code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=True , UpperCamelCase_=1 / 2_55 , UpperCamelCase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __lowercase : Optional[int] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} __lowercase : int = parent __lowercase : Optional[int] = batch_size __lowercase : int = num_channels __lowercase : Optional[Any] = min_resolution __lowercase : Union[str, Any] = max_resolution __lowercase : str = do_resize __lowercase : Dict = size __lowercase : List[str] = do_normalize __lowercase : Optional[int] = image_mean __lowercase : List[Any] = image_std __lowercase : Tuple = do_rescale __lowercase : Tuple = rescale_factor __lowercase : str = do_pad def _lowerCamelCase ( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=False ) -> Any: if not batched: __lowercase : List[Any] = image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): __lowercase : Tuple = image.size else: __lowercase : List[Any] = image.shape[1], image.shape[2] if w < h: __lowercase : Optional[int] = int(self.size['''shortest_edge'''] * h / w ) __lowercase : int = self.size["""shortest_edge"""] elif w > h: __lowercase : Any = self.size["""shortest_edge"""] __lowercase : Dict = int(self.size['''shortest_edge'''] * w / h ) else: __lowercase : Union[str, Any] = self.size["""shortest_edge"""] __lowercase : Union[str, Any] = self.size["""shortest_edge"""] else: __lowercase : Optional[Any] = [] for image in image_inputs: __lowercase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase : Optional[Any] = max(UpperCamelCase__ , key=lambda UpperCamelCase_ : item[0] )[0] __lowercase : Optional[int] = max(UpperCamelCase__ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( _lowercase , unittest.TestCase ): UpperCamelCase =DetaImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ) -> int: __lowercase : Optional[Any] = DetaImageProcessingTester(self ) @property def _lowerCamelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ) -> List[Any]: __lowercase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_rescale''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) def _lowerCamelCase ( self ) -> Dict: pass def _lowerCamelCase ( self ) -> Optional[Any]: # Initialize image_processing __lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input __lowercase : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowercase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : int = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) __lowercase : List[str] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ) -> List[str]: # Initialize image_processing __lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input __lowercase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowercase : int = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : str = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values __lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ) -> Tuple: # Initialize image_processing __lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input __lowercase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowercase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : List[Any] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values __lowercase : int = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCamelCase ( self ) -> int: # prepare image and target __lowercase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __lowercase : Tuple = json.loads(f.read() ) __lowercase : Union[str, Any] = {"""image_id""": 3_97_69, """annotations""": target} # encode them __lowercase : List[Any] = DetaImageProcessor() __lowercase : Union[str, Any] = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , return_tensors='''pt''' ) # verify pixel values __lowercase : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase__ ) __lowercase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area __lowercase : Optional[int] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase__ ) ) # verify boxes __lowercase : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase__ ) __lowercase : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id __lowercase : str = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase__ ) ) # verify is_crowd __lowercase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase__ ) ) # verify class_labels __lowercase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase__ ) ) # verify orig_size __lowercase : Optional[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase__ ) ) # verify size __lowercase : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase__ ) ) @slow def _lowerCamelCase ( self ) -> Dict: # prepare image, target and masks_path __lowercase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __lowercase : List[Any] = json.loads(f.read() ) __lowercase : Dict = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} __lowercase : Optional[int] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __lowercase : str = DetaImageProcessor(format='''coco_panoptic''' ) __lowercase : Union[str, Any] = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , masks_path=UpperCamelCase__ , return_tensors='''pt''' ) # verify pixel values __lowercase : List[str] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase__ ) __lowercase : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area __lowercase : Any = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase__ ) ) # verify boxes __lowercase : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase__ ) __lowercase : Optional[int] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id __lowercase : Tuple = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase__ ) ) # verify is_crowd __lowercase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase__ ) ) # verify class_labels __lowercase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase__ ) ) # verify masks __lowercase : List[str] = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase__ ) # verify orig_size __lowercase : Any = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase__ ) ) # verify size __lowercase : Union[str, Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase__ ) )
249
'''simple docstring''' class _lowercase : def __init__( self: Tuple , UpperCamelCase__: list[int] ): lowerCamelCase__ : Union[str, Any] = len(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1 , UpperCamelCase__ ): lowerCamelCase__ : Tuple = self.prefix_sum[i - 1] + array[i] def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: int , UpperCamelCase__: int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: int ): lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCamelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
41
0
"""simple docstring""" from __future__ import annotations def _a ( _snake_case ): """simple docstring""" create_state_space_tree(UpperCamelCase__ , [] , 0 , [0 for i in range(len(UpperCamelCase__ ) )] ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" if index == len(UpperCamelCase__ ): print(UpperCamelCase__ ) return for i in range(len(UpperCamelCase__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCAmelCase = True create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 , UpperCamelCase__ ) current_sequence.pop() UpperCAmelCase = False _UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _UpperCamelCase = ["""A""", """B""", """C"""] generate_all_permutations(sequence_a)
363
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _UpperCamelCase = logging.get_logger("""transformers.models.speecht5""") _UpperCamelCase = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } _UpperCamelCase = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } _UpperCamelCase = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } _UpperCamelCase = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } _UpperCamelCase = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } _UpperCamelCase = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } _UpperCamelCase = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } _UpperCamelCase = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } _UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _UpperCamelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCamelCase = [] _UpperCamelCase = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" for attribute in key.split(""".""" ): UpperCAmelCase = getattr(_snake_case , _snake_case ) if weight_type is not None: UpperCAmelCase = getattr(_snake_case , _snake_case ).shape else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "running_mean": UpperCAmelCase = value elif weight_type == "running_var": UpperCAmelCase = value elif weight_type == "num_batches_tracked": UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _a ( _snake_case , _snake_case ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase , UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] if task == "s2t": UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase = MAPPING_S2T UpperCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase = None UpperCAmelCase = MAPPING_T2S UpperCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase = MAPPING_S2S UpperCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_snake_case , _snake_case ): logger.info(F'''{name} was ignored''' ) continue UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase , UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: UpperCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(_snake_case )[0].split(""".""" )[-2] UpperCAmelCase = mapped_key.replace("""*""" , _snake_case ) if "weight_g" in name: UpperCAmelCase = """weight_g""" elif "weight_v" in name: UpperCAmelCase = """weight_v""" elif "bias" in name: UpperCAmelCase = """bias""" elif "weight" in name: UpperCAmelCase = """weight""" elif "running_mean" in name: UpperCAmelCase = """running_mean""" elif "running_var" in name: UpperCAmelCase = """running_var""" elif "num_batches_tracked" in name: UpperCAmelCase = """num_batches_tracked""" else: UpperCAmelCase = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase = name.split(""".""" ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , ): """simple docstring""" if config_path is not None: UpperCAmelCase = SpeechTaConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = SpeechTaConfig() if task == "s2t": UpperCAmelCase = config.max_text_positions UpperCAmelCase = SpeechTaForSpeechToText(_snake_case ) elif task == "t2s": UpperCAmelCase = 1876 UpperCAmelCase = 600 UpperCAmelCase = config.max_speech_positions UpperCAmelCase = SpeechTaForTextToSpeech(_snake_case ) elif task == "s2s": UpperCAmelCase = 1876 UpperCAmelCase = config.max_speech_positions UpperCAmelCase = SpeechTaForSpeechToSpeech(_snake_case ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: UpperCAmelCase = SpeechTaTokenizer(_snake_case , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken("""<mask>""" , lstrip=_snake_case , rstrip=_snake_case ) UpperCAmelCase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = SpeechTaProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) processor.save_pretrained(_snake_case ) UpperCAmelCase = torch.load(_snake_case ) recursively_load_weights(fairseq_checkpoint["""model"""] , _snake_case , _snake_case ) model.save_pretrained(_snake_case ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCamelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
234
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
45
from heapq import heappop, heappush import numpy as np def _SCREAMING_SNAKE_CASE ( a , a , a , a , ) -> tuple[float | int, list[tuple[int, int]]]: __A , __A : int = grid.shape __A : Any = [-1, 1, 0, 0] __A : Optional[Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __A , __A : Optional[int] = [(0, source)], set() __A : Any = np.full((rows, cols) , np.inf ) __A : Any = 0 __A : Any = np.empty((rows, cols) , dtype=a ) __A : Optional[Any] = None while queue: ((__A) , (__A)) : List[str] = heappop(a ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __A : int = [] while (x, y) != source: path.append((x, y) ) __A , __A : Optional[int] = predecessors[x, y] path.append(a ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(a ) ): __A , __A : Union[str, Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __A : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(a , (dist + 1, (nx, ny)) ) __A : List[Any] = dist + 1 __A : Union[str, Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
280
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Any = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = '''trocr''' _UpperCAmelCase : Optional[Any] = ['''past_key_values'''] _UpperCAmelCase : List[Any] = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : Any , lowerCAmelCase__ : Dict=5_0265 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Union[str, Any]=12 , lowerCAmelCase__ : List[str]=16 , lowerCAmelCase__ : Optional[Any]=4096 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : Optional[int]=512 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : int=0 , lowerCAmelCase__ : Union[str, Any]=2 , **lowerCAmelCase__ : List[str] , ): SCREAMING_SNAKE_CASE_: Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_: int = d_model SCREAMING_SNAKE_CASE_: str = decoder_layers SCREAMING_SNAKE_CASE_: List[str] = decoder_attention_heads SCREAMING_SNAKE_CASE_: List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE_: Tuple = activation_function SCREAMING_SNAKE_CASE_: Dict = max_position_embeddings SCREAMING_SNAKE_CASE_: Optional[Any] = dropout SCREAMING_SNAKE_CASE_: List[str] = attention_dropout SCREAMING_SNAKE_CASE_: Union[str, Any] = activation_dropout SCREAMING_SNAKE_CASE_: int = init_std SCREAMING_SNAKE_CASE_: str = decoder_layerdrop SCREAMING_SNAKE_CASE_: int = use_cache SCREAMING_SNAKE_CASE_: Dict = scale_embedding SCREAMING_SNAKE_CASE_: List[Any] = use_learned_position_embeddings SCREAMING_SNAKE_CASE_: Optional[int] = layernorm_embedding super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
358
import doctest from collections import deque import numpy as np class __lowercase : """simple docstring""" def __init__( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = [2, 1, 2, -1] SCREAMING_SNAKE_CASE_: Optional[Any] = [1, 2, 3, 4] def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Any = len(self.first_signal) SCREAMING_SNAKE_CASE_: Dict = len(self.second_signal) SCREAMING_SNAKE_CASE_: Union[str, Any] = max(lowerCAmelCase__ , lowerCAmelCase__) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE_: List[Any] = [[0] * max_length for i in range(lowerCAmelCase__)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = deque(self.second_signal) rotated_signal.rotate(lowerCAmelCase__) for j, item in enumerate(lowerCAmelCase__): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE_: Optional[Any] = np.matmul(np.transpose(lowerCAmelCase__) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
127
0
from PIL import Image def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image , _lowerCamelCase : float) -> Optional[int]: '''simple docstring''' def brightness(_lowerCamelCase : int) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)") return img.point(_lowerCamelCase) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 lowercase : str = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
232
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } UpperCamelCase__ : List[Any] = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : int = bs[:] __SCREAMING_SNAKE_CASE : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Dict = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[str] = set() __SCREAMING_SNAKE_CASE : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : Optional[int] = char return pairs class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : Tuple = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : int = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple="replace" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : Union[str, Any]="</s>" , lowerCAmelCase__ : Any="<s>" , lowerCAmelCase__ : str="<unk>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : Union[str, Any]="<mask>" , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __SCREAMING_SNAKE_CASE : Dict = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : Optional[int] = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __SCREAMING_SNAKE_CASE : Tuple = merges_handle.read().split("""\n""" )[1:-1] __SCREAMING_SNAKE_CASE : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : str = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : Optional[int] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = bigram __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : List[str] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Any = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Dict = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Tuple = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = word return word def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = """""".join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __SCREAMING_SNAKE_CASE : str = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : List[str] = """ """ + text return (text, kwargs)
112
0
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = LxmertTokenizer __SCREAMING_SNAKE_CASE : Any = LxmertTokenizerFast __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : int = True def snake_case_ ( self : Optional[int] ): super().setUp() _UpperCAmelCase : Dict = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case_ ( self : List[str] , A : Optional[Any] ): _UpperCAmelCase : str = "UNwant\u00E9d,running" _UpperCAmelCase : Optional[int] = "unwanted, running" return input_text, output_text def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def snake_case_ ( self : Any ): if not self.test_rust_tokenizer: return _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Any = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : List[str] = tokenizer.tokenize(A ) _UpperCAmelCase : Dict = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) _UpperCAmelCase : List[str] = tokenizer.encode(A , add_special_tokens=A ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(A ) _UpperCAmelCase : Dict = rust_tokenizer.encode(A ) self.assertListEqual(A , A )
202
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=7 ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if token is not None: _UpperCAmelCase : str = {"Accept": "application/vnd.github+json", "Authorization": f'Bearer {token}'} # The id of a workflow (not of a workflow run) _UpperCAmelCase : Any = "636036" _UpperCAmelCase : Dict = f'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' _UpperCAmelCase : Tuple = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).json() return result["workflow_runs"] def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = get_daily_ci_runs(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCAmelCase : str = workflow_run["id"] break return workflow_run_id def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = get_last_daily_ci_runs(SCREAMING_SNAKE_CASE__ ) if workflow_run_id is not None: _UpperCAmelCase : Any = get_artifacts_links(worflow_run_id=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCAmelCase : List[str] = artifacts_links[artifact_name] download_artifact( artifact_name=SCREAMING_SNAKE_CASE__ , artifact_url=SCREAMING_SNAKE_CASE__ , output_dir=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' get_last_daily_ci_artifacts(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Any = {} for artifact_name in artifact_names: _UpperCAmelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , f'{artifact_name}.zip' ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : str = {} with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file with z.open(SCREAMING_SNAKE_CASE__ ) as f: _UpperCAmelCase : List[str] = f.read().decode("UTF-8" ) return results
202
1
'''simple docstring''' import baseaa def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> bytes: return baseaa.baaencode(string.encode("""utf-8""" ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : bytes ) -> str: return baseaa.baadecode(_UpperCAmelCase ).decode("""utf-8""" ) if __name__ == "__main__": A__: int = '''Hello World!''' A__: str = baseaa_encode(test) print(encoded) A__: Optional[Any] = baseaa_decode(encoded) print(decoded)
276
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case (__lowercase ) -> Dict: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case () -> str: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case () -> Any: '''simple docstring''' _snake_case : Tuple = "mock-s3-bucket" _snake_case : Optional[int] = F"""s3://{mock_bucket}""" _snake_case : Optional[Any] = extract_path_from_uri(__lowercase ) assert dataset_path.startswith("s3://" ) is False _snake_case : Optional[int] = "./local/path" _snake_case : List[Any] = extract_path_from_uri(__lowercase ) assert dataset_path == new_dataset_path def snake_case (__lowercase ) -> Dict: '''simple docstring''' _snake_case : Optional[int] = is_remote_filesystem(__lowercase ) assert is_remote is True _snake_case : int = fsspec.filesystem("file" ) _snake_case : List[Any] = is_remote_filesystem(__lowercase ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , __lowercase ) def snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: '''simple docstring''' _snake_case : int = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} _snake_case : Dict = input_paths[compression_fs_class.protocol] if input_path is None: _snake_case : List[Any] = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowercase ) _snake_case : List[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=__lowercase ) assert isinstance(__lowercase , __lowercase ) _snake_case : Dict = os.path.basename(__lowercase ) _snake_case : List[str] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(__lowercase , "r" , encoding="utf-8" ) as f, open(__lowercase , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def snake_case (__lowercase , __lowercase , __lowercase ) -> Any: '''simple docstring''' _snake_case : List[Any] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} _snake_case : Optional[int] = compressed_file_paths[protocol] _snake_case : Tuple = "dataset.jsonl" _snake_case : Optional[int] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" _snake_case ,*_snake_case : Union[str, Any] = fsspec.get_fs_token_paths(__lowercase ) assert fs.isfile(__lowercase ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def snake_case (__lowercase , __lowercase , __lowercase , __lowercase ) -> Any: '''simple docstring''' _snake_case : Dict = hf_api.dataset_info(__lowercase , token=__lowercase ) _snake_case : Union[str, Any] = HfFileSystem(repo_info=__lowercase , token=__lowercase ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(__lowercase ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def snake_case () -> List[Any]: '''simple docstring''' _snake_case : Dict = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__lowercase , __lowercase , clobber=__lowercase ) with pytest.warns(__lowercase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__lowercase ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
284
def snake_case (__lowercase ) -> bool: '''simple docstring''' _snake_case : Dict = 0 for ch in input_str: _snake_case : int = ord(__lowercase ) _snake_case : List[Any] = pow(2 , __lowercase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
284
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black __SCREAMING_SNAKE_CASE : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __SCREAMING_SNAKE_CASE : int = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" snake_case_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) snake_case_ = self.diffusers_dir shutil.copy( os.path.join(lowerCAmelCase_ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None ) ->Tuple: """simple docstring""" snake_case_ = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: snake_case_ = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result snake_case_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) snake_case_ = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ ) snake_case_ = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(lowerCAmelCase_ , """w""" , newline="""\n""" ) as f: f.write(lowerCAmelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ ) with open(lowerCAmelCase_ , """r""" ) as f: self.assertTrue(f.read() , lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , lowerCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , lowerCAmelCase_ ) , ) # Copy consistency with a really long name snake_case_ = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("""Bert""" , lowerCAmelCase_ , lowerCAmelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , lowerCAmelCase_ , overwrite_result=re.sub("""DDPM""" , """Test""" , lowerCAmelCase_ ) , )
347
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
42
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCAmelCase_ ( _lowercase): snake_case__ = ComputeEnvironment.AMAZON_SAGEMAKER snake_case__ = True snake_case__ = '''ml.p3.2xlarge''' snake_case__ = '''accelerate_sagemaker_execution_role''' snake_case__ = '''hf-sm''' snake_case__ = '''us-east-1''' snake_case__ = 1 snake_case__ = '''accelerate-sagemaker-1''' snake_case__ = '''1.6''' snake_case__ = '''4.4''' snake_case__ = '''train.py''' snake_case__ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] snake_case__ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : List[str] ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. _UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , __UpperCamelCase ) assert isinstance(converted_args['''do_train'''] , __UpperCamelCase ) assert isinstance(converted_args['''epochs'''] , __UpperCamelCase ) assert isinstance(converted_args['''learning_rate'''] , __UpperCamelCase ) assert isinstance(converted_args['''max_steps'''] , __UpperCamelCase ) with pytest.raises(__UpperCamelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
360
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCAmelCase_ ( unittest.TestCase): snake_case__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _UpperCamelCase ( self : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] ) -> Optional[Any]: _UpperCamelCase = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _UpperCamelCase = VideoClassificationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase , top_k=2 ) _UpperCamelCase = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ) -> str: for example in examples: _UpperCamelCase = video_classifier(__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ {'''score''': ANY(__UpperCamelCase ), '''label''': ANY(__UpperCamelCase )}, {'''score''': ANY(__UpperCamelCase ), '''label''': ANY(__UpperCamelCase )}, ] , ) @require_torch def _UpperCamelCase ( self : Tuple ) -> List[Any]: _UpperCamelCase = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' _UpperCamelCase = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) _UpperCamelCase = pipeline( '''video-classification''' , model=__UpperCamelCase , feature_extractor=__UpperCamelCase , frame_sampling_rate=4 ) _UpperCamelCase = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _UpperCamelCase = video_classifier(__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}] , ) _UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}], ] , ) @require_tf def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: pass
54
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _UpperCAmelCase : Optional[Any] ="""src/diffusers""" # Matches is_xxx_available() _UpperCAmelCase : Dict =re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla _UpperCAmelCase : str =re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") _UpperCAmelCase : Dict =""" {0} = None """ _UpperCAmelCase : List[str] =""" class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ _UpperCAmelCase : Optional[int] =""" def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[int]: lowerCAmelCase_ : List[Any] = _re_backend.findall(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) == 0: return None return "_and_".join(lowerCAmelCase_ ) def lowerCAmelCase ( )-> Optional[int]: with open(os.path.join(lowerCAmelCase_ , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase_ : Any = f.readlines() # Get to the point we do the actual imports for type checking lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Any = {} # Go through the end of the file while line_index < len(lowerCAmelCase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCAmelCase_ : Optional[int] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCAmelCase_ : Any = [] # Until we unindent, add backend objects to the list while line_index < len(lowerCAmelCase_ ) and len(lines[line_index] ) > 1: lowerCAmelCase_ : Union[str, Any] = lines[line_index] lowerCAmelCase_ : Optional[Any] = _re_single_line_import.search(lowerCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowerCAmelCase_ ) > 0: lowerCAmelCase_ : List[Any] = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: if name.isupper(): return DUMMY_CONSTANT.format(lowerCAmelCase_ ) elif name.islower(): return DUMMY_FUNCTION.format(lowerCAmelCase_ , lowerCAmelCase_ ) else: return DUMMY_CLASS.format(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( lowerCAmelCase_=None )-> Union[str, Any]: if backend_specific_objects is None: lowerCAmelCase_ : Optional[int] = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCAmelCase_ : Any = {} for backend, objects in backend_specific_objects.items(): lowerCAmelCase_ : List[str] = '''[''' + ''', '''.join(f"""\"{b}\"""" for b in backend.split('''_and_''' ) ) + ''']''' lowerCAmelCase_ : List[Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowerCAmelCase_ , lowerCAmelCase_ ) for o in objects] ) lowerCAmelCase_ : int = dummy_file return dummy_files def lowerCAmelCase ( lowerCAmelCase_=False )-> Any: lowerCAmelCase_ : Tuple = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCAmelCase_ : Union[str, Any] = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCAmelCase_ : Tuple = os.path.join(lowerCAmelCase_ , '''utils''' ) lowerCAmelCase_ : int = { backend: os.path.join(lowerCAmelCase_ , f"""dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py""" ) for backend in dummy_files.keys() } lowerCAmelCase_ : Union[str, Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowerCAmelCase_ ): with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase_ : Union[str, Any] = f.read() else: lowerCAmelCase_ : List[str] = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py as the main """ '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f"""diffusers.utils.dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py. Run `make fix-copies` """ '''to fix this.''' ) if __name__ == "__main__": _UpperCAmelCase : Dict =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _UpperCAmelCase : Union[str, Any] =parser.parse_args() check_dummies(args.fix_and_overwrite)
262
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
262
1
import os # Precomputes a list of the 100 first triangular numbers UpperCamelCase__ =[int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.dirname(os.path.realpath(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : List[str] = os.path.join(__lowerCamelCase, "words.txt" ) _SCREAMING_SNAKE_CASE : Optional[Any] = "" with open(__lowerCamelCase ) as f: _SCREAMING_SNAKE_CASE : List[str] = f.readline() _SCREAMING_SNAKE_CASE : List[str] = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _SCREAMING_SNAKE_CASE : Tuple = [ word for word in [sum(ord(__lowerCamelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__lowerCamelCase ) if __name__ == "__main__": print(solution())
325
from maths.prime_check import is_prime def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
325
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer a_ = logging.get_logger(__name__) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='AutoTokenizer' lowerCamelCase__ =['tokenizer'] lowerCamelCase__ ={ 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self : Any , a : int , a : Any=None ) -> List[Any]: """simple docstring""" super().__init__(a ) SCREAMING_SNAKE_CASE : Tuple = speaker_embeddings @classmethod def __UpperCamelCase ( cls : Optional[int] , a : Optional[Any] , a : Any="speaker_embeddings_path.json" , **a : List[str] ) -> List[str]: """simple docstring""" if speaker_embeddings_dict_path is not None: SCREAMING_SNAKE_CASE : List[Any] = get_file_from_repo( a , a , subfolder=kwargs.pop("subfolder" , a ) , cache_dir=kwargs.pop("cache_dir" , a ) , force_download=kwargs.pop("force_download" , a ) , proxies=kwargs.pop("proxies" , a ) , resume_download=kwargs.pop("resume_download" , a ) , local_files_only=kwargs.pop("local_files_only" , a ) , use_auth_token=kwargs.pop("use_auth_token" , a ) , revision=kwargs.pop("revision" , a ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(a , a )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) SCREAMING_SNAKE_CASE : Union[str, Any] = None else: with open(a ) as speaker_embeddings_json: SCREAMING_SNAKE_CASE : str = json.load(a ) else: SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(a , **a ) return cls(tokenizer=a , speaker_embeddings=a ) def __UpperCamelCase ( self : Optional[Any] , a : Tuple , a : Tuple="speaker_embeddings_path.json" , a : Union[str, Any]="speaker_embeddings" , a : bool = False , **a : List[str] , ) -> List[Any]: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(a , a , "v2" ) , exist_ok=a ) SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : int = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": SCREAMING_SNAKE_CASE : Tuple = self._load_voice_preset(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , a , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=a , ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(a , F"{prompt_key}_{key}.npy" ) SCREAMING_SNAKE_CASE : int = tmp_dict with open(os.path.join(a , a ) , "w" ) as fp: json.dump(a , a ) super().save_pretrained(a , a , **a ) def __UpperCamelCase ( self : List[str] , a : str = None , **a : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.speaker_embeddings[voice_preset] SCREAMING_SNAKE_CASE : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) SCREAMING_SNAKE_CASE : Optional[Any] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , a ) , cache_dir=kwargs.pop("cache_dir" , a ) , force_download=kwargs.pop("force_download" , a ) , proxies=kwargs.pop("proxies" , a ) , resume_download=kwargs.pop("resume_download" , a ) , local_files_only=kwargs.pop("local_files_only" , a ) , use_auth_token=kwargs.pop("use_auth_token" , a ) , revision=kwargs.pop("revision" , a ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) SCREAMING_SNAKE_CASE : Optional[int] = np.load(a ) return voice_preset_dict def __UpperCamelCase ( self : Dict , a : Optional[dict] = None ) -> List[Any]: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self : Union[str, Any] , a : Dict=None , a : Dict=None , a : Tuple="pt" , a : List[Any]=256 , a : Optional[Any]=False , a : Tuple=True , a : str=False , **a : List[str] , ) -> Tuple: """simple docstring""" if voice_preset is not None and not isinstance(a , a ): if ( isinstance(a , a ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): SCREAMING_SNAKE_CASE : str = self._load_voice_preset(a ) else: if isinstance(a , a ) and not voice_preset.endswith(".npz" ): SCREAMING_SNAKE_CASE : List[str] = voice_preset + ".npz" SCREAMING_SNAKE_CASE : Dict = np.load(a ) if voice_preset is not None: self._validate_voice_preset_dict(a , **a ) SCREAMING_SNAKE_CASE : Dict = BatchFeature(data=a , tensor_type=a ) SCREAMING_SNAKE_CASE : str = self.tokenizer( a , return_tensors=a , padding="max_length" , max_length=a , return_attention_mask=a , return_token_type_ids=a , add_special_tokens=a , **a , ) if voice_preset is not None: SCREAMING_SNAKE_CASE : Optional[int] = voice_preset return encoded_text
76
