code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n' def A_ ( a , a , a=8 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE_ : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def A_ ( a , a=5_1_2 , a=5_1_2 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE_ : List[str] = arr.astype(np.floataa ) / 1_2_7.5 - 1 SCREAMING_SNAKE_CASE_ : str = np.transpose(SCREAMING_SNAKE_CASE__ , [2, 0, 1] ) SCREAMING_SNAKE_CASE_ : Any = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) return image class _A ( SCREAMING_SNAKE_CASE_): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__() self.register_modules( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE_ : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}" ) SCREAMING_SNAKE_CASE_ : Optional[int] = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE_ : Any = image else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_SCREAMING_SNAKE_CASE ) ] SCREAMING_SNAKE_CASE_ : Tuple = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) else: SCREAMING_SNAKE_CASE_ : Dict = self.movq.encode(_SCREAMING_SNAKE_CASE ).latent_dist.sample(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE_ : Optional[int] = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE_ : str = init_latents.shape SCREAMING_SNAKE_CASE_ : List[str] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents SCREAMING_SNAKE_CASE_ : int = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = init_latents return latents def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE_ : int = torch.device(f"cuda:{gpu_id}" ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE_ : Dict = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE_ : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase ( self ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 0.3 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self._execution_device SCREAMING_SNAKE_CASE_ : List[Any] = guidance_scale > 1.0 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE_ : str = image_embeds.shape[0] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Tuple = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : Dict = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = [image] if not all(isinstance(_SCREAMING_SNAKE_CASE , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_SCREAMING_SNAKE_CASE ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat([prepare_image(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = self.movq.encode(_SCREAMING_SNAKE_CASE )["""latents"""] SCREAMING_SNAKE_CASE_ : Optional[Any] = latents.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE_ : List[Any] = downscale_height_and_width(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_latents( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , image_embeds.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_ : Tuple = {"""image_embeds""": image_embeds} SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE_ : Dict = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ : Tuple = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE_ : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ : Dict = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )[0] # post-processing SCREAMING_SNAKE_CASE_ : Dict = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE_ : Dict = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_ : List[str] = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ : int = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
253
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
"""simple docstring""" import argparse import os import re A_ : List[str] ="""src/transformers""" # Pattern that looks at the indentation in a line. A_ : str =re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. A_ : str =re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A_ : List[Any] =re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. A_ : Optional[Any] =re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A_ : List[str] =re.compile(R"""\[([^\]]+)\]""") def SCREAMING_SNAKE_CASE_ ( snake_case : Dict )-> List[str]: _lowerCamelCase = _re_indent.search(snake_case ) return "" if search is None else search.groups()[0] def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] , snake_case : Union[str, Any]="" , snake_case : List[str]=None , snake_case : List[str]=None )-> List[Any]: _lowerCamelCase = 0 _lowerCamelCase = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(snake_case ): index += 1 _lowerCamelCase = ['\n'.join(lines[:index] )] else: _lowerCamelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCamelCase = [lines[index]] index += 1 while index < len(snake_case ) and (end_prompt is None or not lines[index].startswith(snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(snake_case ) ) if index < len(snake_case ) - 1: _lowerCamelCase = [lines[index + 1]] index += 1 else: _lowerCamelCase = [] else: blocks.append('\n'.join(snake_case ) ) _lowerCamelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case ) > 0: blocks.append('\n'.join(snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple )-> Any: def _inner(snake_case : str ): return key(snake_case ).lower().replace('_' , '' ) return _inner def SCREAMING_SNAKE_CASE_ ( snake_case : Dict , snake_case : Union[str, Any]=None )-> Any: # If no key is provided, we use a noop. def noop(snake_case : Union[str, Any] ): return x if key is None: _lowerCamelCase = noop # Constants are all uppercase, they go first. _lowerCamelCase = [obj for obj in objects if key(snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCamelCase = [obj for obj in objects if key(snake_case )[0].isupper() and not key(snake_case ).isupper()] # Functions begin with a lowercase, they go last. _lowerCamelCase = [obj for obj in objects if not key(snake_case )[0].isupper()] _lowerCamelCase = ignore_underscore(snake_case ) return sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) def SCREAMING_SNAKE_CASE_ ( snake_case : Any )-> List[Any]: # This inner function sort imports between [ ]. def _replace(snake_case : Tuple ): _lowerCamelCase = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCamelCase = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case )] ) + "]" _lowerCamelCase = import_statement.split('\n' ) if len(snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCamelCase = 2 if lines[1].strip() == '[' else 1 _lowerCamelCase = [(i, _re_strip_line.search(snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCamelCase = sort_objects(snake_case , key=lambda snake_case : x[1] ) _lowerCamelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCamelCase = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCamelCase = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase = keys[:-1] _lowerCamelCase = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(snake_case )] ) return "\n".join(snake_case ) else: # Finally we have to deal with imports fitting on one line _lowerCamelCase = _re_bracket_content.sub(_replace , snake_case ) return import_statement def SCREAMING_SNAKE_CASE_ ( snake_case : List[str] , snake_case : Dict=True )-> Optional[int]: with open(snake_case , encoding='utf-8' ) as f: _lowerCamelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCamelCase = split_code_in_indented_blocks( snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCamelCase = main_blocks[block_idx] _lowerCamelCase = block.split('\n' ) # Get to the start of the imports. _lowerCamelCase = 0 while line_idx < len(snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCamelCase = len(snake_case ) else: line_idx += 1 if line_idx >= len(snake_case ): continue # Ignore beginning and last line: they don't contain anything. _lowerCamelCase = '\n'.join(block_lines[line_idx:-1] ) _lowerCamelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCamelCase = split_code_in_indented_blocks(snake_case , indent_level=snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCamelCase = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCamelCase = [(pattern.search(snake_case ).groups()[0] if pattern.search(snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCamelCase = [(i, key) for i, key in enumerate(snake_case ) if key is not None] _lowerCamelCase = [x[0] for x in sorted(snake_case , key=lambda snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCamelCase = 0 _lowerCamelCase = [] for i in range(len(snake_case ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCamelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(snake_case ) count += 1 # And we put our main block back together with its first and last line. _lowerCamelCase = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(snake_case ) ) def SCREAMING_SNAKE_CASE_ ( snake_case : Dict=True )-> Tuple: _lowerCamelCase = [] for root, _, files in os.walk(snake_case ): if "__init__.py" in files: _lowerCamelCase = sort_imports(os.path.join(snake_case , '__init__.py' ) , check_only=snake_case ) if result: _lowerCamelCase = [os.path.join(snake_case , '__init__.py' )] if len(snake_case ) > 0: raise ValueError(f'Would overwrite {len(snake_case )} files, run `make style`.' ) if __name__ == "__main__": A_ : List[str] =argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") A_ : List[Any] =parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
80
"""simple docstring""" from __future__ import annotations A_ : List[Any] =list[tuple[int, int]] A_ : Tuple =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A_ : List[str] =([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __a : def __init__( self , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCamelCase = pos_x _lowerCamelCase = pos_y _lowerCamelCase = (pos_y, pos_x) _lowerCamelCase = goal_x _lowerCamelCase = goal_y _lowerCamelCase = g_cost _lowerCamelCase = parent _lowerCamelCase = self.calculate_heuristic() def snake_case_ ( self ): _lowerCamelCase = abs(self.pos_x - self.goal_x ) _lowerCamelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , a__ ): return self.f_cost < other.f_cost class __a : def __init__( self , a__ , a__ ): _lowerCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a__ ) _lowerCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , a__ ) _lowerCamelCase = [self.start] _lowerCamelCase = [] _lowerCamelCase = False def snake_case_ ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _lowerCamelCase = True return self.retrace_path(a__ ) self.closed_nodes.append(a__ ) _lowerCamelCase = self.get_successors(a__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a__ ) else: # retrieve the best current path _lowerCamelCase = self.open_nodes.pop(self.open_nodes.index(a__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a__ ) else: self.open_nodes.append(a__ ) if not self.reached: return [self.start.pos] return None def snake_case_ ( self , a__ ): _lowerCamelCase = [] for action in delta: _lowerCamelCase = parent.pos_x + action[1] _lowerCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a__ , a__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a__ , ) ) return successors def snake_case_ ( self , a__ ): _lowerCamelCase = node _lowerCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCamelCase = current_node.parent path.reverse() return path if __name__ == "__main__": A_ : str =(0, 0) A_ : Tuple =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") A_ : List[str] =GreedyBestFirst(init, goal) A_ : Optional[int] =greedy_bf.search() if path: for pos_x, pos_y in path: A_ : Optional[Any] =2 for elem in grid: print(elem)
80
1
def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
147
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[Any] = '''bridgetower_vision_model''' def __init__( self , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=2_88 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Any: super().__init__(**lowerCAmelCase_ ) _A = hidden_size _A = num_hidden_layers _A = num_channels _A = patch_size _A = image_size _A = initializer_factor _A = layer_norm_eps _A = stop_gradient _A = share_layernorm _A = remove_last_layer @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": _A , _A = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("""model_type""" ) == "bridgetower": _A = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = '''bridgetower_text_model''' def __init__( self , lowerCAmelCase_=5_02_65 , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=1 , lowerCAmelCase_=30_72 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_14 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = initializer_factor _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = pad_token_id _A = bos_token_id _A = eos_token_id @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": _A , _A = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("""model_type""" ) == "bridgetower": _A = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[int] = '''bridgetower''' def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_="gelu" , lowerCAmelCase_=7_68 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=False , lowerCAmelCase_="add" , lowerCAmelCase_=12 , lowerCAmelCase_=6 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> int: # TODO: remove this once the Hub files are updated. _A = kwargs.pop("""text_config_dict""" , lowerCAmelCase_ ) _A = kwargs.pop("""vision_config_dict""" , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) _A = share_cross_modal_transformer_layers _A = hidden_act _A = hidden_size _A = initializer_factor _A = layer_norm_eps _A = share_link_tower_layers _A = link_tower_type _A = num_attention_heads _A = num_hidden_layers _A = tie_word_embeddings _A = init_layernorm_from_vision_encoder if text_config is None: _A = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _A = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _A = BridgeTowerTextConfig(**lowerCAmelCase_ ) _A = BridgeTowerVisionConfig(**lowerCAmelCase_ ) @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = copy.deepcopy(self.__dict__ ) _A = self.text_config.to_dict() _A = self.vision_config.to_dict() _A = self.__class__.model_type return output
