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class __snake_case ( UpperCamelCase_ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = RealmTokenizer def __init__( self : int , A_ : Optional[int]=None , A_ : Optional[Any]=None , A_ : Optional[Any]=True , A_ : Optional[int]="[UNK]" , A_ : List[Any]="[SEP]" , A_ : List[Any]="[PAD]" , A_ : Optional[Any]="[CLS]" , A_ : Dict="[MASK]" , A_ : List[Any]=True , A_ : List[str]=None , **A_ : List[str] , ): super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , A_) != do_lower_case or normalizer_state.get('''strip_accents''' , A_) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A_) != tokenize_chinese_chars ): lowerCAmelCase_ : int = getattr(A_ , normalizer_state.pop('''type''')) lowerCAmelCase_ : str = do_lower_case lowerCAmelCase_ : Dict = strip_accents lowerCAmelCase_ : Optional[Any] = tokenize_chinese_chars lowerCAmelCase_ : Union[str, Any] = normalizer_class(**A_) lowerCAmelCase_ : Any = do_lower_case def UpperCAmelCase__ ( self : Optional[Any] , A_ : Optional[Any] , **A_ : Tuple): lowerCAmelCase_ : List[str] = PaddingStrategy.MAX_LENGTH lowerCAmelCase_ : str = text lowerCAmelCase_ : int = kwargs.pop('''text_pair''' , A_) lowerCAmelCase_ : str = kwargs.pop('''return_tensors''' , A_) lowerCAmelCase_ : int = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(A_): if batch_text_pair is not None: lowerCAmelCase_ : List[Any] = batch_text_pair[idx] else: lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : int = super().__call__(A_ , A_ , return_tensors=A_ , **A_) lowerCAmelCase_ : Optional[Any] = encoded_candidates.get('''input_ids''') lowerCAmelCase_ : List[str] = encoded_candidates.get('''attention_mask''') lowerCAmelCase_ : Optional[Any] = encoded_candidates.get('''token_type_ids''') if encoded_input_ids is not None: output_data["input_ids"].append(A_) if encoded_attention_mask is not None: output_data["attention_mask"].append(A_) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A_) lowerCAmelCase_ : List[str] = {key: item for key, item in output_data.items() if len(A_) != 0} return BatchEncoding(A_ , tensor_type=A_) def UpperCAmelCase__ ( self : List[str] , A_ : Tuple , A_ : List[Any]=None): lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None): lowerCAmelCase_ : Tuple = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase__ ( self : List[str] , A_ : str , A_ : Optional[str] = None): lowerCAmelCase_ : List[str] = self._tokenizer.model.save(A_ , name=A_) return tuple(A_)
103
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case = logging.get_logger(__name__) __snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __snake_case = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __snake_case = { '''facebook/blenderbot_small-90M''': 512, } class lowercase ( A__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = BlenderbotSmallTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , UpperCamelCase_=True , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=UpperCamelCase_ , merges=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ , ) , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Union[str, Any] = add_prefix_space def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :Optional[int] = [self.sep_token_id] UpperCamelCase__ :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
97
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") A : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) A : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase , "rb" ) as f: __lowerCAmelCase = Image.open(_UpperCamelCase ) return im.convert("RGB" ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } ,) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase : Optional[str] =field(default=lowerCAmelCase__ ,metadata={"""help""": """A folder containing the training data."""} ) __UpperCAmelCase : Optional[str] =field(default=lowerCAmelCase__ ,metadata={"""help""": """A folder containing the validation data."""} ) __UpperCAmelCase : Optional[float] =field( default=0.15 ,metadata={"""help""": """Percent to split off of train for validation."""} ) __UpperCAmelCase : Optional[int] =field( default=lowerCAmelCase__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } ,) __UpperCAmelCase : Optional[int] =field( default=lowerCAmelCase__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } ,) def snake_case ( self ): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( default="""google/vit-base-patch16-224-in21k""" ,metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ,) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowerCAmelCase__ )} ,) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) __UpperCAmelCase : str =field( default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,) __UpperCAmelCase : str =field(default=lowerCAmelCase__ ,metadata={"""help""": """Name or path of preprocessor config."""} ) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } ,) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} ,) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = torch.stack([example["pixel_values"] for example in examples] ) __lowerCAmelCase = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowerCAmelCase = {} if data_args.train_dir is not None: __lowerCAmelCase = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: __lowerCAmelCase = os.path.join(data_args.validation_dir , "**" ) __lowerCAmelCase = load_dataset( "imagefolder" , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. __lowerCAmelCase = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCamelCase ) and data_args.train_val_split > 0.0: __lowerCAmelCase = dataset["train"].train_test_split(data_args.train_val_split ) __lowerCAmelCase = split["train"] __lowerCAmelCase = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowerCAmelCase = dataset["train"].features["labels"].names __lowerCAmelCase , __lowerCAmelCase = {}, {} for i, label in enumerate(_UpperCamelCase ): __lowerCAmelCase = str(_UpperCamelCase ) __lowerCAmelCase = label # Load the accuracy metric from the datasets package __lowerCAmelCase = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __lowerCAmelCase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __lowerCAmelCase = image_processor.size["shortest_edge"] else: __lowerCAmelCase = (image_processor.size["height"], image_processor.size["width"]) __lowerCAmelCase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __lowerCAmelCase = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __lowerCAmelCase = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase ): __lowerCAmelCase = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(_UpperCamelCase ): __lowerCAmelCase = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: __lowerCAmelCase = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: __lowerCAmelCase = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer __lowerCAmelCase = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCAmelCase = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub __lowerCAmelCase = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
259
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Optional[int] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""xlnet""" __UpperCAmelCase : Tuple =["""mems"""] __UpperCAmelCase : List[str] ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __a=3_20_00 , __a=10_24 , __a=24 , __a=16 , __a=40_96 , __a="gelu" , __a=True , __a="bi" , __a=0.0_2 , __a=1e-1_2 , __a=0.1 , __a=5_12 , __a=None , __a=True , __a=False , __a=False , __a=-1 , __a=False , __a="last" , __a=True , __a="tanh" , __a=0.1 , __a=5 , __a=5 , __a=5 , __a=1 , __a=2 , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = n_layer __lowerCAmelCase = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __lowerCAmelCase = d_model // n_head __lowerCAmelCase = ff_activation __lowerCAmelCase = d_inner __lowerCAmelCase = untie_r __lowerCAmelCase = attn_type __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = dropout __lowerCAmelCase = mem_len __lowerCAmelCase = reuse_len __lowerCAmelCase = bi_data __lowerCAmelCase = clamp_len __lowerCAmelCase = same_length __lowerCAmelCase = summary_type __lowerCAmelCase = summary_use_proj __lowerCAmelCase = summary_activation __lowerCAmelCase = summary_last_dropout __lowerCAmelCase = start_n_top __lowerCAmelCase = end_n_top __lowerCAmelCase = bos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __a , ) __lowerCAmelCase = kwargs["use_cache"] __lowerCAmelCase = use_mems_eval __lowerCAmelCase = use_mems_train super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) @property def snake_case ( self ): logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def snake_case ( self , __a ): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
259
1
from __future__ import annotations from collections.abc import Callable A__ : List[str] = list[list[float | int]] def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = len(__lowerCAmelCase ) lowercase__ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): lowercase__ = matrix[row][col] lowercase__ = vector[row][0] lowercase__ = 0 lowercase__ = 0 while row < size and col < size: # pivoting lowercase__ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowercase__ , lowercase__ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): lowercase__ = augmented[rowa][col] / augmented[row][col] lowercase__ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): lowercase__ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = len(__lowerCAmelCase ) lowercase__ = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] lowercase__ = [[0] for _ in range(__lowerCAmelCase )] lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): lowercase__ = (x_val + 1) ** (size - col - 1) lowercase__ = y_val lowercase__ = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(lowerCamelCase_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def a ( lowerCamelCase_ ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def a ( lowerCamelCase_ = question_function , lowerCamelCase_ = 10 ): '''simple docstring''' lowercase__ = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] lowercase__ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowercase__ = 0 lowercase__ = 42 lowercase__ = 42 for poly in polynomials: lowercase__ = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F"{solution() = }")
207
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed snake_case : List[Any] = logging.getLogger(__name__) def __lowercase ( __lowerCAmelCase : str=2 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : List[str]=1_6 , __lowerCAmelCase : int = 1_0 , __lowerCAmelCase : int = 2 ): def get_dataset(__lowerCAmelCase : Dict ): a__ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) a__ = get_dataset(__lowerCAmelCase ) a__ = get_dataset(__lowerCAmelCase ) a__ = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) a__ = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]=None ): a__ = [] for epoch in range(__lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: a__ , a__ = batch a__ = model(__lowerCAmelCase ) a__ = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase ) accelerator.backward(__lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class snake_case_ (nn.Module ): def __init__( self :Any ) -> Union[str, Any]: super().__init__() a__ = nn.Parameter(torch.randn(1 ) ) a__ = nn.Parameter(torch.randn(1 ) ) def lowerCamelCase__( self :List[str] ,__snake_case :Union[str, Any] ) -> str: return x * self.a + self.b class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(total_limit=1 ,project_dir=__snake_case ,automatic_checkpoint_naming=__snake_case ) # Train baseline a__ = Accelerator(project_config=__snake_case ) a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def lowerCamelCase__( self :List[Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() # Train baseline a__ = Accelerator() a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial a__ = os.path.join(__snake_case ,'initial' ) accelerator.save_state(__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() a__ = train(3 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() # Train partially set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = Accelerator() a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) accelerator.load_state(__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) a__ = train(2 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save everything a__ = os.path.join(__snake_case ,'checkpoint' ) accelerator.save_state(__snake_case ) # Load everything back in and make sure all states work accelerator.load_state(__snake_case ) test_rands += train(1 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) def lowerCamelCase__( self :str ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ) # Train baseline a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial accelerator.save_state() ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() a__ = train(3 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() # Train partially set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=__snake_case ) a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) accelerator.load_state(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_0' ) ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) a__ = train(2 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_1' ) ) test_rands += train(1 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: a__ = torch.tensor([1, 2, 3] ) a__ = torch.tensor([2, 3, 4] ) a__ = DummyModel() a__ = torch.optim.Adam(net.parameters() ) a__ = Accelerator() with self.assertRaises(__snake_case ) as ve: accelerator.register_for_checkpointing(__snake_case ,__snake_case ,__snake_case ,__snake_case ) a__ = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def lowerCamelCase__( self :List[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ = torch.optim.lr_scheduler.StepLR(__snake_case ,step_size=1 ,gamma=0.99 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ) # Train baseline a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ , a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial accelerator.save_state() a__ = scheduler.state_dict() train(3 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) self.assertNotEqual(__snake_case ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_0' ) ) self.assertEqual(__snake_case ,scheduler.state_dict() ) def lowerCamelCase__( self :Optional[int] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ,total_limit=2 ) # Train baseline a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ = accelerator.prepare(__snake_case ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_10' ) ) ) @require_cuda def lowerCamelCase__( self :Dict ) -> str: a__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(__snake_case ,env=os.environ.copy() ) if __name__ == "__main__": snake_case : Tuple = '''/tmp/accelerate/state_checkpointing''' snake_case : str = DummyModel() snake_case : List[Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) snake_case : Union[str, Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) snake_case , snake_case : str = dummy_dataloaders() snake_case : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline snake_case : Dict = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) snake_case , snake_case , snake_case , snake_case , snake_case : List[str] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) snake_case , snake_case : Any = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: snake_case : Any = group['''params'''][0].device break assert param_device.type == accelerator.device.type snake_case : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: snake_case : int = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: snake_case : Optional[int] = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
240
0
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: print('Loading config file...' ) def flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]="" , __SCREAMING_SNAKE_CASE : Union[str, Any]="." ): lowercase_ : Optional[Any] = [] for k, v in d.items(): lowercase_ : str = parent_key + sep + k if parent_key else k if isinstance(__SCREAMING_SNAKE_CASE , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sep=__SCREAMING_SNAKE_CASE ).items() ) else: items.append((new_key, v) ) return dict(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = argparse.Namespace() with open(__SCREAMING_SNAKE_CASE , 'r' ) as yaml_file: try: lowercase_ : int = yaml.load(__SCREAMING_SNAKE_CASE , Loader=yaml.FullLoader ) lowercase_ : List[str] = flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE ) for k, v in flat_cfg.items(): setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__SCREAMING_SNAKE_CASE , str(__SCREAMING_SNAKE_CASE ) ) ) return config def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: lowercase_ : Optional[Any] = MobileViTVaConfig() lowercase_ : Optional[int] = False # dataset if task_name.startswith('imagenet1k_' ): lowercase_ : int = 10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowercase_ : Optional[Any] = 3_84 else: lowercase_ : Dict = 2_56 lowercase_ : List[Any] = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): lowercase_ : Optional[Any] = 2_10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowercase_ : Tuple = 3_84 else: lowercase_ : List[Any] = 2_56 lowercase_ : Optional[int] = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): lowercase_ : Tuple = 1_51 lowercase_ : str = 5_12 lowercase_ : Optional[int] = 'ade20k-id2label.json' lowercase_ : Optional[int] = True elif task_name.startswith('voc_' ): lowercase_ : Any = 21 lowercase_ : Optional[Any] = 5_12 lowercase_ : Dict = 'pascal-voc-id2label.json' lowercase_ : Tuple = True # orig_config lowercase_ : List[str] = load_orig_config_file(__SCREAMING_SNAKE_CASE ) assert getattr(__SCREAMING_SNAKE_CASE , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" lowercase_ : int = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowercase_ : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowercase_ : List[str] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: lowercase_ : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) lowercase_ : int = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_12 ) lowercase_ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label lowercase_ : List[str] = 'huggingface/label-files' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Any = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : int = idalabel lowercase_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ) -> Any: lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = val def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ) -> Tuple: if base_model: lowercase_ : Dict = '' else: lowercase_ : Optional[int] = 'mobilevitv2.' lowercase_ : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowercase_ : List[Any] = k[8:] else: lowercase_ : List[Any] = k if ".block." in k: lowercase_ : Optional[Any] = k_new.replace('.block.' , '.' ) if ".conv." in k: lowercase_ : List[str] = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: lowercase_ : List[Any] = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: lowercase_ : str = k_new.replace('conv_1.' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: lowercase_ : List[Any] = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: lowercase_ : Dict = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: lowercase_ : Any = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: lowercase_ : Union[str, Any] = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: lowercase_ : int = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: lowercase_ : Any = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: lowercase_ : Dict = [0, 1] elif i == 4: lowercase_ : Optional[Any] = [0, 1, 2, 3] elif i == 5: lowercase_ : List[str] = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: lowercase_ : int = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: lowercase_ : List[str] = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: lowercase_ : Optional[int] = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: lowercase_ : Any = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: lowercase_ : Optional[Any] = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: lowercase_ : Union[str, Any] = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: lowercase_ : Optional[Any] = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: lowercase_ : Dict = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: lowercase_ : str = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: lowercase_ : Optional[Any] = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: lowercase_ : List[str] = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: lowercase_ : Optional[Any] = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Dict ) -> Dict: lowercase_ : Optional[int] = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__SCREAMING_SNAKE_CASE ) for k in keys_to_ignore: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( ) -> Optional[Any]: lowercase_ : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowercase_ : Optional[int] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any ) -> Any: lowercase_ : int = get_mobilevitva_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load original state_dict lowercase_ : List[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): lowercase_ : str = MobileViTVaForSemanticSegmentation(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : Optional[Any] = False else: lowercase_ : Tuple = MobileViTVaForImageClassification(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : int = False # remove and rename some keys of load the original model lowercase_ : Tuple = checkpoint remove_unused_keys(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = create_rename_keys(__SCREAMING_SNAKE_CASE , base_model=__SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load modified state_dict model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase_ : List[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase_ : Dict = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase_ : str = model(**__SCREAMING_SNAKE_CASE ) # verify classification model if task_name.startswith('imagenet' ): lowercase_ : int = outputs.logits lowercase_ : Any = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowercase_ : Optional[int] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
367