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ ( lowerCAmelCase_): def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__a , """num_heads""" ) ) class __magic_name__ : def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : str=13 , lowercase_ : List[Any]=64 , lowercase_ : Dict=3 , lowercase_ : List[str]=[16, 48, 96] , lowercase_ : str=[1, 3, 6] , lowercase_ : Union[str, Any]=[1, 2, 10] , lowercase_ : str=[7, 3, 3] , lowercase_ : List[Any]=[4, 2, 2] , lowercase_ : int=[2, 1, 1] , lowercase_ : Tuple=[2, 2, 2] , lowercase_ : Tuple=[False, False, True] , lowercase_ : Tuple=[0.0, 0.0, 0.0] , lowercase_ : List[Any]=0.02 , lowercase_ : Optional[Any]=1E-12 , lowercase_ : int=True , lowercase_ : List[str]=True , lowercase_ : Any=2 , ): lowercase_ : str = parent lowercase_ : List[Any] = batch_size lowercase_ : Optional[int] = image_size lowercase_ : List[str] = patch_sizes lowercase_ : str = patch_stride lowercase_ : Any = patch_padding lowercase_ : Dict = is_training lowercase_ : Union[str, Any] = use_labels lowercase_ : Dict = num_labels lowercase_ : List[Any] = num_channels lowercase_ : Any = embed_dim lowercase_ : int = num_heads lowercase_ : Optional[int] = stride_kv lowercase_ : Dict = depth lowercase_ : List[str] = cls_token lowercase_ : List[Any] = attention_drop_rate lowercase_ : Tuple = initializer_range lowercase_ : int = layer_norm_eps def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Dict = None if self.use_labels: # create a random int32 tensor of given shape lowercase_ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple ): lowercase_ : Optional[int] = TFCvtModel(config=__a ) lowercase_ : Dict = model(__a , training=__a ) lowercase_ : Any = (self.image_size, self.image_size) lowercase_ : Dict = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase_ : Tuple = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase_ : str = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : List[str] ): lowercase_ : List[Any] = self.num_labels lowercase_ : Optional[int] = TFCvtForImageClassification(__a ) lowercase_ : Dict = model(__a , labels=__a , training=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = self.prepare_config_and_inputs() lowercase_ : Tuple = config_and_inputs lowercase_ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __magic_name__ ( lowerCAmelCase_, lowerCAmelCase_, unittest.TestCase): UpperCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : int = TFCvtModelTester(self ) lowercase_ : List[Any] = TFCvtConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def SCREAMING_SNAKE_CASE_ ( self : int ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Any = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__a ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = model_class(__a ) lowercase_ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Optional[Any] = [*signature.parameters.keys()] lowercase_ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def SCREAMING_SNAKE_CASE_ ( self : Any ): def check_hidden_states_output(lowercase_ : str , lowercase_ : Dict , lowercase_ : Optional[int] ): lowercase_ : List[str] = model_class(__a ) lowercase_ : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) lowercase_ : Any = outputs.hidden_states lowercase_ : Union[str, Any] = len(self.model_tester.depth ) self.assertEqual(len(__a ) , __a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Optional[Any] = True check_hidden_states_output(__a , __a , __a ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[Any] = TFCvtModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCamelCase ( ) -> Optional[Any]: lowercase_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : int = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase_ : Tuple = self.default_image_processor lowercase_ : Any = prepare_img() lowercase_ : int = image_processor(images=__a , return_tensors="""tf""" ) # forward pass lowercase_ : Any = model(**__a ) # verify the logits lowercase_ : Any = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) lowercase_ : Optional[Any] = tf.constant([0.92_85, 0.90_15, -0.31_50] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __a , atol=1E-4 ) )
239
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __lowercase : Dict = logging.get_logger(__name__) __lowercase : Optional[Any] = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "umt5" A_ = ["past_key_values"] def __init__( self , __a=25_0112 , __a=512 , __a=64 , __a=1024 , __a=8 , __a=None , __a=6 , __a=32 , __a=128 , __a=0.1 , __a=1E-6 , __a=1.0 , __a="gated-gelu" , __a=True , __a=True , __a="T5Tokenizer" , __a=True , __a=0 , __a=1 , __a=0 , **__a , ): '''simple docstring''' super().__init__( is_encoder_decoder=__a , tokenizer_class=__a , tie_word_embeddings=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , ) __a : Any = vocab_size __a : Any = d_model __a : str = d_kv __a : Dict = d_ff __a : Union[str, Any] = num_layers __a : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __a : Optional[int] = num_heads __a : Tuple = relative_attention_num_buckets __a : Optional[Any] = relative_attention_max_distance __a : Optional[int] = dropout_rate __a : List[Any] = layer_norm_epsilon __a : int = initializer_factor __a : Union[str, Any] = feed_forward_proj __a : Any = use_cache __a : List[Any] = self.feed_forward_proj.split('-' ) __a : Dict = act_info[-1] __a : Dict = act_info[0] == 'gated' if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __a : Optional[int] = 'gelu_new' @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.d_model @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.num_heads @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.num_layers class __UpperCamelCase ( lowerCAmelCase_ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __a : Dict = 'past_encoder_sequence + sequence' __a : Tuple = {0: 'batch'} __a : Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __a : List[Any] = {0: 'batch', 1: 'decoder_sequence'} __a : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__a , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __UpperCAmelCase ( self ): '''simple docstring''' return 13 @property def __UpperCAmelCase ( self ): '''simple docstring''' return 5E-4
27
0
'''simple docstring''' import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCamelCase__ ( __lowerCamelCase : List[Any]=None ): '''simple docstring''' if subparsers is not None: _UpperCAmelCase : Optional[int] =subparsers.add_parser('env' ) else: _UpperCAmelCase : List[Any] =argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : Dict =torch.__version__ _UpperCAmelCase : str =torch.cuda.is_available() _UpperCAmelCase : str =is_xpu_available() _UpperCAmelCase : List[Any] =is_npu_available() _UpperCAmelCase : Union[str, Any] ="Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): _UpperCAmelCase : Union[str, Any] =load_config_from_file(args.config_file ).to_dict() _UpperCAmelCase : List[str] ={ "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})", "PyTorch XPU available": str(_UpperCAmelCase ), "PyTorch NPU available": str(_UpperCAmelCase ), "System RAM": f"{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB", } if pt_cuda_available: _UpperCAmelCase : int =torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([f"- {prop}: {val}" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) _UpperCAmelCase : Tuple =( "\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else f"\t{accelerate_config}" ) print(_UpperCAmelCase ) _UpperCAmelCase : Any =accelerate_config return info def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Tuple =env_command_parser() _UpperCAmelCase : Dict =parser.parse_args() env_command(_UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
365
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( __lowerCamelCase : list[int] ): '''simple docstring''' if not nums: return 0 _UpperCAmelCase : Tuple =nums[0] _UpperCAmelCase : int =0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Optional[int] =( max_excluding + num, max(__lowerCamelCase , __lowerCamelCase ), ) return max(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
242
0
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowercase__ = datasets.utils.logging.get_logger(__name__) @dataclass class __lowerCamelCase ( datasets.BuilderConfig ): '''simple docstring''' a_ : Optional[datasets.Features] = None a_ : str = "utf-8" a_ : Optional[str] = None a_ : Optional[str] = None a_ : bool = True # deprecated a_ : Optional[int] = None # deprecated a_ : int = 10 << 20 # 10MB a_ : Optional[bool] = None class __lowerCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' a_ : int = JsonConfig def lowerCamelCase ( self : List[Any] ): if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) lowerCAmelCase_ : Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase ( self : int , a_ : Tuple ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCAmelCase_ : List[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCamelCase , (str, list, tuple) ): lowerCAmelCase_ : Optional[int] = data_files if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCAmelCase_ : Optional[int] = [files] lowerCAmelCase_ : Optional[Any] = [dl_manager.iter_files(__lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowerCAmelCase_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCAmelCase_ : Dict = [files] lowerCAmelCase_ : List[Any] = [dl_manager.iter_files(__lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCamelCase , gen_kwargs={"files": files} ) ) return splits def lowerCamelCase ( self : List[str] , a_ : pa.Table ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowerCAmelCase_ : List[str] = self.config.features.arrow_schema.field(__lowerCamelCase ).type lowerCAmelCase_ : Union[str, Any] = pa_table.append_column(__lowerCamelCase , pa.array([None] * len(__lowerCamelCase ) , type=__lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase_ : Any = table_cast(__lowerCamelCase , self.config.features.arrow_schema ) return pa_table def lowerCamelCase ( self : Tuple , a_ : int ): for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowerCAmelCase_ : Dict = json.load(__lowerCamelCase ) # We keep only the field we are interested in lowerCAmelCase_ : int = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCamelCase , (list, tuple) ): lowerCAmelCase_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) lowerCAmelCase_ : Any = {col: [row.get(__lowerCamelCase ) for row in dataset] for col in keys} else: lowerCAmelCase_ : Optional[int] = dataset lowerCAmelCase_ : Optional[Any] = pa.Table.from_pydict(__lowerCamelCase ) yield file_idx, self._cast_table(__lowerCamelCase ) # If the file has one json object per line else: with open(__lowerCamelCase , "rb" ) as f: lowerCAmelCase_ : List[str] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowerCAmelCase_ : str = max(self.config.chunksize // 32 , 16 << 10 ) lowerCAmelCase_ : Optional[int] = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: lowerCAmelCase_ : int = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowerCAmelCase_ : List[str] = batch.decode(self.config.encoding , errors=__lowerCamelCase ).encode("utf-8" ) try: while True: try: lowerCAmelCase_ : int = paj.read_json( io.BytesIO(__lowerCamelCase ) , read_options=paj.ReadOptions(block_size=__lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(__lowerCamelCase ) or block_size > len(__lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(__lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowerCAmelCase_ : Optional[Any] = json.load(__lowerCamelCase ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCamelCase )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCamelCase , __lowerCamelCase ): # list is the only sequence type supported in JSON try: lowerCAmelCase_ : Tuple = set().union(*[row.keys() for row in dataset] ) lowerCAmelCase_ : Dict = {col: [row.get(__lowerCamelCase ) for row in dataset] for col in keys} lowerCAmelCase_ : Any = pa.Table.from_pydict(__lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCamelCase )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__lowerCamelCase ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCamelCase )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCamelCase ) batch_idx += 1
241
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : int = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Any = """trajectory_transformer""" snake_case__ : Optional[Any] = ["""past_key_values"""] snake_case__ : Tuple = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Union[str, Any] , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : int=249 , __lowerCamelCase : str=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : Optional[Any]=25 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : str=4 , __lowerCamelCase : Tuple=128 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : int=0.0006 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Any=1E-12 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple=1 , __lowerCamelCase : int=50_256 , __lowerCamelCase : Union[str, Any]=50_256 , **__lowerCamelCase : Dict , ): UpperCamelCase :Dict = vocab_size UpperCamelCase :int = action_weight UpperCamelCase :Tuple = reward_weight UpperCamelCase :str = value_weight UpperCamelCase :Tuple = max_position_embeddings UpperCamelCase :Tuple = block_size UpperCamelCase :Optional[int] = action_dim UpperCamelCase :int = observation_dim UpperCamelCase :List[str] = transition_dim UpperCamelCase :List[Any] = learning_rate UpperCamelCase :Optional[Any] = n_layer UpperCamelCase :Any = n_head UpperCamelCase :List[str] = n_embd UpperCamelCase :Any = embd_pdrop UpperCamelCase :str = attn_pdrop UpperCamelCase :Union[str, Any] = resid_pdrop UpperCamelCase :Optional[Any] = initializer_range UpperCamelCase :List[Any] = layer_norm_eps UpperCamelCase :Optional[int] = kaiming_initializer_range UpperCamelCase :Tuple = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
38
0
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ = logging.get_logger(__name__) # General docstring UpperCAmelCase__ = """RegNetConfig""" # Base docstring UpperCAmelCase__ = """facebook/regnet-y-040""" UpperCAmelCase__ = [1, 1_0_8_8, 7, 7] # Image classification docstring UpperCAmelCase__ = """facebook/regnet-y-040""" UpperCAmelCase__ = """tabby, tabby cat""" UpperCAmelCase__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class a ( tf.keras.layers.Layer ): def __init__( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 1 , __lowerCAmelCase : int = 1 , __lowerCAmelCase : Optional[str] = "relu" , **__lowerCAmelCase : Optional[Any] , ): super().__init__(**__lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase = tf.keras.layers.ConvaD( filters=__lowerCAmelCase , kernel_size=__lowerCAmelCase , strides=__lowerCAmelCase , padding="""VALID""" , groups=__lowerCAmelCase , use_bias=__lowerCAmelCase , name="""convolution""" , ) _UpperCAmelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) _UpperCAmelCase = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = self.convolution(self.padding(__lowerCAmelCase ) ) _UpperCAmelCase = self.normalization(__lowerCAmelCase ) _UpperCAmelCase = self.activation(__lowerCAmelCase ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : Optional[int] , __lowerCAmelCase : RegNetConfig , **__lowerCAmelCase : Dict ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = config.num_channels _UpperCAmelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = shape_list(__lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase = tf.transpose(__lowerCAmelCase , perm=(0, 2, 3, 1) ) _UpperCAmelCase = self.embedder(__lowerCAmelCase ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : str , __lowerCAmelCase : int , __lowerCAmelCase : int = 2 , **__lowerCAmelCase : List[str] ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = tf.keras.layers.ConvaD( filters=__lowerCAmelCase , kernel_size=1 , strides=__lowerCAmelCase , use_bias=__lowerCAmelCase , name="""convolution""" ) _UpperCAmelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : tf.Tensor , __lowerCAmelCase : bool = False ): return self.normalization(self.convolution(__lowerCAmelCase ) , training=__lowerCAmelCase ) class a ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , **__lowerCAmelCase : int ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCAmelCase , name="""pooler""" ) _UpperCAmelCase = [ tf.keras.layers.ConvaD(filters=__lowerCAmelCase , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=__lowerCAmelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Optional[int] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _UpperCAmelCase = self.pooler(__lowerCAmelCase ) for layer_module in self.attention: _UpperCAmelCase = layer_module(__lowerCAmelCase ) _UpperCAmelCase = hidden_state * pooled return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : Any , __lowerCAmelCase : RegNetConfig , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int = 1 , **__lowerCAmelCase : List[str] ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = in_channels != out_channels or stride != 1 _UpperCAmelCase = max(1 , out_channels // config.groups_width ) _UpperCAmelCase = ( TFRegNetShortCut(__lowerCAmelCase , stride=__lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase = [ TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( __lowerCAmelCase , stride=__lowerCAmelCase , groups=__lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=__lowerCAmelCase , name="""layer.2""" ), ] _UpperCAmelCase = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = hidden_state for layer_module in self.layers: _UpperCAmelCase = layer_module(__lowerCAmelCase ) _UpperCAmelCase = self.shortcut(__lowerCAmelCase ) hidden_state += residual _UpperCAmelCase = self.activation(__lowerCAmelCase ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : Tuple , __lowerCAmelCase : RegNetConfig , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int = 1 , **__lowerCAmelCase : List[Any] ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = in_channels != out_channels or stride != 1 _UpperCAmelCase = max(1 , out_channels // config.groups_width ) _UpperCAmelCase = ( TFRegNetShortCut(__lowerCAmelCase , stride=__lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) _UpperCAmelCase = [ TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( __lowerCAmelCase , stride=__lowerCAmelCase , groups=__lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(__lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=__lowerCAmelCase , name="""layer.3""" ), ] _UpperCAmelCase = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = hidden_state for layer_module in self.layers: _UpperCAmelCase = layer_module(__lowerCAmelCase ) _UpperCAmelCase = self.shortcut(__lowerCAmelCase ) hidden_state += residual _UpperCAmelCase = self.activation(__lowerCAmelCase ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : Any , __lowerCAmelCase : RegNetConfig , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , **__lowerCAmelCase : Dict ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer _UpperCAmelCase = [ # downsampling is done in the first layer with stride of 2 layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , stride=__lowerCAmelCase , name="""layers.0""" ), *[layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Optional[Any] ): for layer_module in self.layers: _UpperCAmelCase = layer_module(__lowerCAmelCase ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : str , __lowerCAmelCase : RegNetConfig , **__lowerCAmelCase : Optional[Any] ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) _UpperCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , depth=__lowerCAmelCase , name=f'''stages.{i+1}''' ) ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : tf.Tensor , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True ): _UpperCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase = hidden_states + (hidden_state,) _UpperCAmelCase = stage_module(__lowerCAmelCase ) if output_hidden_states: _UpperCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCAmelCase , hidden_states=__lowerCAmelCase ) @keras_serializable class a ( tf.keras.layers.Layer ): _snake_case : List[Any] = RegNetConfig def __init__( self : Optional[int] , __lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Optional[int] ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = config _UpperCAmelCase = TFRegNetEmbeddings(__lowerCAmelCase , name="""embedder""" ) _UpperCAmelCase = TFRegNetEncoder(__lowerCAmelCase , name="""encoder""" ) _UpperCAmelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCAmelCase , name="""pooler""" ) @unpack_inputs def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : tf.Tensor , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , ): _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.embedder(__lowerCAmelCase , training=__lowerCAmelCase ) _UpperCAmelCase = self.encoder( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , training=__lowerCAmelCase ) _UpperCAmelCase = encoder_outputs[0] _UpperCAmelCase = self.pooler(__lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase = tf.transpose(__lowerCAmelCase , perm=(0, 3, 1, 2) ) _UpperCAmelCase = tf.transpose(__lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase = tuple([tf.transpose(__lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCAmelCase , pooler_output=__lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class a ( lowerCAmelCase_ ): _snake_case : List[str] = RegNetConfig _snake_case : Optional[Any] = 'regnet' _snake_case : Union[str, Any] = 'pixel_values' @property def lowerCAmelCase_ ( self : Any ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} UpperCAmelCase__ = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCAmelCase__ = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , lowerCAmelCase_ , ) class a ( lowerCAmelCase_ ): def __init__( self : int , __lowerCAmelCase : RegNetConfig , *__lowerCAmelCase : Dict , **__lowerCAmelCase : List[str] ): super().__init__(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = TFRegNetMainLayer(__lowerCAmelCase , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : tf.Tensor , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Any=False , ): _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.regnet( pixel_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , training=__lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCAmelCase_ , ) class a ( lowerCAmelCase_ , lowerCAmelCase_ ): def __init__( self : Dict , __lowerCAmelCase : RegNetConfig , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[Any] ): super().__init__(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = config.num_labels _UpperCAmelCase = TFRegNetMainLayer(__lowerCAmelCase , name="""regnet""" ) # classification head _UpperCAmelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : tf.Tensor = None , __lowerCAmelCase : tf.Tensor = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : str=False , ): _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.regnet( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , training=__lowerCAmelCase ) _UpperCAmelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase = self.classifier[0](__lowerCAmelCase ) _UpperCAmelCase = self.classifier[1](__lowerCAmelCase ) _UpperCAmelCase = None if labels is None else self.hf_compute_loss(labels=__lowerCAmelCase , logits=__lowerCAmelCase ) if not return_dict: _UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states )
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0
from __future__ import annotations import time import numpy as np __a : Optional[Any] = [8, 5, 9, 7] __a : Optional[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __a : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> None: '''simple docstring''' __lowercase = claim_vector __lowercase = allocated_resources_table __lowercase = maximum_claim_table def _SCREAMING_SNAKE_CASE ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _SCREAMING_SNAKE_CASE ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _SCREAMING_SNAKE_CASE ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowerCAmelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _SCREAMING_SNAKE_CASE ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(lowerCAmelCase__ ): i for i in self.__need()} def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> None: '''simple docstring''' __lowercase = self.__need() __lowercase = self.__allocated_resources_table __lowercase = self.__available_resources() __lowercase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: __lowercase = False for each_need in need_list: __lowercase = True for index, need in enumerate(lowerCAmelCase__ ): if need > available_resources[index]: __lowercase = False break if execution: __lowercase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowercase = original_need_index print(F"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(lowerCAmelCase__ ) # update available/freed resources stack __lowercase = np.array(lowerCAmelCase__ ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(lowerCAmelCase__ ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F"P{self.__allocated_resources_table.index(lowerCAmelCase__ ) + 1}" + ''' '''.join(F"{it:>8}" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F"P{self.__maximum_claim_table.index(lowerCAmelCase__ ) + 1}" + ''' '''.join(F"{it:>8}" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(lowerCAmelCase__ ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(lowerCAmelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
210
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : List[Any] = BertJapaneseTokenizer __a : Any = False __a : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() __lowercase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = '''こんにちは、世界。 \nこんばんは、世界。''' __lowercase = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' __lowercase , __lowercase = self.get_input_output_texts(lowerCAmelCase__ ) __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) return text, ids def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(lowerCAmelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(lowerCAmelCase__ ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(lowerCAmelCase__ , '''wb''' ) as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''rb''' ) as handle: __lowercase = pickle.load(lowerCAmelCase__ ) __lowercase = tokenizer_new.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' try: __lowercase = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' try: __lowercase = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = MecabTokenizer(do_lower_case=lowerCAmelCase__ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' try: __lowercase = MecabTokenizer( do_lower_case=lowerCAmelCase__ , normalize_text=lowerCAmelCase__ , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = MecabTokenizer(normalize_text=lowerCAmelCase__ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(lowerCAmelCase__ ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(lowerCAmelCase__ , '''wb''' ) as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''rb''' ) as handle: __lowercase = pickle.load(lowerCAmelCase__ ) __lowercase = tokenizer_new.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = SudachiTokenizer(do_lower_case=lowerCAmelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = SudachiTokenizer(normalize_text=lowerCAmelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = SudachiTokenizer(trim_whitespace=lowerCAmelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(lowerCAmelCase__ ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(lowerCAmelCase__ , '''wb''' ) as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''rb''' ) as handle: __lowercase = pickle.load(lowerCAmelCase__ ) __lowercase = tokenizer_new.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = JumanppTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = JumanppTokenizer(normalize_text=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = JumanppTokenizer(trim_whitespace=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] __lowercase = {} for i, token in enumerate(lowerCAmelCase__ ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) __lowercase = tokenizer.subword_tokenizer __lowercase = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) __lowercase = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) __lowercase = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : Union[str, Any] = BertJapaneseTokenizer __a : Tuple = False def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' super().setUp() __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' __lowercase = '''こんにちは、世界。 \nこんばんは、世界。''' __lowercase = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) __lowercase = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( lowerCAmelCase__ , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __lowercase = {} for i, token in enumerate(lowerCAmelCase__ ): __lowercase = i __lowercase = CharacterTokenizer(vocab=lowerCAmelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) __lowercase = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cl-tohoku/bert-base-japanese''' __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) __lowercase = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
210
1
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowercase =logging.getLogger() def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument('-f' ) _UpperCAmelCase : Any =parser.parse_args() return args.f class __magic_name__ ( __lowercase ): def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Dict =logging.StreamHandler(sys.stdout) logger.addHandler(snake_case_) def lowerCAmelCase ( self , snake_case) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py') with patch.object(snake_case_ , 'argv' , snake_case_): _UpperCAmelCase : Optional[int] =run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case_ , 0.6_66) @slow @require_torch_non_multi_gpu def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] =''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(snake_case_) _UpperCAmelCase : Any =''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(snake_case_) _UpperCAmelCase : Any =''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(snake_case_)
352
'''simple docstring''' from __future__ import annotations from random import choice def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): '''simple docstring''' return choice(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : int =random_pivot(__lowerCamelCase ) # partition based on pivot # linear time _UpperCAmelCase : str =[e for e in lst if e < pivot] _UpperCAmelCase : Dict =[e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__lowerCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__lowerCamelCase ) < k - 1: return kth_number(__lowerCamelCase , k - len(__lowerCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
242
0
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : str , lowercase__ : str = " " ): snake_case : List[str] = [] snake_case : List[Any] = 0 for index, char in enumerate(lowercase__ ): if char == separator: split_words.append(string[last_index:index] ) snake_case : List[Any] = index + 1 elif index + 1 == len(lowercase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
148
"""simple docstring""" from typing import Any class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Tuple = data snake_case : Union[str, Any] = None class lowerCamelCase__ : def __init__( self ): """simple docstring""" snake_case : List[Any] = None def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = self.head while temp is not None: print(temp.data , end=" " ) snake_case : Optional[Any] = temp.next print() def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Union[str, Any] = Node(SCREAMING_SNAKE_CASE ) snake_case : List[Any] = self.head snake_case : Optional[int] = new_node def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if node_data_a == node_data_a: return else: snake_case : int = self.head while node_a is not None and node_a.data != node_data_a: snake_case : Optional[Any] = node_a.next snake_case : Tuple = self.head while node_a is not None and node_a.data != node_data_a: snake_case : Union[str, Any] = node_a.next if node_a is None or node_a is None: return snake_case , snake_case : int = node_a.data, node_a.data if __name__ == "__main__": __A = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
148
1
import requests from bsa import BeautifulSoup def __UpperCamelCase ( lowercase__ : str = "AAPL" ) -> str: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' lowerCAmelCase_ : Tuple = BeautifulSoup(requests.get(lowercase__ ).text , """html.parser""" ) lowerCAmelCase_ : int = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
28
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
1
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =get_activation('swish') self.assertIsInstance(_lowerCAmelCase , nn.SiLU) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa)).item() , 2_0) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =get_activation('silu') self.assertIsInstance(_lowerCAmelCase , nn.SiLU) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa)).item() , 2_0) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =get_activation('mish') self.assertIsInstance(_lowerCAmelCase , nn.Mish) self.assertEqual(act(torch.tensor(-2_0_0 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa)).item() , 2_0) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =get_activation('gelu') self.assertIsInstance(_lowerCAmelCase , nn.GELU) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa)).item() , 2_0)
166
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = """▁""" lowerCamelCase = {"""vocab_file""": """spiece.model"""} lowerCamelCase = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } lowerCamelCase = { """google/reformer-crime-and-punishment""": 52_4288, } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]="</s>" , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : int=[] , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' __lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __lowercase =vocab_file __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCAmelCase) @property def __lowerCamelCase ( self : int): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase ={self.convert_ids_to_tokens(_lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): '''simple docstring''' __lowercase =self.__dict__.copy() __lowercase =None return state def __setstate__( self : Optional[int] , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __lowercase ={} __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : str): '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' if index < self.sp_model.get_piece_size(): __lowercase =self.sp_model.IdToPiece(_lowerCAmelCase) return token def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =[] __lowercase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase) + token __lowercase =[] else: current_sub_tokens.append(_lowerCAmelCase) out_string += self.sp_model.decode(_lowerCAmelCase) return out_string.strip() def __lowerCamelCase ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' if not os.path.isdir(_lowerCAmelCase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __lowercase =os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCAmelCase , 'wb') as fi: __lowercase =self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase) return (out_vocab_file,)
166
1
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : Tuple = CTRLTokenizer lowerCAmelCase : Any = False lowerCAmelCase : Any = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] A__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) A__ = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] A__ = {"unk_token": "<unk>"} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase__ ) ) def __A ( self , **UpperCAmelCase__ ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ ): A__ = "adapt react readapt apt" A__ = "adapt react readapt apt" return input_text, output_text def __A ( self ): A__ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ = "adapt react readapt apt" A__ = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() A__ = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = tokens + [tokenizer.unk_token] A__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ )
350
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase_ : List[Any] = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCamelCase ( _A : List[Any] , _A : int=None )-> Optional[int]: """simple docstring""" require_version(deps[pkg] , _A )
198
0
def __snake_case ( _UpperCAmelCase = 4000000 ): __a = [0, 1] __a = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __a = 0 for j in range(len(_UpperCAmelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'{solution() = }')
49
import functools from typing import Any def UpperCamelCase ( snake_case__ : str , snake_case__ : list[str] ) -> bool: # Validation if not isinstance(snake_case__ , snake_case__ ) or len(snake_case__ ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(snake_case__ , snake_case__ ) or not all( isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie UpperCamelCase : dict[str, Any] = {} UpperCamelCase : List[str] = 'WORD_KEEPER' for word in words: UpperCamelCase : List[str] = trie for c in word: if c not in trie_node: UpperCamelCase : int = {} UpperCamelCase : str = trie_node[c] UpperCamelCase : Tuple = True UpperCamelCase : List[Any] = len(snake_case__ ) # Dynamic programming method @functools.cache def is_breakable(snake_case__ : int ) -> bool: if index == len_string: return True UpperCamelCase : Dict = trie for i in range(snake_case__ , snake_case__ ): UpperCamelCase : List[Any] = trie_node.get(string[i] , snake_case__ ) if trie_node is None: return False if trie_node.get(snake_case__ , snake_case__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
119
0
'''simple docstring''' import baseaa def __magic_name__( lowerCamelCase): return baseaa.baaencode(string.encode('''utf-8''')) def __magic_name__( lowerCamelCase): return baseaa.baadecode(lowerCamelCase).decode('''utf-8''') if __name__ == "__main__": _UpperCAmelCase : Tuple = "Hello World!" _UpperCAmelCase : Union[str, Any] = baseaa_encode(test) print(encoded) _UpperCAmelCase : Tuple = baseaa_decode(encoded) print(decoded)
353
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
0