180
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowerCamelCase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] lowerCamelCase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class A__ ( _lowerCamelCase): A_ : Tuple = 'whisper' A_ : int = ['past_key_values'] A_ : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=5_18_65 , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=15_36 , _SCREAMING_SNAKE_CASE=15_36 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=5_02_57 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=15_00 , _SCREAMING_SNAKE_CASE=4_48 , _SCREAMING_SNAKE_CASE=5_02_56 , _SCREAMING_SNAKE_CASE=5_02_56 , _SCREAMING_SNAKE_CASE=5_02_56 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=[2_20, 5_02_56] , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=7 , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Dict = num_mel_bins __lowerCAmelCase : List[str] = d_model __lowerCAmelCase : List[Any] = encoder_layers __lowerCAmelCase : Optional[int] = encoder_attention_heads __lowerCAmelCase : Dict = decoder_layers __lowerCAmelCase : Optional[Any] = decoder_attention_heads __lowerCAmelCase : str = decoder_ffn_dim __lowerCAmelCase : Dict = encoder_ffn_dim __lowerCAmelCase : List[Any] = dropout __lowerCAmelCase : Union[str, Any] = attention_dropout __lowerCAmelCase : int = activation_dropout __lowerCAmelCase : Dict = activation_function __lowerCAmelCase : str = init_std __lowerCAmelCase : str = encoder_layerdrop __lowerCAmelCase : Dict = decoder_layerdrop __lowerCAmelCase : Optional[Any] = use_cache __lowerCAmelCase : str = encoder_layers __lowerCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : Union[str, Any] = max_source_positions __lowerCAmelCase : List[str] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase : int = classifier_proj_size __lowerCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase : int = apply_spec_augment __lowerCAmelCase : str = mask_time_prob __lowerCAmelCase : Dict = mask_time_length __lowerCAmelCase : Union[str, Any] = mask_time_min_masks __lowerCAmelCase : int = mask_feature_prob __lowerCAmelCase : List[Any] = mask_feature_length __lowerCAmelCase : Any = mask_feature_min_masks __lowerCAmelCase : Dict = median_filter_width super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , suppress_tokens=_SCREAMING_SNAKE_CASE , begin_suppress_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class A__ ( _lowerCamelCase): @property def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCAmelCase : Union[str, Any] = {0: 'batch'} else: __lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='inputs' ) return common_inputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 2_20_50 , _SCREAMING_SNAKE_CASE = 5.0 , _SCREAMING_SNAKE_CASE = 2_20 , ): __lowerCAmelCase : int = OrderedDict() __lowerCAmelCase : int = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , time_duration=_SCREAMING_SNAKE_CASE , frequency=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[Any] = encoder_inputs['input_features'].shape[2] __lowerCAmelCase : str = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCAmelCase : Dict = super().generate_dummy_inputs( preprocessor.tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = encoder_inputs.pop('input_features' ) __lowerCAmelCase : Dict = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCAmelCase : int = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def __lowerCamelCase ( self ): return 1E-3
182
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Optional[int] = ShapEPipeline A_ : str = ['prompt'] A_ : Any = ['prompt'] A_ : List[Any] = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] A_ : Optional[int] = False @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return self.time_input_dim * 4 @property def __lowerCamelCase ( self ): return 8 @property def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __lowerCAmelCase : int = PriorTransformer(**_SCREAMING_SNAKE_CASE ) return model @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Dict = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __lowerCAmelCase : Union[str, Any] = ShapERenderer(**_SCREAMING_SNAKE_CASE ) return model def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = self.dummy_prior __lowerCAmelCase : str = self.dummy_text_encoder __lowerCAmelCase : List[Any] = self.dummy_tokenizer __lowerCAmelCase : str = self.dummy_renderer __lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=10_24 , prediction_type='sample' , use_karras_sigmas=_SCREAMING_SNAKE_CASE , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=1.0 , ) __lowerCAmelCase : int = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __lowerCAmelCase : int = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __lowerCamelCase ( self ): __lowerCAmelCase : Any = 'cpu' __lowerCAmelCase : int = self.get_dummy_components() __lowerCAmelCase : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[Any] = output.images[0] __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCAmelCase : str = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = torch_device == 'cpu' __lowerCAmelCase : str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.get_dummy_components() __lowerCAmelCase : List[Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = 1 __lowerCAmelCase : List[Any] = 2 __lowerCAmelCase : int = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: __lowerCAmelCase : Dict = batch_size * [inputs[key]] __lowerCAmelCase : Any = pipe(**_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __lowerCAmelCase : Dict = ShapEPipeline.from_pretrained('openai/shap-e' ) __lowerCAmelCase : int = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) __lowerCAmelCase : List[str] = pipe( 'a shark' , generator=_SCREAMING_SNAKE_CASE , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
182
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A_ :int = None A_ :Optional[int] = logging.get_logger(__name__) A_ :Tuple = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} A_ :int = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } A_ :Union[str, Any] = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off A_ :int = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __A ( a ): """simple docstring""" UpperCamelCase__ : List[str] =VOCAB_FILES_NAMES UpperCamelCase__ : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Tuple =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : str =["""input_ids""", """attention_mask"""] UpperCamelCase__ : Any =MBartTokenizer UpperCamelCase__ : List[int] =[] UpperCamelCase__ : List[int] =[] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Union[str, Any] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( vocab_file=lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , src_lang=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : int =vocab_file __UpperCamelCase : Tuple =False if not self.vocab_file else True __UpperCamelCase : Dict =FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __UpperCamelCase : List[str] ={ lang_code: self.convert_tokens_to_ids(lowerCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCamelCase : Optional[Any] =src_lang if src_lang is not None else 'en_XX' __UpperCamelCase : str =self.convert_tokens_to_ids(self._src_lang ) __UpperCamelCase : str =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[Any] =[self.sep_token_id] __UpperCamelCase : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase : List[str] =src_lang __UpperCamelCase : List[str] =self(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =self.convert_tokens_to_ids(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =tgt_lang_id return inputs def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = "en_XX" , lowerCamelCase__ = None , lowerCamelCase__ = "ro_RO" , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Dict =src_lang __UpperCamelCase : Optional[Any] =tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.convert_tokens_to_ids(lowerCamelCase__ ) __UpperCamelCase : Tuple =[] __UpperCamelCase : Optional[Any] =[self.eos_token_id, self.cur_lang_code] __UpperCamelCase : Optional[Any] =self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCamelCase : List[Any] =self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCamelCase : Union[str, Any] =processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.convert_tokens_to_ids(lowerCamelCase__ ) __UpperCamelCase : int =[] __UpperCamelCase : List[str] =[self.eos_token_id, self.cur_lang_code] __UpperCamelCase : Optional[int] =self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCamelCase : Dict =self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCamelCase : List[str] =processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return __UpperCamelCase : List[Any] =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
71
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __A ( a ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =tempfile.mkdtemp() __UpperCamelCase : Optional[int] =8 # DPR tok __UpperCamelCase : str =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase : Optional[Any] =os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __UpperCamelCase : Dict =os.path.join(lowerCamelCase__ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __UpperCamelCase : Optional[int] =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __UpperCamelCase : str =dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __UpperCamelCase : Optional[int] =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase : Any ={'unk_token': '<unk>'} __UpperCamelCase : Any =os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __UpperCamelCase : Any =os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : Dict =os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowercase ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =os.path.join(self.tmpdirname , 'rag_tokenizer' ) __UpperCamelCase : Dict =RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __UpperCamelCase : List[Any] =RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase__ ) rag_tokenizer.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : int =RagTokenizer.from_pretrained(lowerCamelCase__ , config=lowerCamelCase__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =RagTokenizer.from_pretrained('facebook/rag-token-nq' ) __UpperCamelCase : Union[str, Any] =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase : int =tokenizer(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) __UpperCamelCase : Union[str, Any] =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase : Any =tokenizer(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
71
1
"""simple docstring""" from __future__ import annotations def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" if b == 0: return (1, 0) ((__a) , (__a)) =extended_euclid(_snake_case , a % b ) __a =a // b return (y, x - k * y) def UpperCamelCase_( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" ((__a) , (__a)) =extended_euclid(_snake_case , _snake_case ) __a =na * na __a =ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" ((__a) , (__a)) =extended_euclid(_snake_case , _snake_case ) if b < 0: __a =(b % n + n) % n return b def UpperCamelCase_( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" __a , __a =invert_modulo(_snake_case , _snake_case ), invert_modulo(_snake_case , _snake_case ) __a =na * na __a =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
371
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
0
import cmath import math def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_): UpperCamelCase__: int = math.radians(A_) UpperCamelCase__: Tuple = math.radians(A_) # Convert voltage and current to rectangular form UpperCamelCase__: int = cmath.rect(A_ ,A_) UpperCamelCase__: int = cmath.rect(A_ ,A_) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
149
def lowerCAmelCase_ ( A_ ,A_): if b == 0: return 1 if (b % 2) == 0: return actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) else: return a * actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) def lowerCAmelCase_ ( A_ ,A_): if b < 0: return 1 / actual_power(A_ ,A_) return actual_power(A_ ,A_) if __name__ == "__main__": print(power(-2, -3))
149
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class _A ( _lowerCamelCase ): _UpperCamelCase : Tuple = '''xmod''' def __init__( self : Optional[Any] , _A : Union[str, Any]=30_522 , _A : List[Any]=768 , _A : Optional[Any]=12 , _A : Any=12 , _A : Tuple=3_072 , _A : Optional[int]="gelu" , _A : List[Any]=0.1 , _A : str=0.1 , _A : List[Any]=512 , _A : List[str]=2 , _A : str=0.02 , _A : Any=1E-12 , _A : Union[str, Any]=1 , _A : List[Any]=0 , _A : Dict=2 , _A : int="absolute" , _A : Dict=True , _A : int=None , _A : List[str]=False , _A : Dict=2 , _A : int=False , _A : Optional[int]=True , _A : Any=True , _A : Optional[int]=("en_XX",) , _A : Any=None , **_A : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) lowercase : Optional[Any] = vocab_size lowercase : Union[str, Any] = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : Union[str, Any] = hidden_act lowercase : Tuple = intermediate_size lowercase : List[str] = hidden_dropout_prob lowercase : Union[str, Any] = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : Any = type_vocab_size lowercase : Optional[Any] = initializer_range lowercase : str = layer_norm_eps lowercase : Tuple = position_embedding_type lowercase : Optional[Any] = use_cache lowercase : int = classifier_dropout lowercase : Optional[int] = pre_norm lowercase : Any = adapter_reduction_factor lowercase : Union[str, Any] = adapter_layer_norm lowercase : Optional[int] = adapter_reuse_layer_norm lowercase : Optional[Any] = ln_before_adapter lowercase : Union[str, Any] = list(_A ) lowercase : List[Any] = default_language class _A ( _lowerCamelCase ): @property def __a ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
116