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } _A = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =EfficientNetConfig() __UpperCamelCase =CONFIG_MAP[model_name]['hidden_dim'] __UpperCamelCase =CONFIG_MAP[model_name]['width_coef'] __UpperCamelCase =CONFIG_MAP[model_name]['depth_coef'] __UpperCamelCase =CONFIG_MAP[model_name]['image_size'] __UpperCamelCase =CONFIG_MAP[model_name]['dropout_rate'] __UpperCamelCase =CONFIG_MAP[model_name]['dw_padding'] __UpperCamelCase ='huggingface/label-files' __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =CONFIG_MAP[model_name]['image_size'] __UpperCamelCase =EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=SCREAMING_SNAKE_CASE__ , ) return preprocessor def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =[v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] __UpperCamelCase =sorted(set(SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={b: str(SCREAMING_SNAKE_CASE__ ) for b, i in zip(SCREAMING_SNAKE_CASE__ , range(SCREAMING_SNAKE_CASE__ ) )} __UpperCamelCase =[] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: __UpperCamelCase =block_name_mapping[b] rename_keys.append((F'block{b}_expand_conv/kernel:0', F'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((F'block{b}_expand_bn/gamma:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((F'block{b}_expand_bn/beta:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (F'block{b}_expand_bn/moving_mean:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (F'block{b}_expand_bn/moving_variance:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (F'block{b}_dwconv/depthwise_kernel:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((F'block{b}_bn/gamma:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((F'block{b}_bn/beta:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (F'block{b}_bn/moving_mean:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (F'block{b}_bn/moving_variance:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((F'block{b}_se_reduce/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((F'block{b}_se_reduce/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((F'block{b}_se_expand/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((F'block{b}_se_expand/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (F'block{b}_project_conv/kernel:0', F'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((F'block{b}_project_bn/gamma:0', F'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((F'block{b}_project_bn/beta:0', F'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (F'block{b}_project_bn/moving_mean:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (F'block{b}_project_bn/moving_variance:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) __UpperCamelCase ={} for item in rename_keys: if item[0] in original_param_names: __UpperCamelCase ='efficientnet.' + item[1] __UpperCamelCase ='classifier.weight' __UpperCamelCase ='classifier.bias' return key_mapping def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): for key, value in tf_params.items(): if "normalization" in key: continue __UpperCamelCase =key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCamelCase =torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCamelCase =torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCamelCase =torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE__ ) ) else: __UpperCamelCase =torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =model_classes[model_name]( include_top=SCREAMING_SNAKE_CASE__ , weights='imagenet' , input_tensor=SCREAMING_SNAKE_CASE__ , input_shape=SCREAMING_SNAKE_CASE__ , pooling=SCREAMING_SNAKE_CASE__ , classes=10_00 , classifier_activation='softmax' , ) __UpperCamelCase =original_model.trainable_variables __UpperCamelCase =original_model.non_trainable_variables __UpperCamelCase ={param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCamelCase =param.numpy() __UpperCamelCase =list(tf_params.keys() ) # Load HuggingFace model __UpperCamelCase =get_efficientnet_config(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =EfficientNetForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) replace_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Initialize preprocessor and preprocess input image __UpperCamelCase =convert_image_processor(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCamelCase =hf_model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits.detach().numpy() # Original model inference __UpperCamelCase =False __UpperCamelCase =CONFIG_MAP[model_name]['image_size'] __UpperCamelCase =prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCamelCase =image.img_to_array(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=0 ) __UpperCamelCase =original_model.predict(SCREAMING_SNAKE_CASE__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): os.mkdir(SCREAMING_SNAKE_CASE__ ) # Save converted model and image processor hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) preprocessor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: # Push model and image processor to hub print(F'Pushing converted {model_name} to the hub...' ) __UpperCamelCase =F'efficientnet-{model_name}' preprocessor.push_to_hub(SCREAMING_SNAKE_CASE__ ) hf_model.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') _A = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
62
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : Optional[Any]=None , **snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) snake_case : Optional[Any] = model snake_case : Dict = kwargs.get("model_save_dir" , snake_case__ ) snake_case : int = kwargs.get("latest_model_name" , snake_case__ ) def __call__(self : Tuple , **snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = {k: np.array(snake_case__ ) for k, v in kwargs.items()} return self.model.run(snake_case__ , snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : Union[str, Path] , snake_case__ : Optional[int]=None , snake_case__ : Optional[int]=None ) -> Any: '''simple docstring''' if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) snake_case : Optional[int] = "CPUExecutionProvider" return ort.InferenceSession(snake_case__ , providers=[provider] , sess_options=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Union[str, Path] , snake_case__ : Optional[str] = None , **snake_case__ : Any ) -> List[Any]: '''simple docstring''' snake_case : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME snake_case : Any = self.model_save_dir.joinpath(self.latest_model_name ) snake_case : str = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) snake_case : List[str] = self.model_save_dir.joinpath(snake_case__ ) if src_path.exists(): snake_case : Tuple = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Optional[int] , ) -> str: '''simple docstring''' if os.path.isfile(snake_case__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) # saving model weights/files self._save_pretrained(snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Tuple , snake_case__ : Union[str, Path] , snake_case__ : Optional[Union[bool, str, None]] = None , snake_case__ : Optional[Union[str, None]] = None , snake_case__ : bool = False , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional["ort.SessionOptions"] = None , **snake_case__ : Tuple , ) -> Tuple: '''simple docstring''' snake_case : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(snake_case__ ): snake_case : Any = OnnxRuntimeModel.load_model( os.path.join(snake_case__ , snake_case__ ) , provider=snake_case__ , sess_options=snake_case__ ) snake_case : Union[str, Any] = Path(snake_case__ ) # load model from hub else: # download model snake_case : Dict = hf_hub_download( repo_id=snake_case__ , filename=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , ) snake_case : List[Any] = Path(snake_case__ ).parent snake_case : Union[str, Any] = Path(snake_case__ ).name snake_case : Dict = OnnxRuntimeModel.load_model(snake_case__ , provider=snake_case__ , sess_options=snake_case__ ) return cls(model=snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Optional[Any] , snake_case__ : Union[str, Path] , snake_case__ : bool = True , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , **snake_case__ : Dict , ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = None if len(str(snake_case__ ).split("@" ) ) == 2: snake_case , snake_case : int = model_id.split("@" ) return cls._from_pretrained( model_id=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , use_auth_token=snake_case__ , **snake_case__ , )
59
0
class _a : '''simple docstring''' def __init__( self ): A__ : str = {} def __A ( self ): print(self.vertex ) for i in self.vertex: print(A__ , """ -> """ , """ -> """.join([str(A__ ) for j in self.vertex[i]] ) ) def __A ( self , A__ , A__ ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(A__ ) else: # else make a new vertex A__ : List[Any] = [to_vertex] def __A ( self ): # visited array for storing already visited nodes A__ : List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(A__ , A__ ) def __A ( self , A__ , A__ ): # mark start vertex as visited A__ : int = True print(A__ , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(A__ , A__ ) if __name__ == "__main__": A_ : Union[str, Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
362
from __future__ import annotations def UpperCamelCase (lowercase_: list[int] , lowercase_: list[int] , lowercase_: int ) -> tuple[float, list[float]]: A__ : Tuple = list(range(len(lowercase_ ) ) ) A__ : Union[str, Any] = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ : float = 0 A__ : list[float] = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: A__ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
141
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _a = logging.get_logger(__name__) _a = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _a = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } _a = {'''allegro/herbert-base-cased''': 5_1_4} _a = {} class A_ ( snake_case__ ): _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[Any] = HerbertTokenizer def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : Optional[int]="<pad>" , UpperCAmelCase : Tuple="<mask>" , UpperCAmelCase : List[Any]="</s>" , **UpperCAmelCase : Union[str, Any] , ) -> int: super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase: Any = [self.cls_token_id] __lowerCAmelCase: Optional[int] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self : List[str] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase: List[str] = [self.sep_token_id] __lowerCAmelCase: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase: List[str] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
322
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
1
import requests def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ) -> List[str]: """simple docstring""" __lowerCamelCase = {'Content-Type': 'application/json'} __lowerCamelCase = requests.post(lowercase__ , json={'text': message_body} , headers=lowercase__ ) if response.status_code != 200: __lowerCamelCase = ( 'Request to slack returned an error ' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
362
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class A ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : Any )-> List[str]: '''simple docstring''' A__ = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) A__ = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house A__ = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim A__ = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A__ = model(lowercase_ )['last_hidden_state'].detach() self.assertEqual(output.shape,lowercase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1],lowercase_,atol=1E-3 ) ) @slow def snake_case__ ( self : Any )-> int: '''simple docstring''' A__ = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) A__ = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house A__ = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim A__ = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A__ = model(lowercase_ )['last_hidden_state'].detach() self.assertEqual(output.shape,lowercase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1],lowercase_,atol=1E-3 ) )
7
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
"""simple docstring""" from __future__ import annotations import math def A_ ( snake_case_ : int ): '''simple docstring''' if num <= 0: UpperCamelCase : Optional[int] = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(__UpperCamelCase ) UpperCamelCase : str = [True] * (num + 1) UpperCamelCase : int = [] UpperCamelCase : List[str] = 2 UpperCamelCase : int = int(math.sqrt(__UpperCamelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__UpperCamelCase ) # Set multiples of start be False for i in range(start * start ,num + 1 ,__UpperCamelCase ): if sieve[i] is True: UpperCamelCase : List[Any] = False start += 1 for j in range(end + 1 ,num + 1 ): if sieve[j] is True: prime.append(__UpperCamelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
368
"""simple docstring""" from collections.abc import Callable def A_ ( snake_case_ : Callable[[float], float] ,snake_case_ : float ,snake_case_ : float ): '''simple docstring''' UpperCamelCase : float = a UpperCamelCase : float = b if function(snake_case_ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case_ ) == 0: return b elif ( function(snake_case_ ) * function(snake_case_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: UpperCamelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(snake_case_ ) == 0: return mid elif function(snake_case_ ) * function(snake_case_ ) < 0: UpperCamelCase : Dict = mid else: UpperCamelCase : List[str] = mid UpperCamelCase : Tuple = start + (end - start) / 2.0 return mid def A_ ( snake_case_ : float ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
27
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class A : UpperCamelCase_ : Optional[str] =field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCamelCase_ : Optional[float] =field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCamelCase_ : Optional[int] =field( default=A_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] =field( default=A_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _A (self ): __lowercase= {} if self.train_dir is not None: __lowercase= self.train_dir if self.validation_dir is not None: __lowercase= self.validation_dir __lowercase= data_files if data_files else None @dataclass class A : UpperCamelCase_ : str =field( default=A_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCamelCase_ : str =field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : str =field(default=A_ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCamelCase_ : bool =field( default=A_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase_ : float =field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class A ( A_ ): UpperCamelCase_ : float =field( default=1e-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _lowerCamelCase( ) -> List[Any]: '''simple docstring''' __lowercase= HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase, __lowercase, __lowercase= parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase, __lowercase, __lowercase= parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase= training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowercase= None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase= get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __lowercase= load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase= None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: __lowercase= ds['train'].train_test_split(data_args.train_val_split ) __lowercase= split['train'] __lowercase= split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase= { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowercase= ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: __lowercase= ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: __lowercase= ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __lowercase= ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: __lowercase= ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: __lowercase= ViTImageProcessor() # create model if model_args.model_name_or_path: __lowercase= ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __lowercase= ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: __lowercase= ds['train'].column_names else: __lowercase= ds['validation'].column_names if data_args.image_column_name is not None: __lowercase= data_args.image_column_name elif "image" in column_names: __lowercase= 'image' elif "img" in column_names: __lowercase= 'img' else: __lowercase= column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __lowercase= image_processor.size['shortest_edge'] else: __lowercase= (image_processor.size['height'], image_processor.size['width']) __lowercase= Compose( [ Lambda(lambda lowercase__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ ): __lowercase= [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __lowercase= ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __lowercase= ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate __lowercase= ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __lowercase= training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer __lowercase= Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: __lowercase= None if training_args.resume_from_checkpoint is not None: __lowercase= training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase= last_checkpoint __lowercase= trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase= trainer.evaluate() trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) # Write model card and (optionally) push to hub __lowercase= { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
295
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' if len(lowercase__ ) <= 1 or n <= 1: return insert_next(lowercase__ , n - 1 ) rec_insertion_sort(lowercase__ , n - 1 ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' if index >= len(lowercase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowercase, __lowercase= ( collection[index], collection[index - 1], ) insert_next(lowercase__ , index + 1 ) if __name__ == "__main__": lowerCAmelCase = input('''Enter integers separated by spaces: ''') lowerCAmelCase = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
295
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class _a ( _lowerCamelCase): _a = '''conditional_detr''' _a = ['''past_key_values'''] _a = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=3 , _SCREAMING_SNAKE_CASE : Dict=300 , _SCREAMING_SNAKE_CASE : Optional[int]=6 , _SCREAMING_SNAKE_CASE : List[Any]=2048 , _SCREAMING_SNAKE_CASE : List[str]=8 , _SCREAMING_SNAKE_CASE : Tuple=6 , _SCREAMING_SNAKE_CASE : Union[str, Any]=2048 , _SCREAMING_SNAKE_CASE : Optional[int]=8 , _SCREAMING_SNAKE_CASE : str=0.0 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE : str=True , _SCREAMING_SNAKE_CASE : Tuple="relu" , _SCREAMING_SNAKE_CASE : Any=256 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE : int=0.0 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE : List[str]=0.02 , _SCREAMING_SNAKE_CASE : Dict=1.0 , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : Dict="sine" , _SCREAMING_SNAKE_CASE : Union[str, Any]="resnet50" , _SCREAMING_SNAKE_CASE : Union[str, Any]=True , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : List[str]=2 , _SCREAMING_SNAKE_CASE : List[Any]=5 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : List[Any]=1 , _SCREAMING_SNAKE_CASE : Dict=1 , _SCREAMING_SNAKE_CASE : int=2 , _SCREAMING_SNAKE_CASE : Dict=5 , _SCREAMING_SNAKE_CASE : Any=2 , _SCREAMING_SNAKE_CASE : List[str]=0.25 , **_SCREAMING_SNAKE_CASE : Tuple , )-> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowerCAmelCase__ : List[str] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : List[Any] = backbone_config.get('''model_type''' ) lowerCAmelCase__ : Optional[int] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ : Optional[Any] = config_class.from_dict(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = use_timm_backbone lowerCAmelCase__ : int = backbone_config lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : List[Any] = num_queries lowerCAmelCase__ : List[str] = d_model lowerCAmelCase__ : Union[str, Any] = encoder_ffn_dim lowerCAmelCase__ : Optional[int] = encoder_layers lowerCAmelCase__ : Any = encoder_attention_heads lowerCAmelCase__ : Any = decoder_ffn_dim lowerCAmelCase__ : Union[str, Any] = decoder_layers lowerCAmelCase__ : List[str] = decoder_attention_heads lowerCAmelCase__ : Union[str, Any] = dropout lowerCAmelCase__ : Optional[int] = attention_dropout lowerCAmelCase__ : Any = activation_dropout lowerCAmelCase__ : Union[str, Any] = activation_function lowerCAmelCase__ : List[str] = init_std lowerCAmelCase__ : Union[str, Any] = init_xavier_std lowerCAmelCase__ : Union[str, Any] = encoder_layerdrop lowerCAmelCase__ : int = decoder_layerdrop lowerCAmelCase__ : Tuple = encoder_layers lowerCAmelCase__ : Dict = auxiliary_loss lowerCAmelCase__ : Union[str, Any] = position_embedding_type lowerCAmelCase__ : Dict = backbone lowerCAmelCase__ : Tuple = use_pretrained_backbone lowerCAmelCase__ : List[Any] = dilation # Hungarian matcher lowerCAmelCase__ : List[str] = class_cost lowerCAmelCase__ : Dict = bbox_cost lowerCAmelCase__ : Dict = giou_cost # Loss coefficients lowerCAmelCase__ : List[Any] = mask_loss_coefficient lowerCAmelCase__ : Any = dice_loss_coefficient lowerCAmelCase__ : Optional[Any] = cls_loss_coefficient lowerCAmelCase__ : Dict = bbox_loss_coefficient lowerCAmelCase__ : Optional[int] = giou_loss_coefficient lowerCAmelCase__ : Any = focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase__( self : Tuple )-> Dict: return self.encoder_attention_heads @property def UpperCAmelCase__( self : Optional[Any] )-> Tuple: return self.d_model def UpperCAmelCase__( self : Any )-> List[str]: lowerCAmelCase__ : Tuple = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase__ : Dict = self.backbone_config.to_dict() lowerCAmelCase__ : Tuple = self.__class__.model_type return output class _a ( _lowerCamelCase): _a = version.parse('''1.11''') @property def UpperCAmelCase__( self : Any )-> Union[str, Any]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCAmelCase__( self : str )-> Any: return 1E-5 @property def UpperCAmelCase__( self : Any )-> Dict: return 12
353
def lowerCamelCase_ ( _a = 4_000_000 ): """simple docstring""" lowerCAmelCase__ : str = [] lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_a ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = b, a + b return sum(_a ) if __name__ == "__main__": print(f'''{solution() = }''')
211
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __snake_case : Optional[int] = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __snake_case : Any = { """yjernite/retribert-base-uncased""": 512, } __snake_case : Optional[Any] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class A__ ( a_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = RetriBertTokenizer SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=True , _SCREAMING_SNAKE_CASE: List[Any]="[UNK]" , _SCREAMING_SNAKE_CASE: Tuple="[SEP]" , _SCREAMING_SNAKE_CASE: List[str]="[PAD]" , _SCREAMING_SNAKE_CASE: Optional[int]="[CLS]" , _SCREAMING_SNAKE_CASE: Union[str, Any]="[MASK]" , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: List[str] , ) -> Tuple: """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , _SCREAMING_SNAKE_CASE) != do_lower_case or normalizer_state.get("strip_accents" , _SCREAMING_SNAKE_CASE) != strip_accents or normalizer_state.get("handle_chinese_chars" , _SCREAMING_SNAKE_CASE) != tokenize_chinese_chars ): __lowerCAmelCase : Dict = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("type")) __lowerCAmelCase : Union[str, Any] = do_lower_case __lowerCAmelCase : Tuple = strip_accents __lowerCAmelCase : Dict = tokenize_chinese_chars __lowerCAmelCase : List[str] = normalizer_class(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = do_lower_case def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None) -> List[int]: """simple docstring""" __lowerCAmelCase : List[str] = [self.sep_token_id] __lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None) -> Tuple[str]: """simple docstring""" __lowerCAmelCase : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE) return tuple(_SCREAMING_SNAKE_CASE)