"""simple docstring""" from __future__ import annotations __SCREAMING_SNAKE_CASE =[] def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): for i in range(len(__SCREAMING_SNAKE_CASE ) ): if board[row][i] == 1: return False for i in range(len(__SCREAMING_SNAKE_CASE ) ): if board[i][column] == 1: return False for i, j in zip(range(__SCREAMING_SNAKE_CASE , -1 , -1 ) , range(__SCREAMING_SNAKE_CASE , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__SCREAMING_SNAKE_CASE , -1 , -1 ) , range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ): if board[i][j] == 1: return False return True def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int ): if row >= len(__SCREAMING_SNAKE_CASE ): solution.append(__SCREAMING_SNAKE_CASE ) printboard(__SCREAMING_SNAKE_CASE ) print() return True for i in range(len(__SCREAMING_SNAKE_CASE ) ): if is_safe(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : int = 1 solve(__SCREAMING_SNAKE_CASE , row + 1 ) lowercase_ : Dict = 0 return False def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] ): for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in range(len(__SCREAMING_SNAKE_CASE ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) __SCREAMING_SNAKE_CASE =8 __SCREAMING_SNAKE_CASE =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
213
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCamelCase ( unittest.TestCase ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=30 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=10 ,__UpperCamelCase=0.02 ,) -> Tuple: '''simple docstring''' lowercase_ : Tuple = parent lowercase_ : Union[str, Any] = batch_size lowercase_ : int = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[int] = num_channels lowercase_ : Union[str, Any] = is_training lowercase_ : Dict = use_labels lowercase_ : Optional[int] = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Optional[Any] = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Tuple = hidden_act lowercase_ : int = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : str = type_sequence_label_size lowercase_ : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : str = (image_size // patch_size) ** 2 lowercase_ : Optional[int] = num_patches + 1 def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[Any] = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : List[Any] = FlaxViTModel(config=__UpperCamelCase ) lowercase_ : Dict = model(__UpperCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowercase_ : Union[str, Any] = (self.image_size, self.image_size) lowercase_ : List[Any] = (self.patch_size, self.patch_size) lowercase_ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[Any] = self.type_sequence_label_size lowercase_ : str = FlaxViTForImageClassification(config=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[int] = FlaxViTForImageClassification(__UpperCamelCase ) lowercase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : str = model(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ) : List[Any] = config_and_inputs lowercase_ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _UpperCAmelCase ( self ) -> None: '''simple docstring''' lowercase_ : Optional[Any] = FlaxViTModelTester(self ) lowercase_ : Union[str, Any] = ConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(__UpperCamelCase ) lowercase_ : Tuple = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ : Optional[Any] = self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = model_class(__UpperCamelCase ) @jax.jit def model_jitted(__UpperCamelCase ,**__UpperCamelCase ): return model(pixel_values=__UpperCamelCase ,**__UpperCamelCase ) with self.subTest('JIT Enabled' ): lowercase_ : Optional[int] = model_jitted(**__UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase_ : List[str] = model_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase ,__UpperCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase_ : Optional[int] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) lowercase_ : int = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__UpperCamelCase )
213
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=13 ,__lowerCamelCase=2 ,__lowerCamelCase=24 ,__lowerCamelCase=16 ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=32 ,__lowerCamelCase=5 ,__lowerCamelCase=4 ,__lowerCamelCase=37 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=10 ,__lowerCamelCase=0.02 ,__lowerCamelCase=None ,__lowerCamelCase=2 ,__lowerCamelCase=2 ,) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = parent lowerCAmelCase__ : Union[str, Any] = batch_size lowerCAmelCase__ : Tuple = patch_size lowerCAmelCase__ : str = max_length lowerCAmelCase__ : Union[str, Any] = num_mel_bins lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Union[str, Any] = use_labels lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[Any] = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Tuple = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = type_sequence_label_size lowerCAmelCase__ : Any = initializer_range lowerCAmelCase__ : Optional[int] = scope lowerCAmelCase__ : Union[str, Any] = frequency_stride lowerCAmelCase__ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : Dict = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowerCAmelCase__ : Tuple = (self.max_length - self.patch_size) // self.time_stride + 1 lowerCAmelCase__ : List[Any] = frequency_out_dimension * time_out_dimension lowerCAmelCase__ : Dict = num_patches + 2 def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : int = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowerCAmelCase__ : Tuple = None if self.use_labels: lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : str = self.get_config() return config, input_values, labels def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return ASTConfig( patch_size=self.patch_size ,max_length=self.max_length ,num_mel_bins=self.num_mel_bins ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCamelCase ,initializer_range=self.initializer_range ,frequency_stride=self.frequency_stride ,time_stride=self.time_stride ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = ASTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : Dict = config_and_inputs lowerCAmelCase__ : List[Any] = {'''input_values''': input_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) snake_case_ =( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) snake_case_ =False snake_case_ =False snake_case_ =False snake_case_ =False def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : str = ASTModelTester(self ) lowerCAmelCase__ : Tuple = ConfigTester(self ,config_class=__lowerCamelCase ,has_text_modality=__lowerCamelCase ,hidden_size=37 ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" pass def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowerCAmelCase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase ,nn.Linear ) ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = model_class(__lowerCamelCase ) lowerCAmelCase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[int] = ['''input_values'''] self.assertListEqual(arg_names[:1] ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[int] = ASTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : int = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' ,filename='''sample_audio.flac''' ,repo_type='''dataset''') lowerCAmelCase__ : int = torchaudio.load(lowerCamelCase_) return audio, sampling_rate @require_torch @require_torchaudio class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : int = self.default_feature_extractor lowerCAmelCase__ : List[str] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(__lowerCamelCase ) lowerCAmelCase__ : List[str] = self.default_feature_extractor lowerCAmelCase__ : int = prepare_audio() lowerCAmelCase__ : Optional[int] = audio.squeeze().numpy() lowerCAmelCase__ : List[Any] = feature_extractor(__lowerCamelCase ,sampling_rate=__lowerCamelCase ,return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ : str = model(**__lowerCamelCase ) # verify the logits lowerCAmelCase__ : Union[str, Any] = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowerCamelCase ,atol=1e-4 ) )
353
from math import factorial def lowerCAmelCase__ ( lowerCamelCase_ : int = 100): '''simple docstring''' return sum(map(lowerCamelCase_ ,str(factorial(lowerCamelCase_)))) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
94
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features snake_case : Optional[int] = logging.get_logger(__name__) snake_case : List[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) snake_case : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={'help': 'Model type selected in the list: ' + ', '.join(_snake_case )} ) SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) SCREAMING_SNAKE_CASE__ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE__ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) SCREAMING_SNAKE_CASE__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) SCREAMING_SNAKE_CASE__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) SCREAMING_SNAKE_CASE__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) SCREAMING_SNAKE_CASE__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) SCREAMING_SNAKE_CASE__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) SCREAMING_SNAKE_CASE__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'train' SCREAMING_SNAKE_CASE__ = 'dev' class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = Split.train , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = "pt" , ): a :List[Any] = args a :Any = is_language_sensitive a :int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowerCamelCase , _lowerCamelCase ): try: a :str = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) a :Optional[int] = mode # Load data features from cache or dataset file a :Any = '''v2''' if args.version_2_with_negative else '''v1''' a :Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a :Optional[Any] = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not args.overwrite_cache: a :List[Any] = time.time() a :List[Any] = torch.load(_lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. a :int = self.old_features['''features'''] a :Optional[Any] = self.old_features.get('''dataset''' , _lowerCamelCase ) a :int = self.old_features.get('''examples''' , _lowerCamelCase ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: a :Tuple = self.processor.get_dev_examples(args.data_dir ) else: a :Optional[Any] = self.processor.get_train_examples(args.data_dir ) a , a :Union[str, Any] = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowerCamelCase , ) a :Optional[Any] = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): return len(self.features ) def __getitem__( self , _lowerCamelCase ): # Convert to Tensors and build dataset a :List[Any] = self.features[i] a :str = torch.tensor(feature.input_ids , dtype=torch.long ) a :Dict = torch.tensor(feature.attention_mask , dtype=torch.long ) a :List[Any] = torch.tensor(feature.token_type_ids , dtype=torch.long ) a :Dict = torch.tensor(feature.cls_index , dtype=torch.long ) a :Any = torch.tensor(feature.p_mask , dtype=torch.float ) a :Any = torch.tensor(feature.is_impossible , dtype=torch.float ) a :Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: a :int = torch.tensor(feature.start_position , dtype=torch.long ) a :Dict = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
94
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _lowercase ( unittest.TestCase): """simple docstring""" def __init__( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Union[str, Any]=30 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : Dict=True , __lowerCamelCase : Tuple=None , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=[0.5, 0.5, 0.5] , __lowerCamelCase : str=[0.5, 0.5, 0.5] , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=1 / 255 , __lowerCamelCase : Optional[Any]=True , ): '''simple docstring''' lowerCamelCase__ : List[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCamelCase__ : Dict = parent lowerCamelCase__ : Optional[int] = batch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : Optional[Any] = min_resolution lowerCamelCase__ : List[Any] = max_resolution lowerCamelCase__ : int = do_resize lowerCamelCase__ : Union[str, Any] = size lowerCamelCase__ : Union[str, Any] = do_normalize lowerCamelCase__ : int = image_mean lowerCamelCase__ : Optional[int] = image_std lowerCamelCase__ : List[Any] = do_rescale lowerCamelCase__ : Optional[Any] = rescale_factor lowerCamelCase__ : Any = do_pad def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str]=False ): '''simple docstring''' if not batched: lowerCamelCase__ : Tuple = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): lowerCamelCase__ , lowerCamelCase__ : Tuple = image.size else: lowerCamelCase__ , lowerCamelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: lowerCamelCase__ : List[Any] = int(self.size["shortest_edge"] * h / w ) lowerCamelCase__ : Optional[Any] = self.size["shortest_edge"] elif w > h: lowerCamelCase__ : List[Any] = self.size["shortest_edge"] lowerCamelCase__ : List[str] = int(self.size["shortest_edge"] * w / h ) else: lowerCamelCase__ : Optional[int] = self.size["shortest_edge"] lowerCamelCase__ : Union[str, Any] = self.size["shortest_edge"] else: lowerCamelCase__ : Dict = [] for image in image_inputs: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase__ : str = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] lowerCamelCase__ : Optional[Any] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = DetaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) lowerCamelCase__ : List[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input lowerCamelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ : Optional[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input lowerCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ : Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Dict = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCamelCase__ : Dict = json.loads(f.read() ) lowerCamelCase__ : Any = {"image_id": 39769, "annotations": target} # encode them lowerCamelCase__ : Union[str, Any] = DetaImageProcessor() lowerCamelCase__ : List[str] = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="pt" ) # verify pixel values lowerCamelCase__ : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area lowerCamelCase__ : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __lowerCamelCase ) ) # verify boxes lowerCamelCase__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __lowerCamelCase ) lowerCamelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id lowerCamelCase__ : Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __lowerCamelCase ) ) # verify is_crowd lowerCamelCase__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __lowerCamelCase ) ) # verify class_labels lowerCamelCase__ : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __lowerCamelCase ) ) # verify orig_size lowerCamelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __lowerCamelCase ) ) # verify size lowerCamelCase__ : Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __lowerCamelCase ) ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCamelCase__ : Tuple = json.loads(f.read() ) lowerCamelCase__ : List[str] = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} lowerCamelCase__ : Union[str, Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCamelCase__ : Tuple = DetaImageProcessor(format="coco_panoptic" ) lowerCamelCase__ : Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="pt" ) # verify pixel values lowerCamelCase__ : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area lowerCamelCase__ : List[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __lowerCamelCase ) ) # verify boxes lowerCamelCase__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __lowerCamelCase ) lowerCamelCase__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id lowerCamelCase__ : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __lowerCamelCase ) ) # verify is_crowd lowerCamelCase__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __lowerCamelCase ) ) # verify class_labels lowerCamelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __lowerCamelCase ) ) # verify masks lowerCamelCase__ : Union[str, Any] = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __lowerCamelCase ) # verify orig_size lowerCamelCase__ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __lowerCamelCase ) ) # verify size lowerCamelCase__ : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __lowerCamelCase ) )
184
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __lowercase : '''simple docstring''' def __init__( self : Any , _a : str , _a : Dict=13 , _a : List[Any]=7 , _a : int=True , _a : Dict=True , _a : Optional[Any]=True , _a : List[str]=True , _a : Any=99 , _a : Dict=32 , _a : List[str]=2 , _a : Tuple=4 , _a : List[Any]=37 , _a : Any="gelu" , _a : List[str]=0.1 , _a : Any=0.1 , _a : Optional[Any]=512 , _a : Any=16 , _a : Union[str, Any]=2 , _a : Dict=0.02 , _a : Union[str, Any]=3 , _a : Tuple=4 , _a : int=None , ): UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 32 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = """gelu""" UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = None def A_ ( self : Union[str, Any] ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Optional[int] , _a : Optional[Any] , _a : Union[str, Any] , _a : Union[str, Any] , _a : str , _a : List[Any] , _a : List[Any] , _a : str ): UpperCamelCase__ = TFRoFormerModel(config=__lowerCamelCase ) UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(__lowerCamelCase ) UpperCamelCase__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : str , _a : Any , _a : int , _a : Optional[int] , _a : int , _a : List[Any] , _a : Tuple , _a : List[str] ): UpperCamelCase__ = True UpperCamelCase__ = TFRoFormerForCausalLM(config=__lowerCamelCase ) UpperCamelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase__ = model(__lowerCamelCase )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A_ ( self : Tuple , _a : str , _a : Optional[int] , _a : Optional[int] , _a : Any , _a : List[str] , _a : Any , _a : int ): UpperCamelCase__ = TFRoFormerForMaskedLM(config=__lowerCamelCase ) UpperCamelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Tuple , _a : Tuple , _a : Tuple , _a : Tuple , _a : Any , _a : Dict , _a : Dict , _a : Optional[Any] ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFRoFormerForSequenceClassification(config=__lowerCamelCase ) UpperCamelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : int , _a : Any , _a : List[str] , _a : int , _a : Optional[int] , _a : Union[str, Any] , _a : Optional[Any] , _a : Optional[int] ): UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFRoFormerForMultipleChoice(config=__lowerCamelCase ) UpperCamelCase__ = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Tuple , _a : Optional[int] , _a : Optional[int] , _a : Any , _a : Dict , _a : Dict , _a : int , _a : str ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFRoFormerForTokenClassification(config=__lowerCamelCase ) UpperCamelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : List[Any] , _a : str , _a : List[Any] , _a : int , _a : str , _a : Any , _a : Optional[int] , _a : str ): UpperCamelCase__ = TFRoFormerForQuestionAnswering(config=__lowerCamelCase ) UpperCamelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase__ = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Dict ): UpperCamelCase__ = self.prepare_config_and_inputs() ( UpperCamelCase__ ) = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowercase ( _a, _a, unittest.TestCase ): '''simple docstring''' _A : str = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _A : Any = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _A : List[Any] = False _A : int = False def A_ ( self : List[Any] , _a : Optional[Any] , _a : int , _a : Tuple , _a : Optional[Any] , _a : Union[str, Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A_ ( self : Tuple ): UpperCamelCase__ = TFRoFormerModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def A_ ( self : Tuple ): self.config_tester.run_common_tests() def A_ ( self : Optional[int] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def A_ ( self : Any ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def A_ ( self : Any ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__lowerCamelCase ) def A_ ( self : Any ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def A_ ( self : List[Any] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def A_ ( self : Dict ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def A_ ( self : List[Any] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def A_ ( self : str ): UpperCamelCase__ = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self : Any ): UpperCamelCase__ = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(__lowerCamelCase )[0] # TODO Replace vocab size UpperCamelCase__ = 50_000 UpperCamelCase__ = [1, 6, vocab_size] self.assertEqual(output.shape , __lowerCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCamelCase__ = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 ) @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' _A : List[Any] = 1e-4 def A_ ( self : Optional[Any] ): UpperCamelCase__ = tf.constant([[4, 10]] ) UpperCamelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCamelCase__ = emba(input_ids.shape ) UpperCamelCase__ = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , atol=self.tolerance ) def A_ ( self : List[Any] ): UpperCamelCase__ = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) UpperCamelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCamelCase__ = emba.weight[:3, :5] tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , atol=self.tolerance ) @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' _A : Any = 1e-4 def A_ ( self : Optional[int] ): # 2,12,16,64 UpperCamelCase__ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase__ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCamelCase__ = embed_positions([2, 16, 768] )[None, None, :, :] UpperCamelCase__ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCamelCase__ = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) UpperCamelCase__ = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCamelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCamelCase , atol=self.tolerance )
367
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' def __init__( self : Any , *_a : Optional[Any] , **_a : Any ): warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
35
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class snake_case ( unittest.TestCase ): def lowercase_ ( self : Union[str, Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: int = 0 def lowercase_ ( self : int)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: List[str] = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32") self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Tuple)-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase: int = Path(UpperCamelCase__) / "preprocessor_config.json" __lowerCAmelCase: str = Path(UpperCamelCase__) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase__ , "w") , ) json.dump({"model_type": "clip"} , open(UpperCamelCase__ , "w")) __lowerCAmelCase: Optional[Any] = AutoImageProcessor.from_pretrained(UpperCamelCase__) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase: Any = Path(UpperCamelCase__) / "preprocessor_config.json" __lowerCAmelCase: List[Any] = Path(UpperCamelCase__) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase__ , "w") , ) json.dump({"model_type": "clip"} , open(UpperCamelCase__ , "w")) __lowerCAmelCase: Optional[int] = AutoImageProcessor.from_pretrained(UpperCamelCase__) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Any)-> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase: str = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowerCAmelCase: Union[str, Any] = Path(UpperCamelCase__) / "preprocessor_config.json" __lowerCAmelCase: Dict = Path(UpperCamelCase__) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase__ , "w") , ) json.dump({"model_type": "clip"} , open(UpperCamelCase__ , "w")) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowerCAmelCase: int = AutoImageProcessor.from_pretrained(UpperCamelCase__).to_dict() config_dict.pop("image_processor_type") __lowerCAmelCase: Any = CLIPImageProcessor(**UpperCamelCase__) # save in new folder model_config.save_pretrained(UpperCamelCase__) config.save_pretrained(UpperCamelCase__) __lowerCAmelCase: Any = AutoImageProcessor.from_pretrained(UpperCamelCase__) # make sure private variable is not incorrectly saved __lowerCAmelCase: Tuple = json.loads(config.to_json_string()) self.assertTrue("_processor_class" not in dict_as_saved) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : str)-> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase: Any = Path(UpperCamelCase__) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase__ , "w") , ) __lowerCAmelCase: Any = AutoImageProcessor.from_pretrained(UpperCamelCase__) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Dict)-> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , "clip-base is not a local folder and is not a valid model identifier"): __lowerCAmelCase: Any = AutoImageProcessor.from_pretrained("clip-base") def lowercase_ ( self : Dict)-> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): __lowerCAmelCase: Dict = AutoImageProcessor.from_pretrained(UpperCamelCase__ , revision="aaaaaa") def lowercase_ ( self : int)-> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): __lowerCAmelCase: List[str] = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model") def lowercase_ ( self : Union[str, Any])-> Optional[int]: '''simple docstring''' with self.assertRaises(UpperCamelCase__): __lowerCAmelCase: List[str] = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor") # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__): __lowerCAmelCase: Dict = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase__) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor") # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase__) __lowerCAmelCase: List[Any] = AutoImageProcessor.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor") def lowercase_ ( self : List[str])-> Union[str, Any]: '''simple docstring''' try: AutoConfig.register("custom" , UpperCamelCase__) AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__): AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase: List[str] = Path(UpperCamelCase__) / "preprocessor_config.json" __lowerCAmelCase: Optional[Any] = Path(UpperCamelCase__) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase__ , "w") , ) json.dump({"model_type": "clip"} , open(UpperCamelCase__ , "w")) __lowerCAmelCase: Any = CustomImageProcessor.from_pretrained(UpperCamelCase__) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase__) __lowerCAmelCase: str = AutoImageProcessor.from_pretrained(UpperCamelCase__) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : List[Any] = True try: AutoConfig.register("custom" , UpperCamelCase__) AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__) # If remote code is not set, the default is to use local __lowerCAmelCase: List[str] = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor") self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor") self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __lowerCAmelCase: Dict = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase__) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor") self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __lowerCAmelCase: Tuple = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase__) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor") self.assertTrue(not hasattr(UpperCamelCase__ , "is_local")) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
217
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """switch_transformers""" SCREAMING_SNAKE_CASE_ : Tuple = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ : Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : List[str] , UpperCamelCase__ : List[str]=3_2_1_2_8 , UpperCamelCase__ : str=7_6_8 , UpperCamelCase__ : Union[str, Any]=6_4 , UpperCamelCase__ : Optional[int]=2_0_4_8 , UpperCamelCase__ : Dict=6_4 , UpperCamelCase__ : List[str]=1_2 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Dict=1_2 , UpperCamelCase__ : List[str]=8 , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Optional[int]=0.01 , UpperCamelCase__ : Optional[int]="float32" , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=3_2 , UpperCamelCase__ : Union[str, Any]=1_2_8 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=1e-6 , UpperCamelCase__ : Optional[Any]=0.001 , UpperCamelCase__ : Dict=0.001 , UpperCamelCase__ : int=1.0 , UpperCamelCase__ : str="relu" , UpperCamelCase__ : int=True , UpperCamelCase__ : Any=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=0 , UpperCamelCase__ : str=1 , **UpperCamelCase__ : Tuple , )-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: int = vocab_size __lowerCAmelCase: str = d_model __lowerCAmelCase: str = d_kv __lowerCAmelCase: str = d_ff __lowerCAmelCase: List[str] = num_sparse_encoder_layers __lowerCAmelCase: List[Any] = num_layers __lowerCAmelCase: Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowerCAmelCase: Tuple = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __lowerCAmelCase: int = self.num_layers // self.num_sparse_encoder_layers else: __lowerCAmelCase: Union[str, Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __lowerCAmelCase: Dict = self.num_decoder_layers // self.num_sparse_decoder_layers else: __lowerCAmelCase: Any = self.num_decoder_layers # HACK: this will create 0 sparse layers __lowerCAmelCase: Dict = num_heads __lowerCAmelCase: Dict = num_experts __lowerCAmelCase: Any = expert_capacity __lowerCAmelCase: List[Any] = router_bias __lowerCAmelCase: int = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}") __lowerCAmelCase: Dict = router_dtype __lowerCAmelCase: Optional[Any] = router_ignore_padding_tokens __lowerCAmelCase: Union[str, Any] = relative_attention_num_buckets __lowerCAmelCase: str = relative_attention_max_distance __lowerCAmelCase: Optional[int] = dropout_rate __lowerCAmelCase: Optional[Any] = layer_norm_epsilon __lowerCAmelCase: int = initializer_factor __lowerCAmelCase: Tuple = feed_forward_proj __lowerCAmelCase: int = use_cache __lowerCAmelCase: int = add_router_probs __lowerCAmelCase: Optional[Any] = router_z_loss_coef __lowerCAmelCase: Dict = router_aux_loss_coef __lowerCAmelCase: Union[str, Any] = self.feed_forward_proj.split("-") __lowerCAmelCase: Tuple = act_info[-1] __lowerCAmelCase: str = act_info[0] == "gated" if len(UpperCamelCase__) > 1 and act_info[0] != "gated" or len(UpperCamelCase__) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'") # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowerCAmelCase: List[str] = "gelu_new" super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ , )
217
1
from math import sqrt def UpperCAmelCase_ (_lowerCAmelCase : int = 1_00_00_00 ): __UpperCamelCase : int = 0 __UpperCamelCase : int = 0 __UpperCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
171
def UpperCAmelCase_ (_lowerCAmelCase : int = 1_00 ): __UpperCamelCase : Tuple = n * (n + 1) * (2 * n + 1) / 6 __UpperCamelCase : List[str] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
171
1
import gc import threading import time import psutil import torch class A_ : def __init__( self : List[str]): __lowerCamelCase : str = psutil.Process() __lowerCamelCase : Tuple = False def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Union[str, Any] = -1 while True: __lowerCamelCase : Any = max(self.process.memory_info().rss ,self.cpu_memory_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[int] = True __lowerCamelCase : str = threading.Thread(target=self.peak_monitor) __lowerCamelCase : Optional[Any] = True self.thread.start() def lowerCAmelCase ( self : Tuple): __lowerCamelCase : int = False self.thread.join() return self.cpu_memory_peak a =PeakCPUMemory() def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: __lowerCamelCase : List[Any] = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCamelCase : Tuple = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowerCamelCase : str = torch.cuda.memory_allocated(lowerCamelCase__ ) torch.cuda.reset_peak_memory_stats() return measures def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: __lowerCamelCase : Dict = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCamelCase : List[str] = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**2_0 __lowerCamelCase : str = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count() ): __lowerCamelCase : int = (torch.cuda.memory_allocated(lowerCamelCase__ ) - start_measures[str(lowerCamelCase__ )]) / 2**2_0 __lowerCamelCase : Dict = (torch.cuda.max_memory_allocated(lowerCamelCase__ ) - start_measures[str(lowerCamelCase__ )]) / 2**2_0 return measures def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: print(F"{description}:" ) print(F"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(F"- GPU {i} allocated: {measures[str(lowerCamelCase__ )]:.2f}MiB" ) __lowerCamelCase : Union[str, Any] = measures[F"{i}-peak"] print(F"- GPU {i} peak: {peak:.2f}MiB" ) print(F"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(F"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
73
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __a : int = logging.get_logger(__name__) __a : str = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Optional[int] = '''deta''' __a : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=9_00 , lowerCAmelCase__=20_48 , lowerCAmelCase__=6 , lowerCAmelCase__=20_48 , lowerCAmelCase__=8 , lowerCAmelCase__=6 , lowerCAmelCase__=10_24 , lowerCAmelCase__=8 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1.0 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="sine" , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=True , lowerCAmelCase__=3_00 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.25 , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowercase = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = backbone_config.pop('''model_type''' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCAmelCase__ ) __lowercase = backbone_config __lowercase = num_queries __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = auxiliary_loss __lowercase = position_embedding_type # deformable attributes __lowercase = num_feature_levels __lowercase = encoder_n_points __lowercase = decoder_n_points __lowercase = two_stage __lowercase = two_stage_num_proposals __lowercase = with_box_refine __lowercase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.d_model def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
210
0
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _a : def __init__( self : int, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Tuple=1_4, lowerCAmelCase__ : int=7, lowerCAmelCase__ : Dict=True, lowerCAmelCase__ : List[str]=True, lowerCAmelCase__ : int=True, lowerCAmelCase__ : Union[str, Any]=True, lowerCAmelCase__ : Optional[Any]=True, lowerCAmelCase__ : str=9_9, lowerCAmelCase__ : int=3_2, lowerCAmelCase__ : List[str]=5, lowerCAmelCase__ : Union[str, Any]=4, lowerCAmelCase__ : Any=3_7, lowerCAmelCase__ : Union[str, Any]="gelu", lowerCAmelCase__ : str=0.1, lowerCAmelCase__ : int=0.1, lowerCAmelCase__ : Tuple=5_1_2, lowerCAmelCase__ : str=1_6, lowerCAmelCase__ : Union[str, Any]=2, lowerCAmelCase__ : Optional[int]=0.02, lowerCAmelCase__ : Dict=3, lowerCAmelCase__ : Optional[Any]=4, lowerCAmelCase__ : Any=None, ) -> str: '''simple docstring''' _UpperCamelCase : int = parent _UpperCamelCase : Optional[int] = batch_size _UpperCamelCase : List[Any] = seq_length _UpperCamelCase : Optional[int] = is_training _UpperCamelCase : Any = use_token_type_ids _UpperCamelCase : List[str] = use_input_mask _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : Optional[Any] = use_mc_token_ids _UpperCamelCase : Dict = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : Dict = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Tuple = type_sequence_label_size _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : Any = num_labels _UpperCamelCase : Dict = num_choices _UpperCamelCase : Tuple = scope _UpperCamelCase : Union[str, Any] = self.vocab_size - 1 def snake_case ( self : List[Any] ) -> str: '''simple docstring''' _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _UpperCamelCase : List[Any] = None if self.use_input_mask: _UpperCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : str = None if self.use_token_type_ids: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _UpperCamelCase : int = None if self.use_mc_token_ids: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.num_choices], self.seq_length ) _UpperCamelCase : int = None _UpperCamelCase : Any = None _UpperCamelCase : Tuple = None if self.use_labels: _UpperCamelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size], self.num_choices ) _UpperCamelCase : Optional[Any] = self.get_config() _UpperCamelCase : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) def snake_case ( self : Tuple, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : int, lowerCAmelCase__ : List[str], *lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = CTRLModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, head_mask=lowerCAmelCase__ ) model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ), config.n_layer ) def snake_case ( self : int, lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Any, lowerCAmelCase__ : Optional[int], *lowerCAmelCase__ : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase : Optional[Any] = CTRLLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : List[Any] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : str = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def snake_case ( self : Optional[Any], lowerCAmelCase__ : int, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : List[str], *lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : str = self.num_labels _UpperCamelCase : int = CTRLForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : int = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCamelCase = (CTRLLMHeadModel,) if is_torch_available() else () UpperCamelCase = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def snake_case ( self : Tuple, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Any, lowerCAmelCase__ : int, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def snake_case ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Any = CTRLModelTester(self ) _UpperCamelCase : List[Any] = ConfigTester(self, config_class=lowerCAmelCase__, n_embd=3_7 ) def snake_case ( self : Dict ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def snake_case ( self : Dict ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowerCAmelCase__ ) def snake_case ( self : Dict ) -> Any: '''simple docstring''' _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self : int ) -> Optional[int]: '''simple docstring''' pass @slow def snake_case ( self : List[Any] ) -> str: '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Dict = CTRLModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def snake_case ( self : int ) -> Dict: '''simple docstring''' pass @require_torch class _a ( unittest.TestCase ): def snake_case ( self : Dict ) -> str: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def snake_case ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(lowerCAmelCase__ ) _UpperCamelCase : str = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]], dtype=torch.long, device=lowerCAmelCase__ ) # Legal the president is _UpperCamelCase : List[Any] = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a _UpperCamelCase : Tuple = model.generate(lowerCAmelCase__, do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist(), lowerCAmelCase__ )