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / 'model_card_template.md' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def snake_case( __magic_name__ = None ) -> str: '''simple docstring''' lowercase : List[Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__magic_name__ , __magic_name__ ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__magic_name__ , __magic_name__ ): ua += "; " + user_agent return ua def snake_case( __magic_name__ , __magic_name__ = None , __magic_name__ = None ) -> Optional[Any]: '''simple docstring''' if token is None: lowercase : int = HfFolder.get_token() if organization is None: lowercase : List[str] = whoami(__magic_name__ )['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__magic_name__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return lowercase : Optional[Any] = args.hub_token if hasattr(__magic_name__ , '''hub_token''' ) else None lowercase : int = get_full_repo_name(__magic_name__ , token=__magic_name__ ) lowercase : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__magic_name__ , model_name=__magic_name__ , repo_name=__magic_name__ , dataset_name=args.dataset_name if hasattr(__magic_name__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__magic_name__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__magic_name__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__magic_name__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__magic_name__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__magic_name__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__magic_name__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__magic_name__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__magic_name__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) lowercase : Any = os.path.join(args.output_dir , '''README.md''' ) model_card.save(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ = None ) -> int: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase : Dict = str(Path(__magic_name__ ).as_posix() ) lowercase : Any = re.search(r'''snapshots/([^/]+)/''' , __magic_name__ ) if search is None: return None lowercase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__magic_name__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, 'diffusers') def snake_case( __magic_name__ = None , __magic_name__ = None ) -> None: '''simple docstring''' if new_cache_dir is None: lowercase : str = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : List[str] = old_diffusers_cache lowercase : str = Path(__magic_name__ ).expanduser() lowercase : Dict = Path(__magic_name__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : List[Any] = new_cache_dir / old_blob_path.relative_to(__magic_name__ ) new_blob_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) os.replace(__magic_name__ , __magic_name__ ) try: os.symlink(__magic_name__ , __magic_name__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def snake_case( __magic_name__ , __magic_name__ = None ) -> str: '''simple docstring''' if variant is not None: lowercase : List[str] = weights_name.split('''.''' ) lowercase : Any = splits[:-1] + [variant] + splits[-1:] lowercase : Tuple = '''.'''.join(__magic_name__ ) return weights_name def snake_case( __magic_name__ , *, __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] = str(__magic_name__ ) if os.path.isfile(__magic_name__ ): return pretrained_model_name_or_path elif os.path.isdir(__magic_name__ ): if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) ): # Load from a PyTorch checkpoint lowercase : Dict = os.path.join(__magic_name__ , __magic_name__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) ): lowercase : str = os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__magic_name__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: lowercase : int = hf_hub_download( __magic_name__ , filename=_add_variant(__magic_name__ , __magic_name__ ) , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __magic_name__ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__magic_name__ , __magic_name__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__magic_name__ , __magic_name__ )}' so that the correct variant file can be added.""" , __magic_name__ , ) try: # 2. Load model file as usual lowercase : Dict = hf_hub_download( __magic_name__ , filename=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
116
1
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE( metaclass=a_ ): _UpperCAmelCase = ["torch", "scipy"] def __init__( self: Dict , *UpperCamelCase: List[Any] , **UpperCamelCase: str ) -> List[str]: requires_backends(self , ['torch', 'scipy'] ) @classmethod def lowerCAmelCase_ ( cls: str , *UpperCamelCase: Dict , **UpperCamelCase: Dict ) -> Tuple: requires_backends(cls , ['torch', 'scipy'] ) @classmethod def lowerCAmelCase_ ( cls: Optional[int] , *UpperCamelCase: Optional[Any] , **UpperCamelCase: List[str] ) -> Optional[Any]: requires_backends(cls , ['torch', 'scipy'] )
307
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[str] = logging.get_logger(__name__) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=False ): lowerCAmelCase : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Dict=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Dict = '''''' else: lowerCAmelCase : str = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : str = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCAmelCase : Optional[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : List[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def _snake_case ( _snake_case : Optional[Any] ): lowerCAmelCase : Optional[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : Tuple ): lowerCAmelCase : Union[str, Any] = dct.pop(_snake_case ) lowerCAmelCase : List[Any] = val def _snake_case ( ): lowerCAmelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def _snake_case ( _snake_case : Dict , _snake_case : Tuple ): lowerCAmelCase : Optional[int] = ViTConfig() lowerCAmelCase : int = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase : Dict = True lowerCAmelCase : Dict = int(vit_name[-12:-10] ) lowerCAmelCase : Any = int(vit_name[-9:-6] ) else: lowerCAmelCase : int = 1000 lowerCAmelCase : List[str] = '''huggingface/label-files''' lowerCAmelCase : Optional[int] = '''imagenet-1k-id2label.json''' lowerCAmelCase : Dict = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase : Dict = {int(_snake_case ): v for k, v in idalabel.items()} lowerCAmelCase : Dict = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase : Union[str, Any] = int(vit_name[-6:-4] ) lowerCAmelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase : Optional[int] = 192 lowerCAmelCase : Optional[int] = 768 lowerCAmelCase : Dict = 12 lowerCAmelCase : Optional[int] = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase : Union[str, Any] = 384 lowerCAmelCase : Optional[int] = 1536 lowerCAmelCase : Optional[int] = 12 lowerCAmelCase : List[Any] = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase : Optional[Any] = 768 lowerCAmelCase : str = 2304 lowerCAmelCase : Dict = 8 lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase : Union[str, Any] = 1024 lowerCAmelCase : Optional[int] = 4096 lowerCAmelCase : Any = 24 lowerCAmelCase : Optional[Any] = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase : Dict = 1280 lowerCAmelCase : Optional[Any] = 5120 lowerCAmelCase : Optional[int] = 32 lowerCAmelCase : Optional[int] = 16 # load original model from timm lowerCAmelCase : Union[str, Any] = timm.create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase : int = timm_model.state_dict() if base_model: remove_classification_head_(_snake_case ) lowerCAmelCase : Dict = create_rename_keys(_snake_case , _snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , _snake_case ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase : Any = ViTModel(_snake_case ).eval() else: lowerCAmelCase : Optional[Any] = ViTForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase : str = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase : List[Any] = ViTImageProcessor(size=config.image_size ) lowerCAmelCase : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase : str = encoding['''pixel_values'''] lowerCAmelCase : Any = model(_snake_case ) if base_model: lowerCAmelCase : List[Any] = timm_model.forward_features(_snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_snake_case , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase : Any = timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case__ : Optional[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
314
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
1
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase_ = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" lowercase_ = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" lowercase_ = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ) -> List[Any]: return float((preds == labels).mean() ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> int: __a = simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ ) __a = float(fa_score(y_true=lowerCAmelCase__ , y_pred=lowerCAmelCase__ ) ) return { "accuracy": acc, "f1": fa, } def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> List[Any]: __a = float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] ) __a = float(spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def __UpperCAmelCase ( self , _a , _a ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "stsb": return pearson_and_spearman(_a , _a ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_a , _a ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
45
"""simple docstring""" lowercase_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> str: assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __a = year // 100 __a = (5 * (century % 4) + 2) % 7 __a = year % 100 __a = centurian % 12 __a = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __a = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __a = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
45
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCamelCase_ : str = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = """vision-encoder-decoder""" __UpperCamelCase : List[Any] = True def __init__( self : Tuple , **snake_case_ : Dict ): super().__init__(**snake_case_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) UpperCamelCase_: Dict = kwargs.pop("""encoder""" ) UpperCamelCase_: Optional[int] = encoder_config.pop("""model_type""" ) UpperCamelCase_: Dict = kwargs.pop("""decoder""" ) UpperCamelCase_: int = decoder_config.pop("""model_type""" ) UpperCamelCase_: List[str] = AutoConfig.for_model(snake_case_ , **snake_case_ ) UpperCamelCase_: str = AutoConfig.for_model(snake_case_ , **snake_case_ ) UpperCamelCase_: Tuple = True @classmethod def lowerCAmelCase__ ( cls : int , snake_case_ : PretrainedConfig , snake_case_ : PretrainedConfig , **snake_case_ : List[Any] ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) UpperCamelCase_: str = True UpperCamelCase_: Dict = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[str] = copy.deepcopy(self.__dict__ ) UpperCamelCase_: Dict = self.encoder.to_dict() UpperCamelCase_: Dict = self.decoder.to_dict() UpperCamelCase_: Optional[int] = self.__class__.model_type return output class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Any = version.parse("""1.11""" ) @property def lowerCAmelCase__ ( self : List[Any] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self : Dict ): return 1e-4 @property def lowerCAmelCase__ ( self : List[str] ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _UpperCamelCase ( _A ): '''simple docstring''' @property def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[Any] = OrderedDict() UpperCamelCase_: Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} UpperCamelCase_: List[str] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} UpperCamelCase_: Optional[Any] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase__ ( self : Any , snake_case_ : "PreTrainedTokenizerBase" , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional["TensorType"] = None , ): import torch UpperCamelCase_: List[Any] = OrderedDict() UpperCamelCase_: Tuple = super().generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) UpperCamelCase_, UpperCamelCase_: int = dummy_input["""input_ids"""].shape UpperCamelCase_: List[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_: List[Any] = dummy_input.pop("""input_ids""" ) UpperCamelCase_: Any = dummy_input.pop("""attention_mask""" ) UpperCamelCase_: Tuple = torch.zeros(snake_case_ ) return common_inputs class _UpperCamelCase ( _A ): '''simple docstring''' @property def lowerCAmelCase__ ( self : Optional[Any] ): pass def lowerCAmelCase__ ( self : List[str] , snake_case_ : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(snake_case_ ) def lowerCAmelCase__ ( self : Any , snake_case_ : PretrainedConfig , snake_case_ : PretrainedConfig , snake_case_ : str = "default" ): UpperCamelCase_: Union[str, Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(snake_case_ , snake_case_ )
223