269
def a_ ( _A = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
307
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class lowerCamelCase ( A_ ): UpperCAmelCase__ : Optional[Any] = "swin2sr" UpperCAmelCase__ : int = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self : List[str] , _A : int=6_4 , _A : str=1 , _A : Dict=3 , _A : Dict=1_8_0 , _A : Tuple=[6, 6, 6, 6, 6, 6] , _A : List[str]=[6, 6, 6, 6, 6, 6] , _A : str=8 , _A : Tuple=2.0 , _A : List[Any]=True , _A : List[str]=0.0 , _A : Optional[int]=0.0 , _A : List[str]=0.1 , _A : Optional[int]="gelu" , _A : str=False , _A : int=0.02 , _A : int=1E-5 , _A : Union[str, Any]=2 , _A : Optional[int]=1.0 , _A : List[Any]="1conv" , _A : List[str]="pixelshuffle" , **_A : Union[str, Any] , ) -> List[str]: super().__init__(**_A ) snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = embed_dim snake_case = depths snake_case = len(_A ) snake_case = num_heads snake_case = window_size snake_case = mlp_ratio snake_case = qkv_bias snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = drop_path_rate snake_case = hidden_act snake_case = use_absolute_embeddings snake_case = layer_norm_eps snake_case = initializer_range snake_case = upscale snake_case = img_range snake_case = resi_connection snake_case = upsampler
137
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def lowercase_ ( A__ , A__ ) -> int: """simple docstring""" snake_case = RobertaPreLayerNormConfig.from_pretrained( A__ , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict snake_case = torch.load(hf_hub_download(repo_id=A__ , filename="pytorch_model.bin" ) ) snake_case = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): snake_case = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue snake_case = tensor_value snake_case = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=A__ , config=A__ , state_dict=A__ ) model.save_pretrained(A__ ) # convert tokenizer snake_case = AutoTokenizer.from_pretrained(A__ ) tokenizer.save_pretrained(A__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _A = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
137
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
64
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : int ): """simple docstring""" if len(snake_case__ ) < k or k < 0: raise ValueError("""Invalid Input""" ) _snake_case : Optional[int] = sum(array[:k] ) for i in range(len(snake_case__ ) - k ): _snake_case : Optional[Any] = current_sum - array[i] + array[i + k] _snake_case : List[str] = max(snake_case__ , snake_case__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() A_ = [randint(-10_00, 10_00) for i in range(1_00)] A_ = randint(0, 1_10) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
64
1
import argparse import datetime def _lowerCAmelCase ( A__: str ): '''simple docstring''' UpperCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } UpperCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(A__ ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month UpperCAmelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) UpperCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day UpperCAmelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator UpperCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year UpperCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation UpperCAmelCase = datetime.date(int(A__ ) , int(A__ ) , int(A__ ) ) # Start math if m <= 2: UpperCAmelCase = y - 1 UpperCAmelCase = m + 12 # maths var UpperCAmelCase = int(str(A__ )[:2] ) UpperCAmelCase = int(str(A__ )[2:] ) UpperCAmelCase = int(2.6 * m - 5.39 ) UpperCAmelCase = int(c / 4 ) UpperCAmelCase = int(k / 4 ) UpperCAmelCase = int(d + k ) UpperCAmelCase = int(t + u + v + x ) UpperCAmelCase = int(z - (2 * c) ) UpperCAmelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response UpperCAmelCase = F"""Your date {date_input}, is a {days[str(A__ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) __magic_name__ = parser.parse_args() zeller(args.date_input)
152
import operator as op def _lowerCAmelCase ( A__: List[str] ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = lambda A__ , A__ : int(x / y ) # noqa: E731 integer division operation UpperCAmelCase = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(A__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) else: UpperCAmelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) UpperCAmelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) stack.append( str(opr[x](int(A__ ) , int(A__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": __magic_name__ = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
152
1
from __future__ import annotations from collections.abc import Iterator class a__ : def __init__( self : int,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = value SCREAMING_SNAKE_CASE_ : Node | None = None SCREAMING_SNAKE_CASE_ : Node | None = None class a__ : def __init__( self : Optional[int],_A : Node ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tree def __UpperCamelCase ( self : Any,_A : Node | None ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
18
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
1
"""simple docstring""" def _lowerCAmelCase ( lowerCAmelCase = 1000 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'{solution() = }')
364
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCamelCase_ ( a_ ): _A : List[str] = 'tapas' def __init__( self , snake_case__=3_05_22 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10_24 , snake_case__=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__=10.0 , snake_case__=0 , snake_case__=1.0 , snake_case__=None , snake_case__=1.0 , snake_case__=False , snake_case__=None , snake_case__=1.0 , snake_case__=1.0 , snake_case__=False , snake_case__=False , snake_case__="ratio" , snake_case__=None , snake_case__=None , snake_case__=64 , snake_case__=32 , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_sizes UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase = positive_label_weight UpperCAmelCase = num_aggregation_labels UpperCAmelCase = aggregation_loss_weight UpperCAmelCase = use_answer_as_supervision UpperCAmelCase = answer_loss_importance UpperCAmelCase = use_normalized_answer_loss UpperCAmelCase = huber_loss_delta UpperCAmelCase = temperature UpperCAmelCase = aggregation_temperature UpperCAmelCase = use_gumbel_for_cells UpperCAmelCase = use_gumbel_for_aggregation UpperCAmelCase = average_approximation_function UpperCAmelCase = cell_selection_preference UpperCAmelCase = answer_loss_cutoff UpperCAmelCase = max_num_rows UpperCAmelCase = max_num_columns UpperCAmelCase = average_logits_per_cell UpperCAmelCase = select_one_column UpperCAmelCase = allow_empty_column_selection UpperCAmelCase = init_cell_selection_weights_to_zero UpperCAmelCase = reset_position_index_per_cell UpperCAmelCase = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase = aggregation_labels UpperCAmelCase = no_aggregation_label_index if isinstance(self.aggregation_labels , snake_case__ ): UpperCAmelCase = {int(snake_case__ ): v for k, v in aggregation_labels.items()}
248
0
'''simple docstring''' def __UpperCAmelCase ( a_: int ): if not isinstance(a_, a_ ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Tuple = str(a_ ) while len(a_ ) != 1: _UpperCAmelCase : List[str] = [int(a_ ) for i in num_string] _UpperCAmelCase : Tuple = 1 for i in range(0, len(a_ ) ): total *= numbers[i] _UpperCAmelCase : Dict = str(a_ ) steps += 1 return steps def __UpperCAmelCase ( a_: int ): if not isinstance(a_, a_ ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : List[str] = str(a_ ) while len(a_ ) != 1: _UpperCAmelCase : str = [int(a_ ) for i in num_string] _UpperCAmelCase : Optional[int] = 0 for i in range(0, len(a_ ) ): total += numbers[i] _UpperCAmelCase : Tuple = str(a_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
145
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ['''input_features''', '''attention_mask'''] def __init__( self : List[Any] , lowerCAmelCase__ : Union[str, Any]=8_0 , lowerCAmelCase__ : Tuple=1_6_0_0_0 , lowerCAmelCase__ : Union[str, Any]=8_0 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[Any]=True , **lowerCAmelCase__ : int , ) -> int: """simple docstring""" super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : str = num_mel_bins _UpperCAmelCase : Optional[int] = do_ceptral_normalize _UpperCAmelCase : List[str] = normalize_means _UpperCAmelCase : str = normalize_vars _UpperCAmelCase : Union[str, Any] = True def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : np.ndarray , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : Tuple = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers _UpperCAmelCase : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ) _UpperCAmelCase : List[Any] = ta_kaldi.fbank(lowerCAmelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : float = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: _UpperCAmelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _UpperCAmelCase : Dict = np.subtract(lowerCAmelCase__ , lowerCAmelCase__ ) if normalize_vars: _UpperCAmelCase : Any = x[:input_length].std(axis=0 ) _UpperCAmelCase : Optional[int] = np.divide(lowerCAmelCase__ , lowerCAmelCase__ ) if input_length < x.shape[0]: _UpperCAmelCase : str = padding_value # make sure array is in float32 _UpperCAmelCase : Union[str, Any] = x.astype(np.floataa ) return x def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[np.ndarray] , lowerCAmelCase__ : Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" _UpperCAmelCase : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCAmelCase__ , lowerCAmelCase__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] def __call__( self : List[Any] , lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , **lowerCAmelCase__ : Optional[Any] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : List[Any] = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Any = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): _UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : List[Any] = [raw_speech] # extract fbank features _UpperCAmelCase : Tuple = [self._extract_fbank_features(lowerCAmelCase__ ) for waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : Optional[Any] = BatchFeature({"input_features": features} ) _UpperCAmelCase : Optional[Any] = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) # make sure list is in array format _UpperCAmelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , lowerCAmelCase__ ): _UpperCAmelCase : int = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: _UpperCAmelCase : Dict = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _UpperCAmelCase : List[str] = ( np.array(lowerCAmelCase__ , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) _UpperCAmelCase : str = self.normalize( padded_inputs["input_features"] , attention_mask=lowerCAmelCase__ ) if return_tensors is not None: _UpperCAmelCase : Any = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs
145
1
def UpperCAmelCase_( a__ ): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = credit_card_number SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Dict = len(a__ ) - 2 for i in range(a__ , -1 , -2 ): # double the value of every second digit SCREAMING_SNAKE_CASE : Optional[int] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = cc_number[:i] + str(a__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(a__ ) <= 16: print(F"""{error_message} of its length.""" ) return False if not validate_initial_digits(a__ ): print(F"""{error_message} of its first two digits.""" ) return False if not luhn_validation(a__ ): print(F"""{error_message} it fails the Luhn check.""" ) return False print(F"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for attribute in key.split("." ): UpperCAmelCase_ : List[str] = getattr(__lowerCamelCase, __lowerCamelCase ) if weight_type is not None: UpperCAmelCase_ : List[str] = getattr(__lowerCamelCase, __lowerCamelCase ).shape else: UpperCAmelCase_ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ : List[str] = value elif weight_type == "weight_g": UpperCAmelCase_ : List[str] = value elif weight_type == "weight_v": UpperCAmelCase_ : int = value elif weight_type == "bias": UpperCAmelCase_ : int = value else: UpperCAmelCase_ : Optional[int] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = [] UpperCAmelCase_ : int = fairseq_model.state_dict() UpperCAmelCase_ : int = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ : int = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, hf_model.config.feat_extract_norm == "group", ) UpperCAmelCase_ : int = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ : List[str] = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): UpperCAmelCase_ : Union[str, Any] = True if "*" in mapped_key: UpperCAmelCase_ : Tuple = name.split(__lowerCamelCase )[0].split("." )[-2] UpperCAmelCase_ : List[Any] = mapped_key.replace("*", __lowerCamelCase ) if "weight_g" in name: UpperCAmelCase_ : Optional[Any] = "weight_g" elif "weight_v" in name: UpperCAmelCase_ : int = "weight_v" elif "weight" in name: UpperCAmelCase_ : List[Any] = "weight" elif "bias" in name: UpperCAmelCase_ : Union[str, Any] = "bias" else: UpperCAmelCase_ : Optional[int] = None set_recursively(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = full_name.split("conv_layers." )[-1] UpperCAmelCase_ : Tuple = name.split("." ) UpperCAmelCase_ : int = int(items[0] ) UpperCAmelCase_ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ : Optional[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=True ): if config_path is not None: UpperCAmelCase_ : Any = HubertConfig.from_pretrained(__lowerCamelCase ) else: UpperCAmelCase_ : Dict = HubertConfig() if is_finetuned: if dict_path: UpperCAmelCase_ : str = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ : str = target_dict.pad_index UpperCAmelCase_ : int = target_dict.bos_index UpperCAmelCase_ : List[str] = target_dict.eos_index UpperCAmelCase_ : Optional[Any] = len(target_dict.symbols ) UpperCAmelCase_ : int = os.path.join(__lowerCamelCase, "vocab.json" ) if not os.path.isdir(__lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) with open(__lowerCamelCase, "w", encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices, __lowerCamelCase ) UpperCAmelCase_ : List[Any] = WavaVecaCTCTokenizer( __lowerCamelCase, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=__lowerCamelCase, ) UpperCAmelCase_ : int = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ : Dict = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0, do_normalize=__lowerCamelCase, return_attention_mask=__lowerCamelCase, ) UpperCAmelCase_ : Tuple = WavaVecaProcessor(feature_extractor=__lowerCamelCase, tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = HubertForCTC(__lowerCamelCase ) else: UpperCAmelCase_ : str = HubertModel(__lowerCamelCase ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase_ : int = model[0].eval() recursively_load_weights(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _a = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
61
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
0
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Dict , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : List[str]=32 , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : Dict=10 , _lowerCamelCase : Tuple=[10, 20, 30, 40] , _lowerCamelCase : int=[1, 1, 2, 1] , _lowerCamelCase : int=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Dict=None , ): _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = embeddings_size _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = hidden_act _snake_case = num_labels _snake_case = scope _snake_case = len(_lowerCamelCase ) def lowercase ( self : Optional[int] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase ( self : Tuple ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[Any] ): _snake_case = TFResNetModel(config=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self : Dict , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple ): _snake_case = self.num_labels _snake_case = TFResNetForImageClassification(_lowerCamelCase ) _snake_case = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Tuple ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __a = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowercase ( self : List[Any] ): _snake_case = TFResNetModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : List[Any] ): return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def lowercase ( self : Any ): pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def lowercase ( self : List[str] ): pass def lowercase ( self : int ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase ( self : Union[str, Any] ): def check_hidden_states_output(_lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : str ): _snake_case = model_class(_lowerCamelCase ) _snake_case = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _snake_case = layer_type _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Union[str, Any] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def lowercase ( self : List[str] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFResNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _UpperCAmelCase ( ) -> Union[str, Any]: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Dict ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self : List[Any] ): _snake_case = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=_lowerCamelCase , return_tensors='''tf''' ) # forward pass _snake_case = model(**_lowerCamelCase ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) _snake_case = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCamelCase , atol=1e-4 ) )
288
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'vocab_file': 'sentencepiece.model'} UpperCAmelCase__ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } UpperCAmelCase__ = { 'google/rembert': 256, } class lowerCAmelCase__ ( A_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Any=True , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : int="[CLS]" , _lowerCamelCase : Optional[int]="[SEP]" , _lowerCamelCase : Optional[int]="[UNK]" , _lowerCamelCase : Optional[Any]="[SEP]" , _lowerCamelCase : str="[PAD]" , _lowerCamelCase : List[Any]="[CLS]" , _lowerCamelCase : Any="[MASK]" , **_lowerCamelCase : Optional[int] , ): super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor() self.sp_model.Load(_lowerCamelCase ) @property def lowercase ( self : int ): return len(self.sp_model ) def lowercase ( self : Any ): _snake_case = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : List[str] , _lowerCamelCase : Tuple ): _snake_case = d _snake_case = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowercase ( self : str , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=False ): _snake_case = self.sp_model.EncodeAsPieces(_lowerCamelCase ) return pieces def lowercase ( self : str , _lowerCamelCase : str ): return self.sp_model.PieceToId(_lowerCamelCase ) def lowercase ( self : List[str] , _lowerCamelCase : int ): return self.sp_model.IdToPiece(_lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Any ): _snake_case = self.sp_model.decode_pieces(_lowerCamelCase ) return out_string def lowercase ( self : Optional[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : Tuple , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] def lowercase ( self : Optional[int] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return _snake_case = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
288
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Union[str, Any] = tempfile.mkdtemp() lowercase :int = BlipImageProcessor() lowercase :List[Any] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowercase :Any = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) lowercase :List[Any] = InstructBlipProcessor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self: Dict , **_lowerCAmelCase: List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer def SCREAMING_SNAKE_CASE ( self: Optional[int] , **_lowerCAmelCase: Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor def SCREAMING_SNAKE_CASE ( self: Tuple , **_lowerCAmelCase: Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).qformer_tokenizer def SCREAMING_SNAKE_CASE ( self: int ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowercase :Dict = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Union[str, Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowercase :Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase :Optional[int] = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) lowercase :Optional[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase :str = self.get_image_processor() lowercase :Optional[Any] = self.get_tokenizer() lowercase :Any = self.get_qformer_tokenizer() lowercase :Any = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase :Union[str, Any] = self.prepare_image_inputs() lowercase :Tuple = image_processor(_lowerCAmelCase , return_tensors="np" ) lowercase :List[Any] = processor(images=_lowerCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :str = self.get_image_processor() lowercase :Union[str, Any] = self.get_tokenizer() lowercase :Any = self.get_qformer_tokenizer() lowercase :Union[str, Any] = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase :str = 'lower newer' lowercase :List[str] = processor(text=_lowerCAmelCase ) lowercase :List[str] = tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) lowercase :Dict = qformer_tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Union[str, Any] = self.get_image_processor() lowercase :Union[str, Any] = self.get_tokenizer() lowercase :Tuple = self.get_qformer_tokenizer() lowercase :List[Any] = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase :Optional[Any] = 'lower newer' lowercase :Any = self.prepare_image_inputs() lowercase :Union[str, Any] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def SCREAMING_SNAKE_CASE ( self: int ): lowercase :str = self.get_image_processor() lowercase :Optional[int] = self.get_tokenizer() lowercase :List[Any] = self.get_qformer_tokenizer() lowercase :Optional[int] = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase :Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase :Tuple = processor.batch_decode(_lowerCAmelCase ) lowercase :Dict = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :List[str] = self.get_image_processor() lowercase :Tuple = self.get_tokenizer() lowercase :Optional[int] = self.get_qformer_tokenizer() lowercase :Union[str, Any] = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase :Any = 'lower newer' lowercase :List[str] = self.prepare_image_inputs() lowercase :Union[str, Any] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
351