128
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
128
1
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCamelCase : Tuple = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : Any ): '''simple docstring''' lowercase = to_pil_image(_A ) lowercase , lowercase = pil_image.size lowercase = pytesseract.image_to_data(_A , lang=_A , output_type='dict' , config=_A ) lowercase , lowercase , lowercase , lowercase , lowercase = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowercase = [idx for idx, word in enumerate(_A ) if not word.strip()] lowercase = [word for idx, word in enumerate(_A ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase = [] for x, y, w, h in zip(_A , _A , _A , _A ): lowercase = [x, y, x + w, y + h] actual_boxes.append(_A ) # finally, normalize the bounding boxes lowercase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_A , _A , _A ) ) assert len(_A ) == len(_A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a ( A__ ): UpperCAmelCase_ : Optional[int] =["pixel_values"] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = 1 / 2_5_5 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = "" , **_lowerCamelCase , ): super().__init__(**__lowerCamelCase ) lowercase = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} lowercase = get_size_dict(__lowerCamelCase ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_rescale lowercase = rescale_value lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase = apply_ocr lowercase = ocr_lang lowercase = tesseract_config def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): lowercase = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase = (size['height'], size['width']) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(__lowerCamelCase ) lowercase = resample if resample is not None else self.resample lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(__lowerCamelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) lowercase = [] lowercase = [] for image in images: lowercase , lowercase = apply_tesseract(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) words_batch.append(__lowerCamelCase ) boxes_batch.append(__lowerCamelCase ) if do_resize: lowercase = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_rescale: lowercase = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: lowercase = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] lowercase = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=__lowerCamelCase ) if apply_ocr: lowercase = words_batch lowercase = boxes_batch return data
220
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( _A = "AAPL" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(_A ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
314
0
"""simple docstring""" import math import qiskit def _A (__a = 1 , __a = 1 , __a = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(__a , __a ) or isinstance(__a , __a ) or isinstance(__a , __a ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__a ) != input_a) or (math.floor(__a ) != input_a) or (math.floor(__a ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers SCREAMING_SNAKE_CASE_ : Tuple = qiskit.QuantumRegister(4 , '''qr''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries SCREAMING_SNAKE_CASE_ : List[Any] = [input_a, input_a, carry_in] SCREAMING_SNAKE_CASE_ : Tuple = qiskit.QuantumCircuit(__a , __a ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__a ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__a ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__a ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __a ) # measure the last two qbits SCREAMING_SNAKE_CASE_ : int = qiskit.Aer.get_backend('''aer_simulator''' ) SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(__a , __a , shots=10_00 ) return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
318
"""simple docstring""" from collections import defaultdict def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip() SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip() # Remove whitespace SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__a ) != len(__a ): return False # Default values for count should be 0 SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a ) # For each character in input strings, # increment count in the corresponding for i in range(len(__a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ : Any = input("""Enter the first string """).strip() UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip() UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
318
1
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : List[Any] = logging.get_logger(__name__) a_ : Dict = {"vocab_file": "vocab.txt"} a_ : str = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } a_ : Optional[Any] = { "openbmb/cpm-ant-10b": 1_0_2_4, } def _A (lowerCAmelCase__ :List[str] ) -> Optional[int]: '''simple docstring''' _a = collections.OrderedDict() with open(lowerCAmelCase__ , 'r' , encoding='utf-8' ) as reader: _a = reader.readlines() for index, token in enumerate(lowerCAmelCase__ ): _a = token.rstrip('\n' ) _a = index return vocab class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , __magic_name__ , __magic_name__="<unk>" , __magic_name__=2_00 ) -> Dict: _a = vocab _a = unk_token _a = max_input_chars_per_word def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: _a = list(__magic_name__ ) if len(__magic_name__ ) > self.max_input_chars_per_word: return [self.unk_token] _a = 0 _a = [] while start < len(__magic_name__ ): _a = len(__magic_name__ ) _a = None while start < end: _a = ''.join(chars[start:end] ) if substr in self.vocab: _a = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__magic_name__ ) _a = end return sub_tokens class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["""input_ids""", """attention_mask"""] _lowerCAmelCase = False def __init__( self , __magic_name__ , __magic_name__="<d>" , __magic_name__="</d>" , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="<pad>" , __magic_name__="<unk>" , __magic_name__="</n>" , __magic_name__="</_>" , __magic_name__="left" , **__magic_name__ , ) -> Any: requires_backends(self , ['jieba'] ) super().__init__( bod_token=__magic_name__ , eod_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , unk_token=__magic_name__ , line_token=__magic_name__ , space_token=__magic_name__ , padding_side=__magic_name__ , **__magic_name__ , ) _a = bod_token _a = eod_token _a = load_vocab(__magic_name__ ) _a = self.encoder[space_token] _a = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __magic_name__ : x[1] ) ) _a = {v: k for k, v in self.encoder.items()} _a = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.encoder[self.bod_token] @property def __UpperCAmelCase ( self ) -> List[str]: return self.encoder[self.eod_token] @property def __UpperCAmelCase ( self ) -> int: return self.encoder["\n"] @property def __UpperCAmelCase ( self ) -> int: return len(self.encoder ) def __UpperCAmelCase ( self ) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCAmelCase ( self , __magic_name__ ) -> int: _a = [] for x in jieba.cut(__magic_name__ , cut_all=__magic_name__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__magic_name__ ) ) return output_tokens def __UpperCAmelCase ( self , __magic_name__ , **__magic_name__ ) -> int: _a = [i for i in token_ids if i >= 0] _a = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: return token in self.encoder def __UpperCAmelCase ( self , __magic_name__ ) -> str: return "".join(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: return self.encoder.get(__magic_name__ , self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self , __magic_name__ ) -> Dict: return self.decoder.get(__magic_name__ , self.unk_token ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: if os.path.isdir(__magic_name__ ): _a = os.path.join( __magic_name__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: _a = (filename_prefix + '-' if filename_prefix else '') + save_directory _a = 0 if " " in self.encoder: _a = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: _a = self.encoder['\n'] del self.encoder["\n"] _a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __magic_name__ : x[1] ) ) with open(__magic_name__ , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) _a = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) return [1] + ([0] * len(__magic_name__ ))
168
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : Union[str, Any] = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ["LayoutLMv3FeatureExtractor"] a_ : List[str] = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
168
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging snake_case : Any = logging.get_logger(__name__) class _snake_case ( _snake_case ): def __init__( self , _lowerCamelCase ): super().__init__() a :str = nn.ModuleList(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = True , ): for i, (image, scale, controlnet) in enumerate(zip(_lowerCamelCase , _lowerCamelCase , self.nets ) ): a , a :Any = controlnet( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) # merge samples if i == 0: a , a :str = down_samples, mid_sample else: a :Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_lowerCamelCase , _lowerCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , ): a :Optional[Any] = 0 a :Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( _lowerCamelCase , is_main_process=_lowerCamelCase , save_function=_lowerCamelCase , safe_serialization=_lowerCamelCase , variant=_lowerCamelCase , ) idx += 1 a :Optional[Any] = model_path_to_save + F'''_{idx}''' @classmethod def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase , **_lowerCamelCase ): a :List[str] = 0 a :str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... a :Any = pretrained_model_path while os.path.isdir(_lowerCamelCase ): a :Dict = ControlNetModel.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) controlnets.append(_lowerCamelCase ) idx += 1 a :List[str] = pretrained_model_path + F'''_{idx}''' logger.info(F'''{len(_lowerCamelCase )} controlnets loaded from {pretrained_model_path}.''' ) if len(_lowerCamelCase ) == 0: raise ValueError( F'''No ControlNets found under {os.path.dirname(_lowerCamelCase )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(_lowerCamelCase )
281
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case : Any = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys snake_case : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
281
1
import re def UpperCamelCase( __UpperCamelCase : str ): lowerCAmelCase_ : str = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__UpperCamelCase ,__UpperCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
103
from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return np.array_equal(snake_case_ , matrix.conjugate().T ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = v.conjugate().T _UpperCAmelCase = v_star.dot(snake_case_ ) assert isinstance(snake_case_ , np.ndarray ) return (v_star_dot.dot(snake_case_ )) / (v_star.dot(snake_case_ )) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _UpperCAmelCase = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case_ ), f"""{a} is not hermitian.""" print(rayleigh_quotient(snake_case_ , snake_case_ ) ) _UpperCAmelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case_ ), f"""{a} is not hermitian.""" assert rayleigh_quotient(snake_case_ , snake_case_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
133
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
363
'''simple docstring''' from collections import defaultdict from math import gcd def __lowercase ( __lowercase = 150_0000 ) -> int: '''simple docstring''' _A = defaultdict(__lowercase ) _A = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __lowercase , 2 ): if gcd(__lowercase , __lowercase ) > 1: continue _A = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__lowercase , limit + 1 , __lowercase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
174
0
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _snake_case : Dict = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') _snake_case : int = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() _snake_case : str = '|'.join(sys.argv[1:]) _snake_case : Union[str, Any] = re.compile(rF"""^({joined_dirs}).*?\.py$""") _snake_case : List[Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
292
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCAmelCase : UpperCamelCase = PegasusConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self :Union[str, Any] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :str=13 , __UpperCamelCase :List[Any]=7 , __UpperCamelCase :Union[str, Any]=True , __UpperCamelCase :List[Any]=False , __UpperCamelCase :Any=99 , __UpperCamelCase :Tuple=32 , __UpperCamelCase :Optional[int]=2 , __UpperCamelCase :Optional[Any]=4 , __UpperCamelCase :Tuple=37 , __UpperCamelCase :Optional[Any]=0.1 , __UpperCamelCase :Tuple=0.1 , __UpperCamelCase :Optional[int]=40 , __UpperCamelCase :Tuple=2 , __UpperCamelCase :Dict=1 , __UpperCamelCase :Any=0 , ): A = parent A = batch_size A = seq_length A = is_training A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = eos_token_id A = pad_token_id A = bos_token_id def lowerCamelCase ( self :Tuple ): A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A = tf.concat([input_ids, eos_tensor] , axis=1 ) A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def lowerCamelCase ( self :str , __UpperCamelCase :str , __UpperCamelCase :Union[str, Any] ): A = TFPegasusModel(config=__UpperCamelCase ).get_decoder() A = inputs_dict["input_ids"] A = input_ids[:1, :] A = inputs_dict["attention_mask"][:1, :] A = inputs_dict["head_mask"] A = 1 # first forward pass A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , head_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) A, A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) , config.vocab_size ) A = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A = tf.concat([input_ids, next_tokens] , axis=-1 ) A = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A = output_from_no_past[:, -3:, random_slice_idx] A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1e-3 ) def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ): if attention_mask is None: A = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): UpperCamelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCamelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def lowerCamelCase ( self :int ): A = TFPegasusModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase ) def lowerCamelCase ( self :Dict ): self.config_tester.run_common_tests() def lowerCamelCase ( self :Any ): A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCamelCase = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCamelCase = '''google/pegasus-xsum''' @cached_property def lowerCamelCase ( self :Any ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase ( self :Dict ): A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase ( self :str , **__UpperCamelCase :str ): A = self.translate_src_text(**__UpperCamelCase ) assert self.expected_text == generated_words def lowerCamelCase ( self :Any , **__UpperCamelCase :List[str] ): A = self.tokenizer(self.src_text , **__UpperCamelCase , padding=__UpperCamelCase , return_tensors="tf" ) A = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCamelCase , ) A = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCamelCase ) return generated_words @slow def lowerCamelCase ( self :Union[str, Any] ): self._assert_generated_batch_equal_expected()
292
1
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : list[int] ) ->list[int]: # This function is recursive """simple docstring""" __snake_case : int = len(_snake_case ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case : Optional[Any] = array[0] __snake_case : Optional[Any] = False __snake_case : List[Any] = 1 __snake_case : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case : Optional[Any] = True __snake_case : List[str] = [element for element in array[i:] if element >= array[i]] __snake_case : Dict = longest_subsequence(_snake_case ) if len(_snake_case ) > len(_snake_case ): __snake_case : List[Any] = temp_array else: i += 1 __snake_case : Union[str, Any] = [element for element in array[1:] if element >= pivot] __snake_case : str = [pivot, *longest_subsequence(_snake_case )] if len(_snake_case ) > len(_snake_case ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets UpperCAmelCase__ : List[Any] = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ UpperCAmelCase__ : List[Any] = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ UpperCAmelCase__ : Dict = R""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : List[str] ) ->Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 0.0 for i, j in zip(UpperCAmelCase__ , UpperCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCAmelCase__ , UpperCAmelCase__ ) else 0.0 SCREAMING_SNAKE_CASE : Optional[Any] = n_correct / len(UpperCAmelCase__ ) return { "accuracy": accuracy, }
245
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any]=1_3 , UpperCAmelCase__ : List[str]=[3_0, 3_0] , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : List[str]=5 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : str=1_0 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=8 , UpperCAmelCase__ : Dict=1_0 , ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : Dict = scope SCREAMING_SNAKE_CASE : Optional[Any] = n_targets SCREAMING_SNAKE_CASE : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens SCREAMING_SNAKE_CASE : Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) SCREAMING_SNAKE_CASE : int = num_patches + 1 + self.num_detection_tokens def _lowercase ( self : Tuple ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) SCREAMING_SNAKE_CASE : str = [] for i in range(self.batch_size ): SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = torch.rand(self.n_targets , 4 , device=UpperCAmelCase__ ) labels.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowercase ( self : Dict ) ->Optional[Any]: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = YolosModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _lowercase ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = YolosForObjectDetection(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(pixel_values=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) SCREAMING_SNAKE_CASE : int = model(pixel_values=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _lowercase ( self : Dict ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple =(YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCAmelCase__ : Any =( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) UpperCAmelCase__ : Tuple =False UpperCAmelCase__ : int =False UpperCAmelCase__ : Tuple =False UpperCAmelCase__ : Optional[Any] =False def _lowercase ( self : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any=False ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": SCREAMING_SNAKE_CASE : List[str] = [] for i in range(self.model_tester.batch_size ): SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCAmelCase__ , dtype=torch.long ) SCREAMING_SNAKE_CASE : str = torch.ones( self.model_tester.n_targets , 4 , device=UpperCAmelCase__ , dtype=torch.float ) labels.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = labels return inputs_dict def _lowercase ( self : Dict ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = YolosModelTester(self ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : List[Any] ) ->int: """simple docstring""" pass def _lowercase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def _lowercase ( self : List[Any] ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = True # in YOLOS, the seq_len is different SCREAMING_SNAKE_CASE : Any = self.model_tester.expected_seq_len for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Tuple = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) SCREAMING_SNAKE_CASE : List[str] = len(UpperCAmelCase__ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Optional[int] = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : str = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowercase ( self : Any ) ->str: """simple docstring""" def check_hidden_states_output(UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE : List[Any] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) # YOLOS has a different seq_length SCREAMING_SNAKE_CASE : Tuple = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Any ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCAmelCase__ ) @slow def _lowercase ( self : str ) ->List[Any]: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = YolosModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def __lowercase ( ) -> List[Any]: SCREAMING_SNAKE_CASE : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : int ) ->Union[str, Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def _lowercase ( self : List[Any] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : str = image_processor(images=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(inputs.pixel_values ) # verify outputs SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] , device=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] , device=UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) ) # verify postprocessing SCREAMING_SNAKE_CASE : int = image_processor.post_process_object_detection( UpperCAmelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] SCREAMING_SNAKE_CASE : str = torch.tensor([0.99_94, 0.97_90, 0.99_64, 0.99_72, 0.98_61] ).to(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = [7_5, 7_5, 1_7, 6_3, 1_7] SCREAMING_SNAKE_CASE : List[str] = torch.tensor([3_35.06_09, 79.38_48, 3_75.42_16, 1_87.24_95] ).to(UpperCAmelCase__ ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , UpperCAmelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , UpperCAmelCase__ ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , UpperCAmelCase__ ) )
245
1
'''simple docstring''' from __future__ import annotations def __snake_case( _lowerCAmelCase ) -> int: if not nums: return 0 snake_case__ : List[str] = nums[0] snake_case__ : Tuple = 0 for num in nums[1:]: snake_case__ : Union[str, Any] = ( max_excluding + num, max(_lowerCAmelCase , _lowerCAmelCase ), ) return max(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __a = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __a = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __a = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __a = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __a = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __a = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __a = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class UpperCAmelCase_ : """simple docstring""" def __call__( self : str , snake_case_ : Optional[Any] , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = None , snake_case_ : Union[bool, str] = False , snake_case_ : Union[bool, str] = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[bool] = None , **snake_case_ : Union[str, Any] , ): if titles is None and texts is None: return super().__call__( snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) elif titles is None or texts is None: snake_case__ : int = titles if texts is None else texts return super().__call__( snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) snake_case__ : List[str] = titles if not isinstance(snake_case_ , snake_case_ ) else [titles] snake_case__ : Union[str, Any] = texts if not isinstance(snake_case_ , snake_case_ ) else [texts] snake_case__ : Dict = len(snake_case_ ) snake_case__ : Union[str, Any] = questions if not isinstance(snake_case_ , snake_case_ ) else [questions] * n_passages if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f"There should be as many titles than texts but got {len(snake_case_ )} titles and {len(snake_case_ )} texts." ) snake_case__ : int = super().__call__(snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ )["""input_ids"""] snake_case__ : Any = super().__call__(snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ )["""input_ids"""] snake_case__ : Dict = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case_ , snake_case_ ) ] } if return_attention_mask is not False: snake_case__ : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Union[str, Any] = attention_mask return self.pad(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : BatchEncoding , snake_case_ : DPRReaderOutput , snake_case_ : int = 16 , snake_case_ : int = 64 , snake_case_ : int = 4 , ): snake_case__ : Optional[int] = reader_input["""input_ids"""] snake_case__ , snake_case__ , snake_case__ : List[str] = reader_output[:3] snake_case__ : Union[str, Any] = len(snake_case_ ) snake_case__ : Tuple = sorted(range(snake_case_ ) , reverse=snake_case_ , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : Optional[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : int = sequence_ids.index(self.pad_token_id ) else: snake_case__ : int = len(snake_case_ ) snake_case__ : Optional[int] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case_ , top_spans=snake_case_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case_ , start_index=snake_case_ , end_index=snake_case_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : List[int] , snake_case_ : int , snake_case_ : int , ): snake_case__ : List[str] = [] for start_index, start_score in enumerate(snake_case_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : Any = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) snake_case__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) snake_case__ : Union[str, Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class UpperCAmelCase_ ( _a , _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = READER_PRETRAINED_VOCAB_FILES_MAP lowercase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = READER_PRETRAINED_INIT_CONFIGURATION lowercase = ["input_ids", "attention_mask"]
43
0
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Tuple: """simple docstring""" while b: lowercase , lowercase : Any = b, a % b return a def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Dict: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(_UpperCamelCase, a % b ) def __lowercase ( ) ->List[Any]: """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}""" ) if __name__ == "__main__": main()
337
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ : str = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
0
'''simple docstring''' import os from collections import deque import torch from torch.utils.data import Dataset class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A="", A="train" ): '''simple docstring''' assert os.path.isdir(A ) SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Dict = os.listdir(A ) for story_filename in story_filenames_list: if "summary" in story_filename: continue SCREAMING_SNAKE_CASE : str = os.path.join(A, A ) if not os.path.isfile(A ): continue self.documents.append(A ) def __len__( self ): '''simple docstring''' return len(self.documents ) def __getitem__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.documents[idx] SCREAMING_SNAKE_CASE : Optional[int] = document_path.split('/' )[-1] with open(A, encoding='utf-8' ) as source: SCREAMING_SNAKE_CASE : Optional[int] = source.read() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = process_story(A ) return document_name, story_lines, summary_lines def lowercase__( __UpperCamelCase: Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = list(filter(lambda __UpperCamelCase : len(__UpperCamelCase ) != 0 ,[line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it SCREAMING_SNAKE_CASE : Dict = [_add_missing_period(__UpperCamelCase ) for line in nonempty_lines] # gather article lines SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : List[str] = deque(__UpperCamelCase ) while True: try: SCREAMING_SNAKE_CASE : List[Any] = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(__UpperCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines SCREAMING_SNAKE_CASE : Dict = list(filter(lambda __UpperCamelCase : not t.startswith('@highlight' ) ,__UpperCamelCase ) ) return story_lines, summary_lines def lowercase__( __UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: Tuple ,__UpperCamelCase: List[str] ): """simple docstring""" if len(__UpperCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__UpperCamelCase )) ) return sequence def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : str = torch.ones_like(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = sequence == pad_token_id SCREAMING_SNAKE_CASE : int = 0 return mask def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: Dict ,__UpperCamelCase: Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [tokenizer.encode(__UpperCamelCase ) for line in story_lines] SCREAMING_SNAKE_CASE : Optional[int] = [token for sentence in story_lines_token_ids for token in sentence] SCREAMING_SNAKE_CASE : Optional[int] = [tokenizer.encode(__UpperCamelCase ) for line in summary_lines] SCREAMING_SNAKE_CASE : int = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [] for sequence in batch: SCREAMING_SNAKE_CASE : Any = -1 SCREAMING_SNAKE_CASE : Optional[Any] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__UpperCamelCase ) return torch.tensor(__UpperCamelCase )
246
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) A : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) A : ClassVar[Features] = Features({'''labels''': ClassLabel} ) A : str = "text" A : str = "labels" def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column], A ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE : Optional[Any] = self.label_schema.copy() SCREAMING_SNAKE_CASE : Optional[int] = features[self.label_column] SCREAMING_SNAKE_CASE : Optional[Any] = label_schema return task_template @property def UpperCamelCase_ ( self ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
246
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "LayoutLMv3ImageProcessor" _a = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Tuple: _A : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _a , ) _A : Optional[int] = kwargs.pop("""feature_extractor""" ) _A : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor _A : Dict = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): _A : Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) _A : Any = features["""words"""] _A : Optional[Any] = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values _A : Tuple = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: _A : Union[str, Any] = self.get_overflowing_images(_a , encoded_inputs["""overflow_to_sample_mapping"""] ) _A : Union[str, Any] = images return encoded_inputs def a__ ( self , _a , _a ) -> Optional[int]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _A : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" F''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def a__ ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[Any]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def a__ ( self ) -> Union[str, Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _a , ) return self.image_processor_class @property def a__ ( self ) -> int: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _a , ) return self.image_processor
26
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.maximum(0,snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
26
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" @register_to_config def __init__( self : str,lowercase_ : Tuple = 7_6_8,)-> Dict: '''simple docstring''' super().__init__() A__ = nn.Parameter(torch.zeros(1,lowerCamelCase_ ) ) A__ = nn.Parameter(torch.ones(1,lowerCamelCase_ ) ) def snake_case__ ( self : Union[str, Any],lowercase_ : Union[str, Any] = None,lowercase_ : Any = None,)-> Union[str, Any]: '''simple docstring''' A__ = nn.Parameter(self.mean.to(lowerCamelCase_ ).to(lowerCamelCase_ ) ) A__ = nn.Parameter(self.std.to(lowerCamelCase_ ).to(lowerCamelCase_ ) ) return self def snake_case__ ( self : Optional[Any],lowercase_ : Optional[Any] )-> int: '''simple docstring''' A__ = (embeds - self.mean) * 1.0 / self.std return embeds def snake_case__ ( self : int,lowercase_ : Optional[Any] )-> int: '''simple docstring''' A__ = (embeds * self.std) + self.mean return embeds
361
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = 3 A__ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
282
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( _snake_case ): lowercase = "time_series_transformer" lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "student_t" , UpperCamelCase__ = "nll" , UpperCamelCase__ = 1 , UpperCamelCase__ = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase__ = "mean" , UpperCamelCase__ = 0 , UpperCamelCase__ = 0 , UpperCamelCase__ = 0 , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 32 , UpperCamelCase__ = 32 , UpperCamelCase__ = 2 , UpperCamelCase__ = 2 , UpperCamelCase__ = 2 , UpperCamelCase__ = 2 , UpperCamelCase__ = True , UpperCamelCase__ = "gelu" , UpperCamelCase__ = 64 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 100 , UpperCamelCase__ = 0.02 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' # time series specific configuration A_ = prediction_length A_ = context_length or prediction_length A_ = distribution_output A_ = loss A_ = input_size A_ = num_time_features A_ = lags_sequence A_ = scaling A_ = num_dynamic_real_features A_ = num_static_real_features A_ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase__ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) A_ = cardinality else: A_ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase__ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) A_ = embedding_dimension else: A_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A_ = num_parallel_samples # Transformer architecture configuration A_ = input_size * len(UpperCamelCase__ ) + self._number_of_features A_ = d_model A_ = encoder_attention_heads A_ = decoder_attention_heads A_ = encoder_ffn_dim A_ = decoder_ffn_dim A_ = encoder_layers A_ = decoder_layers A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = activation_function A_ = init_std A_ = use_cache super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
162
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( _snake_case , unittest.TestCase ): lowercase = ShapEPipeline lowercase = ["prompt"] lowercase = ["prompt"] lowercase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return 8 @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } A_ = PriorTransformer(**UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } A_ = ShapERenderer(**UpperCamelCase__ ) return model def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_renderer A_ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase__ , clip_sample=UpperCamelCase__ , clip_sample_range=1.0 , ) A_ = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> List[str]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.images[0] A_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A_ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = 1 A_ = 2 A_ = self.get_dummy_inputs(UpperCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: A_ = batch_size * [inputs[key]] A_ = pipe(**UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> str: '''simple docstring''' A_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) A_ = ShapEPipeline.from_pretrained("""openai/shap-e""" ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A_ = pipe( """a shark""" , generator=UpperCamelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