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCamelCase_ : str = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any]=None , snake_case_ : str=1 ): UpperCamelCase_: List[str] = tokenizer UpperCamelCase_: str = dataset UpperCamelCase_: List[str] = len(snake_case_ ) if n_tasks is None else n_tasks UpperCamelCase_: str = n_copies def __iter__( self : Tuple ): UpperCamelCase_: Optional[int] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) UpperCamelCase_: List[str] = self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Any , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = start_length UpperCamelCase_: Dict = eof_strings UpperCamelCase_: List[str] = tokenizer def __call__( self : Tuple , snake_case_ : List[str] , snake_case_ : Optional[Any] , **snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCamelCase_: Dict = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(snake_case_ ) def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: str = re.split("""(%s)""" % """|""".join(lowerCamelCase ) , lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=20 , **lowerCamelCase ) -> int: UpperCamelCase_: str = defaultdict(lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(lowerCamelCase ) ): with torch.no_grad(): UpperCamelCase_: Optional[int] = batch["""ids"""].shape[-1] UpperCamelCase_: Dict = accelerator.unwrap_model(lowerCamelCase ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=lowerCamelCase , **lowerCamelCase ) # each task is generated batch_size times UpperCamelCase_: Optional[int] = batch["""task_id"""].repeat(lowerCamelCase ) UpperCamelCase_: int = accelerator.pad_across_processes( lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCamelCase_, UpperCamelCase_: Tuple = accelerator.gather((generated_tokens, generated_tasks) ) UpperCamelCase_: Tuple = generated_tokens.cpu().numpy() UpperCamelCase_: Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(lowerCamelCase , lowerCamelCase ): gen_token_dict[task].append(lowerCamelCase ) UpperCamelCase_: Dict = [[] for _ in range(lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCamelCase_: Any = tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) code_gens[task].append(remove_last_block(lowerCamelCase ) ) return code_gens def A__ ( ) -> Union[str, Any]: # Setup configuration UpperCamelCase_: Optional[Any] = HfArgumentParser(lowerCamelCase ) UpperCamelCase_: str = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCamelCase_: List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCamelCase_: Union[str, Any] = """false""" if args.num_workers is None: UpperCamelCase_: Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCamelCase_: List[Any] = Accelerator() set_seed(args.seed , device_specific=lowerCamelCase ) # Load model and tokenizer UpperCamelCase_: Any = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCamelCase_: Union[str, Any] = tokenizer.eos_token UpperCamelCase_: Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCamelCase_: Union[str, Any] = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , lowerCamelCase , lowerCamelCase )] ), } # Load evaluation dataset and metric UpperCamelCase_: Any = load_dataset("""openai_humaneval""" ) UpperCamelCase_: Union[str, Any] = load_metric("""code_eval""" ) UpperCamelCase_: Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) UpperCamelCase_: List[Any] = args.n_samples // args.batch_size UpperCamelCase_: Any = TokenizedDataset(lowerCamelCase , human_eval["""test"""] , n_copies=lowerCamelCase , n_tasks=lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCamelCase_: Optional[int] = DataLoader(lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCamelCase_: List[str] = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception UpperCamelCase_, UpperCamelCase_: Dict = accelerator.prepare(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = complete_code( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , n_tasks=lowerCamelCase , batch_size=args.batch_size , **lowerCamelCase , ) if accelerator.is_main_process: UpperCamelCase_: List[Any] = [] for task in tqdm(range(lowerCamelCase ) ): UpperCamelCase_: Optional[Any] = human_eval["""test"""][task]["""test"""] UpperCamelCase_: Optional[int] = F'''check({human_eval["test"][task]["entry_point"]})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric UpperCamelCase_, UpperCamelCase_: str = code_eval_metric.compute( references=lowerCamelCase , predictions=lowerCamelCase , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
223
1
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() _snake_case = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def _A ( snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=True ) -> List[str]: if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _lowercase , _lowercase , _lowercase , _lowercase : Tuple = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: _lowercase : Optional[int] = cached_file(A__ , A__ , force_download=not use_cached_models ) _lowercase : Optional[int] = config_class.from_json_file(A__ ) _lowercase : List[str] = True _lowercase : Optional[int] = True print(F'''Building TensorFlow model from configuration: {config}''' ) _lowercase : Tuple = model_class(A__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): _lowercase : Optional[int] = cached_file( A__ , A__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: _lowercase : Union[str, Any] = load_pytorch_checkpoint_in_tfa_model(A__ , A__ ) if compare_with_pt_model: _lowercase : Optional[int] = tf_model(tf_model.dummy_inputs , training=A__ ) # build the network _lowercase : Optional[Any] = torch.load(A__ , map_location="cpu" ) _lowercase : Union[str, Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=A__ , config=A__ , state_dict=A__ ) with torch.no_grad(): _lowercase : List[str] = pt_model(**pt_model.dummy_inputs ) _lowercase : Any = pto[0].numpy() _lowercase : Tuple = tfo[0].numpy() _lowercase : Any = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(A__ , save_format="h5" ) def _A ( snake_case , snake_case , snake_case=None , snake_case=None , snake_case=False , snake_case=False , snake_case=False , snake_case=False , ) -> List[str]: if args_model_type is None: _lowercase : List[Any] = list(MODEL_CLASSES.keys() ) else: _lowercase : Optional[int] = [args_model_type] for j, model_type in enumerate(A__ , start=1 ): print("=" * 1_00 ) print(F''' Converting model type {j}/{len(A__ )}: {model_type}''' ) print("=" * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: _lowercase : List[Any] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: _lowercase : Tuple = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(A__ , A__ ) , start=1 ): print("-" * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue _lowercase : List[str] = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(A__ )}: {model_shortcut_name} - model_type {model_type}''' ) print("-" * 1_00 ) if config_shortcut_name in aws_config_map: _lowercase : str = cached_file(A__ , A__ , force_download=not use_cached_models ) else: _lowercase : Dict = config_shortcut_name if model_shortcut_name in aws_model_maps: _lowercase : Tuple = cached_file(A__ , A__ , force_download=not use_cached_models ) else: _lowercase : int = model_shortcut_name if os.path.isfile(A__ ): _lowercase : Union[str, Any] = "converted_model" convert_pt_checkpoint_to_tf( model_type=A__ , pytorch_checkpoint_path=A__ , config_file=A__ , tf_dump_path=os.path.join(A__ , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=A__ , ) if remove_cached_files: os.remove(A__ ) os.remove(A__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') _snake_case = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
250
from __future__ import annotations def a ( A__ : list[int] ) -> int: """simple docstring""" if not nums: return 0 _lowercase =nums[0] _lowercase =0 for num in nums[1:]: _lowercase , _lowercase =( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
205
0
import requests _UpperCAmelCase = """""" # <-- Put your OpenWeatherMap appid here! _UpperCAmelCase = """https://api.openweathermap.org/data/2.5/""" def UpperCamelCase ( __lowercase : str = "Chicago" ,__lowercase : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + 'weather' ,params=locals() ).json() def UpperCamelCase ( __lowercase : str = "Kolkata, India" ,__lowercase : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + 'forecast' ,params=locals() ).json() def UpperCamelCase ( __lowercase : float = 55.68 ,__lowercase : float = 12.57 ,__lowercase : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + 'onecall' ,params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _UpperCAmelCase = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
192
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): """simple docstring""" warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
192
1
'''simple docstring''' # flake8: noqa # Lint as: python3 a__ : Union[str, Any] =[ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
53
from timeit import timeit def a_ ( lowerCAmelCase_ : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __lowerCAmelCase = 0 while number: number &= number - 1 result += 1 return result def a_ ( lowerCAmelCase_ : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __lowerCAmelCase = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a_ ( ): def do_benchmark(lowerCAmelCase_ : int ) -> None: __lowerCAmelCase = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(lowerCAmelCase_ ) = }""" ) __lowerCAmelCase = timeit('z.get_set_bits_count_using_modulo_operator(25)', setup=lowerCAmelCase_ ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase_ ) = }""" ) __lowerCAmelCase = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)', setup=lowerCAmelCase_, ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
284
0
snake_case : Optional[int] = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" snake_case : Tuple = [{"type": "code", "content": INSTALL_CONTENT}] snake_case : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
41
def lowerCAmelCase_ ( _snake_case : int ) -> int: '''simple docstring''' assert isinstance(_snake_case , _snake_case ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: __magic_name__ : Dict = F'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: __magic_name__ : str = sylvester(number - 1 ) __magic_name__ : Tuple = num - 1 __magic_name__ : Union[str, Any] = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
41
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _UpperCAmelCase : Union[str, Any] ="""pt""" elif is_tf_available(): _UpperCAmelCase : List[Any] ="""tf""" else: _UpperCAmelCase : Optional[int] ="""jax""" class snake_case__( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = PerceiverTokenizer SCREAMING_SNAKE_CASE__ : Optional[Any] = False def lowercase_ ( self ) -> Optional[int]: super().setUp() lowerCAmelCase_ : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ) -> Any: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def lowercase_ ( self , **__lowercase ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def lowercase_ ( self , __lowercase , __lowercase=False , __lowercase=2_0 , __lowercase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCAmelCase_ : Optional[Any] = [] for i in range(len(__lowercase ) ): try: lowerCAmelCase_ : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase_ : List[str] = list(filter(lambda __lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __lowercase ) ) lowerCAmelCase_ : Optional[int] = list(filter(lambda __lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowercase ) , __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: lowerCAmelCase_ : Union[str, Any] = toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: lowerCAmelCase_ : Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase_ : List[str] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase_ : int = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: lowerCAmelCase_ : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: lowerCAmelCase_ : Any = ''' ''' + output_txt lowerCAmelCase_ : List[str] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) return output_txt, output_ids def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : List[str] = self.perceiver_tokenizer lowerCAmelCase_ : Any = '''Unicode €.''' lowerCAmelCase_ : Dict = tokenizer(__lowercase ) lowerCAmelCase_ : Any = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding lowerCAmelCase_ : str = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]Unicode €.[SEP]''' ) lowerCAmelCase_ : Optional[int] = tokenizer('''e è é ê ë''' ) lowerCAmelCase_ : str = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding lowerCAmelCase_ : int = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : Any = self.perceiver_tokenizer lowerCAmelCase_ : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCAmelCase_ : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCAmelCase_ : Optional[int] = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) if FRAMEWORK != "jax": lowerCAmelCase_ : str = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase_ : Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : int = self.perceiver_tokenizer lowerCAmelCase_ : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCAmelCase_ : List[Any] = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __lowercase ) self.assertIn('''attention_mask''' , __lowercase ) self.assertNotIn('''decoder_input_ids''' , __lowercase ) self.assertNotIn('''decoder_attention_mask''' , __lowercase ) def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : Optional[Any] = self.perceiver_tokenizer lowerCAmelCase_ : int = [ '''Summary of the text.''', '''Another summary.''', ] lowerCAmelCase_ : List[str] = tokenizer( text_target=__lowercase , max_length=3_2 , padding='''max_length''' , truncation=__lowercase , return_tensors=__lowercase ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def lowercase_ ( self ) -> Optional[Any]: # safety check on max_len default value so we are sure the test works lowerCAmelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test lowerCAmelCase_ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase_ : str = ''' He is very happy, UNwant\u00E9d,running''' lowerCAmelCase_ : Optional[int] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) lowerCAmelCase_ : Any = tokenizer.__class__.from_pretrained(__lowercase ) lowerCAmelCase_ : Tuple = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) shutil.rmtree(__lowercase ) lowerCAmelCase_ : Optional[int] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowerCAmelCase_ : Any = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCAmelCase_ : str = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) lowerCAmelCase_ : str = tokenizer.__class__.from_pretrained(__lowercase ) lowerCAmelCase_ : Optional[Any] = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) lowerCAmelCase_ : str = tokenizer.__class__.from_pretrained(__lowercase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__lowercase ) def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowerCAmelCase_ : Tuple = json.load(__lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowerCAmelCase_ : Any = json.load(__lowercase ) lowerCAmelCase_ : Optional[int] = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] lowerCAmelCase_ : Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCAmelCase_ : Any = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase_ : int = tokenizer_class.from_pretrained( __lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase_ : Tuple = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__lowercase )] lowerCAmelCase_ : Dict = tokenizer_class.from_pretrained( __lowercase , additional_special_tokens=__lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Any = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self ) -> Any: pass def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self ) -> List[str]: pass def lowercase_ ( self ) -> Dict: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowerCAmelCase_ : Tuple = self.get_tokenizers(fast=__lowercase , do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase_ : List[str] = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] lowerCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(__lowercase , __lowercase )