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : str = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED _UpperCAmelCase : List[str] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } _UpperCAmelCase : Optional[Any] = { "allenai/led-base-16384": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCAmelCase__ ( ): lowercase :int = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) lowercase :Dict = bs[:] lowercase :List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase ) cs.append(2**8 + n ) n += 1 lowercase :List[str] = [chr(lowerCamelCase ) for n in cs] return dict(zip(lowerCamelCase, lowerCamelCase ) ) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :List[Any] = set() lowercase :Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase :List[str] = char return pairs class __lowerCAmelCase ( lowerCAmelCase): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Tuple , _lowerCAmelCase: Union[str, Any]="replace" , _lowerCAmelCase: int="<s>" , _lowerCAmelCase: int="</s>" , _lowerCAmelCase: int="</s>" , _lowerCAmelCase: Optional[int]="<s>" , _lowerCAmelCase: Optional[int]="<unk>" , _lowerCAmelCase: Any="<pad>" , _lowerCAmelCase: Optional[Any]="<mask>" , _lowerCAmelCase: Union[str, Any]=False , **_lowerCAmelCase: Dict , ): lowercase :Union[str, Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token lowercase :List[str] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token lowercase :Any = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token lowercase :Tuple = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token lowercase :List[Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token lowercase :str = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase :Tuple = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding="utf-8" ) as vocab_handle: lowercase :List[str] = json.load(_lowerCAmelCase ) lowercase :Union[str, Any] = {v: k for k, v in self.encoder.items()} lowercase :Dict = errors # how to handle errors in decoding lowercase :Any = bytes_to_unicode() lowercase :str = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase , encoding="utf-8" ) as merges_handle: lowercase :List[Any] = merges_handle.read().split("\n" )[1:-1] lowercase :Tuple = [tuple(merge.split() ) for merge in bpe_merges] lowercase :Optional[int] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowercase :Tuple = {} lowercase :List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase :Optional[int] = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE ( self: int ): return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self: Dict ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: Optional[int] ): if token in self.cache: return self.cache[token] lowercase :Tuple = tuple(_lowerCAmelCase ) lowercase :List[str] = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: lowercase :List[str] = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase :List[Any] = bigram lowercase :str = [] lowercase :Tuple = 0 while i < len(_lowerCAmelCase ): try: lowercase :List[str] = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase :Optional[Any] = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase :Dict = tuple(_lowerCAmelCase ) lowercase :Optional[Any] = new_word if len(_lowerCAmelCase ) == 1: break else: lowercase :List[str] = get_pairs(_lowerCAmelCase ) lowercase :str = " ".join(_lowerCAmelCase ) lowercase :Optional[Any] = word return word def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: Optional[int] ): lowercase :str = [] for token in re.findall(self.pat , _lowerCAmelCase ): lowercase :str = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(" " ) ) return bpe_tokens def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: str ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Tuple ): return self.decoder.get(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[str] ): lowercase :Optional[int] = "".join(_lowerCAmelCase ) lowercase :List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowercase :List[str] = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase :Optional[int] = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + "\n" ) lowercase :Tuple = 0 with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowercase :Tuple = token_index writer.write(" ".join(_lowerCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase :Tuple = [self.cls_token_id] lowercase :int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None , _lowerCAmelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): lowercase :List[str] = [self.sep_token_id] lowercase :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: int=False , **_lowerCAmelCase: Dict ): lowercase :Tuple = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): lowercase :List[Any] = " " + text return (text, kwargs) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Union[Dict[str, EncodedInput], BatchEncoding] , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: Optional[bool] = None , ): lowercase :Tuple = super()._pad( encoded_inputs=_lowerCAmelCase , max_length=_lowerCAmelCase , padding_strategy=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase :Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase :Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase :Optional[int] = len(encoded_inputs["global_attention_mask"] ) != len(_lowerCAmelCase ) if needs_to_be_padded: lowercase :Optional[int] = len(_lowerCAmelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase :List[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowercase :int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
158
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowercase : Optional[Any] = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowercase : Optional[Any] = get_tests_dir("""fixtures/vocab.json""") lowercase : int = get_tests_dir("""fixtures""") class __snake_case ( unittest.TestCase ): _a : Union[str, Any]= ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Optional[int] = WavaVecaConfig() lowercase : Any = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) lowercase : Optional[Any] = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(snake_case ,os.path.join(snake_case ,snake_case ) ) copyfile(snake_case ,os.path.join(snake_case ,"""vocab.json""" ) ) lowercase : str = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Optional[int] = WavaVecaFeatureExtractor() lowercase : Optional[int] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase : List[str] = WavaVecaProcessor(snake_case ,snake_case ) # save in new folder processor.save_pretrained(snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(snake_case ,snake_case ) ,"""r""" ) as f: lowercase : Optional[int] = json.load(snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case ,snake_case ) ,"""w""" ) as f: f.write(json.dumps(snake_case ) ) lowercase : str = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : List[str] = WavaVecaFeatureExtractor() lowercase : List[Any] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase : List[str] = WavaVecaProcessor(snake_case ,snake_case ) # save in new folder processor.save_pretrained(snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(snake_case ,snake_case ) ,"""r""" ) as f: lowercase : str = json.load(snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case ,snake_case ) ,"""w""" ) as f: f.write(json.dumps(snake_case ) ) lowercase : Tuple = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Tuple = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(snake_case ) # copy relevant files copyfile(snake_case ,os.path.join(snake_case ,"""vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(snake_case ,snake_case ) ,"""w""" ) as f: f.write("""{}""" ) lowercase : str = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaises(snake_case ): lowercase : Optional[int] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case ): lowercase : Tuple = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" ,trust_remote_code=snake_case ) lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ,trust_remote_code=snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ ,"""NewProcessor""" ) lowercase : Optional[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ ,"""NewFeatureExtractor""" ) lowercase : Optional[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,"""NewTokenizerFast""" ) # Test we can also load the slow version lowercase : Optional[Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" ,trust_remote_code=snake_case ,use_fast=snake_case ) lowercase : List[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ ,"""NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ ,"""NewTokenizer""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' try: AutoConfig.register("""custom""" ,snake_case ) AutoFeatureExtractor.register(snake_case ,snake_case ) AutoTokenizer.register(snake_case ,slow_tokenizer_class=snake_case ) AutoProcessor.register(snake_case ,snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case ): AutoProcessor.register(snake_case ,snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase : Tuple = CustomFeatureExtractor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase : List[str] = os.path.join(snake_case ,"""vocab.txt""" ) with open(snake_case ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase : int = CustomTokenizer(snake_case ) lowercase : Union[str, Any] = CustomProcessor(snake_case ,snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(snake_case ) lowercase : str = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' class __snake_case ( lowerCAmelCase ): _a : List[Any]= False class __snake_case ( lowerCAmelCase ): _a : Optional[int]= False class __snake_case ( lowerCAmelCase ): _a : List[Any]= "AutoFeatureExtractor" _a : Union[str, Any]= "AutoTokenizer" _a : str= False try: AutoConfig.register("""custom""" ,snake_case ) AutoFeatureExtractor.register(snake_case ,snake_case ) AutoTokenizer.register(snake_case ,slow_tokenizer_class=snake_case ) AutoProcessor.register(snake_case ,snake_case ) # If remote code is not set, the default is to use local classes. lowercase : Optional[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ ,"""NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase : Dict = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" ,trust_remote_code=snake_case ) self.assertEqual(processor.__class__.__name__ ,"""NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase : Union[str, Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" ,trust_remote_code=snake_case ) self.assertEqual(processor.__class__.__name__ ,"""NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ ,"""BertTokenizerFast""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ ,"""ConvNextImageProcessor""" ) @is_staging_test class __snake_case ( unittest.TestCase ): _a : Dict= ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' lowercase : List[Any] = TOKEN HfFolder.save_token(snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-processor""" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = WavaVecaProcessor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case ,"""test-processor""" ) ,push_to_hub=snake_case ,use_auth_token=self._token ) lowercase : List[str] = WavaVecaProcessor.from_pretrained(f"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case ,getattr(new_processor.feature_extractor ,snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = WavaVecaProcessor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case ,"""test-processor-org""" ) ,push_to_hub=snake_case ,use_auth_token=self._token ,organization="""valid_org""" ,) lowercase : Optional[int] = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case ,getattr(new_processor.feature_extractor ,snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase : Dict = CustomFeatureExtractor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase : List[Any] = os.path.join(snake_case ,"""vocab.txt""" ) with open(snake_case ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase : List[Any] = CustomTokenizer(snake_case ) lowercase : Optional[Any] = CustomProcessor(snake_case ,snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"{USER}/test-dynamic-processor" ,token=self._token ) lowercase : Dict = Repository(snake_case ,clone_from=f"{USER}/test-dynamic-processor" ,token=self._token ) processor.save_pretrained(snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map ,{ """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } ,) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(snake_case ,"""tokenizer_config.json""" ) ) as f: lowercase : Dict = json.load(snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] ,{ """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } ,) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(snake_case ,"""custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case ,"""custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case ,"""custom_processing.py""" ) ) ) repo.push_to_hub() lowercase : Any = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor" ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ ,"""CustomProcessor""" )
20
"""simple docstring""" from __future__ import annotations _lowercase : Dict = 1.6_021E-19 # units = C def snake_case__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ): """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
238
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCamelCase_ = _symbol_database.Default() UpperCamelCase_ = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) UpperCamelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCamelCase_ = None UpperCamelCase_ = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCamelCase_ = 4_5 UpperCamelCase_ = 1_5_8_1 UpperCamelCase_ = 1_5_1_7 UpperCamelCase_ = 1_5_7_0 UpperCamelCase_ = 1_5_8_4 UpperCamelCase_ = 1_7_9_3 UpperCamelCase_ = 1_7_9_5 UpperCamelCase_ = 1_9_1_6 UpperCamelCase_ = 1_8_6_4 UpperCamelCase_ = 1_9_0_5 UpperCamelCase_ = 1_9_1_9 UpperCamelCase_ = 2_4_2_9 UpperCamelCase_ = 2_2_0_8 UpperCamelCase_ = 2_4_1_8 UpperCamelCase_ = 2_3_2_3 UpperCamelCase_ = 2_4_0_7 # @@protoc_insertion_point(module_scope)
246
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch UpperCamelCase_ = logging.get_logger(__name__) @add_end_docstrings( SCREAMING_SNAKE_CASE , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.framework == "tf": SCREAMING_SNAKE_CASE : List[Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=A ) else: raise ValueError('Unsupported framework' ) return masked_index def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_masked_index(A ) SCREAMING_SNAKE_CASE : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask', self.model.base_model_prefix, F"No mask_token ({self.tokenizer.mask_token}) found on the input", ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if isinstance(A, A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A ) def UpperCamelCase_ ( self, A, A=None, **A ): '''simple docstring''' if return_tensors is None: SCREAMING_SNAKE_CASE : Dict = self.framework SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(A, return_tensors=A ) self.ensure_exactly_one_mask_token(A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model(**A ) SCREAMING_SNAKE_CASE : List[str] = model_inputs['input_ids'] return model_outputs def UpperCamelCase_ ( self, A, A=5, A=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: SCREAMING_SNAKE_CASE : List[str] = target_ids.shape[0] SCREAMING_SNAKE_CASE : Union[str, Any] = model_outputs['input_ids'][0] SCREAMING_SNAKE_CASE : Union[str, Any] = model_outputs['logits'] if self.framework == "tf": SCREAMING_SNAKE_CASE : Dict = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] SCREAMING_SNAKE_CASE : Tuple = outputs.numpy() SCREAMING_SNAKE_CASE : Any = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE : List[Any] = stable_softmax(A, axis=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.gather_nd(tf.squeeze(A, 0 ), target_ids.reshape(-1, 1 ) ) SCREAMING_SNAKE_CASE : Optional[int] = tf.expand_dims(A, 0 ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.math.top_k(A, k=A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = topk.values.numpy(), topk.indices.numpy() else: SCREAMING_SNAKE_CASE : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample SCREAMING_SNAKE_CASE : Optional[int] = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE : Any = logits.softmax(dim=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE : int = probs[..., target_ids] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = probs.topk(A ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[str] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist() ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = [] for v, p in zip(_values, _predictions ): # Copy is important since we're going to modify this array in place SCREAMING_SNAKE_CASE : Tuple = input_ids.numpy().copy() if target_ids is not None: SCREAMING_SNAKE_CASE : Any = target_ids[p].tolist() SCREAMING_SNAKE_CASE : List[Any] = p # Filter padding out: SCREAMING_SNAKE_CASE : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.decode(A, skip_special_tokens=A ) SCREAMING_SNAKE_CASE : List[Any] = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(A ) result.append(A ) if single_mask: return result[0] return result def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' if isinstance(A, A ): SCREAMING_SNAKE_CASE : List[Any] = [targets] try: SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.get_vocab() except Exception: SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[str] = [] for target in targets: SCREAMING_SNAKE_CASE : Dict = vocab.get(A, A ) if id_ is None: SCREAMING_SNAKE_CASE : Dict = self.tokenizer( A, add_special_tokens=A, return_attention_mask=A, return_token_type_ids=A, max_length=1, truncation=A, )['input_ids'] if len(A ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " 'We cannot replace it with anything meaningful, ignoring it' ) continue SCREAMING_SNAKE_CASE : List[Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) SCREAMING_SNAKE_CASE : List[str] = list(set(A ) ) if len(A ) == 0: raise ValueError('At least one target must be provided when passed.' ) SCREAMING_SNAKE_CASE : Any = np.array(A ) return target_ids def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = {} if targets is not None: SCREAMING_SNAKE_CASE : Any = self.get_target_ids(A, A ) SCREAMING_SNAKE_CASE : str = target_ids if top_k is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask', self.model.base_model_prefix, 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self, A, *A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = super().__call__(A, **A ) if isinstance(A, A ) and len(A ) == 1: return outputs[0] return outputs
246
1
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) _SCREAMING_SNAKE_CASE = 2_9_9_7_9_2_4_5_8 # Symbols _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = symbols("""ct x y z""") def lowercase( UpperCamelCase_ ) -> float: '''simple docstring''' if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def lowercase( UpperCamelCase_ ) -> float: '''simple docstring''' return 1 / sqrt(1 - beta(UpperCamelCase_ ) ** 2 ) def lowercase( UpperCamelCase_ ) -> np.ndarray: '''simple docstring''' return np.array( [ [gamma(UpperCamelCase_ ), -gamma(UpperCamelCase_ ) * beta(UpperCamelCase_ ), 0, 0], [-gamma(UpperCamelCase_ ) * beta(UpperCamelCase_ ), gamma(UpperCamelCase_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowercase( UpperCamelCase_ , UpperCamelCase_ = None ) -> np.ndarray: '''simple docstring''' # Ensure event is not empty if event is None: UpperCamelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: _SCREAMING_SNAKE_CASE = transform(2_9_9_7_9_2_4_5) print("""Example of four vector: """) print(F'''ct\' = {four_vector[0]}''') print(F'''x\' = {four_vector[1]}''') print(F'''y\' = {four_vector[2]}''') print(F'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values _SCREAMING_SNAKE_CASE = {ct: c, x: 1, y: 1, z: 1} _SCREAMING_SNAKE_CASE = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'''\n{numerical_vector}''')
343
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""ConvNextFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
343
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase_ = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class a_ ( _snake_case ): UpperCamelCase__ : List[str] =VOCAB_FILES_NAMES UpperCamelCase__ : Dict =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[str] =PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Union[str, Any] =ElectraTokenizer def __init__( self :List[Any] , _lowercase :List[str]=None , _lowercase :Any=None , _lowercase :int=True , _lowercase :Dict="[UNK]" , _lowercase :Dict="[SEP]" , _lowercase :Tuple="[PAD]" , _lowercase :Optional[int]="[CLS]" , _lowercase :List[Any]="[MASK]" , _lowercase :List[Any]=True , _lowercase :Any=None , **_lowercase :Any , ) -> List[str]: super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , _lowercase) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(_lowercase , normalizer_state.pop('''type''')) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**_lowercase) UpperCAmelCase_ = do_lower_case def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Optional[int]=None) -> Union[str, Any]: UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self :List[str] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __a ( self :Optional[int] , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: UpperCAmelCase_ = self._tokenizer.model.save(_lowercase , name=_lowercase) return tuple(_lowercase)
344
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
1
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = 'bert' else: raise ValueError('args.model_type should be "bert".') _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict['cls.predictions.decoder.weight'] _a = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[f"""cls.predictions.transform.dense.{w}"""] _a = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
61
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' if not nums: return 0 SCREAMING_SNAKE_CASE__ : Dict =nums[0] SCREAMING_SNAKE_CASE__ : Optional[int] =0 for num in nums[1:]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =( max_excluding + num, max(UpperCamelCase__, UpperCamelCase__ ), ) return max(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
152
0
'''simple docstring''' from __future__ import annotations def A_( A : list[int | float] , A : int , A : int): if len(A) == 0: raise ValueError('find_max() arg is an empty sequence') if ( left >= len(A) or left < -len(A) or right >= len(A) or right < -len(A) ): raise IndexError('list index out of range') if left == right: return nums[left] UpperCamelCase = (left + right) >> 1 # the middle UpperCamelCase = find_max(A , A , A) # find max in range[left, mid] UpperCamelCase = find_max(A , mid + 1 , A) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
363
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """deberta-v2""" def __init__( self , A_=128100 , A_=1536 , A_=24 , A_=24 , A_=6144 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0 , A_=0.02 , A_=1e-7 , A_=False , A_=-1 , A_=0 , A_=True , A_=None , A_=0 , A_="gelu" , **A_ , )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = relative_attention UpperCamelCase = max_relative_positions UpperCamelCase = pad_token_id UpperCamelCase = position_biased_input # Backwards compatibility if type(A_ ) == str: UpperCamelCase = [x.strip() for x in pos_att_type.lower().split('|' )] UpperCamelCase = pos_att_type UpperCamelCase = vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = kwargs.get('pooler_hidden_size' , A_ ) UpperCamelCase = pooler_dropout UpperCamelCase = pooler_hidden_act class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return 12 def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , A_ = None , )-> Mapping[str, Any]: '''simple docstring''' UpperCamelCase = super().generate_dummy_inputs(preprocessor=A_ , framework=A_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