162
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : str = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart _lowerCamelCase : Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } _lowerCamelCase : Any = { "facebook/bart-base": 1_0_2_4, "facebook/bart-large": 1_0_2_4, "facebook/bart-large-mnli": 1_0_2_4, "facebook/bart-large-cnn": 1_0_2_4, "facebook/bart-large-xsum": 1_0_2_4, "yjernite/bart_eli5": 1_0_2_4, } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = BartTokenizer def __init__( self : int, __A : Dict=None, __A : int=None, __A : Optional[Any]=None, __A : List[str]="replace", __A : Any="<s>", __A : Dict="</s>", __A : List[Any]="</s>", __A : int="<s>", __A : Optional[Any]="<unk>", __A : int="<pad>", __A : str="<mask>", __A : List[Any]=False, __A : List[Any]=True, **__A : Any, ): super().__init__( __A, __A, tokenizer_file=__A, errors=__A, bos_token=__A, eos_token=__A, sep_token=__A, cls_token=__A, unk_token=__A, pad_token=__A, mask_token=__A, add_prefix_space=__A, trim_offsets=__A, **__A, ) UpperCAmelCase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''', __A ) != add_prefix_space: UpperCAmelCase : Optional[Any] = getattr(__A, pre_tok_state.pop('''type''' ) ) UpperCAmelCase : List[str] = add_prefix_space UpperCAmelCase : Optional[Any] = pre_tok_class(**__A ) UpperCAmelCase : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase : Optional[Any] = '''post_processor''' UpperCAmelCase : str = getattr(self.backend_tokenizer, __A, __A ) if tokenizer_component_instance: UpperCAmelCase : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase : Optional[Any] = tuple(state['''sep'''] ) if "cls" in state: UpperCAmelCase : str = tuple(state['''cls'''] ) UpperCAmelCase : Union[str, Any] = False if state.get('''add_prefix_space''', __A ) != add_prefix_space: UpperCAmelCase : Dict = add_prefix_space UpperCAmelCase : List[str] = True if state.get('''trim_offsets''', __A ) != trim_offsets: UpperCAmelCase : Union[str, Any] = trim_offsets UpperCAmelCase : Dict = True if changes_to_apply: UpperCAmelCase : str = getattr(__A, state.pop('''type''' ) ) UpperCAmelCase : Optional[int] = component_class(**__A ) setattr(self.backend_tokenizer, __A, __A ) @property def __magic_name__ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __magic_name__ ( self : Optional[int], __A : Dict ): UpperCAmelCase : Dict = AddedToken(__A, lstrip=__A, rstrip=__A ) if isinstance(__A, __A ) else value UpperCAmelCase : Tuple = value def __magic_name__ ( self : Tuple, *__A : int, **__A : Tuple ): UpperCAmelCase : int = kwargs.get('''is_split_into_words''', __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__A, **__A ) def __magic_name__ ( self : str, *__A : Dict, **__A : List[Any] ): UpperCAmelCase : int = kwargs.get('''is_split_into_words''', __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__A, **__A ) def __magic_name__ ( self : Union[str, Any], __A : str, __A : Optional[str] = None ): UpperCAmelCase : int = self._tokenizer.model.save(__A, name=__A ) return tuple(__A ) def __magic_name__ ( self : List[Any], __A : Optional[int], __A : str=None ): UpperCAmelCase : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ): UpperCAmelCase : int = [self.sep_token_id] UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
99
import logging import os from .state import PartialState class __UpperCAmelCase ( logging.LoggerAdapter ): @staticmethod def __magic_name__ ( __A : str ): UpperCAmelCase : Dict = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __magic_name__ ( self : Union[str, Any], __A : Union[str, Any], __A : Union[str, Any], *__A : Optional[int], **__A : Tuple ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) UpperCAmelCase : List[str] = kwargs.pop('''main_process_only''', __A ) UpperCAmelCase : int = kwargs.pop('''in_order''', __A ) if self.isEnabledFor(__A ): if self._should_log(__A ): UpperCAmelCase , UpperCAmelCase : Dict = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) elif in_order: UpperCAmelCase : Dict = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) state.wait_for_everyone() def a__ ( UpperCAmelCase : str , UpperCAmelCase : str = None ) -> Dict: if log_level is None: UpperCAmelCase : Union[str, Any] = os.environ.get('''ACCELERATE_LOG_LEVEL''' , UpperCAmelCase ) UpperCAmelCase : Tuple = logging.getLogger(UpperCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCAmelCase , {} )
99
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCamelCase : Optional[Any] = 50_000 lowerCamelCase : Dict = 5_000 lowerCamelCase , lowerCamelCase : Optional[Any] = os.path.split(__file__) lowerCamelCase : Dict = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def _SCREAMING_SNAKE_CASE ( lowercase : datasets.Dataset , lowercase : Tuple ): '''simple docstring''' for i in range(lowercase ): lowerCamelCase_ = dataset[i] @get_duration def _SCREAMING_SNAKE_CASE ( lowercase : datasets.Dataset , lowercase : Any , lowercase : Dict ): '''simple docstring''' for i in range(0 , len(lowercase ) , lowercase ): lowerCamelCase_ = dataset[i : i + batch_size] @get_duration def _SCREAMING_SNAKE_CASE ( lowercase : datasets.Dataset , lowercase : Tuple , lowercase : List[str] ): '''simple docstring''' with dataset.formatted_as(type=lowercase ): for i in range(lowercase ): lowerCamelCase_ = dataset[i] @get_duration def _SCREAMING_SNAKE_CASE ( lowercase : datasets.Dataset , lowercase : Any , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' with dataset.formatted_as(type=lowercase ): for i in range(0 , lowercase , lowercase ): lowerCamelCase_ = dataset[i : i + batch_size] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = {'num examples': SPEED_TEST_N_EXAMPLES} lowerCamelCase_ = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] lowerCamelCase_ = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) lowerCamelCase_ = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) lowerCamelCase_ = generate_example_dataset( os.path.join(lowercase , 'dataset.arrow' ) , lowercase , num_examples=lowercase , seq_shapes={'list': (1_00,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(lowercase ) ) lowerCamelCase_ = func(lowercase , **lowercase ) print('shuffling dataset' ) lowerCamelCase_ = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(lowercase ) ) lowerCamelCase_ = func( lowercase , **lowercase ) with open(lowercase , 'wb' ) as f: f.write(json.dumps(lowercase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
204
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : str = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
204
1
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> List[str]: # Initialise PyTorch model __lowerCAmelCase = BertConfig.from_json_file(lowercase ) print(f'Building PyTorch model from configuration: {config}' ) __lowerCAmelCase = BertForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowercase , lowercase , lowercase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": _a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _a : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
358
'''simple docstring''' import numpy as np from transformers import Pipeline def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = np.max(lowercase , axis=-1 , keepdims=lowercase ) __lowerCAmelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class _UpperCAmelCase ( lowerCAmelCase_ ): def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = {} if "second_text" in kwargs: __lowerCAmelCase = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' return self.tokenizer(__SCREAMING_SNAKE_CASE,text_pair=__SCREAMING_SNAKE_CASE,return_tensors=self.framework ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.model(**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = model_outputs.logits[0].numpy() __lowerCAmelCase = softmax(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.argmax(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.model.config.idalabel[best_class] __lowerCAmelCase = probabilities[best_class].item() __lowerCAmelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
46
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ : Optional[int] = logging.get_logger(__name__) a_ : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } a_ : Dict = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] ): for attribute in key.split("." ): lowerCamelCase_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: lowerCamelCase_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: lowerCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value elif weight_type == "running_mean": lowerCamelCase_ = value elif weight_type == "running_var": lowerCamelCase_ = value elif weight_type == "num_batches_tracked": lowerCamelCase_ = value elif weight_type == "inv_freq": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): lowerCamelCase_ = [] lowerCamelCase_ = fairseq_model.state_dict() lowerCamelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase_ = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase_ = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(UpperCAmelCase_ )[0].split("." )[-2] lowerCamelCase_ = mapped_key.replace("*" , UpperCAmelCase_ ) if "pos_bias_u" in name: lowerCamelCase_ = None elif "pos_bias_v" in name: lowerCamelCase_ = None elif "weight_g" in name: lowerCamelCase_ = """weight_g""" elif "weight_v" in name: lowerCamelCase_ = """weight_v""" elif "bias" in name: lowerCamelCase_ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase_ = """weight""" elif "running_mean" in name: lowerCamelCase_ = """running_mean""" elif "inv_freq" in name: lowerCamelCase_ = """inv_freq""" elif "running_var" in name: lowerCamelCase_ = """running_var""" elif "num_batches_tracked" in name: lowerCamelCase_ = """num_batches_tracked""" else: lowerCamelCase_ = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): lowerCamelCase_ = full_name.split("conv_layers." )[-1] lowerCamelCase_ = name.split("." ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase_ ) @torch.no_grad() def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Tuple=True ): if config_path is not None: lowerCamelCase_ = WavaVecaConformerConfig.from_pretrained(UpperCAmelCase_ , hidden_act="swish" ) else: lowerCamelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCamelCase_ = """rotary""" if is_finetuned: if dict_path: lowerCamelCase_ = Dictionary.load(UpperCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase_ = target_dict.pad_index lowerCamelCase_ = target_dict.bos_index lowerCamelCase_ = target_dict.eos_index lowerCamelCase_ = len(target_dict.symbols ) lowerCamelCase_ = os.path.join(UpperCAmelCase_ , "vocab.json" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCAmelCase_ ) ) return os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) lowerCamelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase_ = 0 lowerCamelCase_ = 1 with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = WavaVecaCTCTokenizer( UpperCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCAmelCase_ , ) lowerCamelCase_ = True if config.feat_extract_norm == """layer""" else False lowerCamelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) lowerCamelCase_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) lowerCamelCase_ = WavaVecaConformerForCTC(UpperCAmelCase_ ) else: lowerCamelCase_ = WavaVecaConformerForPreTraining(UpperCAmelCase_ ) if is_finetuned: lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCamelCase_ = argparse.Namespace(task="audio_pretraining" ) lowerCamelCase_ = fairseq.tasks.setup_task(UpperCAmelCase_ ) lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase_ ) lowerCamelCase_ = model[0].eval() recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ : Dict = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
55
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=2 ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=10 ,__UpperCAmelCase=3 ,__UpperCAmelCase=32 * 4 ,__UpperCAmelCase=32 * 6 ,__UpperCAmelCase=4 ,__UpperCAmelCase=32 ,) -> str: lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Optional[int] = is_training lowerCAmelCase__ : Dict = use_auxiliary_loss lowerCAmelCase__ : Union[str, Any] = num_queries lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : List[str] = min_size lowerCAmelCase__ : int = max_size lowerCAmelCase__ : Optional[Any] = num_labels lowerCAmelCase__ : List[Any] = mask_feature_size def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __UpperCAmelCase ) lowerCAmelCase__ : str = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=__UpperCAmelCase ) lowerCAmelCase__ : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=__UpperCAmelCase ) > 0.5 ).float() lowerCAmelCase__ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) ,device=__UpperCAmelCase ) > 0.5).long() lowerCAmelCase__ : Any = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase_ ( self ) -> Dict: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig( decoder_ffn_dim=128 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() lowerCAmelCase__ : List[str] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Optional[int] = output.encoder_hidden_states lowerCAmelCase__ : Optional[int] = output.pixel_decoder_hidden_states lowerCAmelCase__ : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__UpperCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) ,config.decoder_config.decoder_layers ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Optional[Any]: with torch.no_grad(): lowerCAmelCase__ : int = MaskFormerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : str = model(pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ) lowerCAmelCase__ : int = model(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Dict = MaskFormerForInstanceSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() def comm_check_on_output(__UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ) lowerCAmelCase__ : Dict = model(__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = model( pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowercase : int = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowercase : Union[str, Any] = False __lowercase : Dict = False __lowercase : Tuple = False __lowercase : List[Any] = False def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : str = MaskFormerModelTester(self ) lowerCAmelCase__ : List[Any] = ConfigTester(self ,config_class=__UpperCAmelCase ,has_text_modality=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase ,**__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def UpperCAmelCase_ ( self ) -> str: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def UpperCAmelCase_ ( self ) -> Any: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(__UpperCAmelCase ) lowerCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Dict = [*signature.parameters.keys()] lowerCAmelCase__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCAmelCase__ : List[str] = MaskFormerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = (self.model_tester.min_size,) * 2 lowerCAmelCase__ : Any = { """pixel_values""": torch.randn((2, 3, *size) ,device=__UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) ,device=__UpperCAmelCase ), """class_labels""": torch.zeros(2 ,10 ,device=__UpperCAmelCase ).long(), } lowerCAmelCase__ : Tuple = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase ,**__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = model(**__UpperCAmelCase ,output_attentions=__UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase_ ( self ) -> int: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ : Dict = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ : List[str] = model(__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ : Tuple = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ : Dict = model(__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase__ : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCAmelCase__ : Union[str, Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase__ : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowerCAmelCase = 1e-4 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ) -> List[Any]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Any = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : str = self.default_image_processor lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Dict = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) lowerCAmelCase__ : Dict = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : List[str] = prepare_img() lowerCAmelCase__ : str = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**__UpperCAmelCase ) # masks_queries_logits lowerCAmelCase__ : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowerCAmelCase__ : Optional[int] = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] lowerCAmelCase__ : Optional[int] = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) # class_queries_logits lowerCAmelCase__ : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ : Union[str, Any] = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : int = prepare_img() lowerCAmelCase__ : Optional[Any] = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : str = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : str = model(**__UpperCAmelCase ) # masks_queries_logits lowerCAmelCase__ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowerCAmelCase__ : int = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] lowerCAmelCase__ : List[str] = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) # class_queries_logits lowerCAmelCase__ : Optional[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ : Tuple = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : str = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Dict = self.default_image_processor lowerCAmelCase__ : Union[str, Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="""pt""" ,) lowerCAmelCase__ : Tuple = inputs["""pixel_values"""].to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [el.to(__UpperCAmelCase ) for el in inputs["""mask_labels"""]] lowerCAmelCase__ : Union[str, Any] = [el.to(__UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowerCAmelCase__ : Any = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
37
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''ChineseCLIPImageProcessor''' _lowerCamelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> Optional[Any]: A = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase_ ,) A = kwargs.pop("""feature_extractor""" ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ ,lowerCamelCase_ ) A = self.image_processor def __call__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> str: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: A = self.tokenizer(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if images is not None: A = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if text is not None and images is not None: A = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) ,tensor_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Any: return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> int: return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ ) @property def UpperCamelCase__ ( self ) -> Dict: A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase_ ,) return self.image_processor_class
371
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCAmelCase =parser.parse_args() UpperCAmelCase =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase =CLIPImageProcessor() UpperCAmelCase =CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCAmelCase =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
77
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=7 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Dict=1_8 , lowerCAmelCase__ : List[Any]=3_0 , lowerCAmelCase__ : Tuple=4_0_0 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Any=True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = size if size is not None else {"shortest_edge": 2_0} __SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : List[str] = min_resolution __SCREAMING_SNAKE_CASE : Union[str, Any] = max_resolution __SCREAMING_SNAKE_CASE : int = do_resize __SCREAMING_SNAKE_CASE : Optional[int] = size __SCREAMING_SNAKE_CASE : int = do_center_crop __SCREAMING_SNAKE_CASE : int = crop_size __SCREAMING_SNAKE_CASE : List[Any] = do_flip_channel_order def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' _A : Any = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self : Dict ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_flip_channel_order""" ) ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 2_0} ) self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} ) __SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} ) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" pass def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
112
from __future__ import annotations import math lowercase : Any = '2020.9.26' lowercase : Union[str, Any] = 'xcodz-dot, cclaus, dhruvmanila' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float) -> tuple[float, float]: '''simple docstring''' if not all(isinstance(_lowerCamelCase , (float, int)) for val in locals().values()): __UpperCamelCase : str = F'Input values must either be float or int: {list(locals().values())}' raise TypeError(_lowerCamelCase) __UpperCamelCase : List[str] = ((x * distance) / (z + distance)) * scale __UpperCamelCase : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : str , _lowerCamelCase : float) -> tuple[float, float, float]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase): raise TypeError("Axis must be a str") __UpperCamelCase : str = locals() del input_variables["axis"] if not all(isinstance(_lowerCamelCase , (float, int)) for val in input_variables.values()): __UpperCamelCase : Dict = ( "Input values except axis must either be float or int: " F'{list(input_variables.values())}' ) raise TypeError(_lowerCamelCase) __UpperCamelCase : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": __UpperCamelCase : Tuple = x * math.cos(_lowerCamelCase) - y * math.sin(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = y * math.cos(_lowerCamelCase) + x * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z elif axis == "x": __UpperCamelCase : Dict = y * math.cos(_lowerCamelCase) - z * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z * math.cos(_lowerCamelCase) + y * math.sin(_lowerCamelCase) __UpperCamelCase : List[str] = x elif axis == "y": __UpperCamelCase : Any = x * math.cos(_lowerCamelCase) - z * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z * math.cos(_lowerCamelCase) + x * math.sin(_lowerCamelCase) __UpperCamelCase : Dict = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'") return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }") print(f"{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }")
232
0
from math import factorial lowerCAmelCase_ = {str(d): factorial(d) for d in range(10)} def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(__magic_name__ ) ) def snake_case( ) -> int: '''simple docstring''' lowercase : Optional[Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , __magic_name__ ) if sum_of_digit_factorial(__magic_name__ ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
116
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _A ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : str , _A : float , _A : Callable , _A : int , _A : float = 1.0 , _A : str = None , ) -> List[str]: """simple docstring""" super().__init__() lowercase : List[str] = initial_learning_rate lowercase : List[str] = warmup_steps lowercase : Tuple = power lowercase : Any = decay_schedule_fn lowercase : Union[str, Any] = name def __call__( self : str , _A : Any ) -> Optional[int]: """simple docstring""" with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase : List[Any] = tf.cast(_A , tf.floataa ) lowercase : Union[str, Any] = tf.cast(self.warmup_steps , tf.floataa ) lowercase : List[str] = global_step_float / warmup_steps_float lowercase : int = self.initial_learning_rate * tf.math.pow(_A , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_A , ) def __a ( self : Dict ) -> List[str]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 0.0 , __magic_name__ = 0.9 , __magic_name__ = 0.9_9_9 , __magic_name__ = 1e-8 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = 0.0 , __magic_name__ = 1.0 , __magic_name__ = None , ) -> int: '''simple docstring''' lowercase : List[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__magic_name__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__magic_name__ , ) if num_warmup_steps: lowercase : Optional[int] = WarmUp( initial_learning_rate=__magic_name__ , decay_schedule_fn=__magic_name__ , warmup_steps=__magic_name__ , ) if weight_decay_rate > 0.0: lowercase : Optional[Any] = AdamWeightDecay( learning_rate=__magic_name__ , weight_decay_rate=__magic_name__ , beta_a=__magic_name__ , beta_a=__magic_name__ , epsilon=__magic_name__ , clipnorm=__magic_name__ , global_clipnorm=__magic_name__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=__magic_name__ , ) else: lowercase : str = tf.keras.optimizers.Adam( learning_rate=__magic_name__ , beta_a=__magic_name__ , beta_a=__magic_name__ , epsilon=__magic_name__ , clipnorm=__magic_name__ , global_clipnorm=__magic_name__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _A ( _lowerCamelCase ): def __init__( self : Optional[Any] , _A : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , _A : float = 0.9 , _A : float = 0.999 , _A : float = 1E-7 , _A : bool = False , _A : float = 0.0 , _A : Optional[List[str]] = None , _A : Optional[List[str]] = None , _A : str = "AdamWeightDecay" , **_A : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(_A , _A , _A , _A , _A , _A , **_A ) lowercase : Tuple = weight_decay_rate lowercase : List[str] = include_in_weight_decay lowercase : Optional[Any] = exclude_from_weight_decay @classmethod def __a ( cls : Tuple , _A : Tuple ) -> List[str]: """simple docstring""" lowercase : Optional[int] = {'''WarmUp''': WarmUp} return super(_A , cls ).from_config(_A , custom_objects=_A ) def __a ( self : Dict , _A : Tuple , _A : Dict , _A : Tuple ) -> Tuple: """simple docstring""" super(_A , self )._prepare_local(_A , _A , _A ) lowercase : List[Any] = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def __a ( self : Tuple , _A : Optional[int] , _A : Union[str, Any] , _A : List[Any] ) -> Any: """simple docstring""" lowercase : str = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def __a ( self : Union[str, Any] , _A : Any , _A : Optional[Any]=None , **_A : Tuple ) -> Any: """simple docstring""" lowercase , lowercase : Tuple = list(zip(*_A ) ) return super(_A , self ).apply_gradients(zip(_A , _A ) , name=_A , **_A ) def __a ( self : List[Any] , _A : Optional[Any] , _A : str , _A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase : Any = apply_state or {} lowercase : str = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowercase : List[Any] = self._fallback_apply_state(_A , _A ) lowercase : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __a ( self : Tuple , _A : Union[str, Any] , _A : Tuple , _A : str=None ) -> Optional[int]: """simple docstring""" lowercase , lowercase : List[str] = self._get_lr(var.device , var.dtype.base_dtype , _A ) lowercase : Optional[Any] = self._decay_weights_op(_A , _A , _A ) with tf.control_dependencies([decay] ): return super(_A , self )._resource_apply_dense(_A , _A , **_A ) def __a ( self : Optional[int] , _A : List[Any] , _A : Dict , _A : Union[str, Any] , _A : str=None ) -> Optional[int]: """simple docstring""" lowercase , lowercase : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , _A ) lowercase : str = self._decay_weights_op(_A , _A , _A ) with tf.control_dependencies([decay] ): return super(_A , self )._resource_apply_sparse(_A , _A , _A , **_A ) def __a ( self : List[Any] ) -> str: """simple docstring""" lowercase : Optional[Any] = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def __a ( self : str , _A : Optional[int] ) -> Tuple: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_A , _A ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_A , _A ) is not None: return False return True class _A ( _lowerCamelCase ): def __init__( self : List[Any] ) -> str: """simple docstring""" lowercase : Optional[Any] = [] lowercase : str = None @property def __a ( self : Any ) -> int: """simple docstring""" if self._accum_steps is None: lowercase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_A , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __a ( self : int ) -> List[Any]: """simple docstring""" if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , _A : int ) -> str: """simple docstring""" if not self._gradients: lowercase : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_A ) , trainable=_A , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_A ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(_A )}""" ) for accum_gradient, gradient in zip(self._gradients , _A ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_A ) self._accum_steps.assign_add(1 ) def __a ( self : Optional[Any] ) -> Tuple: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_A ) )
116
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , a , a=2 , a=32 , a=16 , a=3 , a=True , a=True , a=32 , a=4 , a=[0, 1, 2, 3] , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=0.02 , a=3 , a=[1, 384, 24, 24] , a=True , a=None , ): lowercase__ : Tuple = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : str = patch_size lowercase__ : List[Any] = num_channels lowercase__ : Any = is_training lowercase__ : str = use_labels lowercase__ : int = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : Tuple = backbone_out_indices lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : List[str] = num_labels lowercase__ : Optional[Any] = backbone_featmap_shape lowercase__ : int = scope lowercase__ : Any = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase__ : Dict = (image_size // patch_size) ** 2 lowercase__ : List[Any] = num_patches + 1 def snake_case_ ( self): lowercase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowercase__ : List[str] = self.get_config() return config, pixel_values, labels def snake_case_ ( self): lowercase__ : List[str] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a , backbone_featmap_shape=self.backbone_featmap_shape , ) def snake_case_ ( self , a , a , a): lowercase__ : int = DPTModel(config=a) model.to(a) model.eval() lowercase__ : Any = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case_ ( self , a , a , a): lowercase__ : str = self.num_labels lowercase__ : int = DPTForDepthEstimation(a) model.to(a) model.eval() lowercase__ : int = model(a) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size)) def snake_case_ ( self , a , a , a): lowercase__ : str = self.num_labels lowercase__ : Optional[int] = DPTForSemanticSegmentation(a) model.to(a) model.eval() lowercase__ : Any = model(a , labels=a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def snake_case_ ( self): lowercase__ : Tuple = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[int] = config_and_inputs lowercase__ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , unittest.TestCase ): __lowerCamelCase : Optional[Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Any = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : List[Any] = False def snake_case_ ( self): lowercase__ : List[str] = DPTModelTester(self) lowercase__ : int = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37) def snake_case_ ( self): self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds') def snake_case_ ( self): pass def snake_case_ ( self): lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowercase__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear)) def snake_case_ ( self): lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a) lowercase__ : Any = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Any = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a) def snake_case_ ( self): lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def snake_case_ ( self): lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a) def snake_case_ ( self): lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a) def snake_case_ ( self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[Any] = True if model_class in get_values(a): continue lowercase__ : int = model_class(a) model.to(a) model.train() lowercase__ : Tuple = self._prepare_for_class(a , a , return_labels=a) lowercase__ : str = model(**a).loss loss.backward() def snake_case_ ( self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[str] = False lowercase__ : List[Any] = True if model_class in get_values(a) or not model_class.supports_gradient_checkpointing: continue lowercase__ : Optional[int] = model_class(a) model.to(a) model.gradient_checkpointing_enable() model.train() lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a) lowercase__ : Any = model(**a).loss loss.backward() def snake_case_ ( self): lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[Any] = _config_zero_init(a) for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(config=a) # Skip the check for the backbone lowercase__ : Optional[int] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase__ : Optional[int] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def snake_case_ ( self): pass @slow def snake_case_ ( self): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase__ : Union[str, Any] = DPTModel.from_pretrained(a) self.assertIsNotNone(a) def snake_case_ ( self): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[Any] = 'add' with self.assertRaises(a): lowercase__ : int = DPTForDepthEstimation(a) def snake_case__ ( ): '''simple docstring''' lowercase__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): def snake_case_ ( self): lowercase__ : Union[str, Any] = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas') lowercase__ : Optional[int] = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas').to(a) lowercase__ : Optional[int] = prepare_img() lowercase__ : str = image_processor(images=a , return_tensors='pt').to(a) # forward pass with torch.no_grad(): lowercase__ : Dict = model(**a) lowercase__ : Optional[Any] = outputs.predicted_depth # verify the predicted depth lowercase__ : List[Any] = torch.Size((1, 384, 384)) self.assertEqual(predicted_depth.shape , a) lowercase__ : Optional[int] = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]]).to(a) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a , atol=1e-4))
214
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError('String lengths must match!' ) lowercase__ : Union[str, Any] = 0 for chara, chara in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
214
1
from math import log from scipy.constants import Boltzmann, physical_constants lowercase : List[Any] = 3_0_0 # TEMPERATURE (unit = K) def A_ ( A__ , A__ , A__ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
364
import glob import os import random from string import ascii_lowercase, digits import cva lowercase : Optional[Any] = """""" lowercase : int = """""" lowercase : List[Any] = """""" lowercase : Optional[int] = 1 # (0 is vertical, 1 is horizontal) def A_ ( ) -> None: a__ , a__ : str = get_dataset(A__ , A__ ) print('Processing...' ) a__ , a__ , a__ : Tuple = update_image_and_anno(A__ , A__ , A__ ) for index, image in enumerate(A__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a__ : int = random_chars(32 ) a__ : Optional[Any] = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] a__ : Optional[int] = F'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(F'/{file_root}.jpg' , A__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Success {index+1}/{len(A__ )} with {file_name}' ) a__ : List[str] = [] for anno in new_annos[index]: a__ : Union[str, Any] = F'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(A__ ) with open(F'/{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def A_ ( A__ , A__ ) -> tuple[list, list]: a__ : int = [] a__ : int = [] for label_file in glob.glob(os.path.join(A__ , '*.txt' ) ): a__ : Optional[Any] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(A__ ) as in_file: a__ : Tuple = in_file.readlines() a__ : Dict = os.path.join(A__ , F'{label_name}.jpg' ) a__ : int = [] for obj_list in obj_lists: a__ : Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(A__ ) labels.append(A__ ) return img_paths, labels def A_ ( A__ , A__ , A__ = 1 ) -> tuple[list, list, list]: a__ : Optional[int] = [] a__ : Any = [] a__ : Dict = [] for idx in range(len(A__ ) ): a__ : Optional[int] = [] a__ : Optional[Any] = img_list[idx] path_list.append(A__ ) a__ : Union[str, Any] = anno_list[idx] a__ : List[str] = cva.imread(A__ ) if flip_type == 1: a__ : List[str] = cva.flip(A__ , A__ ) for bbox in img_annos: a__ : Optional[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: a__ : Optional[Any] = cva.flip(A__ , A__ ) for bbox in img_annos: a__ : Optional[int] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(A__ ) new_imgs_list.append(A__ ) return new_imgs_list, new_annos_lists, path_list def A_ ( A__ = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" a__ : Optional[int] = ascii_lowercase + digits return "".join(random.choice(A__ ) for _ in range(A__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