262
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _UpperCAmelCase : Any =logging.get_logger(__name__) class snake_case__( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *__lowercase , **__lowercase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
262
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" __lowercase = 0 # if input_string is "aba" than new_input_string become "a|b|a" __lowercase = '''''' __lowercase = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(A__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __lowercase , __lowercase = 0, 0 # length[i] shows the length of palindromic substring with center i __lowercase = [1 for i in range(len(A__ ) )] # for each character in new_string find corresponding palindromic string __lowercase = 0 for j in range(len(A__ ) ): __lowercase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(A__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __lowercase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __lowercase = j - k + 1 # noqa: E741 __lowercase = j + k - 1 # update max_length and start position if max_length < length[j]: __lowercase = length[j] __lowercase = j # create that string __lowercase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
52
'''simple docstring''' from math import sqrt def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' must been an int and positive" __lowercase = True # 0 and 1 are none primes. if number <= 1: __lowercase = False for divisor in range(2 , int(round(sqrt(A__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowercase = False break # precondition assert isinstance(A__ , A__ ), "'status' must been from type bool" return status def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowercase = list(range(2 , n + 1 ) ) __lowercase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(A__ ) ): for j in range(i + 1 , len(A__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowercase = 0 # filters actual prime numbers. __lowercase = [x for x in begin_list if x != 0] # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" __lowercase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(A__ ): ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and number >= 0, "'number' must been an int and >= 0" __lowercase = [] # this list will be returns of the function. # potential prime number factors. __lowercase = 2 __lowercase = number if number == 0 or number == 1: ans.append(A__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(A__ ): while quotient != 1: if is_prime(A__ ) and (quotient % factor == 0): ans.append(A__ ) quotient /= factor else: factor += 1 else: ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(A__ ) __lowercase = max(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(A__ ) __lowercase = min(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , A__ ), "compare bust been from type bool" return number % 2 == 0 def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , A__ ), "compare bust been from type bool" return number % 2 != 0 def _A ( A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and (number > 2) and is_even(A__ ) ), "'number' must been an int, even and > 2" __lowercase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowercase = get_prime_numbers(A__ ) __lowercase = len(A__ ) # run variable for while-loops. __lowercase = 0 __lowercase = None # exit variable. for break up the loops __lowercase = True while i < len_pn and loop: __lowercase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowercase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(A__ , A__ ) and (len(A__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowercase = 0 while numbera != 0: __lowercase = numbera % numbera __lowercase = numbera __lowercase = rest # precondition assert isinstance(A__ , A__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowercase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowercase = prime_factorization(A__ ) __lowercase = prime_factorization(A__ ) elif numbera == 1 or numbera == 1: __lowercase = [] __lowercase = [] __lowercase = max(A__ , A__ ) __lowercase = 0 __lowercase = 0 __lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowercase = prime_fac_a.count(A__ ) __lowercase = prime_fac_a.count(A__ ) for _ in range(max(A__ , A__ ) ): ans *= n else: __lowercase = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowercase = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # precondition assert isinstance(A__ , A__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'number' must been a positive int" __lowercase = 0 __lowercase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(A__ ): ans += 1 # precondition assert isinstance(A__ , A__ ) and is_prime( A__ ), "'ans' must been a prime number and from type int" return ans def _A ( A__ , A__ ): """simple docstring""" assert ( is_prime(A__ ) and is_prime(A__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowercase = p_number_a + 1 # jump to the next number __lowercase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(A__ ): number += 1 while number < p_number_a: ans.append(A__ ) number += 1 # fetch the next prime number. while not is_prime(A__ ): number += 1 # precondition assert ( isinstance(A__ , A__ ) and ans[0] != p_number_a and ans[len(A__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 1), "'n' must been int and >= 1" __lowercase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(A__ ) # precondition assert ans[0] == 1 and ans[len(A__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowercase = get_divisors(A__ ) # precondition assert ( isinstance(A__ , A__ ) and (divisors[0] == 1) and (divisors[len(A__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowercase = gcd(abs(A__ ) , abs(A__ ) ) # precondition assert ( isinstance(A__ , A__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been a int and >= 0" __lowercase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been an int and >= 0" __lowercase = 0 __lowercase = 1 __lowercase = 1 # this will be return for _ in range(n - 1 ): __lowercase = ans ans += fiba __lowercase = tmp return ans
52
1
"""simple docstring""" import argparse from collections import defaultdict import yaml __SCREAMING_SNAKE_CASE : Optional[int] = "docs/source/en/_toctree.yml" def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = defaultdict(__lowerCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 snake_case_ = [key for key, value in counts.items() if value > 1] snake_case_ = [] for duplicate_key in duplicates: snake_case_ = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(__lowerCAmelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(__lowerCAmelCase , key=lambda _SCREAMING_SNAKE_CASE : s["title"].lower() ) def _a ( _SCREAMING_SNAKE_CASE=False ) -> str: with open(__lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case_ = yaml.safe_load(f.read() ) # Get to the API doc snake_case_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case_ = content[api_idx]["""sections"""] # Then to the model doc snake_case_ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case_ = api_doc[model_idx]["""sections"""] snake_case_ = [(idx, section) for idx, section in enumerate(__lowerCAmelCase ) if """sections""" in section] snake_case_ = False for idx, modality_doc in modalities_docs: snake_case_ = modality_doc["""sections"""] snake_case_ = clean_model_doc_toc(__lowerCAmelCase ) if old_modality_doc != new_modality_doc: snake_case_ = True if overwrite: snake_case_ = new_modality_doc if diff: if overwrite: snake_case_ = model_doc snake_case_ = api_doc with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__lowerCAmelCase , allow_unicode=__lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __SCREAMING_SNAKE_CASE : Any = parser.parse_args() check_model_doc(args.fix_and_overwrite)
347
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets UpperCAmelCase : Tuple = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" UpperCAmelCase : Optional[int] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" UpperCAmelCase : List[str] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Dict: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ = new_id # turn into Numpy arrays lowercase_ = np.array(__lowerCAmelCase ) lowercase_ = np.array(__lowerCAmelCase ) if reduce_labels: lowercase_ = 2_55 lowercase_ = label - 1 lowercase_ = 2_55 lowercase_ = label != ignore_index lowercase_ = np.not_equal(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = pred_label[mask] lowercase_ = np.array(__lowerCAmelCase )[mask] lowercase_ = pred_label[pred_label == label] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Optional[Any]: '''simple docstring''' lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ , lowercase_ , lowercase_ , lowercase_ = intersect_and_union( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Any: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = total_intersect_and_union( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # compute metrics lowercase_ = {} lowercase_ = total_area_intersect.sum() / total_area_label.sum() lowercase_ = total_area_intersect / total_area_union lowercase_ = total_area_intersect / total_area_label lowercase_ = np.nanmean(__lowerCAmelCase ) lowercase_ = np.nanmean(__lowerCAmelCase ) lowercase_ = all_acc lowercase_ = iou lowercase_ = acc if nan_to_num is not None: lowercase_ = {metric: np.nan_to_num(__lowerCAmelCase , nan=__lowerCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), }) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : bool , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Dict[int, int]] = None , lowerCAmelCase_ : bool = False , ): """simple docstring""" lowercase_ = mean_iou( results=lowerCAmelCase_ , gt_seg_maps=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , ignore_index=lowerCAmelCase_ , nan_to_num=lowerCAmelCase_ , label_map=lowerCAmelCase_ , reduce_labels=lowerCAmelCase_ , ) return iou_result
136
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = 42 class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' @register_to_config def __init__( self , _UpperCAmelCase = 6_55_36 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): super().__init__() snake_case_ = sample_size # time if time_embedding_type == "fourier": snake_case_ = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase ) snake_case_ = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case_ = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase ) snake_case_ = block_out_channels[0] if use_timestep_embedding: snake_case_ = block_out_channels[0] * 4 snake_case_ = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) snake_case_ = nn.ModuleList([] ) snake_case_ = None snake_case_ = nn.ModuleList([] ) snake_case_ = None # down snake_case_ = in_channels for i, down_block_type in enumerate(_UpperCAmelCase ): snake_case_ = output_channel snake_case_ = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case_ = i == len(_UpperCAmelCase ) - 1 snake_case_ = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase ) # mid snake_case_ = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up snake_case_ = list(reversed(_UpperCAmelCase ) ) snake_case_ = reversed_block_out_channels[0] if out_block_type is None: snake_case_ = out_channels else: snake_case_ = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase ): snake_case_ = output_channel snake_case_ = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase ) - 1 else final_upsample_channels ) snake_case_ = i == len(_UpperCAmelCase ) - 1 snake_case_ = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase ) snake_case_ = output_channel # out snake_case_ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case_ = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): snake_case_ = timestep if not torch.is_tensor(_UpperCAmelCase ): snake_case_ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: snake_case_ = timesteps[None].to(sample.device ) snake_case_ = self.time_proj(_UpperCAmelCase ) if self.config.use_timestep_embedding: snake_case_ = self.time_mlp(_UpperCAmelCase ) else: snake_case_ = timestep_embed[..., None] snake_case_ = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case_ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case_ = () for downsample_block in self.down_blocks: snake_case_ , snake_case_ = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case_ = self.mid_block(_UpperCAmelCase , _UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case_ = down_block_res_samples[-1:] snake_case_ = down_block_res_samples[:-1] snake_case_ = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase ) # 5. post-process if self.out_block: snake_case_ = self.out_block(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase )
267