251
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =1 lowerCamelCase__: Optional[Any] =3 lowerCamelCase__: str =(32, 32) lowerCamelCase__: str =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: List[Any] =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCAmelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: Optional[int] =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: Dict =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: str =self.dummy_cond_unet_upscale lowerCamelCase__: int =DDPMScheduler() lowerCamelCase__: str =DDIMScheduler(prediction_type="v_prediction") lowerCamelCase__: Any =self.dummy_vae lowerCamelCase__: List[Any] =self.dummy_text_encoder lowerCamelCase__: Any =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") lowerCamelCase__: Dict =self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] lowerCamelCase__: List[str] =Image.fromarray(np.uinta(UpperCAmelCase_)).convert("RGB").resize((64, 64)) # make sure here that pndm scheduler skips prk lowerCamelCase__: int =StableDiffusionUpscalePipeline( unet=UpperCAmelCase_ , low_res_scheduler=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , max_noise_level=350 , ) lowerCamelCase__: List[Any] =sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: Optional[Any] ="A painting of a squirrel eating a burger" lowerCamelCase__: Tuple =torch.Generator(device=UpperCAmelCase_).manual_seed(0) lowerCamelCase__: Tuple =sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase__: int =output.images lowerCamelCase__: List[str] =torch.Generator(device=UpperCAmelCase_).manual_seed(0) lowerCamelCase__: List[str] =sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=UpperCAmelCase_ , )[0] lowerCamelCase__: Optional[int] =image[0, -3:, -3:, -1] lowerCamelCase__: int =image_from_tuple[0, -3:, -3:, -1] lowerCamelCase__: List[Any] =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCamelCase__: Dict =np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: Dict ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: Any =self.dummy_cond_unet_upscale lowerCamelCase__: Optional[Any] =DDPMScheduler() lowerCamelCase__: Optional[int] =DDIMScheduler(prediction_type="v_prediction") lowerCamelCase__: List[str] =self.dummy_vae lowerCamelCase__: List[Any] =self.dummy_text_encoder lowerCamelCase__: str =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") lowerCamelCase__: int =self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] lowerCamelCase__: Any =Image.fromarray(np.uinta(UpperCAmelCase_)).convert("RGB").resize((64, 64)) # make sure here that pndm scheduler skips prk lowerCamelCase__: Dict =StableDiffusionUpscalePipeline( unet=UpperCAmelCase_ , low_res_scheduler=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , max_noise_level=350 , ) lowerCamelCase__: List[Any] =sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: List[str] ="A painting of a squirrel eating a burger" lowerCamelCase__: Optional[Any] =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase__: List[str] =output.images assert image.shape[0] == 2 lowerCamelCase__: Optional[int] =torch.Generator(device=UpperCAmelCase_).manual_seed(0) lowerCamelCase__: Optional[int] =sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase__: Union[str, Any] =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =self.dummy_cond_unet_upscale lowerCamelCase__: str =DDPMScheduler() lowerCamelCase__: Dict =DDIMScheduler(prediction_type="v_prediction") lowerCamelCase__: Optional[Any] =self.dummy_vae lowerCamelCase__: Dict =self.dummy_text_encoder lowerCamelCase__: str =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") lowerCamelCase__: Union[str, Any] =self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] lowerCamelCase__: List[Any] =Image.fromarray(np.uinta(UpperCAmelCase_)).convert("RGB").resize((64, 64)) # put models in fp16, except vae as it overflows in fp16 lowerCamelCase__: List[str] =unet.half() lowerCamelCase__: List[Any] =text_encoder.half() # make sure here that pndm scheduler skips prk lowerCamelCase__: List[Any] =StableDiffusionUpscalePipeline( unet=UpperCAmelCase_ , low_res_scheduler=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , max_noise_level=350 , ) lowerCamelCase__: Tuple =sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: List[str] ="A painting of a squirrel eating a burger" lowerCamelCase__: Optional[Any] =torch.manual_seed(0) lowerCamelCase__: Union[str, Any] =sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="np" , ).images lowerCamelCase__: int =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") lowerCamelCase__: Union[str, Any] =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy") lowerCamelCase__: List[Any] ="stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase__: Optional[Any] =StableDiffusionUpscalePipeline.from_pretrained(UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) pipe.enable_attention_slicing() lowerCamelCase__: str ="a cat sitting on a park bench" lowerCamelCase__: Any =torch.manual_seed(0) lowerCamelCase__: Union[str, Any] =pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type="np" , ) lowerCamelCase__: Optional[int] =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") lowerCamelCase__: int =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy") lowerCamelCase__: Optional[int] ="stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase__: Dict =StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) pipe.enable_attention_slicing() lowerCamelCase__: Optional[Any] ="a cat sitting on a park bench" lowerCamelCase__: Optional[Any] =torch.manual_seed(0) lowerCamelCase__: List[Any] =pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type="np" , ) lowerCamelCase__: List[str] =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5E-1 def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__: Optional[Any] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") lowerCamelCase__: List[str] ="stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase__: int =StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() lowerCamelCase__: Optional[int] ="a cat sitting on a park bench" lowerCamelCase__: Tuple =torch.manual_seed(0) lowerCamelCase__: Any =pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , output_type="np" , ) lowerCamelCase__: Dict =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
10
import os def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'triangle.txt') with open(_UpperCAmelCase) as f: SCREAMING_SNAKE_CASE = f.readlines() SCREAMING_SNAKE_CASE = [] for line in triangle: SCREAMING_SNAKE_CASE = [] for number in line.strip().split(' '): numbers_from_line.append(int(_UpperCAmelCase)) a.append(_UpperCAmelCase) for i in range(1 , len(_UpperCAmelCase)): for j in range(len(a[i])): SCREAMING_SNAKE_CASE = a[i - 1][j] if j != len(a[i - 1]) else 0 SCREAMING_SNAKE_CASE = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_UpperCAmelCase , _UpperCAmelCase) return max(a[-1]) if __name__ == "__main__": print(solution())
137
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''autoformer''' UpperCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self :int , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[int] = None , __magic_name__ :str = "student_t" , __magic_name__ :str = "nll" , __magic_name__ :int = 1 , __magic_name__ :List[int] = [1, 2, 3, 4, 5, 6, 7] , __magic_name__ :bool = True , __magic_name__ :int = 0 , __magic_name__ :int = 0 , __magic_name__ :int = 0 , __magic_name__ :int = 0 , __magic_name__ :Optional[List[int]] = None , __magic_name__ :Optional[List[int]] = None , __magic_name__ :int = 64 , __magic_name__ :int = 2 , __magic_name__ :int = 2 , __magic_name__ :int = 2 , __magic_name__ :int = 2 , __magic_name__ :int = 32 , __magic_name__ :int = 32 , __magic_name__ :str = "gelu" , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :int = 100 , __magic_name__ :float = 0.02 , __magic_name__ :bool = True , __magic_name__ :str=True , __magic_name__ :int = 10 , __magic_name__ :int = 25 , __magic_name__ :int = 3 , **__magic_name__ :Tuple , ): '''simple docstring''' a = prediction_length a = context_length if context_length is not None else prediction_length a = distribution_output a = loss a = input_size a = num_time_features a = lags_sequence a = scaling a = num_dynamic_real_features a = num_static_real_features a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__magic_name__ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) a = cardinality else: a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__magic_name__ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) a = embedding_dimension else: a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] a = num_parallel_samples # Transformer architecture configuration a = input_size * len(self.lags_sequence ) + self._number_of_features a = d_model a = encoder_attention_heads a = decoder_attention_heads a = encoder_ffn_dim a = decoder_ffn_dim a = encoder_layers a = decoder_layers a = dropout a = attention_dropout a = activation_dropout a = encoder_layerdrop a = decoder_layerdrop a = activation_function a = init_std a = use_cache # Autoformer a = label_length a = moving_average a = autocorrelation_factor super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def lowerCamelCase__ ( self :int ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
347
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__) @dataclass class __lowerCAmelCase ( datasets.BuilderConfig ): UpperCamelCase__ = None UpperCamelCase__ = "utf-8" UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = True # deprecated UpperCamelCase__ = None # deprecated UpperCamelCase__ = 10 << 20 # 10MB UpperCamelCase__ = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder ): UpperCamelCase__ = JsonConfig def lowerCamelCase__ ( self :str ): '''simple docstring''' if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) a = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): a = data_files if isinstance(__magic_name__ , __magic_name__ ): a = [files] a = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] a = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): a = [files] a = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) ) return splits def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): a = self.config.features.arrow_schema.field(__magic_name__ ).type a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example a = table_cast(__magic_name__ , self.config.features.arrow_schema ) return pa_table def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: a = json.load(__magic_name__ ) # We keep only the field we are interested in a = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__magic_name__ , (list, tuple) ): a = set().union(*[row.keys() for row in dataset] ) a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} else: a = dataset a = pa.Table.from_pydict(__magic_name__ ) yield file_idx, self._cast_table(__magic_name__ ) # If the file has one json object per line else: with open(__magic_name__ , """rb""" ) as f: a = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small a = max(self.config.chunksize // 32 , 16 << 10 ) a = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: a = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__magic_name__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" ) try: while True: try: a = paj.read_json( io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__magic_name__ , pa.ArrowInvalid ) and "straddling" not in str(__magic_name__ ) or block_size > len(__magic_name__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: a = json.load(__magic_name__ ) except json.JSONDecodeError: logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON try: a = set().union(*[row.keys() for row in dataset] ) a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} a = pa.Table.from_pydict(__magic_name__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' ) raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(__magic_name__ ) break else: logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' ) raise ValueError( F'Not able to read records in the JSON file at {file}. ' F'You should probably indicate the field of the JSON file containing your records. ' F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) batch_idx += 1
347
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __snake_case ( nn.Module ): def __init__( self ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case__ : Optional[int] = nn.Linear(3 , 4 ) snake_case__ : Optional[int] = nn.BatchNormad(4 ) snake_case__ : List[str] = nn.Linear(4 , 5 ) def __a ( self , __UpperCamelCase ) -> str: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__UpperCamelCase ) ) ) class __snake_case ( __SCREAMING_SNAKE_CASE ): def __a ( self , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __snake_case ( __SCREAMING_SNAKE_CASE ): def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' return output + 1 class __snake_case ( unittest.TestCase ): def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = ModelForTest() snake_case__ : str = ModelHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(test_model._hf_hook , __UpperCamelCase ) self.assertTrue(hasattr(__UpperCamelCase , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(__UpperCamelCase ) self.assertFalse(hasattr(__UpperCamelCase , '_hf_hook' ) ) self.assertFalse(hasattr(__UpperCamelCase , '_old_forward' ) ) def __a ( self ) -> str: '''simple docstring''' snake_case__ : Optional[int] = ModelForTest() snake_case__ : Tuple = ModelHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) add_hook_to_module(__UpperCamelCase , __UpperCamelCase , append=__UpperCamelCase ) self.assertEqual(isinstance(test_model._hf_hook , __UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__UpperCamelCase , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(__UpperCamelCase ) self.assertFalse(hasattr(__UpperCamelCase , '_hf_hook' ) ) self.assertFalse(hasattr(__UpperCamelCase , '_old_forward' ) ) def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : int = ModelForTest() snake_case__ : Optional[Any] = torch.randn(2 , 3 ) snake_case__ : Any = test_model(x + 1 ) snake_case__ : List[Any] = test_model(x + 2 ) snake_case__ : Tuple = PreForwardHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) snake_case__ : List[str] = test_model(__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain snake_case__ : Optional[Any] = PreForwardHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Tuple = test_model(__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks snake_case__ : Optional[Any] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Optional[int] = test_model(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Tuple = ModelForTest() snake_case__ : Optional[Any] = torch.randn(2 , 3 ) snake_case__ : int = test_model(__UpperCamelCase ) snake_case__ : Any = PostForwardHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Tuple = test_model(__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain snake_case__ : Optional[Any] = PostForwardHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Dict = test_model(__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks snake_case__ : Union[str, Any] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) snake_case__ : List[str] = test_model(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , output + 2 , atol=1E-5 ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = ModelForTest() snake_case__ : Optional[Any] = torch.randn(2 , 3 ) snake_case__ : int = test_model(__UpperCamelCase ) snake_case__ : Any = PostForwardHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) snake_case__ : List[str] = test_model(__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) snake_case__ : Optional[Any] = True snake_case__ : Union[str, Any] = test_model(__UpperCamelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device snake_case__ : Optional[int] = torch.randn(2 , 3 ) snake_case__ : Tuple = model(__UpperCamelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__UpperCamelCase , AlignDevicesHook(io_same_device=__UpperCamelCase ) ) snake_case__ : Dict = torch.randn(2 , 3 ).to(0 ) snake_case__ : Dict = model(__UpperCamelCase ) self.assertEqual(output.device , torch.device(0 ) ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices snake_case__ : Optional[Any] = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCamelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__UpperCamelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCamelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case__ : Dict = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , __UpperCamelCase ) snake_case__ : List[Any] = torch.randn(2 , 3 ) snake_case__ : Union[str, Any] = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload snake_case__ : Optional[int] = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCamelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__UpperCamelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCamelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) snake_case__ : Optional[Any] = torch.randn(2 , 3 ) snake_case__ : str = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices snake_case__ : Tuple = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(__UpperCamelCase , execution_device=__UpperCamelCase , offload=__UpperCamelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case__ : str = torch.device(__UpperCamelCase ) self.assertEqual(model.batchnorm.running_mean.device , __UpperCamelCase ) snake_case__ : Union[str, Any] = torch.randn(2 , 3 ) snake_case__ : Optional[int] = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(__UpperCamelCase , execution_device=__UpperCamelCase , offload=__UpperCamelCase , offload_buffers=__UpperCamelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) snake_case__ : Optional[Any] = torch.randn(2 , 3 ) snake_case__ : List[str] = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices snake_case__ : Any = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( __UpperCamelCase , execution_device=__UpperCamelCase , offload=__UpperCamelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case__ : str = torch.device(__UpperCamelCase ) self.assertEqual(model.batchnorm.running_mean.device , __UpperCamelCase ) snake_case__ : List[str] = torch.randn(2 , 3 ) snake_case__ : Optional[Any] = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( __UpperCamelCase , execution_device=__UpperCamelCase , offload=__UpperCamelCase , weights_map=model.state_dict() , offload_buffers=__UpperCamelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) snake_case__ : str = torch.randn(2 , 3 ) snake_case__ : Optional[int] = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
143
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 2_5_5 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_pad def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = self.size["""shortest_edge"""] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : str = YolosImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = YolosImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCamelCase_ = image_processing_a.pad(__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase_ = image_processing_a(__UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them UpperCamelCase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} UpperCamelCase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase_ = YolosImageProcessor(format="""coco_panoptic""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks UpperCamelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
122
0
'''simple docstring''' def __magic_name__ ( A ) -> int: snake_case = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __magic_name__ ( A = 1_0_0 ) -> int: snake_case = 1 snake_case = 2 for i in range(2 , max_n + 1 ): snake_case = pre_numerator snake_case = 2 * i // 3 if i % 3 == 0 else 1 snake_case = cur_numerator snake_case = e_cont * pre_numerator + temp return sum_digits(A ) if __name__ == "__main__": print(f"{solution() = }")
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 1_00 * 2**20, 9_00 * 2**20] ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , _A ) UpperCAmelCase : Any =datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCAmelCase : Any =dataset_size < in_memory_max_size else: UpperCAmelCase : int =False UpperCAmelCase : Union[str, Any] =is_small_dataset(_A ) assert result == expected
348
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any]=1_3 , UpperCAmelCase__ : List[str]=[3_0, 3_0] , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : List[str]=5 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : str=1_0 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=8 , UpperCAmelCase__ : Dict=1_0 , ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : Dict = scope SCREAMING_SNAKE_CASE : Optional[Any] = n_targets SCREAMING_SNAKE_CASE : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens SCREAMING_SNAKE_CASE : Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) SCREAMING_SNAKE_CASE : int = num_patches + 1 + self.num_detection_tokens def _lowercase ( self : Tuple ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) SCREAMING_SNAKE_CASE : str = [] for i in range(self.batch_size ): SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = torch.rand(self.n_targets , 4 , device=UpperCAmelCase__ ) labels.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowercase ( self : Dict ) ->Optional[Any]: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = YolosModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _lowercase ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = YolosForObjectDetection(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(pixel_values=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) SCREAMING_SNAKE_CASE : int = model(pixel_values=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _lowercase ( self : Dict ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple =(YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCAmelCase__ : Any =( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) UpperCAmelCase__ : Tuple =False UpperCAmelCase__ : int =False UpperCAmelCase__ : Tuple =False UpperCAmelCase__ : Optional[Any] =False def _lowercase ( self : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any=False ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": SCREAMING_SNAKE_CASE : List[str] = [] for i in range(self.model_tester.batch_size ): SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCAmelCase__ , dtype=torch.long ) SCREAMING_SNAKE_CASE : str = torch.ones( self.model_tester.n_targets , 4 , device=UpperCAmelCase__ , dtype=torch.float ) labels.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = labels return inputs_dict def _lowercase ( self : Dict ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = YolosModelTester(self ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : List[Any] ) ->int: """simple docstring""" pass def _lowercase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def _lowercase ( self : List[Any] ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = True # in YOLOS, the seq_len is different SCREAMING_SNAKE_CASE : Any = self.model_tester.expected_seq_len for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Tuple = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) SCREAMING_SNAKE_CASE : List[str] = len(UpperCAmelCase__ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Optional[int] = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : str = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowercase ( self : Any ) ->str: """simple docstring""" def check_hidden_states_output(UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE : List[Any] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) # YOLOS has a different seq_length SCREAMING_SNAKE_CASE : Tuple = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Any ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCAmelCase__ ) @slow def _lowercase ( self : str ) ->List[Any]: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = YolosModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def __lowercase ( ) -> List[Any]: SCREAMING_SNAKE_CASE : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : int ) ->Union[str, Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def _lowercase ( self : List[Any] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : str = image_processor(images=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(inputs.pixel_values ) # verify outputs SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] , device=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] , device=UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) ) # verify postprocessing SCREAMING_SNAKE_CASE : int = image_processor.post_process_object_detection( UpperCAmelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] SCREAMING_SNAKE_CASE : str = torch.tensor([0.99_94, 0.97_90, 0.99_64, 0.99_72, 0.98_61] ).to(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = [7_5, 7_5, 1_7, 6_3, 1_7] SCREAMING_SNAKE_CASE : List[str] = torch.tensor([3_35.06_09, 79.38_48, 3_75.42_16, 1_87.24_95] ).to(UpperCAmelCase__ ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , UpperCAmelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , UpperCAmelCase__ ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , UpperCAmelCase__ ) )