225
0
from __future__ import annotations def snake_case__ ( SCREAMING_SNAKE_CASE_ : list[int] ): '''simple docstring''' lowercase__ : Optional[Any] = len(UpperCAmelCase_ ) // 2 # choose the middle 3 elements lowercase__ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
214
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : int = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'blenderbot-small' SCREAMING_SNAKE_CASE__ = ['past_key_values'] SCREAMING_SNAKE_CASE__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _lowerCamelCase=5_0265 , _lowerCamelCase=512 , _lowerCamelCase=8 , _lowerCamelCase=2048 , _lowerCamelCase=16 , _lowerCamelCase=8 , _lowerCamelCase=2048 , _lowerCamelCase=16 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="gelu" , _lowerCamelCase=512 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1 , _lowerCamelCase=False , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=2 , **_lowerCamelCase , ): a :Dict = vocab_size a :Optional[Any] = max_position_embeddings a :str = d_model a :Any = encoder_ffn_dim a :Optional[int] = encoder_layers a :List[str] = encoder_attention_heads a :List[str] = decoder_ffn_dim a :Optional[int] = decoder_layers a :str = decoder_attention_heads a :List[str] = dropout a :Optional[int] = attention_dropout a :Dict = activation_dropout a :List[str] = activation_function a :List[Any] = init_std a :Optional[int] = encoder_layerdrop a :Tuple = decoder_layerdrop a :List[str] = use_cache a :int = encoder_layers a :Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) class _snake_case ( _snake_case ): @property def SCREAMING_SNAKE_CASE__ ( self ): if self.task in ["default", "seq2seq-lm"]: a :Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: a :Union[str, Any] = {0: '''batch'''} a :Tuple = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: a :Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} a :str = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. a :Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: a , a :str = self.num_layers for i in range(_lowerCamelCase ): a :List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} a :List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: a :Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self ): if self.task in ["default", "seq2seq-lm"]: a :List[Any] = super().outputs else: a :Union[str, Any] = super(_lowerCamelCase , self ).outputs if self.use_past: a , a :int = self.num_layers for i in range(_lowerCamelCase ): a :int = {0: '''batch''', 2: '''past_sequence + sequence'''} a :Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): a :Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs a :Dict = seq_length if not self.use_past else 1 a :Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) a :List[Any] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} a :List[str] = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a , a :Optional[Any] = common_inputs['''input_ids'''].shape a :Tuple = common_inputs['''decoder_input_ids'''].shape[1] a , a :List[Any] = self.num_attention_heads a :List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a :int = decoder_seq_length + 3 a :Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a :Union[str, Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) a :List[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a , a :Optional[int] = self.num_layers a :str = min(_lowerCamelCase , _lowerCamelCase ) a :str = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers a :Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. a :int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): a :Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a , a :Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a :Optional[int] = seqlen + 2 a , a :Union[str, Any] = self.num_layers a , a :Optional[Any] = self.num_attention_heads a :str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a :Tuple = common_inputs['''attention_mask'''].dtype a :Any = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) a :Any = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a :Optional[Any] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a :Optional[int] = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) a :Tuple = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence a :List[str] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size a :Dict = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): if self.task in ["default", "seq2seq-lm"]: a :Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": a :Dict = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: a :Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if self.task in ["default", "seq2seq-lm"]: a :Optional[int] = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: a :Any = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
94
0
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def UpperCamelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : Tuple = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } lowerCAmelCase_ : Dict = Dataset.from_dict(lowerCAmelCase__ ) return dataset class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : List[str] = get_dataset() lowerCAmelCase_ : str = make_duplicate_clusters(SCREAMING_SNAKE_CASE_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : str = get_dataset() lowerCAmelCase_ : Union[str, Any] = deduplicate_dataset(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) print(SCREAMING_SNAKE_CASE_ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , SCREAMING_SNAKE_CASE_ )
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowercase__ : Optional[int] = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowercase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _UpperCAmelCase ( snake_case__ ): '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' __snake_case : Any = params __snake_case : Dict = np.array(UpperCAmelCase_ ) __snake_case : List[Any] = np.array([len(UpperCAmelCase_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__(self , a_ ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__(self ): '''simple docstring''' return len(self.lengths ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.params.max_model_input_size __snake_case : List[Any] = self.lengths > max_len logger.info(f"""Splitting {sum(UpperCAmelCase_ )} too long sequences.""" ) def divide_chunks(a_ , a_ ): return [l[i : i + n] for i in range(0 , len(UpperCAmelCase_ ) , UpperCAmelCase_ )] __snake_case : Dict = [] __snake_case : List[Any] = [] if self.params.mlm: __snake_case , __snake_case : str = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: __snake_case , __snake_case : int = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __snake_case : Union[str, Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __snake_case : List[Any] = np.insert(UpperCAmelCase_ , 0 , UpperCAmelCase_ ) if sub_s[-1] != sep_id: __snake_case : List[str] = np.insert(UpperCAmelCase_ , len(UpperCAmelCase_ ) , UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(UpperCAmelCase_ ) new_tok_ids.extend(UpperCAmelCase_ ) new_lengths.extend([len(UpperCAmelCase_ ) for l in sub_seqs] ) __snake_case : Union[str, Any] = np.array(UpperCAmelCase_ ) __snake_case : Union[str, Any] = np.array(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = len(self ) __snake_case : List[Any] = self.lengths > 11 __snake_case : Optional[int] = self.token_ids[indices] __snake_case : str = self.lengths[indices] __snake_case : Union[str, Any] = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __snake_case : List[str] = self.params.special_tok_ids['''unk_token'''] __snake_case : str = len(self ) __snake_case : Any = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __snake_case : List[str] = (unk_occs / self.lengths) < 0.5 __snake_case : Optional[Any] = self.token_ids[indices] __snake_case : int = self.lengths[indices] __snake_case : Optional[int] = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[str] = [t[0] for t in batch] __snake_case : Dict = [t[1] for t in batch] assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) # Max for paddings __snake_case : List[str] = max(UpperCAmelCase_ ) # Pad token ids if self.params.mlm: __snake_case : Union[str, Any] = self.params.special_tok_ids['''pad_token'''] else: __snake_case : Dict = self.params.special_tok_ids['''unk_token'''] __snake_case : int = [list(t.astype(UpperCAmelCase_ ) ) + [pad_idx] * (max_seq_len_ - len(UpperCAmelCase_ )) for t in token_ids] assert len(tk_ ) == len(UpperCAmelCase_ ) assert all(len(UpperCAmelCase_ ) == max_seq_len_ for t in tk_ ) __snake_case : Tuple = torch.tensor(tk_ ) # (bs, max_seq_len_) __snake_case : int = torch.tensor(UpperCAmelCase_ ) # (bs) return tk_t, lg_t
102
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[Any] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ) ->int: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ) ->Any: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] )
347
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py a ="""src/transformers""" a ="""docs/source/en""" a =""".""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: with open(lowerCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Any = f.readlines() # Find the start prompt. __lowerCamelCase : List[str] = 0 while not lines[start_index].startswith(lowerCamelCase__ ): start_index += 1 start_index += 1 __lowerCamelCase : int = start_index while not lines[end_index].startswith(lowerCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | a ="""Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. a =re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") a =re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. a =re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. a =direct_transformers_import(TRANSFORMERS_PATH) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]: __lowerCamelCase : int = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowerCamelCase__ ) return [m.group(0 ) for m in matches] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: __lowerCamelCase : int = 2 if text == '✅' or text == '❌' else len(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = (width - text_length) // 2 __lowerCamelCase : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def SCREAMING_SNAKE_CASE__ ( ) -> str: __lowerCamelCase : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __lowerCamelCase : List[str] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __lowerCamelCase : Dict = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : List[str] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCamelCase__ ): __lowerCamelCase : List[Any] = None if attr_name.endswith('Tokenizer' ): __lowerCamelCase : Dict = slow_tokenizers __lowerCamelCase : List[Any] = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): __lowerCamelCase : Union[str, Any] = fast_tokenizers __lowerCamelCase : str = attr_name[:-1_3] elif _re_tf_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : List[str] = tf_models __lowerCamelCase : Optional[int] = _re_tf_models.match(lowerCamelCase__ ).groups()[0] elif _re_flax_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : List[Any] = flax_models __lowerCamelCase : Optional[Any] = _re_flax_models.match(lowerCamelCase__ ).groups()[0] elif _re_pt_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : Optional[int] = pt_models __lowerCamelCase : Any = _re_pt_models.match(lowerCamelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): __lowerCamelCase : List[Any] = True break # Try again after removing the last word in the name __lowerCamelCase : str = ''.join(camel_case_split(lowerCamelCase__ )[:-1] ) # Let's build that table! __lowerCamelCase : str = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __lowerCamelCase : Union[str, Any] = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __lowerCamelCase : List[Any] = [len(lowerCamelCase__ ) + 2 for c in columns] __lowerCamelCase : int = max([len(lowerCamelCase__ ) for name in model_names] ) + 2 # Build the table per se __lowerCamelCase : Union[str, Any] = '|' + '|'.join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for c, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" __lowerCamelCase : List[str] = {True: '✅', False: '❌'} for name in model_names: __lowerCamelCase : Optional[int] = model_name_to_prefix[name] __lowerCamelCase : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for l, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + "|\n" return table def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=False ) -> Any: __lowerCamelCase : List[str] = _find_text_in_file( filename=os.path.join(lowerCamelCase__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) __lowerCamelCase : List[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCamelCase__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": a =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a =parser.parse_args() check_model_table(args.fix_and_overwrite)
358
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a =[ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ) -> Optional[int]: __lowerCamelCase : int = True while ask_again: __lowerCamelCase : Dict = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=[] , lowerCamelCase__=None , lowerCamelCase__=0 ) -> str: __lowerCamelCase : Union[str, Any] = BulletMenu(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Tuple = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: __lowerCamelCase : List[str] = int(lowerCamelCase__ ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = int(lowerCamelCase__ ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: __lowerCamelCase : Union[str, Any] = int(lowerCamelCase__ ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: __lowerCamelCase : Optional[Any] = int(lowerCamelCase__ ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: return {"yes": True, "no": False}[value.lower()] class A_ ( argparse.RawDescriptionHelpFormatter ): def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : int = super()._format_usage(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = usage.replace('<command> [<args>] ' ,'') return usage
113
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Dict = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = ["""GLPNFeatureExtractor"""] UpperCAmelCase_ : Union[str, Any] = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = "cpu" ,lowercase = None ) -> None: snake_case : int = torch.load(lowercase ,map_location=lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowercase ,torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) snake_case : Dict = v.half() if save_path is None: # overwrite src_path snake_case : Optional[Any] = src_path torch.save(lowercase ,lowercase ) if __name__ == "__main__": fire.Fire(convert)
124
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModel.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModel.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForPreTraining.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(__lowercase , from_pt=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__lowercase , from_tf=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(__lowercase , from_pt=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained(__lowercase , from_tf=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_pt=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_tf=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForQuestionAnswering.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) def _snake_case (self ): __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 )
358
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A__ : lowerCAmelCase__ : int lowerCAmelCase__ : Node | None = None lowerCAmelCase__ : Node | None = None def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = Node(1 ) __lowercase = Node(2 ) __lowercase = Node(3 ) __lowercase = Node(4 ) __lowercase = Node(5 ) return tree def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None ) -> Tuple: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None ) -> List[Any]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None ) -> int: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None ) -> List[str]: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None ) -> List[Any]: __lowercase = [] if root is None: return output __lowercase = deque([root] ) while process_queue: __lowercase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> Optional[int]: __lowercase = [] def populate_output(SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_A , _A ) return output def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> List[Any]: __lowercase = [] def populate_output(SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_A , _A ) return output def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None ) -> List[Any]: if root is None: return [] __lowercase = [] __lowercase = 0 __lowercase = height(_A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_A , _A ) ) __lowercase = 1 else: output.append(get_nodes_from_right_to_left(_A , _A ) ) __lowercase = 0 return output def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: # Main function for testing. __lowercase = make_tree() print(F"""In-order Traversal: {inorder(_A )}""" ) print(F"""Pre-order Traversal: {preorder(_A )}""" ) print(F"""Post-order Traversal: {postorder(_A )}""" , '\n' ) print(F"""Height of Tree: {height(_A )}""" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(_A ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(_A ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(_A , level=_A ) ) print('\nZigZag order Traversal: ' ) print(zigzag(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
325
import os import string import sys lowerCamelCase = 1 << 8 lowerCamelCase = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } lowerCamelCase = KEYMAP['''up'''] lowerCamelCase = KEYMAP['''left'''] if sys.platform == "win32": lowerCamelCase = [] lowerCamelCase = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase = ord(str(i)) def UpperCAmelCase__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt a__ ='''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke a__ =msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): a__ =ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: a__ =chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) a__ =chr(KEYMAP['''esc'''] ) except KeyError: a__ =cha[1] else: a__ =ch.decode(_A ) else: a__ =WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty a__ =sys.stdin.fileno() a__ =termios.tcgetattr(_A ) try: tty.setraw(_A ) a__ =sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def UpperCAmelCase__ ( ): '''simple docstring''' a__ =get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: a__ =get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: a__ =get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
188
0
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCAmelCase: Optional[int] = 'naver-clova-ix/donut-base' class a__( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): a : Dict = DonutProcessor.from_pretrained(__snake_case ) def lowercase_ ( self : Any ): a : Dict = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a : str = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a : int = self.processor.tokenajson(__snake_case ) self.assertDictEqual(__snake_case , __snake_case )
357
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a__: def __init__( self : Optional[int] ): a : int = '' a : List[str] = '' a : int = [] a : Optional[Any] = 0 a : Optional[Any] = 2_56 a : int = 0 a : Optional[int] = 0 a : str = 0 a : int = 0 def lowercase_ ( self : List[str] , __snake_case : int ): a : Optional[Any] = cva.imread(__snake_case , 0 ) a : int = copy.deepcopy(self.img ) a , a , a : Optional[int] = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) a : str = np.sum(__snake_case ) for i in range(len(__snake_case ) ): a : List[str] = x[i] / self.k self.sk += prk a : List[Any] = (self.L - 1) * self.sk if self.rem != 0: a : Union[str, Any] = int(last % last ) a : int = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__snake_case ) a : int = int(np.ma.count(self.img ) / self.img[1].size ) a : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): a : Tuple = self.img[j][i] if num != self.last_list[num]: a : Union[str, Any] = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def lowercase_ ( self : Union[str, Any] ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def lowercase_ ( self : Any ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase: Dict = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase: Optional[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
96
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = XLMRobertaTokenizer __lowerCAmelCase = XLMRobertaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def A (self : int ): super().setUp() # We have a SentencePiece fixture for testing A = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A (self : Dict ): A = """<pad>""" A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def A (self : Optional[int] ): A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__lowerCAmelCase ) , 1002 ) def A (self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def A (self : str ): A = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) A = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def A (self : Dict ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) A = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) A = tempfile.mkdtemp() A = tokenizer_r.save_pretrained(__lowerCAmelCase ) A = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) A = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way A = tokenizer_r.from_pretrained(__lowerCAmelCase ) A = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=True A = tempfile.mkdtemp() A = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) A = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way A = tokenizer_r.from_pretrained(__lowerCAmelCase ) A = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=False A = tempfile.mkdtemp() A = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) A = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A = tokenizer_r.from_pretrained(__lowerCAmelCase ) A = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) @cached_property def A (self : Optional[Any] ): return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def A (self : Union[str, Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCAmelCase , f.name ) A = XLMRobertaTokenizer(f.name , keep_accents=__lowerCAmelCase ) A = pickle.dumps(__lowerCAmelCase ) pickle.loads(__lowerCAmelCase ) def A (self : List[Any] ): if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer() A = """I was born in 92000, and this is falsé.""" A = tokenizer.tokenize(__lowerCAmelCase ) A = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) A = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) A = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) A = self.get_rust_tokenizer() A = tokenizer.encode(__lowerCAmelCase ) A = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A (self : int ): A = """Hello World!""" A = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) ) @slow def A (self : Dict ): A = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) A = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) ) @slow def A (self : List[str] ): A = {"""input_ids""": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
258
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ['''input_features'''] def __init__( self , __lowerCAmelCase=80 , __lowerCAmelCase=16000 , __lowerCAmelCase=160 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=0.0 , __lowerCAmelCase=False , **__lowerCAmelCase , ): """simple docstring""" super().__init__( feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCAmelCase = n_fft lowerCAmelCase = hop_length lowerCAmelCase = chunk_length lowerCAmelCase = chunk_length * sampling_rate lowerCAmelCase = self.n_samples // hop_length lowerCAmelCase = sampling_rate lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCAmelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=__lowerCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ) def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = spectrogram( __lowerCAmelCase , window_function(self.n_fft , """hann""") , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCAmelCase = log_spec[:, :-1] lowerCAmelCase = np.maximum(__lowerCAmelCase , log_spec.max() - 8.0) lowerCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0): """simple docstring""" if attention_mask is not None: lowerCAmelCase = np.array(__lowerCAmelCase , np.intaa) lowerCAmelCase = [] for vector, length in zip(__lowerCAmelCase , attention_mask.sum(-1)): lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7) if length < normed_slice.shape[0]: lowerCAmelCase = padding_value normed_input_values.append(__lowerCAmelCase) else: lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7) for x in input_values] return normed_input_values def __call__( self , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "max_length" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""") lowerCAmelCase = isinstance(__lowerCAmelCase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") lowerCAmelCase = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray): lowerCAmelCase = np.asarray(__lowerCAmelCase , dtype=np.floataa) elif isinstance(__lowerCAmelCase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): lowerCAmelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: lowerCAmelCase = [np.asarray([raw_speech]).T] lowerCAmelCase = BatchFeature({"""input_features""": raw_speech}) # convert into correct format for padding lowerCAmelCase = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCAmelCase = np.stack(padded_inputs["""input_features"""] , axis=0) # make sure list is in array format lowerCAmelCase = padded_inputs.get("""input_features""").transpose(2 , 0 , 1) lowerCAmelCase = [self._np_extract_fbank_features(__lowerCAmelCase) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCAmelCase): lowerCAmelCase = [np.asarray(__lowerCAmelCase , dtype=np.floataa) for feature in input_features] else: lowerCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(__lowerCAmelCase) return padded_inputs def a_ ( self): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__) lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
272
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( __SCREAMING_SNAKE_CASE ): lowercase : Dict = ["image_processor", "tokenizer"] lowercase : List[str] = "FlavaImageProcessor" lowercase : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__( self :List[Any] ,_UpperCamelCase :int=None ,_UpperCamelCase :int=None ,**_UpperCamelCase :Any ): snake_case_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,__UpperCAmelCase ,) snake_case_ : List[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCAmelCase ,__UpperCAmelCase ) snake_case_ : Dict = self.image_processor def __call__( self :List[str] ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = None ,_UpperCamelCase :Union[str, Any] = True ,_UpperCamelCase :Optional[int] = False ,_UpperCamelCase :Tuple = False ,_UpperCamelCase :List[str] = None ,_UpperCamelCase :List[str] = 0 ,_UpperCamelCase :List[str] = None ,_UpperCamelCase :int = None ,_UpperCamelCase :Dict = None ,_UpperCamelCase :Union[str, Any] = None ,_UpperCamelCase :int = None ,_UpperCamelCase :Any = False ,_UpperCamelCase :Union[str, Any] = False ,_UpperCamelCase :int = False ,_UpperCamelCase :List[str] = False ,_UpperCamelCase :Optional[int] = True ,_UpperCamelCase :List[Any] = None ,**_UpperCamelCase :List[Any] ,): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Optional[Any] = self.tokenizer( text=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,padding=__UpperCAmelCase ,truncation=__UpperCAmelCase ,max_length=__UpperCAmelCase ,stride=__UpperCAmelCase ,pad_to_multiple_of=__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ,return_attention_mask=__UpperCAmelCase ,return_overflowing_tokens=__UpperCAmelCase ,return_special_tokens_mask=__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,return_length=__UpperCAmelCase ,verbose=__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,**__UpperCAmelCase ,) if images is not None: snake_case_ : List[Any] = self.image_processor( __UpperCAmelCase ,return_image_mask=__UpperCAmelCase ,return_codebook_pixels=__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,**__UpperCAmelCase ,) if text is not None and images is not None: encoding.update(__UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) ,tensor_type=__UpperCAmelCase ) def a__ ( self :str ,*_UpperCamelCase :Optional[int] ,**_UpperCamelCase :Union[str, Any] ): return self.tokenizer.batch_decode(*__UpperCAmelCase ,**__UpperCAmelCase ) def a__ ( self :Optional[Any] ,*_UpperCamelCase :Optional[int] ,**_UpperCamelCase :int ): return self.tokenizer.decode(*__UpperCAmelCase ,**__UpperCAmelCase ) @property def a__ ( self :Optional[int] ): snake_case_ : Tuple = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__ ( self :Union[str, Any] ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,__UpperCAmelCase ,) return self.image_processor_class @property def a__ ( self :int ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,__UpperCAmelCase ,) return self.image_processor
365
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __A : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
8
0
from copy import deepcopy class __snake_case : def __init__( self : List[str] , _snake_case : list[int] | None = None , _snake_case : int | None = None): """simple docstring""" if arr is None and size is not None: UpperCAmelCase_ = size UpperCAmelCase_ = [0] * size elif arr is not None: self.init(_snake_case) else: raise ValueError('''Either arr or size must be specified''') def lowerCamelCase ( self : Tuple , _snake_case : list[int]): """simple docstring""" UpperCAmelCase_ = len(_snake_case) UpperCAmelCase_ = deepcopy(_snake_case) for i in range(1 , self.size): UpperCAmelCase_ = self.next_(_snake_case) if j < self.size: self.tree[j] += self.tree[i] def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.tree[:] for i in range(self.size - 1 , 0 , -1): UpperCAmelCase_ = self.next_(_snake_case) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowerCamelCase ( _snake_case : int): """simple docstring""" return index + (index & (-index)) @staticmethod def lowerCamelCase ( _snake_case : int): """simple docstring""" return index - (index & (-index)) def lowerCamelCase ( self : Tuple , _snake_case : int , _snake_case : int): """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCAmelCase_ = self.next_(_snake_case) def lowerCamelCase ( self : Tuple , _snake_case : int , _snake_case : int): """simple docstring""" self.add(_snake_case , value - self.get(_snake_case)) def lowerCamelCase ( self : str , _snake_case : int): """simple docstring""" if right == 0: return 0 UpperCAmelCase_ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCAmelCase_ = self.prev(_snake_case) return result def lowerCamelCase ( self : Dict , _snake_case : int , _snake_case : int): """simple docstring""" return self.prefix(_snake_case) - self.prefix(_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : int): """simple docstring""" return self.query(_snake_case , index + 1) def lowerCamelCase ( self : Tuple , _snake_case : int): """simple docstring""" value -= self.tree[0] if value < 0: return -1 UpperCAmelCase_ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCAmelCase_ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
51
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowercase__ ( ctypes.Structure ): '''simple docstring''' A_ : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): """simple docstring""" if os.name == "nt": _SCREAMING_SNAKE_CASE : Tuple = CursorInfo() _SCREAMING_SNAKE_CASE : Tuple = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def snake_case_ ( ): """simple docstring""" if os.name == "nt": _SCREAMING_SNAKE_CASE : int = CursorInfo() _SCREAMING_SNAKE_CASE : List[str] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) _SCREAMING_SNAKE_CASE : Tuple = True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
200
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) __snake_case : Optional[int] = parser.parse_args() __snake_case : Tuple = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __snake_case : Union[str, Any] = CLIPImageProcessor() __snake_case : Union[str, Any] = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') __snake_case : Any = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
354
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = (CMStochasticIterativeScheduler,) __snake_case = 10 def lowercase__ ( self : List[str] , **lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' A__ : int ={ """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCAmelCase_ ) return config def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Dict =10 A__ : str =self.get_scheduler_config() A__ : Any =self.scheduler_classes[0](**lowerCAmelCase_ ) scheduler.set_timesteps(lowerCAmelCase_ ) A__ : List[Any] =scheduler.timesteps[0] A__ : Union[str, Any] =scheduler.timesteps[1] A__ : Optional[int] =self.dummy_sample A__ : Union[str, Any] =0.1 * sample A__ : Dict =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample A__ : int =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ : Union[str, Any] =self.scheduler_classes[0] A__ : Dict =self.get_scheduler_config() A__ : Any =scheduler_class(**lowerCAmelCase_ ) A__ : int =1 scheduler.set_timesteps(lowerCAmelCase_ ) A__ : Any =scheduler.timesteps A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[Any] =self.dummy_model() A__ : Optional[int] =self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCAmelCase_ ): # 1. scale model input A__ : Optional[Any] =scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict noise residual A__ : Union[str, Any] =model(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. predict previous sample x_t-1 A__ : Tuple =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample A__ : Dict =pred_prev_sample A__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase_ ) ) A__ : Optional[Any] =torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =self.scheduler_classes[0] A__ : Dict =self.get_scheduler_config() A__ : Tuple =scheduler_class(**lowerCAmelCase_ ) A__ : Tuple =[1_06, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) A__ : List[Any] =scheduler.timesteps A__ : Optional[Any] =torch.manual_seed(0 ) A__ : int =self.dummy_model() A__ : int =self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A__ : Any =scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict noise residual A__ : List[str] =model(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. predict previous sample x_t-1 A__ : Dict =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample A__ : Union[str, Any] =pred_prev_sample A__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase_ ) ) A__ : List[Any] =torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' A__ : Optional[Any] =self.scheduler_classes[0] A__ : Union[str, Any] =self.get_scheduler_config() A__ : List[Any] =scheduler_class(**lowerCAmelCase_ ) A__ : Tuple =[39, 30, 12, 15, 0] with self.assertRaises(lowerCAmelCase_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.scheduler_classes[0] A__ : List[str] =self.get_scheduler_config() A__ : Tuple =scheduler_class(**lowerCAmelCase_ ) A__ : Dict =[39, 30, 12, 1, 0] A__ : int =len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.scheduler_classes[0] A__ : Any =self.get_scheduler_config() A__ : Optional[int] =scheduler_class(**lowerCAmelCase_ ) A__ : List[str] =[scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
136
0
def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
65
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''LayoutLMv3FeatureExtractor'''] __A = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
0
"""simple docstring""" from __future__ import annotations def _A ( lowercase ): """simple docstring""" a =[True] * limit a =False a =False a =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): a =i * 2 while index < limit: a =False a =index + i a =[2] for i in range(3 , lowercase , 2 ): if is_prime[i]: primes.append(lowercase ) return primes def _A ( lowercase = 1_00_00_00 ): """simple docstring""" a =prime_sieve(lowercase ) a =0 a =0 for i in range(len(lowercase ) ): for j in range(i + length , len(lowercase ) ): a =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: a =j - i a =sol return largest if __name__ == "__main__": print(F'{solution() = }')
215