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = None __snake_case = None @property def UpperCamelCase__ ( self ): return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''padding_value''' ) ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) for x, y in zip(_UpperCAmelCase , processed_features[input_name] ) ) ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase=False ): def _inputs_have_equal_length(_UpperCAmelCase ): snake_case_ = len(input[0] ) for input_slice in input[1:]: if len(_UpperCAmelCase ) != length: return False return True def _inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ): if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ): if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ): return False return True snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = self.feat_extract_tester.seq_length_diff snake_case_ = self.feat_extract_tester.max_seq_length + pad_diff snake_case_ = self.feat_extract_tester.min_seq_length snake_case_ = self.feat_extract_tester.batch_size snake_case_ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy snake_case_ = feat_extract.pad(_UpperCAmelCase , padding=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) snake_case_ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''max_length''' )[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=_UpperCAmelCase , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy snake_case_ = feat_extract.pad(_UpperCAmelCase , pad_to_multiple_of=10 ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , pad_to_multiple_of=10 ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_UpperCAmelCase , return_tensors='''np''' , ) snake_case_ = input_a[input_name] self.assertTrue(all(len(_UpperCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_UpperCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct snake_case_ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def UpperCamelCase__ ( self , _UpperCAmelCase=False ): def _inputs_have_equal_length(_UpperCAmelCase ): snake_case_ = len(input[0] ) for input_slice in input[1:]: if len(_UpperCAmelCase ) != length: return False return True def _inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ): if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ): if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ): return False return True snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) snake_case_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) # truncate to smallest with np snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=_UpperCAmelCase , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) # truncate to middle snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase , return_tensors='''np''' , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , truncation=_UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''longest''' , truncation=_UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''longest''' , truncation=_UpperCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , truncation=_UpperCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy snake_case_ = 12 snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , truncation=_UpperCAmelCase , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , ) snake_case_ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of snake_case_ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: snake_case_ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) def UpperCamelCase__ ( self ): self._check_padding(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_padding(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_truncation(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_truncation(numpify=_UpperCAmelCase ) @require_torch def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**_UpperCAmelCase ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = [len(_UpperCAmelCase ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**_UpperCAmelCase ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = [len(_UpperCAmelCase ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = min(_UpperCAmelCase ) snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
267
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : List[Any] = 16 A : Optional[int] = 32 def a__ ( __UpperCamelCase , __UpperCamelCase = 1_6 ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_ = load_dataset("glue" , "mrpc" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ = 1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ = 8 else: SCREAMING_SNAKE_CASE_ = None return tokenizer.pad( __UpperCamelCase , padding="longest" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets["train"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets["validation"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : List[str] = mocked_dataloaders # noqa: F811 def a__ ( __UpperCamelCase , __UpperCamelCase ): if os.environ.get("TESTING_MOCKED_DATALOADERS" , __UpperCamelCase ) == "1": SCREAMING_SNAKE_CASE_ = 2 # Initialize accelerator SCREAMING_SNAKE_CASE_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ = config["""lr"""] SCREAMING_SNAKE_CASE_ = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_ = int(config["seed"] ) SCREAMING_SNAKE_CASE_ = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_ = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__UpperCamelCase ) def inner_training_loop(__UpperCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ = AdamW(params=model.parameters() , lr=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ): SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
118
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding="""utf-8""" ,check=__UpperCAmelCase ,) assert hasattr(self ,"""env""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings lowerCAmelCase__ : Any = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=__UpperCAmelCase ,instance_count=__UpperCAmelCase ,instance_type=self.instance_type ,debugger_hook_config=__UpperCAmelCase ,hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=__UpperCAmelCase ,py_version="""py36""" ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: TrainingJobAnalytics(__UpperCAmelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: # create estimator lowerCAmelCase__ : List[Any] = self.create_estimator(__UpperCAmelCase ) # run training estimator.fit() # result dataframe lowerCAmelCase__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ : int = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,__UpperCAmelCase )
37
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): SCREAMING_SNAKE_CASE_ = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE_ = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE = numpy_to_pil(_SCREAMING_SNAKE_CASE ) return images def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if images.ndim == 3: SCREAMING_SNAKE_CASE = images[None, ...] SCREAMING_SNAKE_CASE = (images * 2_55).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: SCREAMING_SNAKE_CASE = [Image.fromarray(_SCREAMING_SNAKE_CASE ) for image in images] return pil_images
193
import json import sys def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE = json.load(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = results[benchmark_name] SCREAMING_SNAKE_CASE = benchmark_name.split("""/""" )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) SCREAMING_SNAKE_CASE = """| metric |""" SCREAMING_SNAKE_CASE = """|--------|""" SCREAMING_SNAKE_CASE = """| new / old (diff) |""" for metric_name in sorted(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = benchmark_res[metric_name] SCREAMING_SNAKE_CASE = metric_vals["""new"""] SCREAMING_SNAKE_CASE = metric_vals.get("""old""" , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = metric_vals.get("""diff""" , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = F""" {new_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else """None""" if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = sys.argv[1] SCREAMING_SNAKE_CASE_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
193
1
import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' UpperCamelCase__ : int UpperCamelCase__ : jnp.dtype = jnp.floataa def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape __SCREAMING_SNAKE_CASE = jax.image.resize( _A , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __SCREAMING_SNAKE_CASE = self.conv(_A ) return hidden_states class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' UpperCamelCase__ : int UpperCamelCase__ : jnp.dtype = jnp.floataa def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv(_A ) return hidden_states class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' UpperCamelCase__ : int UpperCamelCase__ : int = None UpperCamelCase__ : float = 0.0 UpperCamelCase__ : bool = None UpperCamelCase__ : jnp.dtype = jnp.floataa def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = nn.Dense(_A , dtype=self.dtype ) __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __SCREAMING_SNAKE_CASE = None if use_nin_shortcut: __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , _A , _A , _A=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = self.norma(_A ) __SCREAMING_SNAKE_CASE = nn.swish(_A ) __SCREAMING_SNAKE_CASE = self.conva(_A ) __SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(_A ) ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(_A , 1 ) , 1 ) __SCREAMING_SNAKE_CASE = hidden_states + temb __SCREAMING_SNAKE_CASE = self.norma(_A ) __SCREAMING_SNAKE_CASE = nn.swish(_A ) __SCREAMING_SNAKE_CASE = self.dropout(_A , _A ) __SCREAMING_SNAKE_CASE = self.conva(_A ) if self.conv_shortcut is not None: __SCREAMING_SNAKE_CASE = self.conv_shortcut(_A ) return hidden_states + residual
257
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _A = 16 , _A = 88 , _A = None , _A = 1 , _A = 0.0 , _A = 32 , _A = None , _A = False , _A = None , _A = None , _A = "geglu" , _A = None , ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_A , attention_head_dim=_A , in_channels=_A , num_layers=_A , dropout=_A , norm_num_groups=_A , cross_attention_dim=_A , attention_bias=_A , sample_size=_A , num_vector_embeds=_A , activation_fn=_A , num_embeds_ada_norm=_A , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __SCREAMING_SNAKE_CASE = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __SCREAMING_SNAKE_CASE = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __SCREAMING_SNAKE_CASE = [1, 0] def _A ( self , _A , _A , _A=None , _A=None , _A=None , _A = True , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __SCREAMING_SNAKE_CASE = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __SCREAMING_SNAKE_CASE = self.transformer_index_for_condition[i] __SCREAMING_SNAKE_CASE = self.transformers[transformer_index]( _A , encoder_hidden_states=_A , timestep=_A , cross_attention_kwargs=_A , return_dict=_A , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __SCREAMING_SNAKE_CASE = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __SCREAMING_SNAKE_CASE = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_A )
257
1
from math import isqrt def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(lowerCamelCase__ ) + 1 ) ) def __lowerCamelCase ( lowerCamelCase__ = 10**6 ): """simple docstring""" lowercase__ : int = 0 lowercase__ : Optional[Any] = 1 lowercase__ : List[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCamelCase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
121
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[Any] = {} lowercase__ : Tuple = tokenizer(example["content"] , truncation=lowerCamelCase__ )["input_ids"] lowercase__ : Optional[int] = len(example["content"] ) / len(output["input_ids"] ) return output lowerCAmelCase__ = HfArgumentParser(PretokenizationArguments) lowerCAmelCase__ = parser.parse_args() if args.num_workers is None: lowerCAmelCase__ = multiprocessing.cpu_count() lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase__ = time.time() lowerCAmelCase__ = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') lowerCAmelCase__ = time.time() lowerCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowerCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
121