245
0
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
1
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[Any] = (DPMSolverSDEScheduler,) __lowerCAmelCase : Union[str, Any] = 10 def a_ ( self : Tuple , **_lowerCamelCase : Tuple ): """simple docstring""" A_ : Optional[Any] = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**_lowerCamelCase ) return config def a_ ( self : List[Any] ): """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def a_ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def a_ ( self : Optional[int] ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def a_ ( self : Union[str, Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def a_ ( self : Tuple ): """simple docstring""" A_ : str = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) A_ : Optional[Any] = self.dummy_model() A_ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma A_ : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): A_ : Optional[int] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = output.prev_sample A_ : List[str] = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Dict = torch.mean(torch.abs(_lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def a_ ( self : Dict ): """simple docstring""" A_ : Tuple = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(prediction_type='''v_prediction''' ) A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) A_ : Dict = self.dummy_model() A_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma A_ : List[Any] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): A_ : Any = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , _lowerCamelCase ) A_ : str = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = output.prev_sample A_ : str = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : str = torch.mean(torch.abs(_lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) A_ : Dict = self.dummy_model() A_ : Dict = self.dummy_sample_deter.to(_lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: A_ : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : List[str] = output.prev_sample A_ : int = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def a_ ( self : Any ): """simple docstring""" A_ : str = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Union[str, Any] = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) A_ : Any = self.dummy_model() A_ : Union[str, Any] = self.dummy_sample_deter.to(_lowerCamelCase ) * scheduler.init_noise_sigma A_ : Any = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: A_ : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) A_ : str = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : int = output.prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Tuple = torch.mean(torch.abs(_lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
167
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = ['model.decoder.embed_positions.weights'] def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if "emb" in name: A_ : Tuple = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: A_ : Optional[int] = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: A_ : Optional[Any] = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: A_ : int = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: A_ : Optional[int] = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: A_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: A_ : Any = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: A_ : Dict = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: A_ : Tuple = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: A_ : Union[str, Any] = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: A_ : Tuple = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = list(state_dict.keys() ) A_ : List[Any] = {} for key in keys: A_ : List[str] = state_dict.pop(_UpperCAmelCase ) A_ : Tuple = rename_keys(_UpperCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj A_ : Any = val[:hidden_size, :] A_ : Optional[int] = val[hidden_size : 2 * hidden_size, :] A_ : Union[str, Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A_ : List[str] = val else: A_ : int = val return state_dict, enc_dec_proj_state_dict def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if checkpoint == "small": # default config values A_ : Optional[Any] = 1024 A_ : Tuple = 24 A_ : int = 16 elif checkpoint == "medium": A_ : Any = 1536 A_ : Union[str, Any] = 48 A_ : List[Any] = 24 elif checkpoint == "large": A_ : Optional[int] = 2048 A_ : Optional[int] = 48 A_ : Tuple = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) A_ : Tuple = MusicgenDecoderConfig( hidden_size=_UpperCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , ) return config @torch.no_grad() def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="cpu" ): """simple docstring""" A_ : Any = MusicGen.get_pretrained(_UpperCAmelCase , device=_UpperCAmelCase ) A_ : str = decoder_config_from_checkpoint(_UpperCAmelCase ) A_ : Optional[int] = fairseq_model.lm.state_dict() A_ , A_ : str = rename_state_dict( _UpperCAmelCase , hidden_size=decoder_config.hidden_size ) A_ : List[str] = TaEncoderModel.from_pretrained('''t5-base''' ) A_ : Tuple = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) A_ : Union[str, Any] = MusicgenForCausalLM(_UpperCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A_ , A_ : Tuple = decoder.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_UpperCAmelCase ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model A_ : Tuple = MusicgenForConditionalGeneration(text_encoder=_UpperCAmelCase , audio_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_UpperCAmelCase ) # check we can do a forward pass A_ : List[str] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A_ : Tuple = model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor A_ : str = AutoTokenizer.from_pretrained('''t5-base''' ) A_ : int = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) A_ : Optional[int] = MusicgenProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # set the appropriate bos/pad token ids A_ : Tuple = 2048 A_ : Union[str, Any] = 2048 # set other default generation config params A_ : Union[str, Any] = int(30 * audio_encoder.config.frame_rate ) A_ : List[str] = True A_ : List[str] = 3.0 if pytorch_dump_folder is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_UpperCAmelCase ) processor.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
167
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Any = logging.get_logger(__name__) __a :Optional[Any] = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = 'cvt' def __init__( self : Tuple , UpperCAmelCase : int=3 , UpperCAmelCase : int=[7, 3, 3] , UpperCAmelCase : Optional[int]=[4, 2, 2] , UpperCAmelCase : Dict=[2, 1, 1] , UpperCAmelCase : Dict=[64, 192, 384] , UpperCAmelCase : Union[str, Any]=[1, 3, 6] , UpperCAmelCase : int=[1, 2, 10] , UpperCAmelCase : Union[str, Any]=[4.0, 4.0, 4.0] , UpperCAmelCase : Tuple=[0.0, 0.0, 0.0] , UpperCAmelCase : Any=[0.0, 0.0, 0.0] , UpperCAmelCase : Optional[Any]=[0.0, 0.0, 0.1] , UpperCAmelCase : Tuple=[True, True, True] , UpperCAmelCase : List[str]=[False, False, True] , UpperCAmelCase : str=["dw_bn", "dw_bn", "dw_bn"] , UpperCAmelCase : str=[3, 3, 3] , UpperCAmelCase : Dict=[1, 1, 1] , UpperCAmelCase : Optional[Any]=[2, 2, 2] , UpperCAmelCase : Optional[int]=[1, 1, 1] , UpperCAmelCase : Dict=[1, 1, 1] , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , **UpperCAmelCase : Dict , ): super().__init__(**UpperCAmelCase ) A_ = num_channels A_ = patch_sizes A_ = patch_stride A_ = patch_padding A_ = embed_dim A_ = num_heads A_ = depth A_ = mlp_ratio A_ = attention_drop_rate A_ = drop_rate A_ = drop_path_rate A_ = qkv_bias A_ = cls_token A_ = qkv_projection_method A_ = kernel_qkv A_ = padding_kv A_ = stride_kv A_ = padding_q A_ = stride_q A_ = initializer_range A_ = layer_norm_eps
360
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _a : """simple docstring""" _lowerCamelCase : int _lowerCamelCase : str class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): A_ = {} A_ = [] A_ = 1 A_ = [1, 2] A_ = {"a": 1, "b": 2} A_ = {"a": [1, 2], "b": [3, 4]} A_ = {"a": {"1": 1}, "b": 2} A_ = {"a": 1, "b": 2, "c": 3, "d": 4} A_ = {} A_ = [] A_ = 2 A_ = [2, 3] A_ = {"a": 2, "b": 3} A_ = {"a": [2, 3], "b": [4, 5]} A_ = {"a": {"1": 2}, "b": 3} A_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) A_ = 2 self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} A_ = {"a": 2, "b": 0, "c": 2} A_ = { "a": np.eye(2 ).astype(UpperCAmelCase ), "b": np.zeros(3 ).astype(UpperCAmelCase ), "c": np.ones(2 ).astype(UpperCAmelCase ), } self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase ) def __A ( self : List[str] ): A_ = {"a": 1, "b": 2} A_ = {"a": 3, "b": 4} A_ = {"a": 5, "b": 6} A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase ) def __A ( self : Any ): class _a : """simple docstring""" _lowerCamelCase : int = 'bar' A_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: A_ = {f'''{i}''': i for i in range(__UpperCamelCase )} A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _a ( snake_case_ ): """simple docstring""" @require_tf def __A ( self : Union[str, Any] ): import tensorflow as tf from tensorflow.keras import layers A_ = layers.Dense(2 ) def gen_random_output(): A_ = tf.random.uniform((1, 3) ) return model(UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __A ( self : Optional[int] ): import torch def gen_random_output(): A_ = torch.nn.Linear(3 , 2 ) A_ = torch.rand(1 , 3 ) return model(UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __A ( self : Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A_ = gen_random_output() with temp_seed(42 ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" ,[{}] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" ,[ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] ,) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def __snake_case ( ): """simple docstring""" A_ = A(x=1 ,y="foobar" ) A_ = {"x": 1, "y": "foobar"} assert asdict(__UpperCamelCase ) == expected_output A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]} A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 ,y="foo" )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return text.split() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __snake_case ( ): """simple docstring""" with Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A_ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__UpperCamelCase ) == 4
329
0
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE_ = [True] * 1_000_001 SCREAMING_SNAKE_CASE_ = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): SCREAMING_SNAKE_CASE_ = False i += 1 def lowercase (_lowerCAmelCase ): return seive[n] def lowercase (_lowerCAmelCase ): return any(digit in """02468""" for digit in str(_lowerCAmelCase ) ) def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(_lowerCAmelCase ) and not contains_an_even_digit(_lowerCAmelCase ): __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(_lowerCAmelCase ) )] if all(is_prime(_lowerCAmelCase ) for i in list_nums ): result.append(_lowerCAmelCase ) return result def lowercase (): return len(find_circular_primes() ) if __name__ == "__main__": print(F"{len(find_circular_primes()) = }")
301
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=3 , __A=7 , __A=True , __A=True , __A=False , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.0_2 , __A=3 , __A=4 , __A=None , ) -> Optional[int]: lowerCAmelCase_ :Tuple = parent lowerCAmelCase_ :int = batch_size lowerCAmelCase_ :List[str] = seq_length lowerCAmelCase_ :int = is_training lowerCAmelCase_ :Optional[int] = use_input_mask lowerCAmelCase_ :Tuple = use_token_type_ids lowerCAmelCase_ :Optional[Any] = use_labels lowerCAmelCase_ :List[str] = vocab_size lowerCAmelCase_ :Optional[Any] = hidden_size lowerCAmelCase_ :Any = num_hidden_layers lowerCAmelCase_ :List[str] = num_attention_heads lowerCAmelCase_ :int = intermediate_size lowerCAmelCase_ :Any = hidden_act lowerCAmelCase_ :List[Any] = hidden_dropout_prob lowerCAmelCase_ :Dict = attention_probs_dropout_prob lowerCAmelCase_ :List[str] = max_position_embeddings lowerCAmelCase_ :Union[str, Any] = type_vocab_size lowerCAmelCase_ :Optional[Any] = type_sequence_label_size lowerCAmelCase_ :Tuple = initializer_range lowerCAmelCase_ :Optional[int] = num_labels lowerCAmelCase_ :Tuple = num_choices lowerCAmelCase_ :Optional[Any] = scope def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ :Optional[Any] = None if self.use_input_mask: lowerCAmelCase_ :List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ :Union[str, Any] = None lowerCAmelCase_ :int = None lowerCAmelCase_ :List[str] = None lowerCAmelCase_ :Union[str, Any] = None if self.use_labels: lowerCAmelCase_ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ :str = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ :Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> Optional[Any]: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__A , ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> Union[str, Any]: lowerCAmelCase_ :List[str] = FalconModel(config=__A ) model.to(__A ) model.eval() lowerCAmelCase_ :List[Any] = model(__A , attention_mask=__A ) lowerCAmelCase_ :str = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ) -> int: lowerCAmelCase_ :List[str] = True lowerCAmelCase_ :List[str] = FalconModel(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :int = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , ) lowerCAmelCase_ :Optional[Any] = model( __A , attention_mask=__A , encoder_hidden_states=__A , ) lowerCAmelCase_ :List[str] = model(__A , attention_mask=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ) -> Dict: lowerCAmelCase_ :Optional[int] = FalconForCausalLM(config=__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Optional[Any] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A , __A , __A , ) -> Union[str, Any]: lowerCAmelCase_ :Optional[Any] = True lowerCAmelCase_ :str = True lowerCAmelCase_ :List[str] = FalconForCausalLM(config=__A ) model.to(__A ) model.eval() # first forward pass lowerCAmelCase_ :int = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , use_cache=__A , ) lowerCAmelCase_ :Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase_ :Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ :List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase_ :Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase_ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase_ :int = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , output_hidden_states=__A , )["""hidden_states"""][0] lowerCAmelCase_ :Dict = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , past_key_values=__A , output_hidden_states=__A , )["""hidden_states"""][0] # select random slice lowerCAmelCase_ :List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase_ :Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase_ :List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1E-3 ) ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) :Optional[Any] = config_and_inputs lowerCAmelCase_ :str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( A__ , A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :Optional[int] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase_ :str = (FalconForCausalLM,) if is_torch_available() else () UpperCAmelCase_ :Union[str, Any] = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ :int = False UpperCAmelCase_ :int = False def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :List[Any] = FalconModelTester(self ) lowerCAmelCase_ :str = ConfigTester(self , config_class=__A , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ , *lowerCAmelCase_ :Dict = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCAmelCase_ :int = alibi self.model_tester.create_and_check_model(__A , *__A ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Optional[Any] = 3 lowerCAmelCase_ :Any = input_dict["""input_ids"""] lowerCAmelCase_ :int = input_ids.ne(1 ).to(__A ) lowerCAmelCase_ :List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ :Dict = FalconForSequenceClassification(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Any = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :List[str] = 3 lowerCAmelCase_ :Union[str, Any] = """single_label_classification""" lowerCAmelCase_ :int = input_dict["""input_ids"""] lowerCAmelCase_ :Tuple = input_ids.ne(1 ).to(__A ) lowerCAmelCase_ :int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ :Any = FalconForSequenceClassification(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :int = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Optional[Any] = input_dict["""input_ids"""] lowerCAmelCase_ :Any = FalconForCausalLM(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Optional[int] = model(__A , use_cache=__A ) lowerCAmelCase_ :Union[str, Any] = input_ids.shape[0] lowerCAmelCase_ :Tuple = model._convert_to_rw_cache(result.past_key_values ) lowerCAmelCase_ :Optional[int] = model._convert_cache_to_standard_format(__A , __A ) for layer in range(len(__A ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Optional[Any] = 3 lowerCAmelCase_ :Optional[int] = """multi_label_classification""" lowerCAmelCase_ :List[str] = input_dict["""input_ids"""] lowerCAmelCase_ :Optional[int] = input_ids.ne(1 ).to(__A ) lowerCAmelCase_ :Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase_ :Tuple = FalconForSequenceClassification(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Optional[Any] = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> Tuple: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__A , """use_cache""" ): return lowerCAmelCase_ :Optional[Any] = model_class(__A ).to(__A ) if "use_cache" not in inputs: lowerCAmelCase_ :Any = True lowerCAmelCase_ :List[str] = model(**__A ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCAmelCase_ :int = ( getattr(__A , """decoder_layers""" , __A ) or getattr(__A , """num_decoder_layers""" , __A ) or config.num_hidden_layers ) lowerCAmelCase_ :Optional[int] = getattr(__A , """num_kv_heads""" , config.num_attention_heads ) lowerCAmelCase_ :int = getattr(__A , """d_model""" , config.hidden_size ) lowerCAmelCase_ :Tuple = embed_dim // num_attention_heads lowerCAmelCase_ :List[str] = outputs["""past_key_values"""] self.assertEqual(len(__A ) , __A ) lowerCAmelCase_ , lowerCAmelCase_ :List[str] = inputs["""input_ids"""].shape for i in range(__A ): if config.new_decoder_architecture: lowerCAmelCase_ :Tuple = config.num_attention_heads elif config.multi_query: lowerCAmelCase_ :List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Tuple = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) lowerCAmelCase_ :int = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(__A ) lowerCAmelCase_ :List[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__A ) lowerCAmelCase_ :List[str] = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) lowerCAmelCase_ :int = model.generate(**__A , do_sample=__A , max_new_tokens=19 ) lowerCAmelCase_ :List[str] = tokenizer.batch_decode(__A )[0] self.assertEqual(__A , __A ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCAmelCase_ :Union[str, Any] = AutoTokenizer.from_pretrained(__A ) lowerCAmelCase_ :str = FalconForCausalLM.from_pretrained(__A ) model.eval() model.to(__A ) lowerCAmelCase_ :List[str] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__A ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__A , do_sample=__A , max_new_tokens=4 ) model.generate(**__A , do_sample=__A , max_new_tokens=4 ) model.generate(**__A , num_beams=2 , max_new_tokens=4 ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCAmelCase_ :Optional[int] = AutoTokenizer.from_pretrained(__A ) lowerCAmelCase_ :Dict = FalconForCausalLM.from_pretrained(__A ) model.eval() model.to(device=__A ) lowerCAmelCase_ :Tuple = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__A ) # Test results are the same with and without cache lowerCAmelCase_ :List[Any] = model.generate(**__A , do_sample=__A , max_new_tokens=20 , use_cache=__A ) lowerCAmelCase_ :Dict = model.generate(**__A , do_sample=__A , max_new_tokens=20 , use_cache=__A ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
1
"""simple docstring""" def _snake_case ( lowercase__ : list , lowercase__ : list , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: '''simple docstring''' if index == number_of_items: return 0 lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :str = 0 lowerCAmelCase_ :Dict = knapsack(lowercase__ , lowercase__ , lowercase__ , lowercase__ , index + 1 ) if weights[index] <= max_weight: lowerCAmelCase_ :str = values[index] + knapsack( lowercase__ , lowercase__ , lowercase__ , max_weight - weights[index] , index + 1 ) return max(lowercase__ , lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
from __future__ import annotations import math def UpperCAmelCase_ ( __snake_case ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCAmelCase__ = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _lowercase =[] for num in range(len(__snake_case ) ): _lowercase =0 while 2 * i * i <= odd_composites[num]: _lowercase =odd_composites[num] - 2 * i * i if is_prime(__snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__snake_case ) == n: return list_nums return [] def UpperCAmelCase_ ( ) -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