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCamelCase_ : str = ["""bert-base-uncased""", """bert-base-cased"""] lowerCamelCase_ : List[str] = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __A ( tf.keras.Model ): """simple docstring""" def __init__( self , __A ) -> Dict: super().__init__() a =tokenizer a =AutoConfig.from_pretrained(__A ) a =TFAutoModel.from_config(__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> int: a =self.tokenizer(__A ) a =self.bert(**__A ) return out["pooler_output"] @require_tf @require_tensorflow_text class __A ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> str: super().setUp() a =[ BertTokenizer.from_pretrained(__A ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false a =[TFBertTokenizer.from_pretrained(__A ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__A , use_fast_bert_tokenizer=__A ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) a =[ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] a =list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): a =tokenizer(__A , return_tensors='''tf''' , padding='''longest''' ) a =tf_tokenizer(__A ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: a =tf_tokenizer(self.paired_sentences ) a =tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: a =tf.function(__A ) for test_inputs in (self.test_sentences, self.paired_sentences): a =tf.constant(__A ) a =compiled_tokenizer(__A ) a =tf_tokenizer(__A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: for tf_tokenizer in self.tf_tokenizers: a =ModelToSave(tokenizer=__A ) a =tf.convert_to_tensor(self.test_sentences ) a =model(__A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: a =Path(__A ) / '''saved.model''' model.save(__A ) a =tf.keras.models.load_model(__A ) a =loaded_model(__A ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
215
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = """encoder-decoder""" SCREAMING_SNAKE_CASE_ : Tuple = True def __init__( self : Optional[int] , **__lowerCamelCase : Tuple ) -> List[str]: super().__init__(**__lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" a = kwargs.pop("encoder" ) a = encoder_config.pop("model_type" ) a = kwargs.pop("decoder" ) a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig a = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) a = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) a = True @classmethod def __UpperCAmelCase ( cls : List[Any] , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : PretrainedConfig , **__lowerCamelCase : Union[str, Any] ) -> PretrainedConfig: logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) a = True a = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: a = copy.deepcopy(self.__dict__ ) a = self.encoder.to_dict() a = self.decoder.to_dict() a = self.__class__.model_type return output
107
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = XLMRobertaTokenizer SCREAMING_SNAKE_CASE_ : int = XLMRobertaTokenizerFast SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True def __UpperCAmelCase ( self : int ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing a = XLMRobertaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : List[str] ) -> Any: a = "<pad>" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 10_02 ) def __UpperCAmelCase ( self : List[Any] ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __UpperCAmelCase ( self : Dict ) -> List[str]: a = XLMRobertaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) a = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) a = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @cached_property def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCamelCase , f.name ) a = XLMRobertaTokenizer(f.name , keep_accents=__lowerCamelCase ) a = pickle.dumps(__lowerCamelCase ) pickle.loads(__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> str: if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(__lowerCamelCase ) a = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def __UpperCAmelCase ( self : Dict ) -> Any: a = "Hello World!" a = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Tuple ) -> int: a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) a = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: # fmt: off a = {"input_ids": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
107
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class a__ ( __snake_case ): @staticmethod @abstractmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase ) -> Any: raise NotImplementedError() @abstractmethod def __SCREAMING_SNAKE_CASE ( self ) -> int: raise NotImplementedError()
370
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a__ ( __snake_case ): def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase ) -> List[Any]: __a = parent __a = config_class __a = has_text_modality __a = kwargs __a = common_properties def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.config_class(**self.inputs_dict ) __a = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase ): try: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual( getattr(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(UpperCAmelCase , UpperCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase ): try: __a = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(UpperCAmelCase , UpperCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.config_class(**self.inputs_dict ) __a = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a = os.path.join(UpperCAmelCase , 'config.json' ) config_first.to_json_file(UpperCAmelCase ) __a = self.config_class.from_json_file(UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase ) __a = self.config_class.from_pretrained(UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = self.config_class(**self.inputs_dict ) __a = 'test' with tempfile.TemporaryDirectory() as tmpdirname: __a = os.path.join(UpperCAmelCase , UpperCAmelCase ) config_first.save_pretrained(UpperCAmelCase ) __a = self.config_class.from_pretrained(UpperCAmelCase , subfolder=UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __a = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: if self.config_class.is_composition: return __a = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = copy.deepcopy(UpperCAmelCase ) __a = self.config_class(**UpperCAmelCase ) __a = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase , UpperCAmelCase ) != value: wrong_values.append((key, getattr(UpperCAmelCase , UpperCAmelCase ), value) ) if len(UpperCAmelCase ) > 0: __a = '\n'.join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
197
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : bool = True , __lowerCamelCase : float = math.inf , __lowerCamelCase : float = -math.inf , __lowerCamelCase : float = math.inf , __lowerCamelCase : float = -math.inf , __lowerCamelCase : bool = False , __lowerCamelCase : float = 100 , __lowerCamelCase : float = 0.01 , __lowerCamelCase : float = 1 , ) ->Any: _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = search_prob _SCREAMING_SNAKE_CASE = start_temperate _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = None while not search_end: _SCREAMING_SNAKE_CASE = current_state.score() if best_state is None or current_score > best_state.score(): _SCREAMING_SNAKE_CASE = current_state scores.append(__lowerCamelCase ) iterations += 1 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _SCREAMING_SNAKE_CASE = random.randint(0 , len(__lowerCamelCase ) - 1 ) # picking a random neighbor _SCREAMING_SNAKE_CASE = neighbors.pop(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _SCREAMING_SNAKE_CASE = change * -1 # in case we are finding minimum if change > 0: # improves the solution _SCREAMING_SNAKE_CASE = picked_neighbor else: _SCREAMING_SNAKE_CASE = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _SCREAMING_SNAKE_CASE = picked_neighbor _SCREAMING_SNAKE_CASE = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _SCREAMING_SNAKE_CASE = True else: _SCREAMING_SNAKE_CASE = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__lowerCamelCase ) , __lowerCamelCase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) ->Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowercase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowercase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ) ->int: return (3 * x**2) - (6 * y) lowercase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f"""{local_min.score()}""" ) lowercase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f"""{local_min.score()}""" )
58
def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" def count_of_possible_combinations(__a : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__a ) def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( __a : int ,__a : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _a : Union[str, Any] = sum( count_of_possible_combinations_with_dp_array(target - item ,__a ) for item in array ) _a : Optional[int] = answer return answer _a : int = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__a ,__a ) def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" _a : str = [0] * (target + 1) _a : Optional[Any] = 1 for i in range(1 ,target + 1 ): for j in range(__a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a__ = 3 a__ = 5 a__ = [1, 2, 5] print(combination_sum_iv(n, array, target))
235
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = {} if train_file is not None: _lowerCamelCase : Tuple = [train_file] if eval_file is not None: _lowerCamelCase : int = [eval_file] if test_file is not None: _lowerCamelCase : List[str] = [test_file] _lowerCamelCase : Union[str, Any] = datasets.load_dataset("csv" , data_files=_lowerCamelCase ) _lowerCamelCase : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) _lowerCamelCase : str = features_name.pop(_lowerCamelCase ) _lowerCamelCase : List[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) _lowerCamelCase : Union[str, Any] = {label: i for i, label in enumerate(_lowerCamelCase )} _lowerCamelCase : List[Any] = tokenizer.model_input_names _lowerCamelCase : List[str] = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): _lowerCamelCase : Optional[int] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): _lowerCamelCase : Union[str, Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase : Tuple = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase : str = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _lowerCamelCase : Tuple = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase : int = labelaid[ex[label_name]] yield (d, label) _lowerCamelCase : Dict = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _lowerCamelCase : List[str] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _lowerCamelCase : int = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _lowerCamelCase : str = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _lowerCamelCase : Any = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _lowerCamelCase : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A_ : lowerCAmelCase__ = field(metadata={'help': 'Which column contains the label'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'The path of the training file'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'The path of the development file'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'The path of the test file'} ) lowerCAmelCase__ = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A_ : lowerCAmelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase__ = field( default=_a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _lowerCamelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _lowerCamelCase : str = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase ) -> Dict: _lowerCamelCase : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _lowerCamelCase : Any = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCamelCase : List[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : int = trainer.evaluate() _lowerCamelCase : List[Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
340
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __a: List[str] = get_logger(__name__) class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase = None ) -> Union[str, Any]: lowercase__ : Optional[int] = ( os.path.join(__lowerCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowercase__ : Optional[Any] = Extractor def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowercase__ : Dict = os.path.abspath(__lowerCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(__lowerCAmelCase ) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> bool: return force_extract or ( not os.path.isfile(__lowerCAmelCase ) and not (os.path.isdir(__lowerCAmelCase ) and os.listdir(__lowerCAmelCase )) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = False ) -> str: lowercase__ : List[Any] = self.extractor.infer_extractor_format(__lowerCAmelCase ) if not extractor_format: return input_path lowercase__ : Optional[Any] = self._get_output_path(__lowerCAmelCase ) if self._do_extract(__lowerCAmelCase , __lowerCAmelCase ): self.extractor.extract(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return output_path class UpperCAmelCase ( a__ ): '''simple docstring''' @classmethod @abstractmethod def _lowerCAmelCase( cls , __lowerCAmelCase , **__lowerCAmelCase ) -> bool: ... @staticmethod @abstractmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> None: ... class UpperCAmelCase ( a__ , a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = [] @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: with open(__lowerCAmelCase , '''rb''' ) as f: return f.read(__lowerCAmelCase ) @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , __lowerCAmelCase = b"" ) -> bool: if not magic_number: lowercase__ : Optional[int] = max(len(__lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: lowercase__ : Optional[Any] = cls.read_magic_number(__lowerCAmelCase , __lowerCAmelCase ) except OSError: return False return any(magic_number.startswith(__lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase ( a__ ): '''simple docstring''' @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , **__lowerCAmelCase ) -> bool: return tarfile.is_tarfile(__lowerCAmelCase ) @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: def resolved(__lowerCAmelCase ) -> str: return os.path.realpath(os.path.abspath(__lowerCAmelCase ) ) def badpath(__lowerCAmelCase , __lowerCAmelCase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ).startswith(__lowerCAmelCase ) def badlink(__lowerCAmelCase , __lowerCAmelCase ) -> bool: # Links are interpreted relative to the directory containing the link lowercase__ : List[Any] = resolved(os.path.join(__lowerCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=__lowerCAmelCase ) lowercase__ : List[str] = resolved(__lowerCAmelCase ) for finfo in members: if badpath(finfo.name , __lowerCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(__lowerCAmelCase , __lowerCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(__lowerCAmelCase , __lowerCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> None: os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) lowercase__ : List[str] = tarfile.open(__lowerCAmelCase ) tar_file.extractall(__lowerCAmelCase , members=TarExtractor.safemembers(__lowerCAmelCase , __lowerCAmelCase ) ) tar_file.close() class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = [b"\x1F\x8B"] @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> None: with gzip.open(__lowerCAmelCase , '''rb''' ) as gzip_file: with open(__lowerCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCAmelCase , __lowerCAmelCase ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , __lowerCAmelCase = b"" ) -> bool: if super().is_extractable(__lowerCAmelCase , magic_number=__lowerCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__lowerCAmelCase , '''rb''' ) as fp: lowercase__ : Any = _EndRecData(__lowerCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowercase__ : Dict = fp.read(__lowerCAmelCase ) # CD is where we expect it to be if len(__lowerCAmelCase ) == sizeCentralDir: lowercase__ : Any = struct.unpack(__lowerCAmelCase , __lowerCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> None: os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with zipfile.ZipFile(__lowerCAmelCase , '''r''' ) as zip_file: zip_file.extractall(__lowerCAmelCase ) zip_file.close() class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> None: with lzma.open(__lowerCAmelCase ) as compressed_file: with open(__lowerCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCAmelCase , __lowerCAmelCase ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) lowercase__ : Dict = rarfile.RarFile(__lowerCAmelCase ) rf.extractall(__lowerCAmelCase ) rf.close() class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = [b"\x28\xb5\x2F\xFD"] @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd lowercase__ : List[str] = zstd.ZstdDecompressor() with open(__lowerCAmelCase , '''rb''' ) as ifh, open(__lowerCAmelCase , '''wb''' ) as ofh: dctx.copy_stream(__lowerCAmelCase , __lowerCAmelCase ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = [b"\x42\x5A\x68"] @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> None: with bza.open(__lowerCAmelCase , '''rb''' ) as compressed_file: with open(__lowerCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCAmelCase , __lowerCAmelCase ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with pyazr.SevenZipFile(__lowerCAmelCase , '''r''' ) as archive: archive.extractall(__lowerCAmelCase ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = [b"\x04\x22\x4D\x18"] @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(__lowerCAmelCase , '''rb''' ) as compressed_file: with open(__lowerCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCAmelCase , __lowerCAmelCase ) class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _lowerCAmelCase( cls ) -> Optional[int]: return max( len(__lowerCAmelCase ) for extractor in cls.extractors.values() if issubclass(__lowerCAmelCase , __lowerCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: try: return MagicNumberBaseExtractor.read_magic_number(__lowerCAmelCase , magic_number_length=__lowerCAmelCase ) except OSError: return b"" @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , __lowerCAmelCase = False ) -> bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=__lowerCAmelCase , ) lowercase__ : int = cls.infer_extractor_format(__lowerCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase ) -> str: # <Added version="2.4.0"/> lowercase__ : Optional[Any] = cls._get_magic_number_max_length() lowercase__ : Tuple = cls._read_magic_number(__lowerCAmelCase , __lowerCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__lowerCAmelCase , magic_number=__lowerCAmelCase ): return extractor_format @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = "deprecated" , ) -> None: os.makedirs(os.path.dirname(__lowerCAmelCase ) , exist_ok=__lowerCAmelCase ) # Prevent parallel extractions lowercase__ : Dict = str(Path(__lowerCAmelCase ).with_suffix('''.lock''' ) ) with FileLock(__lowerCAmelCase ): shutil.rmtree(__lowerCAmelCase , ignore_errors=__lowerCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=__lowerCAmelCase , ) lowercase__ : Dict = extractor if extractor != '''deprecated''' else extractor_format else: lowercase__ : Any = cls.extractors[extractor_format] return extractor.extract(__lowerCAmelCase , __lowerCAmelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=__lowerCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__lowerCAmelCase ): return extractor.extract(__lowerCAmelCase , __lowerCAmelCase )
198
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __a: Tuple = None __a: Tuple = logging.get_logger(__name__) __a: Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __a: Optional[Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 __a: Tuple = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = TaTokenizer SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=100 , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> Union[str, Any]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase__ : Union[str, Any] = [F"""<extra_id_{i}>""" for i in range(__lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ : Dict = len(set(filter(lambda __lowerCAmelCase : bool('''extra_id_''' in str(__lowerCAmelCase ) ) , __lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , extra_ids=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : Union[str, Any] = vocab_file lowercase__ : Optional[int] = False if not self.vocab_file else True lowercase__ : Any = extra_ids @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __lowerCAmelCase , ) return max_model_length def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[Any] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) logger.info(F"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCAmelCase( self ) -> List[Any]: return list( set(filter(lambda __lowerCAmelCase : bool(re.search(r'''<extra_id_\d+>''' , __lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCAmelCase( self ) -> Tuple: return [self.convert_tokens_to_ids(__lowerCAmelCase ) for token in self.get_sentinel_tokens()]
198
1
def lowercase_ ( A__ ) -> List[Any]: """simple docstring""" snake_case = len(A__ ) for i in range(length - 1 ): snake_case = i for k in range(i + 1 , A__ ): if collection[k] < collection[least]: snake_case = k if least != i: snake_case , snake_case = (collection[i], collection[least]) return collection if __name__ == "__main__": _A = input("Enter numbers separated by a comma:\n").strip() _A = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
137
def lowercase_ ( A__ = 1000 ) -> int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
137
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Tuple = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class __snake_case ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = """xlm""" lowerCAmelCase__ = { """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__( self : Optional[Any] , A : Optional[Any]=30_145 , A : Optional[int]=2_048 , A : List[Any]=12 , A : List[str]=16 , A : Dict=0.1 , A : int=0.1 , A : Union[str, Any]=True , A : Optional[int]=False , A : Any=False , A : Tuple=False , A : Union[str, Any]=1 , A : Any=True , A : Tuple=512 , A : Dict=2_048**-0.5 , A : Union[str, Any]=1E-12 , A : List[Any]=0.02 , A : List[str]=0 , A : int=1 , A : Optional[Any]=2 , A : Optional[int]=3 , A : Union[str, Any]=5 , A : List[str]=True , A : Union[str, Any]="first" , A : Optional[int]=True , A : int=None , A : List[Any]=True , A : str=0.1 , A : List[Any]=5 , A : Optional[Any]=5 , A : Optional[Any]=0 , A : List[Any]=0 , A : List[str]=2 , A : Optional[Any]=0 , **A : Any , ): __snake_case: int = vocab_size __snake_case: Optional[int] = emb_dim __snake_case: str = n_layers __snake_case: Union[str, Any] = n_heads __snake_case: int = dropout __snake_case: Optional[Any] = attention_dropout __snake_case: Tuple = gelu_activation __snake_case: str = sinusoidal_embeddings __snake_case: List[Any] = causal __snake_case: Union[str, Any] = asm __snake_case: Optional[Any] = n_langs __snake_case: Union[str, Any] = use_lang_emb __snake_case: Optional[Any] = layer_norm_eps __snake_case: Dict = bos_index __snake_case: Optional[int] = eos_index __snake_case: Optional[int] = pad_index __snake_case: List[str] = unk_index __snake_case: List[str] = mask_index __snake_case: Any = is_encoder __snake_case: Tuple = max_position_embeddings __snake_case: Optional[int] = embed_init_std __snake_case: Any = init_std __snake_case: Dict = summary_type __snake_case: Tuple = summary_use_proj __snake_case: int = summary_activation __snake_case: Union[str, Any] = summary_proj_to_labels __snake_case: Tuple = summary_first_dropout __snake_case: Optional[Any] = start_n_top __snake_case: List[Any] = end_n_top __snake_case: Tuple = mask_token_id __snake_case: int = lang_id if "n_words" in kwargs: __snake_case: Tuple = kwargs["""n_words"""] super().__init__(pad_token_id=A , bos_token_id=A , **A ) class __snake_case ( lowerCamelCase_ ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Dict ): if self.task == "multiple-choice": __snake_case: int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case: Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
111
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __magic_name__ = logging.get_logger(__name__) class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case , **_snake_case ) -> str: """simple docstring""" UpperCAmelCase = feature_size UpperCAmelCase = sampling_rate UpperCAmelCase = padding_value UpperCAmelCase = kwargs.pop('''padding_side''' , '''right''' ) UpperCAmelCase = kwargs.pop('''return_attention_mask''' , _snake_case ) super().__init__(**_snake_case ) def snake_case_ ( self , _snake_case , _snake_case = True , _snake_case = None , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = None , ) -> BatchFeature: """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(_snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) UpperCAmelCase = processed_features[self.model_input_names[0]] UpperCAmelCase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_snake_case ) == 0: if return_attention_mask: UpperCAmelCase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase = required_input[0] if isinstance(_snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_snake_case ): UpperCAmelCase = required_input[index][0] if return_tensors is None: if is_tf_tensor(_snake_case ): UpperCAmelCase = '''tf''' elif is_torch_tensor(_snake_case ): UpperCAmelCase = '''pt''' elif isinstance(_snake_case , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase = '''np''' else: raise ValueError( f"""type of {first_element} unknown: {type(_snake_case )}. """ '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase = to_numpy(_snake_case ) else: UpperCAmelCase = [to_numpy(_snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase = self._get_padding_strategies(padding=_snake_case , max_length=_snake_case ) UpperCAmelCase = processed_features[self.model_input_names[0]] UpperCAmelCase = len(_snake_case ) if not all(len(_snake_case ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) UpperCAmelCase = [] for i in range(_snake_case ): UpperCAmelCase = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase = self._truncate( _snake_case , max_length=_snake_case , pad_to_multiple_of=_snake_case , truncation=_snake_case , ) truncated_inputs.append(_snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase = PaddingStrategy.MAX_LENGTH UpperCAmelCase = {} for i in range(_snake_case ): # padding UpperCAmelCase = self._pad( truncated_inputs[i] , max_length=_snake_case , padding_strategy=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase = value.astype(np.floataa ) batch_outputs[key].append(_snake_case ) return BatchFeature(_snake_case , tensor_type=_snake_case ) def snake_case_ ( self , _snake_case , _snake_case = None , _snake_case = PaddingStrategy.DO_NOT_PAD , _snake_case = None , _snake_case = None , ) -> dict: """simple docstring""" UpperCAmelCase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase = len(_snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase = np.ones(len(_snake_case ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase = max_length - len(_snake_case ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase = np.pad( processed_features['''attention_mask'''] , (0, difference) ) UpperCAmelCase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase = np.pad( _snake_case , _snake_case , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) UpperCAmelCase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase = np.pad( _snake_case , _snake_case , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def snake_case_ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , ) -> Optional[Any]: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) UpperCAmelCase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase = len(_snake_case ) > max_length if needs_to_be_truncated: UpperCAmelCase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase = processed_features['''attention_mask'''][:max_length] return processed_features def snake_case_ ( self , _snake_case=False , _snake_case=None ) -> Union[str, Any]: """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_snake_case , _snake_case ): UpperCAmelCase = PaddingStrategy(_snake_case ) elif isinstance(_snake_case , _snake_case ): UpperCAmelCase = padding else: UpperCAmelCase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
355
import operator as op def _lowerCAmelCase ( A__: List[str] ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = lambda A__ , A__ : int(x / y ) # noqa: E731 integer division operation UpperCAmelCase = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(A__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) else: UpperCAmelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) UpperCAmelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) stack.append( str(opr[x](int(A__ ) , int(A__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": __magic_name__ = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
152
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def a ( snake_case__: Dict , snake_case__: str , snake_case__: List[str] ): '''simple docstring''' lowercase_ = 1.5 lowercase_ = int(factor * num_class_images ) lowercase_ = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=snake_case__ , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=snake_case__ ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: lowercase_ = client.query(text=snake_case__ ) if len(snake_case__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase_ = int(factor * num_images ) lowercase_ = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=snake_case__ , aesthetic_weight=0.1 , ) lowercase_ = 0 lowercase_ = 0 lowercase_ = tqdm(desc='''downloading real regularization images''' , total=snake_case__ ) with open(F'''{class_data_dir}/caption.txt''' , '''w''' ) as fa, open(F'''{class_data_dir}/urls.txt''' , '''w''' ) as fa, open( F'''{class_data_dir}/images.txt''' , '''w''' ) as fa: while total < num_class_images: lowercase_ = class_images[count] count += 1 try: lowercase_ = requests.get(images['''url'''] ) if img.status_code == 200: lowercase_ = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def a ( ): '''simple docstring''' lowercase_ = argparse.ArgumentParser('''''' , add_help=snake_case__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=snake_case__ , type=snake_case__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=snake_case__ , type=snake_case__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=200 , type=snake_case__ ) return parser.parse_args() if __name__ == "__main__": __a = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
30
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) SCREAMING_SNAKE_CASE__ : int = Accelerator() SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) try: pickle.loads(pickle.dumps(SCREAMING_SNAKE_CASE__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
25
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __SCREAMING_SNAKE_CASE :str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __SCREAMING_SNAKE_CASE :List[str] = { "RUCAIBox/mvp": 1024, } class A_ ( UpperCamelCase_ ): _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[int] = ["""input_ids""", """attention_mask"""] _lowerCamelCase : int = MvpTokenizer def __init__( self : Optional[int] , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=None , snake_case_ : Optional[int]=None , snake_case_ : Optional[Any]="replace" , snake_case_ : List[str]="<s>" , snake_case_ : int="</s>" , snake_case_ : List[Any]="</s>" , snake_case_ : Any="<s>" , snake_case_ : str="<unk>" , snake_case_ : Optional[int]="<pad>" , snake_case_ : Union[str, Any]="<mask>" , snake_case_ : Union[str, Any]=False , snake_case_ : Optional[int]=True , **snake_case_ : Dict , ): super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _a ) != add_prefix_space: _UpperCAmelCase = getattr(_a , pre_tok_state.pop("type" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**_a ) _UpperCAmelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCAmelCase = """post_processor""" _UpperCAmelCase = getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: _UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase = tuple(state["sep"] ) if "cls" in state: _UpperCAmelCase = tuple(state["cls"] ) _UpperCAmelCase = False if state.get("add_prefix_space" , _a ) != add_prefix_space: _UpperCAmelCase = add_prefix_space _UpperCAmelCase = True if state.get("trim_offsets" , _a ) != trim_offsets: _UpperCAmelCase = trim_offsets _UpperCAmelCase = True if changes_to_apply: _UpperCAmelCase = getattr(_a , state.pop("type" ) ) _UpperCAmelCase = component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property def lowercase ( self : List[Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase ( self : List[str] , snake_case_ : int ): _UpperCAmelCase = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value _UpperCAmelCase = value def lowercase ( self : Union[str, Any] , *snake_case_ : Any , **snake_case_ : Dict ): _UpperCAmelCase = kwargs.get("is_split_into_words" , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_a , **_a ) def lowercase ( self : List[str] , *snake_case_ : Any , **snake_case_ : Any ): _UpperCAmelCase = kwargs.get("is_split_into_words" , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_a , **_a ) def lowercase ( self : Union[str, Any] , snake_case_ : int , snake_case_ : List[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def lowercase ( self : List[str] , snake_case_ : str , snake_case_ : Union[str, Any]=None ): _UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase ( self : int , snake_case_ : str , snake_case_ : Tuple = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
362
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' _UpperCAmelCase = set() # Replace all the whitespace in our sentence _UpperCAmelCase = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowercase ) == 26 def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' _UpperCAmelCase = [False] * 26 for char in input_str: if char.islower(): _UpperCAmelCase = True elif char.isupper(): _UpperCAmelCase = True return all(__lowercase ) def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCAmelCase_ ( ) -> None: '''simple docstring''' from timeit import timeit _UpperCAmelCase = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=__lowercase ) ) print(timeit("is_pangram_faster()" , setup=__lowercase ) ) print(timeit("is_pangram_fastest()" , setup=__lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
156
0
lowercase : Union[str, Any] = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } def A_ ( A__ , A__ , A__ ) -> list[str]: a__ : List[str] = set() # keep track of all the paths to be checked a__ : Union[str, Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue a__ : Tuple = queue.pop(0 ) # get the last node from the path a__ : Optional[int] = path[-1] if node not in explored: a__ : List[str] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: a__ : Optional[Any] = list(A__ ) new_path.append(A__ ) queue.append(A__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A__ ) # in case there's no path between the 2 nodes return [] def A_ ( A__ , A__ , A__ ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 a__ : Tuple = [start] a__ : Union[str, Any] = set(A__ ) # Keep tab on distances from `start` node. a__ : Optional[Any] = {start: 0, target: -1} while queue: a__ : str = queue.pop(0 ) if node == target: a__ : List[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A__ ) queue.append(A__ ) a__ : int = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
99
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) UpperCamelCase__ : Optional[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
201
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Tuple = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __UpperCamelCase ( lowerCAmelCase_ ): A_ = None A_ = None A_ = None A_ = None class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a=1 , __a=0 , __a=2 , __a=512 , __a="cls" , __a=False , __a=True , **__a , ): '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __a : Any = project_dim __a : Optional[Any] = pooler_fn __a : int = learn_encoder __a : str = use_attention_mask class __UpperCamelCase ( lowerCAmelCase_ ): A_ = [r"pooler", r"logit_scale"] A_ = [r"position_ids", r"predictions.decoder.bias"] A_ = "roberta" A_ = RobertaSeriesConfig def __init__( self , __a ): '''simple docstring''' super().__init__(__a ) __a : Optional[Any] = XLMRobertaModel(__a ) __a : str = nn.Linear(config.hidden_size , config.project_dim ) __a : Optional[int] = getattr(__a , 'has_pre_transformation' , __a ) if self.has_pre_transformation: __a : int = nn.Linear(config.hidden_size , config.project_dim ) __a : List[str] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __UpperCAmelCase ( self , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , ): '''simple docstring''' __a : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __a : Tuple = self.base_model( input_ids=__a , attention_mask=__a , token_type_ids=__a , position_ids=__a , head_mask=__a , inputs_embeds=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_attentions=__a , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__a , ) if self.has_pre_transformation: __a : Optional[Any] = outputs['hidden_states'][-2] __a : Optional[int] = self.pre_LN(__a ) __a : Union[str, Any] = self.transformation_pre(__a ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __a : Optional[Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