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=32 , lowercase=3 , lowercase=4 , lowercase=[10, 20, 30, 40] , lowercase=[2, 2, 3, 2] , lowercase=True , lowercase=True , lowercase=37 , lowercase="gelu" , lowercase=10 , lowercase=0.02 , lowercase=["stage2", "stage3", "stage4"] , lowercase=3 , lowercase=None , ) -> List[str]: '''simple docstring''' a__ : Optional[Any] = parent a__ : List[str] = batch_size a__ : str = image_size a__ : int = num_channels a__ : List[str] = num_stages a__ : Tuple = hidden_sizes a__ : List[str] = depths a__ : str = is_training a__ : Any = use_labels a__ : Optional[int] = intermediate_size a__ : Union[str, Any] = hidden_act a__ : List[str] = type_sequence_label_size a__ : List[str] = initializer_range a__ : Optional[Any] = out_features a__ : Union[str, Any] = num_labels a__ : Dict = scope a__ : List[str] = num_stages def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : int = None if self.use_labels: a__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : Tuple = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowercase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=lowercase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : Tuple = UperNetForSemanticSegmentation(config=lowercase) model.to(lowercase) model.eval() a__ : Optional[Any] = model(lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Dict = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ) : List[Any] = config_and_inputs a__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __A : Union[str, Any] = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} __A : Optional[Any] = False __A : Union[str, Any] = False __A : List[str] = False __A : Union[str, Any] = False __A : Any = False __A : List[Any] = False def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = UperNetModelTester(self) a__ : List[str] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self) -> List[Any]: '''simple docstring''' return def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : str = model_class(lowercase) a__ : Optional[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : List[Any] = [*signature.parameters.keys()] a__ : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase) @unittest.skip(reason='UperNet does not use inputs_embeds') def __lowercase ( self) -> str: '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings') def __lowercase ( self) -> Dict: '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model') def __lowercase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model') def __lowercase ( self) -> List[str]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def __lowercase ( self) -> Optional[int]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __lowercase ( self) -> List[Any]: '''simple docstring''' pass def __lowercase ( self) -> Tuple: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__ : Optional[int] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Dict = model(**self._prepare_for_class(lowercase , lowercase)) a__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ : Tuple = self.model_tester.num_stages self.assertEqual(len(lowercase) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a__ , a__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[Any] = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Tuple = True check_hidden_states_output(lowercase , lowercase , lowercase) def __lowercase ( self) -> int: '''simple docstring''' a__ , a__ : Any = self.model_tester.prepare_config_and_inputs_for_common() a__ : List[Any] = _config_zero_init(lowercase) a__ : Dict = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: a__ : Any = model_class(config=lowercase) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason='UperNet does not have tied weights') def __lowercase ( self) -> str: '''simple docstring''' pass @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> Optional[Any]: a__ : Dict = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) a__ : Tuple = Image.open(A__ ).convert('RGB' ) return image @require_torch @require_vision @slow class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny') a__ : List[str] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny').to(lowercase) a__ : str = prepare_img() a__ : List[str] = processor(images=lowercase , return_tensors='pt').to(lowercase) with torch.no_grad(): a__ : List[str] = model(**lowercase) a__ : Optional[int] = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Dict = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase , atol=1e-4)) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny') a__ : Tuple = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny').to(lowercase) a__ : Optional[int] = prepare_img() a__ : Any = processor(images=lowercase , return_tensors='pt').to(lowercase) with torch.no_grad(): a__ : Any = model(**lowercase) a__ : Tuple = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape , lowercase) a__ : List[Any] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase , atol=1e-4))
99
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCamelCase ( yaml.SafeLoader ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : str = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase_ : str = [tuple(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else key for key in keys] lowercase_ : List[Any] = Counter(__UpperCamelCase ) lowercase_ : str = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=False ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[int] = super().construct_mapping(__UpperCamelCase ,deep=__UpperCamelCase ) self._check_no_duplicates_on_constructed_node(__UpperCamelCase ) return mapping def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase_ : Dict = full_content[1:].index('---' ) + 1 lowercase_ : Optional[int] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__SCREAMING_SNAKE_CASE ) class UpperCamelCase ( lowercase_ ): # class attributes lowercase = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' with open(__UpperCamelCase ,encoding='utf-8' ) as readme_file: lowercase_ , lowercase_ : Optional[int] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__UpperCamelCase ) else: return cls() def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' if path.exists(): with open(__UpperCamelCase ,encoding='utf-8' ) as readme_file: lowercase_ : Dict = readme_file.read() else: lowercase_ : int = None lowercase_ : Any = self._to_readme(__UpperCamelCase ) with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as readme_file: readme_file.write(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase = None ) -> str: '''simple docstring''' if readme_content is not None: lowercase_ , lowercase_ : Optional[Any] = _split_yaml_from_readme(__UpperCamelCase ) lowercase_ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: lowercase_ : Tuple = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' lowercase_ : List[str] = yaml.load(__UpperCamelCase ,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase_ : Dict = { (key.replace('-' ,'_' ) if key.replace('-' ,'_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace('_' ,'-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } ,sort_keys=__UpperCamelCase ,allow_unicode=__UpperCamelCase ,encoding='utf-8' ,).decode('utf-8' ) __SCREAMING_SNAKE_CASE ={ "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser __SCREAMING_SNAKE_CASE =ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") __SCREAMING_SNAKE_CASE =ap.parse_args() __SCREAMING_SNAKE_CASE =Path(args.readme_filepath) __SCREAMING_SNAKE_CASE =DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
213
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = OpenAIGPTTokenizer lowercase = OpenAIGPTTokenizerFast lowercase = True lowercase = False def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCAmelCase__ : List[Any] = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : int = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] lowerCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : Optional[Any] , a : Union[str, Any] ): '''simple docstring''' return "lower newer", "lower newer" def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase__ : Optional[int] = 'lower' lowerCAmelCase__ : Optional[Any] = ['low', 'er</w>'] lowerCAmelCase__ : Optional[Any] = tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Optional[int] = tokens + ['<unk>'] lowerCAmelCase__ : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _lowerCamelCase ( self : Dict , a : List[Any]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained(a , **a ) # Simple input lowerCAmelCase__ : Optional[int] = 'This is a simple input' lowerCAmelCase__ : int = ['This is a simple input 1', 'This is a simple input 2'] lowerCAmelCase__ : int = ('This is a simple input', 'This is a pair') lowerCAmelCase__ : List[str] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='max_length' ) # Simple input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='max_length' ) # Simple input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='max_length' , ) # Pair input self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='max_length' ) # Pair input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='max_length' ) # Pair input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='max_length' , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class A__ ( __magic_name__ ): pass
352
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
0
"""simple docstring""" __UpperCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _snake_case ( lowercase__ : dict[int, list[int]] , lowercase__ : int , lowercase__ : list[bool] ) -> list[int]: '''simple docstring''' lowerCAmelCase_ :List[str] = True lowerCAmelCase_ :Any = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(lowercase__ , lowercase__ , lowercase__ ) order.append(lowercase__ ) return order def _snake_case ( lowercase__ : dict[int, list[int]] , lowercase__ : int , lowercase__ : list[bool] ) -> list[int]: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = True lowerCAmelCase_ :Optional[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(lowercase__ , lowercase__ , lowercase__ ) return component def _snake_case ( lowercase__ : dict[int, list[int]] ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase_ :str = len(lowercase__ ) * [False] lowerCAmelCase_ :dict[int, list[int]] = {vert: [] for vert in range(len(lowercase__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(lowercase__ ) lowerCAmelCase_ :Any = [] for i, was_visited in enumerate(lowercase__ ): if not was_visited: order += topology_sort(lowercase__ , lowercase__ , lowercase__ ) lowerCAmelCase_ :Dict = [] lowerCAmelCase_ :Optional[Any] = len(lowercase__ ) * [False] for i in range(len(lowercase__ ) ): lowerCAmelCase_ :str = order[len(lowercase__ ) - i - 1] if not visited[vert]: lowerCAmelCase_ :List[Any] = find_components(lowercase__ , lowercase__ , lowercase__ ) components_list.append(lowercase__ ) return components_list
84
"""simple docstring""" import datasets _a = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ _a = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ _a = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase( datasets.Metric ): def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32'''), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32'''), }) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' return {"accuracy": simple_accuracy(__a , __a)}
194
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _a : """simple docstring""" def __init__( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int = 13 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 3 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : int = 128 , UpperCAmelCase : int=[16, 32, 64, 128] , UpperCAmelCase : int = 7 , UpperCAmelCase : int = 4 , UpperCAmelCase : int = 37 , UpperCAmelCase : str = "gelu" , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : int = 10 , UpperCAmelCase : float = 0.02 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 128 , UpperCAmelCase : List[int] = [2, 2, 2, 2] , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , ): A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = encoder_stride A_ = num_attention_outputs A_ = embed_dim A_ = embed_dim + 1 A_ = resolution A_ = depths A_ = hidden_sizes A_ = dim A_ = mlp_expansion_ratio def __A ( self : Dict ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self : Dict ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def __A ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] ): A_ = TFEfficientFormerModel(config=UpperCAmelCase ) A_ = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ): A_ = self.type_sequence_label_size A_ = TFEfficientFormerForImageClassification(UpperCAmelCase ) A_ = model(UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ = 1 A_ = TFEfficientFormerForImageClassification(UpperCAmelCase ) A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Any ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[Any] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowerCamelCase : Union[str, Any] = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Dict = False _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = False def __A ( self : int ): A_ = TFEfficientFormerModelTester(self ) A_ = ConfigTester( self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def __A ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def __A ( self : Union[str, Any] ): pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def __A ( self : List[str] ): pass def __A ( self : List[str] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A ( self : List[Any] ): def check_hidden_states_output(UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ): A_ = model_class(UpperCAmelCase ) A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase ) A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) if hasattr(self.model_tester , "encoder_seq_length" ): A_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: A_ = seq_length * self.model_tester.chunk_length else: A_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A_ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr(self.model_tester , "seq_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "decoder_seq_length" , UpperCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int]=False ): A_ = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def __A ( self : Optional[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def __A ( self : Dict ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "seq_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "encoder_seq_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "chunk_length" , UpperCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): A_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A_ = True A_ = False A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase ) A_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase ) A_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def __A ( self : int ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A_ = model_class(UpperCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } A_ = model(UpperCAmelCase ) self.assertTrue(outputs_dict is not None ) def __snake_case ( ): """simple docstring""" A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[str] ): return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def __A ( self : List[Any] ): A_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="tf" ) # forward pass A_ = model(**UpperCAmelCase , training=UpperCAmelCase ) # verify the logits A_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) A_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self : Any ): A_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="tf" ) # forward pass A_ = model(**UpperCAmelCase , training=UpperCAmelCase ) # verify the logits A_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) A_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
329