5
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
0
"""simple docstring""" import datasets from .evaluate import evaluate lowerCamelCase__ : List[Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" lowerCamelCase__ : Tuple = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" lowerCamelCase__ : Union[str, Any] = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class A__ ( datasets.Metric): def __lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = {prediction['id']: prediction['prediction_text'] for prediction in predictions} __lowerCAmelCase : str = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] __lowerCAmelCase : Tuple = evaluate(dataset=a__ , predictions=a__ ) return score
354
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
182
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class a__ ( a_, unittest.TestCase ): __lowerCAmelCase = CpmAntTokenizer __lowerCAmelCase = False def __magic_name__ ( self ): super().setUp() lowercase : List[str] = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def __magic_name__ ( self ): lowercase : Tuple = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) lowercase : str = "今天天气真好!" lowercase : Optional[int] = ["今天", "天气", "真", "好", "!"] lowercase : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : Any = "今天天气真好!" lowercase : int = [tokenizer.bos_token] + tokens lowercase : List[str] = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) lowercase : str = tokenizer.decode(_a ) self.assertEqual(_a , _a )
202
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _A : Optional[int] = """ Human: <<task>> Assistant: """ _A : List[Any] = """huggingface-tools/default-prompts""" _A : Optional[int] = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def __magic_name__ ( __snake_case : int , __snake_case : List[Any] , __snake_case : Dict="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: lowercase : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , __snake_case ) is not None: return prompt_or_repo_id lowercase : Optional[int] = cached_file( __snake_case , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(__snake_case , "r" , encoding="utf-8" ) as f: return f.read()
202
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = 0 def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''') self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Dict = Path(__lowercase) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :Union[str, Any] = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :str = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Union[str, Any] = Path(__lowercase) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = CLIPConfig() # Create a dummy config file with image_proceesor_type __UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Optional[Any] = Path(__lowercase) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(__lowercase).to_dict() config_dict.pop('''image_processor_type''') __UpperCamelCase :List[str] = CLIPImageProcessor(**__lowercase) # save in new folder model_config.save_pretrained(__lowercase) config.save_pretrained(__lowercase) __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase) # make sure private variable is not incorrectly saved __UpperCamelCase :Union[str, Any] = json.loads(config.to_json_string()) self.assertTrue('''_processor_class''' not in dict_as_saved) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) __UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with self.assertRaisesRegex( __lowercase , '''clip-base is not a local folder and is not a valid model identifier'''): __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''clip-base''') def UpperCamelCase__ ( self) -> List[Any]: with self.assertRaisesRegex( __lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCamelCase :str = AutoImageProcessor.from_pretrained(__lowercase , revision='''aaaaaa''') def UpperCamelCase__ ( self) -> List[str]: with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''') def UpperCamelCase__ ( self) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase): __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase): __UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase) __UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained(__lowercase , trust_remote_code=__lowercase) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''') def UpperCamelCase__ ( self) -> Optional[Any]: try: AutoConfig.register('''custom''' , __lowercase) AutoImageProcessor.register(__lowercase , __lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoImageProcessor.register(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :List[str] = Path(__lowercase) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :int = CustomImageProcessor.from_pretrained(__lowercase) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase) __UpperCamelCase :int = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self) -> List[Any]: class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = True try: AutoConfig.register('''custom''' , __lowercase) AutoImageProcessor.register(__lowercase , __lowercase) # If remote code is not set, the default is to use local __UpperCamelCase :str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(not hasattr(__lowercase , '''is_local''')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
105
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowercase = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: __UpperCamelCase :Dict = XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :int = XLMProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = ['''key_proj''', '''value_proj''', '''query_proj'''] __UpperCamelCase :Optional[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __UpperCamelCase :Tuple = key.split('''.''' ) if attributes[0] == "lm_head": __UpperCamelCase :Union[str, Any] = prophet __UpperCamelCase :Any = prophet_old else: __UpperCamelCase :Any = prophet.prophetnet __UpperCamelCase :int = prophet_old.model __UpperCamelCase :Optional[Any] = False for attribute in attributes: if attribute in mapping: __UpperCamelCase :str = mapping[attribute] if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0: __UpperCamelCase :Optional[int] = attribute elif hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __UpperCamelCase :Tuple = old_model.weight logger.info(f"""{attribute} is initialized.""" ) __UpperCamelCase :Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __UpperCamelCase :Union[str, Any] = old_model.bias logger.info(f"""{attribute} is initialized""" ) __UpperCamelCase :List[Any] = True break elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE , '''in_proj_weight''' ): __UpperCamelCase :str = old_model.in_proj_weight.shape[0] // 3 __UpperCamelCase :Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __UpperCamelCase :Optional[int] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __UpperCamelCase :Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __UpperCamelCase :List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __UpperCamelCase :Dict = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __UpperCamelCase :Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __UpperCamelCase :Dict = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __UpperCamelCase :Optional[int] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __UpperCamelCase :Optional[int] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __UpperCamelCase :List[Any] = True break if attribute.isdigit(): __UpperCamelCase :List[Any] = model[int(SCREAMING_SNAKE_CASE )] __UpperCamelCase :Optional[int] = old_model[int(SCREAMING_SNAKE_CASE )] else: __UpperCamelCase :Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if old_attribute == "": __UpperCamelCase :Any = old_model else: if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
105
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : List[str] = "segformer" def __init__( self , A_=3 , A_=4 , A_=[2, 2, 2, 2] , A_=[8, 4, 2, 1] , A_=[32, 64, 160, 256] , A_=[7, 3, 3, 3] , A_=[4, 2, 2, 2] , A_=[1, 2, 5, 8] , A_=[4, 4, 4, 4] , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.02 , A_=0.1 , A_=1e-6 , A_=256 , A_=255 , **A_ , ) -> Any: """simple docstring""" super().__init__(**A_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , A_ , ) UpperCamelCase = num_channels UpperCamelCase = num_encoder_blocks UpperCamelCase = depths UpperCamelCase = sr_ratios UpperCamelCase = hidden_sizes UpperCamelCase = patch_sizes UpperCamelCase = strides UpperCamelCase = mlp_ratios UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = classifier_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = drop_path_rate UpperCamelCase = layer_norm_eps UpperCamelCase = decoder_hidden_size UpperCamelCase = kwargs.get('reshape_last_stage' , A_ ) UpperCamelCase = semantic_loss_ignore_index class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : List[str] = version.parse("1.11" ) @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCamelCase ( self ) -> float: """simple docstring""" return 1e-4 @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return 12
222
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ , A_ , ) -> Optional[int]: """simple docstring""" super().__init__() UpperCamelCase = value_function UpperCamelCase = unet UpperCamelCase = scheduler UpperCamelCase = env UpperCamelCase = env.get_dataset() UpperCamelCase = {} for key in self.data.keys(): try: UpperCamelCase = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase = {} for key in self.data.keys(): try: UpperCamelCase = self.data[key].std() except: # noqa: E722 pass UpperCamelCase = env.observation_space.shape[0] UpperCamelCase = env.action_space.shape[0] def __UpperCamelCase ( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __UpperCamelCase ( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" if type(A_ ) is dict: return {k: self.to_torch(A_ ) for k, v in x_in.items()} elif torch.is_tensor(A_ ): return x_in.to(self.unet.device ) return torch.tensor(A_ , device=self.unet.device ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" for key, val in cond.items(): UpperCamelCase = val.clone() return x_in def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = x.shape[0] UpperCamelCase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase = torch.full((batch_size,) , A_ , device=self.unet.device , dtype=torch.long ) for _ in range(A_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase = self.value_function(x.permute(0 , 2 , 1 ) , A_ ).sample UpperCamelCase = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase = self.scheduler._get_variance(A_ ) UpperCamelCase = torch.exp(0.5 * posterior_variance ) UpperCamelCase = model_std * grad UpperCamelCase = 0 UpperCamelCase = x.detach() UpperCamelCase = x + scale * grad UpperCamelCase = self.reset_xa(A_ , A_ , self.action_dim ) UpperCamelCase = self.unet(x.permute(0 , 2 , 1 ) , A_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase = self.scheduler.step(A_ , A_ , A_ , predict_epsilon=A_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) UpperCamelCase = self.reset_xa(A_ , A_ , self.action_dim ) UpperCamelCase = self.to_torch(A_ ) return x, y def __call__( self , A_ , A_=64 , A_=32 , A_=2 , A_=0.1 ) -> List[str]: """simple docstring""" # normalize the observations and create batch dimension UpperCamelCase = self.normalize(A_ , 'observations' ) UpperCamelCase = obs[None].repeat(A_ , axis=0 ) UpperCamelCase = {0: self.to_torch(A_ )} UpperCamelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase = randn_tensor(A_ , device=self.unet.device ) UpperCamelCase = self.reset_xa(A_ , A_ , self.action_dim ) UpperCamelCase = self.to_torch(A_ ) # run the diffusion process UpperCamelCase , UpperCamelCase = self.run_diffusion(A_ , A_ , A_ , A_ ) # sort output trajectories by value UpperCamelCase = y.argsort(0 , descending=A_ ).squeeze() UpperCamelCase = x[sorted_idx] UpperCamelCase = sorted_values[:, :, : self.action_dim] UpperCamelCase = actions.detach().cpu().numpy() UpperCamelCase = self.de_normalize(A_ , key='actions' ) # select the action with the highest value if y is not None: UpperCamelCase = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase = np.random.randint(0 , A_ ) UpperCamelCase = denorm_actions[selected_index, 0] return denorm_actions
222
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _SCREAMING_SNAKE_CASE = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} _SCREAMING_SNAKE_CASE = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': F'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', 'emoji': True, }, } ] _SCREAMING_SNAKE_CASE = 0 for log in Path().glob('*.log'): _SCREAMING_SNAKE_CASE = 0 with open(log, 'r') as f: for line in f: _SCREAMING_SNAKE_CASE = json.loads(line) if line.get('nodeid', '') != "": _SCREAMING_SNAKE_CASE = line['nodeid'] if line.get('duration', None) is not None: _SCREAMING_SNAKE_CASE = F'''{line["duration"]:.4f}''' if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _SCREAMING_SNAKE_CASE = [] log.unlink() _SCREAMING_SNAKE_CASE = '' _SCREAMING_SNAKE_CASE = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = {} for test in failed_tests: _SCREAMING_SNAKE_CASE = test[0].split('::') _SCREAMING_SNAKE_CASE = data[0].split('/')[-1] if data[0] not in filesafailed: _SCREAMING_SNAKE_CASE = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _SCREAMING_SNAKE_CASE = [test[0] for test in failed_table] _SCREAMING_SNAKE_CASE = list(set(files)) # Count number of instances in failed_tests _SCREAMING_SNAKE_CASE = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _SCREAMING_SNAKE_CASE = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: _SCREAMING_SNAKE_CASE = 'Too many failed tests, please see the full report in the Action results.' _SCREAMING_SNAKE_CASE = len(err) + 10 _SCREAMING_SNAKE_CASE = message[: 3_000 - offset] + F'''\n...\n```\n{err}''' print(F'''### {message}''') else: _SCREAMING_SNAKE_CASE = 'No failed tests! 🤗' print(F'''## {message}''') payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": _SCREAMING_SNAKE_CASE = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) _SCREAMING_SNAKE_CASE = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': F'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) _SCREAMING_SNAKE_CASE = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': F'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) _SCREAMING_SNAKE_CASE = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) _SCREAMING_SNAKE_CASE = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _SCREAMING_SNAKE_CASE = '' for i, row in enumerate(test_failures): if row[0] != test_class: _SCREAMING_SNAKE_CASE = row[0] else: _SCREAMING_SNAKE_CASE = '' _SCREAMING_SNAKE_CASE = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
366
def snake_case ( snake_case__ :int , snake_case__ :int) -> str: return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1)) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
81
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase_ = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE (): snake_case_ = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=SCREAMING_SNAKE_CASE__ , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=SCREAMING_SNAKE_CASE__ , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=SCREAMING_SNAKE_CASE__ , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=SCREAMING_SNAKE_CASE__ , default=1000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=SCREAMING_SNAKE_CASE__ , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=SCREAMING_SNAKE_CASE__ , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=SCREAMING_SNAKE_CASE__ , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) snake_case_ = parser.parse_args() return args def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def fn(SCREAMING_SNAKE_CASE__ ): return tokenizer(examples['''text'''] ) return fn def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] for i in range(len(tokenized_data['''input_ids'''] ) ): snake_case_ = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } snake_case_ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ ) snake_case_ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ ) snake_case_ = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE__ ) return records def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: snake_case_ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) snake_case_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) snake_case_ = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) else: snake_case_ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. snake_case_ = tokenize_function(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE__ ): # Concatenate all texts. snake_case_ = {k: sum(examples[k] , [] ) for k in examples.keys()} snake_case_ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 snake_case_ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. snake_case_ = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )] for k, t in concatenated_examples.items() } return result snake_case_ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 ) snake_case_ = 0 snake_case_ = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ): snake_case_ = grouped_dataset[shard : shard + args.shard_size] snake_case_ = len(dataset_snapshot['''input_ids'''] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) snake_case_ = get_serialized_examples(SCREAMING_SNAKE_CASE__ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE__ ) print('''Wrote file {} containing {} records'''.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , '''w''' ) as f: print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = parse_args() main(args)
8
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase : Optional[Any] = 16 __lowerCamelCase : Optional[Any] = 32 def SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 ): snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) snake_case__ : List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(snake_case_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Dict = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : str = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(snake_case_ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": snake_case__ : Optional[int] = 8 else: snake_case__ : Tuple = None return tokenizer.pad( snake_case_ , padding="longest" , max_length=snake_case_ , pad_to_multiple_of=snake_case_ , return_tensors="pt" , ) # Instantiate dataloaders. snake_case__ : Any = DataLoader( tokenized_datasets["train"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) snake_case__ : Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCamelCase : Optional[int] = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , snake_case_ ) == "1": snake_case__ : Union[str, Any] = 2 # Initialize accelerator snake_case__ : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Optional[int] = config["lr"] snake_case__ : Tuple = int(config["num_epochs"] ) snake_case__ : Optional[int] = int(config["seed"] ) snake_case__ : Union[str, Any] = int(config["batch_size"] ) snake_case__ : List[Any] = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case_ ) def inner_training_loop(snake_case_ : List[str] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Tuple = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : Tuple = AdamW(params=model.parameters() , lr=snake_case_ ) snake_case__, snake_case__ : Dict = get_dataloaders(snake_case_ , snake_case_ ) # Instantiate scheduler snake_case__ : str = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=100 , num_training_steps=(len(snake_case_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ : str = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : Any = model(**snake_case_ ) snake_case__ : int = outputs.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Tuple = model(**snake_case_ ) snake_case__ : Any = outputs.logits.argmax(dim=-1 ) snake_case__, snake_case__ : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) snake_case__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , snake_case_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE ( ): snake_case__ : str = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=snake_case_ , default=snake_case_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) snake_case__ : List[Any] = parser.parse_args() snake_case__ : Any = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
286
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : float , snake_case_ : float ): return round(float(moles / volume ) * nfactor ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
286