294
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] ={'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase : Dict ={ 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase : List[str] ={ 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } __lowerCAmelCase : Any ='▁' class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :List[str]="<s>" , lowerCAmelCase__ :Optional[int]="</s>" , lowerCAmelCase__ :List[Any]="</s>" , lowerCAmelCase__ :List[str]="<s>" , lowerCAmelCase__ :str="<unk>" , lowerCAmelCase__ :List[str]="<pad>" , lowerCAmelCase__ :str="<mask>" , lowerCAmelCase__ :Optional[Dict[str, Any]] = None , **lowerCAmelCase__ :Optional[int] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_file __SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : List[str] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} __SCREAMING_SNAKE_CASE : str = len(self.sp_model ) - 1 __SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __magic_name__( self :int , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : str = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__( self :Tuple , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __magic_name__( self :int ) -> Optional[int]: return len(self.sp_model ) def __magic_name__( self :Dict ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__( self :Any , lowerCAmelCase__ :str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Optional[Any] ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.PieceToId(lowerCAmelCase__ ) return spm_id if spm_id else self.unk_token_id def __magic_name__( self :str , lowerCAmelCase__ :Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCAmelCase__ ) def __magic_name__( self :Any , lowerCAmelCase__ :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Any = '''''' __SCREAMING_SNAKE_CASE : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : str = [] else: current_sub_tokens.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def __getstate__( self :str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = self.__dict__.copy() __SCREAMING_SNAKE_CASE : Optional[int] = None return state def __setstate__( self :int , lowerCAmelCase__ :Optional[int] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__( self :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
9
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : List[str] ={ 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Optional[int] ={ 'gpt-neox-20b': 2_0_4_8, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :int , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :Dict="<|endoftext|>" , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :List[str] , ) -> Any: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: __SCREAMING_SNAKE_CASE : List[str] = getattr(lowerCAmelCase__ , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : str = add_prefix_space __SCREAMING_SNAKE_CASE : Any = pre_tok_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :"Conversation" ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: __SCREAMING_SNAKE_CASE : List[str] = input_ids[-self.model_max_length :] return input_ids
9
1
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _a ( lowerCAmelCase): """simple docstring""" def lowercase__ ( self : Any )->int: _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = 8 # DPR tok _UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCAmelCase = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) _UpperCAmelCase = os.path.join(__UpperCamelCase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) _UpperCAmelCase = os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : Tuple )->DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def lowercase__ ( self : Dict )->BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def lowercase__ ( self : Tuple )->List[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowercase__ ( self : Union[str, Any] )->int: _UpperCAmelCase = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) _UpperCAmelCase = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _UpperCAmelCase = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__UpperCamelCase ) rag_tokenizer.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = RagTokenizer.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __UpperCamelCase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __UpperCamelCase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) _UpperCAmelCase = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] _UpperCAmelCase = tokenizer(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow def lowercase__ ( self : str )->List[Any]: _UpperCAmelCase = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) _UpperCAmelCase = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] _UpperCAmelCase = tokenizer(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase )
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
'''simple docstring''' import requests def __lowercase ( __lowercase , __lowercase ) -> None: '''simple docstring''' _A = {"Content-Type": "application/json"} _A = requests.post(__lowercase , json={"text": message_body} , headers=__lowercase ) if response.status_code != 200: _A = ( "Request to slack returned an error " F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
79
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder() __UpperCamelCase = inputs_dict["""input_ids"""] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict["""attention_mask"""][:1, :] __UpperCamelCase = inputs_dict["""head_mask"""] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(lowercase , attention_mask=lowercase )[0] __UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase): __SCREAMING_SNAKE_CASE = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __SCREAMING_SNAKE_CASE = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __SCREAMING_SNAKE_CASE = '''google/pegasus-xsum''' @cached_property def __lowerCamelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCamelCase ( self , **lowercase ) -> Optional[int]: __UpperCamelCase = self.translate_src_text(**lowercase ) assert self.expected_text == generated_words def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]: __UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase ) return generated_words @slow def __lowerCamelCase ( self ) -> Dict: self._assert_generated_batch_equal_expected()
349
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCamelCase__ ( lowerCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = "vit_msn" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict=7_6_8 , SCREAMING_SNAKE_CASE_ : Any=1_2 , SCREAMING_SNAKE_CASE_ : Tuple=1_2 , SCREAMING_SNAKE_CASE_ : Dict=3_0_7_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : int=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=1E-06 , SCREAMING_SNAKE_CASE_ : str=2_2_4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : Tuple=True , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ): super().__init__(**a__ ) lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Dict = layer_norm_eps lowerCAmelCase_ : List[str] = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : List[str] = num_channels lowerCAmelCase_ : Union[str, Any] = qkv_bias
364
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase__ : """simple docstring""" pass
289
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } __snake_case = '''▁''' class __snake_case ( A__ ): __lowerCamelCase : Tuple = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = BigBirdTokenizer __lowerCamelCase : List[Any] = ["""input_ids""", """attention_mask"""] __lowerCamelCase : Union[str, Any] = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> Dict: '''simple docstring''' UpperCAmelCase : Dict =AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token UpperCAmelCase : int =AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token UpperCAmelCase : Dict =AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token UpperCAmelCase : str =AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token UpperCAmelCase : int =AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token UpperCAmelCase : List[str] =AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : List[Any] =AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( _A , tokenizer_file=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , **_A , ) UpperCAmelCase : Optional[int] =vocab_file UpperCAmelCase : Union[str, Any] =False if not self.vocab_file else True def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> str: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] =[self.sep_token_id] UpperCAmelCase : List[str] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : List[str] =os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
348
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version snake_case : List[str] = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any ): if got_ver is None or want_ver is None: raise ValueError( F'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' F' reinstalling {pkg}.' ) if not ops[op](version.parse(__lowerCAmelCase ) , version.parse(__lowerCAmelCase ) ): raise ImportError( F'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): a__ = F'\n{hint}' if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , __lowerCAmelCase ): a__ , a__ , a__ = requirement, None, None else: a__ = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , __lowerCAmelCase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F' got {requirement}' ) a__ , a__ = match[0] a__ = want_full.split(',' ) # there could be multiple requirements a__ = {} for w in want_range: a__ = re.findall(R'^([\s!=<>]{1,2})(.+)' , __lowerCAmelCase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F' but got {requirement}' ) a__ , a__ = match[0] a__ = want_ver if op not in ops: raise ValueError(F'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": a__ = '.'.join([str(__lowerCAmelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return # check if any version is installed try: a__ = importlib.metadata.version(__lowerCAmelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] ): a__ = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(__lowerCAmelCase , __lowerCAmelCase )
109
from __future__ import annotations def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): # noqa: E741 while r - l > 1: a__ = (l + r) // 2 if v[m] >= key: a__ = m else: a__ = m # noqa: E741 return r def __lowercase ( __lowerCAmelCase : list[int] ): if len(__lowerCAmelCase ) == 0: return 0 a__ = [0] * len(__lowerCAmelCase ) a__ = 1 a__ = v[0] for i in range(1 , len(__lowerCAmelCase ) ): if v[i] < tail[0]: a__ = v[i] elif v[i] > tail[length - 1]: a__ = v[i] length += 1 else: a__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
109
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig A__ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class a ( __snake_case ): __lowerCAmelCase : Union[str, Any] = "ernie_m" __lowerCAmelCase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self :str ,__lowercase :int = 2_5_0_0_0_2 ,__lowercase :int = 7_6_8 ,__lowercase :int = 1_2 ,__lowercase :int = 1_2 ,__lowercase :int = 3_0_7_2 ,__lowercase :str = "gelu" ,__lowercase :float = 0.1 ,__lowercase :float = 0.1 ,__lowercase :int = 5_1_4 ,__lowercase :float = 0.02 ,__lowercase :int = 1 ,__lowercase :float = 1e-0_5 ,__lowercase :Any=None ,__lowercase :List[Any]=False ,__lowercase :Tuple=0.0 ,**__lowercase :Optional[int] ,): super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) snake_case__ : Optional[Any] = vocab_size snake_case__ : Any = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : Any = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : Union[str, Any] = initializer_range snake_case__ : Union[str, Any] = layer_norm_eps snake_case__ : List[Any] = classifier_dropout snake_case__ : str = is_decoder snake_case__ : List[str] = act_dropout
230
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "layoutlmv3" def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]: super().__init__( vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase_ : List[Any] = max_ad_position_embeddings UpperCAmelCase_ : Optional[int] = coordinate_size UpperCAmelCase_ : Optional[int] = shape_size UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias UpperCAmelCase_ : Optional[int] = rel_pos_bins UpperCAmelCase_ : Union[str, Any] = max_rel_pos UpperCAmelCase_ : Dict = has_spatial_attention_bias UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins UpperCAmelCase_ : Tuple = max_rel_ad_pos UpperCAmelCase_ : Union[str, Any] = text_embed UpperCAmelCase_ : Optional[Any] = visual_embed UpperCAmelCase_ : List[str] = input_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : Tuple = classifier_dropout class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = version.parse("1.12" ) @property def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def A__ ( self: Any ) -> float: return 1e-5 @property def A__ ( self: int ) -> int: return 12 def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCAmelCase_ : int = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = dict( processor( lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) ) return inputs
345
0
from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowercase : Optional[int] =["""flax""", """transformers"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowercase : List[Any] =["""flax""", """transformers"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowercase : Any =["""flax""", """transformers"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowercase : Dict =["""flax""", """transformers"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ['''flax''', '''transformers'''] )
365
from __future__ import annotations from random import random class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ = None ): lowercase_ :Tuple = value lowercase_ :Tuple = random() lowercase_ :Node | None = None lowercase_ :Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self ): lowercase_ :Optional[int] = str(self.value ) + ''' ''' lowercase_ :List[str] = str(self.left or '''''' ) lowercase_ :List[Any] = str(self.right or '''''' ) return value + left + right def UpperCamelCase ( _a , _a ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase_ , lowercase_ :List[Any] = split(root.left , _a ) return left, root else: lowercase_ , lowercase_ :Tuple = split(root.right , _a ) return root, right def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase_ :Tuple = merge(left.right , _a ) return left else: lowercase_ :Optional[int] = merge(_a , right.left ) return right def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' lowercase_ :str = Node(_a ) lowercase_ , lowercase_ :Dict = split(_a , _a ) return merge(merge(_a , _a ) , _a ) def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' lowercase_ , lowercase_ :List[str] = split(_a , value - 1 ) lowercase_ , lowercase_ :Tuple = split(_a , _a ) return merge(_a , _a ) def UpperCamelCase ( _a ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": lowercase_ :Any = insert(_a , int(arg[1:] ) ) elif arg[0] == "-": lowercase_ :Optional[int] = erase(_a , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :List[Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) lowercase_ :Optional[Any] = input() while args != "q": lowercase_ :Union[str, Any] = interact_treap(_a , _a ) print(_a ) lowercase_ :str = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
252
0
from __future__ import annotations UpperCAmelCase__ = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _a ( a :Matrix , a :int , a :int , a :int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _a ( a :Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _a ( a :Matrix ) -> Matrix | None: if location := find_empty_location(a ): a , a = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): a = digit if sudoku(a ) is not None: return grid a = 0 return None def _a ( a :Matrix ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") UpperCAmelCase__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __a = pd.read_csv("sample_data.csv", header=None) __a = df.shape[:1][0] # If you're using some other dataset input the target column __a = df.iloc[:, 1:2] __a = actual_data.values.reshape(len_data, 1) __a = MinMaxScaler().fit_transform(actual_data) __a = 10 __a = 5 __a = 20 __a = len_data - periods * look_back __a = actual_data[:division] __a = actual_data[division - look_back :] __a , __a = [], [] __a , __a = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __a = np.array(train_x) __a = np.array(test_x) __a = np.array([list(i.ravel()) for i in train_y]) __a = np.array([list(i.ravel()) for i in test_y]) __a = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") __a = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) __a = model.predict(x_test)
66
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) a : List[str] = str(bin(snake_case ) )[2:] # remove the leading "0b" a : Any = str(bin(snake_case ) )[2:] a : Optional[Any] = max(len(snake_case ) , len(snake_case ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case ) , b_binary.zfill(snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Union[str, Any] = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCamelCase__ ( a_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : str = "vit_msn" def __init__( self , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1e-06 , snake_case=2_2_4 , snake_case=1_6 , snake_case=3 , snake_case=True , **snake_case , ): '''simple docstring''' super().__init__(**_lowerCamelCase ) UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Any = patch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Optional[int] = qkv_bias
311
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__snake_case ) # Let's go lowercase = parser.parse_args() if not hasattr(__snake_case , 'func' ): parser.print_help() exit(1 ) # Run lowercase = args.func(__snake_case ) service.run() if __name__ == "__main__": main()
220
0
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# UpperCAmelCase = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] UpperCAmelCase = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] UpperCAmelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks UpperCAmelCase = F'''down_blocks.{i}.resnets.{j}.''' UpperCAmelCase = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 UpperCAmelCase = F'''down_blocks.{i}.attentions.{j}.''' UpperCAmelCase = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks UpperCAmelCase = F'''up_blocks.{i}.resnets.{j}.''' UpperCAmelCase = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 UpperCAmelCase = F'''up_blocks.{i}.attentions.{j}.''' UpperCAmelCase = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 UpperCAmelCase = F'''down_blocks.{i}.downsamplers.0.conv.''' UpperCAmelCase = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 UpperCAmelCase = F'''up_blocks.{i}.upsamplers.0.''' UpperCAmelCase = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) UpperCAmelCase = 'mid_block.attentions.0.' UpperCAmelCase = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): UpperCAmelCase = F'''mid_block.resnets.{j}.''' UpperCAmelCase = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: """simple docstring""" lowerCAmelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCAmelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCAmelCase = v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCAmelCase = v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = v lowerCAmelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# UpperCAmelCase = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): UpperCAmelCase = F'''encoder.down_blocks.{i}.resnets.{j}.''' UpperCAmelCase = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: UpperCAmelCase = F'''down_blocks.{i}.downsamplers.0.''' UpperCAmelCase = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) UpperCAmelCase = F'''up_blocks.{i}.upsamplers.0.''' UpperCAmelCase = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): UpperCAmelCase = F'''decoder.up_blocks.{i}.resnets.{j}.''' UpperCAmelCase = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): UpperCAmelCase = F'''mid_block.resnets.{i}.''' UpperCAmelCase = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) UpperCAmelCase = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def _snake_case ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCAmelCase = v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCAmelCase = v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = v lowerCAmelCase = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCAmelCase = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'mid.attn_1.{weight_name}.weight' in k: print(f'Reshaping {k} for SD format' ) lowerCAmelCase = reshape_weight_for_sd(_SCREAMING_SNAKE_CASE ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# UpperCAmelCase = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] UpperCAmelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} UpperCAmelCase = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp UpperCAmelCase = {'q': 0, 'k': 1, 'v': 2} def _snake_case ( _SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): lowerCAmelCase = k[: -len(""".q_proj.weight""" )] lowerCAmelCase = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: lowerCAmelCase = [None, None, None] lowerCAmelCase = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): lowerCAmelCase = k[: -len(""".q_proj.bias""" )] lowerCAmelCase = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: lowerCAmelCase = [None, None, None] lowerCAmelCase = v continue lowerCAmelCase = textenc_pattern.sub(lambda _SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase = textenc_pattern.sub(lambda _SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.cat(_SCREAMING_SNAKE_CASE ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase = textenc_pattern.sub(lambda _SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.cat(_SCREAMING_SNAKE_CASE ) return new_state_dict def _snake_case ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: """simple docstring""" return text_enc_dict if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) UpperCAmelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors UpperCAmelCase = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') UpperCAmelCase = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') UpperCAmelCase = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): UpperCAmelCase = load_file(unet_path, device='cpu') else: UpperCAmelCase = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') UpperCAmelCase = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): UpperCAmelCase = load_file(vae_path, device='cpu') else: UpperCAmelCase = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') UpperCAmelCase = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): UpperCAmelCase = load_file(text_enc_path, device='cpu') else: UpperCAmelCase = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') UpperCAmelCase = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model UpperCAmelCase = convert_unet_state_dict(unet_state_dict) UpperCAmelCase = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model UpperCAmelCase = convert_vae_state_dict(vae_state_dict) UpperCAmelCase = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper UpperCAmelCase = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm UpperCAmelCase = {'transformer.' + k: v for k, v in text_enc_dict.items()} UpperCAmelCase = convert_text_enc_state_dict_vaa(text_enc_dict) UpperCAmelCase = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: UpperCAmelCase = convert_text_enc_state_dict(text_enc_dict) UpperCAmelCase = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint UpperCAmelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: UpperCAmelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: UpperCAmelCase = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
365
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __snake_case: '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.0_2 , A_=3 , A_=4 , A_=None , ) -> Dict: lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 384 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = """gelu""" lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 512 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.0_2 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = 128 lowerCAmelCase = 2 lowerCAmelCase = 9 lowerCAmelCase = 1 lowerCAmelCase = None def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: lowerCAmelCase = TFConvBertModel(config=A_ ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(A_ ) lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: lowerCAmelCase = TFConvBertForMaskedLM(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFConvBertForSequenceClassification(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: lowerCAmelCase = self.num_choices lowerCAmelCase = TFConvBertForMultipleChoice(config=A_ ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFConvBertForTokenClassification(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = TFConvBertForQuestionAnswering(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase : Union[str, Any] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Dict = False def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = TFConvBertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def __snake_case ( self ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def __snake_case ( self ) -> Any: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = True if hasattr(A_ , """use_cache""" ): lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) for model_class in self.all_model_classes: lowerCAmelCase = self._prepare_for_class(A_ , A_ ) lowerCAmelCase = model_class(A_ ) lowerCAmelCase = len(model(A_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) lowerCAmelCase = os.path.join(A_ , """saved_model""" , """1""" ) lowerCAmelCase = tf.keras.models.load_model(A_ ) lowerCAmelCase = model(A_ ) if self.is_encoder_decoder: lowerCAmelCase = outputs["""encoder_hidden_states"""] lowerCAmelCase = outputs["""encoder_attentions"""] else: lowerCAmelCase = outputs["""hidden_states"""] lowerCAmelCase = outputs["""attentions"""] self.assertEqual(len(A_ ) , A_ ) lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) , A_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(A_ ) def __snake_case ( self ) -> str: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) def check_decoder_attentions_output(A_ ): lowerCAmelCase = len(A_ ) self.assertEqual(out_len % 2 , 0 ) lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A_ ): lowerCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) lowerCAmelCase = len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCAmelCase = True lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @require_tf class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> Any: lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(A_ )[0] lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , A_ ) lowerCAmelCase = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1e-4 )
187
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowerCAmelCase: List[str] = logging.get_logger(__name__) class a__( UpperCamelCase_ ): def __init__( self : str , *__snake_case : Optional[int] , **__snake_case : List[Any] ): warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
297
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowercase_ : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=19 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) ->Union[str, Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__SCREAMING_SNAKE_CASE , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = EsmForProteinFolding(config=__SCREAMING_SNAKE_CASE ).float() model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Dict = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase_ : List[Any] = () UpperCAmelCase_ : Tuple = {} if is_torch_available() else {} UpperCAmelCase_ : List[str] = False def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = EsmFoldModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip('''Does not support attention outputs''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: pass @unittest.skip def SCREAMING_SNAKE_CASE_ ( self ) ->Any: pass @unittest.skip('''Esm does not support embedding resizing''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: pass @unittest.skip('''Esm does not support embedding resizing''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: pass @unittest.skip('''ESMFold only has one output format.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: pass @unittest.skip('''ESMFold does not support input chunking.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: pass @require_torch class lowercase_ ( UpperCamelCase_ ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self ) ->str: lowerCAmelCase = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() lowerCAmelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )['''positions'''] lowerCAmelCase = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
338
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class UpperCamelCase__( unittest.TestCase ): def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" debug_launcher(test_script.main ) def a__( self : List[Any] )-> Optional[int]: """simple docstring""" debug_launcher(test_ops.main )
353
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCamelCase__: def __init__( self : Any , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : float = 0 )-> None: """simple docstring""" UpperCAmelCase , UpperCAmelCase = row, column UpperCAmelCase = [[default_value for c in range(lowerCAmelCase )] for r in range(lowerCAmelCase )] def __str__( self : int )-> str: """simple docstring""" UpperCAmelCase = F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier UpperCAmelCase = 0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase = max(lowerCAmelCase , len(str(lowerCAmelCase ) ) ) UpperCAmelCase = F"""%{max_element_length}s""" # Make string and return def single_line(lowerCAmelCase : list[float] ) -> str: nonlocal string_format_identifier UpperCAmelCase = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowerCAmelCase ) for row_vector in self.array ) return s def __repr__( self : Tuple )-> str: """simple docstring""" return str(self ) def a__( self : str , lowerCAmelCase : tuple[int, int] )-> bool: """simple docstring""" if not (isinstance(lowerCAmelCase , (list, tuple) ) and len(lowerCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , lowerCAmelCase : tuple[int, int] )-> Any: """simple docstring""" assert self.validate_indicies(lowerCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , lowerCAmelCase : tuple[int, int] , lowerCAmelCase : float )-> None: """simple docstring""" assert self.validate_indicies(lowerCAmelCase ) UpperCAmelCase = value def __add__( self : int , lowerCAmelCase : Matrix )-> Matrix: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : Dict )-> Matrix: """simple docstring""" UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = -self[r, c] return result def __sub__( self : Union[str, Any] , lowerCAmelCase : Matrix )-> Matrix: """simple docstring""" return self + (-another) def __mul__( self : Union[str, Any] , lowerCAmelCase : int | float | Matrix )-> Matrix: """simple docstring""" if isinstance(lowerCAmelCase , (int, float) ): # Scalar multiplication UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = self[r, c] * another return result elif isinstance(lowerCAmelCase , lowerCAmelCase ): # Matrix multiplication assert self.column == another.row UpperCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase = F"""Unsupported type given for another ({type(lowerCAmelCase )})""" raise TypeError(lowerCAmelCase ) def a__( self : Optional[Any] )-> Matrix: """simple docstring""" UpperCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = self[r, c] return result def a__( self : Tuple , lowerCAmelCase : Matrix , lowerCAmelCase : Matrix )-> Any: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase = v.transpose() UpperCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCAmelCase = 1 print(f"""a^(-1) is {ainv}""" ) # u, v UpperCAmelCase = Matrix(3 , 1 , 0 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1, 2, -3 UpperCAmelCase = Matrix(3 , 1 , 0 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(A , A )}""" ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() testa()
91
0
"""simple docstring""" # using dfs for finding eulerian path traversal def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[str]=None ): """simple docstring""" _snake_case : List[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _snake_case , _snake_case : Dict = True, True _snake_case : str = dfs(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return path def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : List[str] = 0 _snake_case : List[str] = -1 for i in range(snake_case__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _snake_case : int = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _snake_case , _snake_case : Dict = check_circuit_or_path(snake_case__ , snake_case__ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return _snake_case : int = 1 if check == 2: _snake_case : Optional[int] = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) _snake_case : Optional[int] = dfs(snake_case__ , snake_case__ , snake_case__ ) print(snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _snake_case : Dict = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _snake_case : Optional[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _snake_case : List[str] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _snake_case : List[str] = { 1: [], 2: [] # all degree is zero } _snake_case : List[Any] = 10 check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
64
"""simple docstring""" from math import factorial A_ = {str(d): factorial(d) for d in range(10)} def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case__ ) if sum_of_digit_factorial(snake_case__ ) == i ) if __name__ == "__main__": print(F'''{solution() = }''')
64
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[Any] = "naver-clova-ix/donut-base-finetuned-docvqa" __UpperCAmelCase : str = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) __UpperCAmelCase : Union[str, Any] = "document_qa" __UpperCAmelCase : str = AutoProcessor __UpperCAmelCase : str = VisionEncoderDecoderModel __UpperCAmelCase : str = ["image", "text"] __UpperCAmelCase : Optional[int] = ["text"] def __init__( self : Union[str, Any] , *lowerCamelCase : Tuple , **lowerCamelCase : List[str] ) -> Optional[int]: if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Any , lowerCamelCase : "Image" , lowerCamelCase : str ) -> Optional[Any]: __snake_case : Any = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" __snake_case : Optional[Any] = task_prompt.replace("{user_input}" , lowerCamelCase ) __snake_case : Optional[int] = self.pre_processor.tokenizer( lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="pt" ).input_ids __snake_case : Tuple = self.pre_processor(lowerCamelCase , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __snake_case ( self : int , lowerCamelCase : List[str] ) -> List[str]: return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCamelCase , ).sequences def __snake_case ( self : Optional[int] , lowerCamelCase : Dict ) -> List[Any]: __snake_case : Optional[Any] = self.pre_processor.batch_decode(lowerCamelCase )[0] __snake_case : str = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) __snake_case : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) __snake_case : str = re.sub(R"<.*?>" , "" , lowerCamelCase , count=1 ).strip() # remove first task start token __snake_case : Dict = self.pre_processor.tokenajson(lowerCamelCase ) return sequence["answer"]
134
from __future__ import annotations _snake_case : Union[str, Any] = [] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): for i in range(len(__lowerCamelCase ) ): if board[row][i] == 1: return False for i in range(len(__lowerCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(__lowerCamelCase , -1 , -1 ) , range(__lowerCamelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__lowerCamelCase , -1 , -1 ) , range(__lowerCamelCase , len(__lowerCamelCase ) ) ): if board[i][j] == 1: return False return True def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if row >= len(__lowerCamelCase ): solution.append(__lowerCamelCase ) printboard(__lowerCamelCase ) print() return True for i in range(len(__lowerCamelCase ) ): if is_safe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[Any] = 1 solve(__lowerCamelCase , row + 1 ) __snake_case : Union[str, Any] = 0 return False def lowerCAmelCase_ ( __lowerCamelCase ): for i in range(len(__lowerCamelCase ) ): for j in range(len(__lowerCamelCase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _snake_case : List[str] = 8 _snake_case : Optional[int] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
134
1