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _snake_case = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _snake_case = '''UperNetConfig''' class _snake_case ( nn.Module ): def __init__( self: str , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Union[int, Tuple[int, int]] , __lowerCamelCase: Union[int, Tuple[int, int], str] = 0 , __lowerCamelCase: bool = False , __lowerCamelCase: Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() __UpperCAmelCase : List[str] = nn.Convad( in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE , ) __UpperCAmelCase : List[str] = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Union[str, Any] = nn.ReLU() def _lowerCamelCase ( self: int , __lowerCamelCase: torch.Tensor ) -> torch.Tensor: __UpperCAmelCase : Optional[int] = self.conv(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = self.batch_norm(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = self.activation(_SCREAMING_SNAKE_CASE ) return output class _snake_case ( nn.Module ): def __init__( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int ) -> None: super().__init__() __UpperCAmelCase : Dict = [ nn.AdaptiveAvgPoolad(_SCREAMING_SNAKE_CASE ), UperNetConvModule(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self: Any , __lowerCamelCase: torch.Tensor ) -> torch.Tensor: __UpperCAmelCase : str = input for layer in self.layers: __UpperCAmelCase : Union[str, Any] = layer(_SCREAMING_SNAKE_CASE ) return hidden_state class _snake_case ( nn.Module ): def __init__( self: Optional[Any] , __lowerCamelCase: Tuple[int, ...] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool ) -> None: super().__init__() __UpperCAmelCase : Optional[Any] = pool_scales __UpperCAmelCase : int = align_corners __UpperCAmelCase : Any = in_channels __UpperCAmelCase : str = channels __UpperCAmelCase : List[Any] = [] for i, pool_scale in enumerate(_SCREAMING_SNAKE_CASE ): __UpperCAmelCase : Tuple = UperNetPyramidPoolingBlock(pool_scale=_SCREAMING_SNAKE_CASE , in_channels=_SCREAMING_SNAKE_CASE , channels=_SCREAMING_SNAKE_CASE ) self.blocks.append(_SCREAMING_SNAKE_CASE ) self.add_module(str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: torch.Tensor ) -> List[torch.Tensor]: __UpperCAmelCase : Dict = [] for ppm in self.blocks: __UpperCAmelCase : List[Any] = ppm(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners ) ppm_outs.append(_SCREAMING_SNAKE_CASE ) return ppm_outs class _snake_case ( nn.Module ): def __init__( self: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ) -> Union[str, Any]: super().__init__() __UpperCAmelCase : int = config __UpperCAmelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) __UpperCAmelCase : Union[str, Any] = in_channels __UpperCAmelCase : List[str] = config.hidden_size __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Dict = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __UpperCAmelCase : int = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __UpperCAmelCase : List[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __UpperCAmelCase : Optional[int] = nn.ModuleList() __UpperCAmelCase : str = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __UpperCAmelCase : Tuple = UperNetConvModule(_SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) __UpperCAmelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_SCREAMING_SNAKE_CASE ) self.fpn_convs.append(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: self.apply(self._init_weights ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Optional[int] ) -> Tuple: if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self: str , __lowerCamelCase: List[Any] ) -> Dict: __UpperCAmelCase : Optional[int] = inputs[-1] __UpperCAmelCase : int = [x] psp_outs.extend(self.psp_modules(_SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase : str = torch.cat(_SCREAMING_SNAKE_CASE , dim=1 ) __UpperCAmelCase : str = self.bottleneck(_SCREAMING_SNAKE_CASE ) return output def _lowerCamelCase ( self: Dict , __lowerCamelCase: torch.Tensor ) -> torch.Tensor: # build laterals __UpperCAmelCase : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_SCREAMING_SNAKE_CASE ) ) # build top-down path __UpperCAmelCase : List[Any] = len(_SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __UpperCAmelCase : Dict = laterals[i - 1].shape[2:] __UpperCAmelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_SCREAMING_SNAKE_CASE , mode="bilinear" , align_corners=self.align_corners ) # build outputs __UpperCAmelCase : Dict = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __UpperCAmelCase : List[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners ) __UpperCAmelCase : int = torch.cat(_SCREAMING_SNAKE_CASE , dim=1 ) __UpperCAmelCase : int = self.fpn_bottleneck(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[Any] = self.classifier(_SCREAMING_SNAKE_CASE ) return output class _snake_case ( nn.Module ): def __init__( self: List[str] , __lowerCamelCase: Any , __lowerCamelCase: int = 2 , __lowerCamelCase: int = 3 , __lowerCamelCase: Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() __UpperCAmelCase : Optional[int] = config __UpperCAmelCase : str = config.auxiliary_in_channels __UpperCAmelCase : str = config.auxiliary_channels __UpperCAmelCase : Union[str, Any] = config.auxiliary_num_convs __UpperCAmelCase : str = config.auxiliary_concat_input __UpperCAmelCase : Union[str, Any] = in_index __UpperCAmelCase : Tuple = (kernel_size // 2) * dilation __UpperCAmelCase : int = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: __UpperCAmelCase : Dict = nn.Identity() else: __UpperCAmelCase : List[str] = nn.Sequential(*_SCREAMING_SNAKE_CASE ) if self.concat_input: __UpperCAmelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) __UpperCAmelCase : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowerCamelCase ( self: str ) -> List[Any]: self.apply(self._init_weights ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Tuple ) -> Tuple: if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps __UpperCAmelCase : List[Any] = encoder_hidden_states[self.in_index] __UpperCAmelCase : Optional[int] = self.convs(_SCREAMING_SNAKE_CASE ) if self.concat_input: __UpperCAmelCase : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __UpperCAmelCase : Optional[int] = self.classifier(_SCREAMING_SNAKE_CASE ) return output class _snake_case ( _lowercase ): lowerCamelCase__: Tuple = UperNetConfig lowerCamelCase__: Optional[int] = '''pixel_values''' lowerCamelCase__: Union[str, Any] = True def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Union[str, Any] ) -> Any: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowerCamelCase ( self: Dict ) -> Optional[int]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False ) -> Optional[int]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __UpperCAmelCase : Any = value _snake_case = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _snake_case = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , _lowercase , ) class _snake_case ( _lowercase ): def __init__( self: Optional[int] , __lowerCamelCase: Dict ) -> List[str]: super().__init__(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Tuple = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __UpperCAmelCase : Any = UperNetHead(_SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) __UpperCAmelCase : Any = UperNetFCNHead(_SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) ) @replace_return_docstrings(output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: __UpperCAmelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Dict = output_attentions if output_attentions is not None else self.config.output_attentions __UpperCAmelCase : List[str] = self.backbone.forward_with_filtered_kwargs( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Union[str, Any] = outputs.feature_maps __UpperCAmelCase : Tuple = self.decode_head(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[str] = nn.functional.interpolate(_SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = None if self.auxiliary_head is not None: __UpperCAmelCase : Optional[Any] = self.auxiliary_head(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one" ) else: # compute weighted loss __UpperCAmelCase : str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __UpperCAmelCase : str = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[str] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __UpperCAmelCase : str = (logits,) + outputs[1:] else: __UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
157
from __future__ import annotations lowerCamelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class _a : def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : dict[str, list[str]] , _SCREAMING_SNAKE_CASE : str )-> None: lowerCAmelCase__ : List[Any] = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase__ : dict[str, str | None] = {} lowerCAmelCase__ : str = source_vertex def UpperCAmelCase__( self : str )-> None: lowerCAmelCase__ : Dict = {self.source_vertex} lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : List[str] = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase__ : int = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = vertex queue.append(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : str )-> str: if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase__ : str = self.parent.get(_SCREAMING_SNAKE_CASE ) if target_vertex_parent is None: lowerCAmelCase__ : Optional[Any] = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) return self.shortest_path(_SCREAMING_SNAKE_CASE ) + F'->{target_vertex}' if __name__ == "__main__": lowerCamelCase = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
131
0
from collections import deque from math import floor from random import random from time import time class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} def _A ( self , _A , _A , _A=1 ): '''simple docstring''' if self.graph.get(_A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __SCREAMING_SNAKE_CASE = [[w, v]] if not self.graph.get(_A ): __SCREAMING_SNAKE_CASE = [] def _A ( self ): '''simple docstring''' return list(self.graph ) def _A ( self , _A , _A ): '''simple docstring''' if self.graph.get(_A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_A ) def _A ( self , _A=-2 , _A=-1 ): '''simple docstring''' if s == d: return [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] if s == -2: __SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(_A ) visited.append(_A ) __SCREAMING_SNAKE_CASE = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_A ) != 0: __SCREAMING_SNAKE_CASE = stack[len(_A ) - 1] else: __SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(_A ) == 0: return visited def _A ( self , _A=-1 ): '''simple docstring''' if c == -1: __SCREAMING_SNAKE_CASE = floor(random() * 10_000 ) + 10 for i in range(_A ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __SCREAMING_SNAKE_CASE = floor(random() * c ) + 1 if n != i: self.add_pair(_A , _A , 1 ) def _A ( self , _A=-2 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = deque() __SCREAMING_SNAKE_CASE = [] if s == -2: __SCREAMING_SNAKE_CASE = list(self.graph )[0] d.append(_A ) visited.append(_A ) while d: __SCREAMING_SNAKE_CASE = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self , _A ): '''simple docstring''' return len(self.graph[u] ) def _A ( self , _A=-2 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] if s == -2: __SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(_A ) visited.append(_A ) __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_A ) != 0: __SCREAMING_SNAKE_CASE = stack[len(_A ) - 1] else: __SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(_A ) == 0: return sorted_nodes def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(_A ) visited.append(_A ) __SCREAMING_SNAKE_CASE = -2 __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __SCREAMING_SNAKE_CASE = len(_A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() __SCREAMING_SNAKE_CASE = True if len(_A ) != 0: __SCREAMING_SNAKE_CASE = stack[len(_A ) - 1] else: __SCREAMING_SNAKE_CASE = False indirect_parents.append(_A ) __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(_A ) == 0: return list(_A ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(_A ) visited.append(_A ) __SCREAMING_SNAKE_CASE = -2 __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __SCREAMING_SNAKE_CASE = len(_A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() __SCREAMING_SNAKE_CASE = True if len(_A ) != 0: __SCREAMING_SNAKE_CASE = stack[len(_A ) - 1] else: __SCREAMING_SNAKE_CASE = False indirect_parents.append(_A ) __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(_A ) == 0: return False def _A ( self , _A=-2 , _A=-1 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = time() self.dfs(_A , _A ) __SCREAMING_SNAKE_CASE = time() return end - begin def _A ( self , _A=-2 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = time() self.bfs(_A ) __SCREAMING_SNAKE_CASE = time() return end - begin class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} def _A ( self , _A , _A , _A=1 ): '''simple docstring''' if self.graph.get(_A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __SCREAMING_SNAKE_CASE = [[w, v]] # add the other way if self.graph.get(_A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __SCREAMING_SNAKE_CASE = [[w, u]] def _A ( self , _A , _A ): '''simple docstring''' if self.graph.get(_A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_A ) # the other way round if self.graph.get(_A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_A ) def _A ( self , _A=-2 , _A=-1 ): '''simple docstring''' if s == d: return [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] if s == -2: __SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(_A ) visited.append(_A ) __SCREAMING_SNAKE_CASE = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_A ) != 0: __SCREAMING_SNAKE_CASE = stack[len(_A ) - 1] else: __SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(_A ) == 0: return visited def _A ( self , _A=-1 ): '''simple docstring''' if c == -1: __SCREAMING_SNAKE_CASE = floor(random() * 10_000 ) + 10 for i in range(_A ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __SCREAMING_SNAKE_CASE = floor(random() * c ) + 1 if n != i: self.add_pair(_A , _A , 1 ) def _A ( self , _A=-2 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = deque() __SCREAMING_SNAKE_CASE = [] if s == -2: __SCREAMING_SNAKE_CASE = list(self.graph )[0] d.append(_A ) visited.append(_A ) while d: __SCREAMING_SNAKE_CASE = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self , _A ): '''simple docstring''' return len(self.graph[u] ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(_A ) visited.append(_A ) __SCREAMING_SNAKE_CASE = -2 __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __SCREAMING_SNAKE_CASE = len(_A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() __SCREAMING_SNAKE_CASE = True if len(_A ) != 0: __SCREAMING_SNAKE_CASE = stack[len(_A ) - 1] else: __SCREAMING_SNAKE_CASE = False indirect_parents.append(_A ) __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(_A ) == 0: return list(_A ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(_A ) visited.append(_A ) __SCREAMING_SNAKE_CASE = -2 __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __SCREAMING_SNAKE_CASE = len(_A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() __SCREAMING_SNAKE_CASE = True if len(_A ) != 0: __SCREAMING_SNAKE_CASE = stack[len(_A ) - 1] else: __SCREAMING_SNAKE_CASE = False indirect_parents.append(_A ) __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(_A ) == 0: return False def _A ( self ): '''simple docstring''' return list(self.graph ) def _A ( self , _A=-2 , _A=-1 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = time() self.dfs(_A , _A ) __SCREAMING_SNAKE_CASE = time() return end - begin def _A ( self , _A=-2 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = time() self.bfs(_A ) __SCREAMING_SNAKE_CASE = time() return end - begin
118
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowercase ( a__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] __SCREAMING_SNAKE_CASE = [5, 5, 5, 5] elif "fl4" in model_name: __SCREAMING_SNAKE_CASE = [4, 4, 4, 4] __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] if "lrf" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] else: __SCREAMING_SNAKE_CASE = [2, 2, 2, 2] if "tiny" in model_name: __SCREAMING_SNAKE_CASE = 96 elif "small" in model_name: __SCREAMING_SNAKE_CASE = 96 elif "base" in model_name: __SCREAMING_SNAKE_CASE = 1_28 elif "large" in model_name: __SCREAMING_SNAKE_CASE = 1_92 elif "xlarge" in model_name: __SCREAMING_SNAKE_CASE = 2_56 elif "huge" in model_name: __SCREAMING_SNAKE_CASE = 3_52 # set label information __SCREAMING_SNAKE_CASE = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __SCREAMING_SNAKE_CASE = 'imagenet-22k-id2label.json' else: __SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = FocalNetConfig( embed_dim=a__ , depths=a__ , focal_levels=a__ , focal_windows=a__ , use_conv_embed=a__ , idalabel=a__ , labelaid=a__ , use_post_layernorm=a__ , use_layerscale=a__ , ) return config def __lowercase ( a__ ) -> Any: if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __SCREAMING_SNAKE_CASE = 'encoder.' + name if "encoder.layers" in name: __SCREAMING_SNAKE_CASE = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __SCREAMING_SNAKE_CASE = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __SCREAMING_SNAKE_CASE = 'layernorm.weight' if name == "norm.bias": __SCREAMING_SNAKE_CASE = 'layernorm.bias' if "head" in name: __SCREAMING_SNAKE_CASE = name.replace('head' , 'classifier' ) else: __SCREAMING_SNAKE_CASE = 'focalnet.' + name return name def __lowercase ( a__ , a__ , a__=False ) -> Dict: # fmt: off __SCREAMING_SNAKE_CASE = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __SCREAMING_SNAKE_CASE = model_name_to_url[model_name] print('Checkpoint URL: ' , a__ ) __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(a__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = get_focalnet_config(a__ ) __SCREAMING_SNAKE_CASE = FocalNetForImageClassification(a__ ) model.eval() # load state dict model.load_state_dict(a__ ) # verify conversion __SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' __SCREAMING_SNAKE_CASE = BitImageProcessor( do_resize=a__ , size={'shortest_edge': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=a__ , crop_size=2_24 , do_normalize=a__ , image_mean=a__ , image_std=a__ , ) __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) __SCREAMING_SNAKE_CASE = processor(images=a__ , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __SCREAMING_SNAKE_CASE = image_transforms(a__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , a__ , atol=1E-4 ) __SCREAMING_SNAKE_CASE = model(**a__ ) __SCREAMING_SNAKE_CASE = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __SCREAMING_SNAKE_CASE = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __SCREAMING_SNAKE_CASE = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __SCREAMING_SNAKE_CASE = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ : int =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCAmelCase__ : List[Any] =parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
118
1
def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCAmelCase_ ) ) def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> bool: # Base Case if index == len(lowerCAmelCase_ ): return True # Recursive Step for i in range(lowerCAmelCase_ ): if valid_coloring(graph[index] , lowerCAmelCase_ , lowerCAmelCase_ ): # Color current vertex lowerCAmelCase_ : List[str] = i # Validate coloring if util_color(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , index + 1 ): return True # Backtrack lowerCAmelCase_ : Union[str, Any] = -1 return False def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> list[int]: lowerCAmelCase_ : List[Any] = [-1] * len(lowerCAmelCase_ ) if util_color(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , 0 ): return colored_vertices return []
262
from typing import Union import fire import torch from tqdm import tqdm def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ = "cpu" , lowerCAmelCase_ = None )-> None: lowerCAmelCase_ : str = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase_ , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowerCAmelCase_ : int = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : Tuple = src_path torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
262
1
'''simple docstring''' import math import sys def UpperCAmelCase_ ( __lowercase : int ) -> int: '''simple docstring''' if number != int(__lowercase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 _UpperCAmelCase = [-1] * (number + 1) _UpperCAmelCase = 0 for i in range(1 , number + 1 ): _UpperCAmelCase = sys.maxsize _UpperCAmelCase = int(math.sqrt(__lowercase ) ) for j in range(1 , root + 1 ): _UpperCAmelCase = 1 + answers[i - (j**2)] _UpperCAmelCase = min(__lowercase , __lowercase ) _UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
156
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = '''▁''' __SCREAMING_SNAKE_CASE :List[str] = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __SCREAMING_SNAKE_CASE :Tuple = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __SCREAMING_SNAKE_CASE :Optional[int] = { '''facebook/m2m100_418M''': 1024, } # fmt: off __SCREAMING_SNAKE_CASE :Dict = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : List[str] = VOCAB_FILES_NAMES _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : List[str] = ["""input_ids""", """attention_mask"""] _lowerCamelCase : List[int] = [] _lowerCamelCase : List[int] = [] def __init__( self : List[str] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str=None , snake_case_ : int=None , snake_case_ : str="<s>" , snake_case_ : int="</s>" , snake_case_ : Any="</s>" , snake_case_ : List[str]="<pad>" , snake_case_ : Optional[int]="<unk>" , snake_case_ : Union[str, Any]="m2m100" , snake_case_ : Optional[Dict[str, Any]] = None , snake_case_ : List[str]=8 , **snake_case_ : str , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase = language_codes _UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES[language_codes] _UpperCAmelCase = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _UpperCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = load_json(snake_case_ ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = spm_file _UpperCAmelCase = load_spm(snake_case_ , self.sp_model_kwargs ) _UpperCAmelCase = len(self.encoder ) _UpperCAmelCase = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _UpperCAmelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _UpperCAmelCase = {v: k for k, v in self.lang_token_to_id.items()} _UpperCAmelCase = src_lang if src_lang is not None else "en" _UpperCAmelCase = tgt_lang _UpperCAmelCase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _UpperCAmelCase = num_madeup_words @property def lowercase ( self : int ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowercase ( self : List[Any] ): return self._src_lang @src_lang.setter def lowercase ( self : str , snake_case_ : str ): _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase ( self : str , snake_case_ : str ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowercase ( self : Optional[Any] , snake_case_ : int ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def lowercase ( self : Any , snake_case_ : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def lowercase ( self : List[str] , snake_case_ : List[str] ): _UpperCAmelCase = [] _UpperCAmelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _UpperCAmelCase = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def lowercase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _UpperCAmelCase = [1] * len(self.prefix_tokens ) _UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def lowercase ( self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase ( self : Dict ): _UpperCAmelCase = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : List[str] , snake_case_ : Dict ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase ( self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): _UpperCAmelCase = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _UpperCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _UpperCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def lowercase ( self : Dict , snake_case_ : List[str] , snake_case_ : str = "en" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "ro" , **snake_case_ : Any , ): _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : Any ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _UpperCAmelCase = src_lang _UpperCAmelCase = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _UpperCAmelCase = self.get_lang_id(snake_case_ ) _UpperCAmelCase = tgt_lang_id return inputs def lowercase ( self : List[str] ): self.set_src_lang_special_tokens(self.src_lang ) def lowercase ( self : Optional[Any] ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase ( self : Any , snake_case_ : str ): _UpperCAmelCase = self.get_lang_token(snake_case_ ) _UpperCAmelCase = self.lang_token_to_id[lang_token] _UpperCAmelCase = [self.cur_lang_id] _UpperCAmelCase = [self.eos_token_id] def lowercase ( self : List[Any] , snake_case_ : str ): _UpperCAmelCase = self.get_lang_token(snake_case_ ) _UpperCAmelCase = self.lang_token_to_id[lang_token] _UpperCAmelCase = [self.cur_lang_id] _UpperCAmelCase = [self.eos_token_id] def lowercase ( self : Tuple , snake_case_ : str ): return self.lang_code_to_token[lang] def lowercase ( self : List[str] , snake_case_ : str ): _UpperCAmelCase = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def UpperCAmelCase_ ( __lowercase : str , __lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' _UpperCAmelCase = sentencepiece.SentencePieceProcessor(**__lowercase ) spm.Load(str(__lowercase ) ) return spm def UpperCAmelCase_ ( __lowercase : str ) -> Union[Dict, List]: '''simple docstring''' with open(__lowercase , "r" ) as f: return json.load(__lowercase ) def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> None: '''simple docstring''' with open(__lowercase , "w" ) as f: json.dump(__lowercase , __lowercase , indent=2 )
156
1