import math __a :Union[str, Any] = 10 __a :Union[str, Any] = 7 __a :int = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( __UpperCamelCase : int = 20 ): """simple docstring""" A_ = math.comb(__UpperCamelCase ,__UpperCamelCase ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase ) A_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
329
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :List[Any] = logging.get_logger(__name__) lowerCAmelCase :str = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = """megatron-bert""" def __init__( self : int , _A : List[str]=29056 , _A : Dict=1024 , _A : Union[str, Any]=24 , _A : List[Any]=16 , _A : List[str]=4096 , _A : int="gelu" , _A : List[Any]=0.1 , _A : Dict=0.1 , _A : Optional[Any]=512 , _A : List[Any]=2 , _A : List[str]=0.02 , _A : int=1E-12 , _A : List[Any]=0 , _A : Union[str, Any]="absolute" , _A : Any=True , **_A : Optional[int] , ) -> int: super().__init__(pad_token_id=_A , **_A ) __magic_name__ : str = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Tuple = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : int = hidden_act __magic_name__ : Optional[Any] = intermediate_size __magic_name__ : Optional[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Dict = max_position_embeddings __magic_name__ : Union[str, Any] = type_vocab_size __magic_name__ : str = initializer_range __magic_name__ : Tuple = layer_norm_eps __magic_name__ : Optional[Any] = position_embedding_type __magic_name__ : int = use_cache
331
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Union[str, Any] = FlaxAutoencoderKL @property def a__ ( self :Optional[Any] ): snake_case_ : List[str] = 4 snake_case_ : Optional[int] = 3 snake_case_ : Optional[int] = (3_2, 3_2) snake_case_ : Union[str, Any] = jax.random.PRNGKey(0 ) snake_case_ : Optional[int] = jax.random.uniform(_UpperCamelCase ,((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def a__ ( self :Any ): snake_case_ : Optional[int] = { """block_out_channels""": [3_2, 6_4], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } snake_case_ : Tuple = self.dummy_input return init_dict, inputs_dict
367
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __UpperCamelCase ( lowercase__ ): lowercase : Union[List[PIL.Image.Image], np.ndarray] lowercase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
8
0
'''simple docstring''' def _UpperCamelCase ( __A ) -> None: '''simple docstring''' UpperCamelCase__ = generate_pascal_triangle(__A ) for row_idx in range(__A ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def _UpperCamelCase ( __A ) -> list[list[int]]: '''simple docstring''' if not isinstance(__A , __A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCamelCase__ = [] for current_row_idx in range(__A ): UpperCamelCase__ = populate_current_row(__A , __A ) triangle.append(__A ) return triangle def _UpperCamelCase ( __A , __A ) -> list[int]: '''simple docstring''' UpperCamelCase__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCamelCase__ , UpperCamelCase__ = 1, 1 for current_col_idx in range(1 , __A ): calculate_current_element( __A , __A , __A , __A ) return current_row def _UpperCamelCase ( __A , __A , __A , __A , ) -> None: '''simple docstring''' UpperCamelCase__ = triangle[current_row_idx - 1][current_col_idx - 1] UpperCamelCase__ = triangle[current_row_idx - 1][current_col_idx] UpperCamelCase__ = above_to_left_elt + above_to_right_elt def _UpperCamelCase ( __A ) -> list[list[int]]: '''simple docstring''' if not isinstance(__A , __A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCamelCase__ = [[1]] for row_index in range(1 , __A ): UpperCamelCase__ = [0] + result[-1] + [0] UpperCamelCase__ = row_index + 1 # Calculate the number of distinct elements in a row UpperCamelCase__ = sum(divmod(__A , 2 ) ) UpperCamelCase__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCamelCase__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCamelCase__ = row_first_half + row_second_half result.append(__A ) return result def _UpperCamelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__A , __A ) -> None: UpperCamelCase__ = F'''{func.__name__}({value})''' UpperCamelCase__ = timeit(F'''__main__.{call}''' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__A , __A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
80
"""simple docstring""" from copy import deepcopy class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ = None , snake_case_ = None ): """simple docstring""" if arr is None and size is not None: A_ : Union[str, Any] = size A_ : List[str] = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = len(snake_case_ ) A_ : Optional[int] = deepcopy(snake_case_ ) for i in range(1 , self.size ): A_ : Optional[Any] = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def lowerCamelCase_ ( self ): """simple docstring""" A_ : int = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): A_ : Optional[int] = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowerCamelCase_ ( snake_case_ ): """simple docstring""" return index + (index & (-index)) @staticmethod def lowerCamelCase_ ( snake_case_ ): """simple docstring""" return index - (index & (-index)) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value A_ : List[str] = self.next_(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" self.add(snake_case_ , value - self.get(snake_case_ ) ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if right == 0: return 0 A_ : Any = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] A_ : Tuple = self.prev(snake_case_ ) return result def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" return self.query(snake_case_ , index + 1 ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" value -= self.tree[0] if value < 0: return -1 A_ : List[Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 A_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
286
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') a : List[Any] = logging.getLogger(__name__) @dataclass class a : snake_case_ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case_ = field( default=_lowerCamelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) snake_case_ = field( default=_lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case_ = field( default=_lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) snake_case_ = field( default=_lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class a : snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Train language if it is different from the evaluation language."} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) snake_case_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case_ = field( default=_lowerCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __magic_name__ ( ) -> List[str]: '''simple docstring''' snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ ,snake_case_ ,snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''', __UpperCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: snake_case_ = load_dataset( '''xnli''', model_args.language, split='''train''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: snake_case_ = load_dataset( '''xnli''', model_args.train_language, split='''train''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) snake_case_ = train_dataset.features['''label'''].names if training_args.do_eval: snake_case_ = load_dataset( '''xnli''', model_args.language, split='''validation''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) snake_case_ = eval_dataset.features['''label'''].names if training_args.do_predict: snake_case_ = load_dataset( '''xnli''', model_args.language, split='''test''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) snake_case_ = predict_dataset.features['''label'''].names # Labels snake_case_ = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=__UpperCAmelCase, idalabel={str(__UpperCAmelCase ): label for i, label in enumerate(__UpperCAmelCase )}, labelaid={label: i for i, label in enumerate(__UpperCAmelCase )}, finetuning_task='''xnli''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, do_lower_case=model_args.do_lower_case, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) snake_case_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=__UpperCAmelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: snake_case_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case_ = False def preprocess_function(__UpperCAmelCase ): # Tokenize the texts return tokenizer( examples['''premise'''], examples['''hypothesis'''], padding=__UpperCAmelCase, max_length=data_args.max_seq_length, truncation=__UpperCAmelCase, ) if training_args.do_train: if data_args.max_train_samples is not None: snake_case_ = min(len(__UpperCAmelCase ), data_args.max_train_samples ) snake_case_ = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): snake_case_ = train_dataset.map( __UpperCAmelCase, batched=__UpperCAmelCase, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on train dataset''', ) # Log a few random samples from the training set: for index in random.sample(range(len(__UpperCAmelCase ) ), 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) if training_args.do_eval: if data_args.max_eval_samples is not None: snake_case_ = min(len(__UpperCAmelCase ), data_args.max_eval_samples ) snake_case_ = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): snake_case_ = eval_dataset.map( __UpperCAmelCase, batched=__UpperCAmelCase, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) if training_args.do_predict: if data_args.max_predict_samples is not None: snake_case_ = min(len(__UpperCAmelCase ), data_args.max_predict_samples ) snake_case_ = predict_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): snake_case_ = predict_dataset.map( __UpperCAmelCase, batched=__UpperCAmelCase, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on prediction dataset''', ) # Get the metric function snake_case_ = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): snake_case_ = p.predictions[0] if isinstance(p.predictions, __UpperCAmelCase ) else p.predictions snake_case_ = np.argmax(__UpperCAmelCase, axis=1 ) return metric.compute(predictions=__UpperCAmelCase, references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case_ = default_data_collator elif training_args.fpaa: snake_case_ = DataCollatorWithPadding(__UpperCAmelCase, pad_to_multiple_of=8 ) else: snake_case_ = None # Initialize our Trainer snake_case_ = Trainer( model=__UpperCAmelCase, args=__UpperCAmelCase, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=__UpperCAmelCase, tokenizer=__UpperCAmelCase, data_collator=__UpperCAmelCase, ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) snake_case_ = min(__UpperCAmelCase, len(__UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''', __UpperCAmelCase ) trainer.save_metrics('''train''', __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case_ = trainer.evaluate(eval_dataset=__UpperCAmelCase ) snake_case_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) snake_case_ = min(__UpperCAmelCase, len(__UpperCAmelCase ) ) trainer.log_metrics('''eval''', __UpperCAmelCase ) trainer.save_metrics('''eval''', __UpperCAmelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) snake_case_ ,snake_case_ ,snake_case_ = trainer.predict(__UpperCAmelCase, metric_key_prefix='''predict''' ) snake_case_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__UpperCAmelCase ) ) snake_case_ = min(__UpperCAmelCase, len(__UpperCAmelCase ) ) trainer.log_metrics('''predict''', __UpperCAmelCase ) trainer.save_metrics('''predict''', __UpperCAmelCase ) snake_case_ = np.argmax(__UpperCAmelCase, axis=1 ) snake_case_ = os.path.join(training_args.output_dir, '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase, '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(__UpperCAmelCase ): snake_case_ = label_list[item] writer.write(F"{index}\t{item}\n" ) if __name__ == "__main__": main()
367
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan a : Tuple = 6_378_137.0 a : int = 6_356_752.314_245 a : Dict = 637_8137 def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> float: '''simple docstring''' snake_case_ = (AXIS_A - AXIS_B) / AXIS_A snake_case_ = atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) ) snake_case_ = atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) ) snake_case_ = radians(__UpperCAmelCase ) snake_case_ = radians(__UpperCAmelCase ) # Equation snake_case_ = sin((phi_a - phi_a) / 2 ) snake_case_ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case_ = sqrt(sin_sq_phi + (cos(__UpperCAmelCase ) * cos(__UpperCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
72
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A ={ 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() __SCREAMING_SNAKE_CASE : Any = '|'.join(sys.argv[1:]) __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(Rf"""^({joined_dirs}).*?\.py$""") __SCREAMING_SNAKE_CASE : List[str] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
347
0
'''simple docstring''' import os def _A ( ): """simple docstring""" __lowercase = os.path.dirname(os.path.realpath(A__ ) ) __lowercase = os.path.join(A__ , '''triangle.txt''' ) with open(A__ ) as f: __lowercase = f.readlines() __lowercase = [] for line in triangle: __lowercase = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(A__ ) ) a.append(A__ ) for i in range(1 , len(A__ ) ): for j in range(len(a[i] ) ): __lowercase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowercase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(A__ , A__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
369
'''simple docstring''' from math import sqrt def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' must been an int and positive" __lowercase = True # 0 and 1 are none primes. if number <= 1: __lowercase = False for divisor in range(2 , int(round(sqrt(A__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowercase = False break # precondition assert isinstance(A__ , A__ ), "'status' must been from type bool" return status def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowercase = list(range(2 , n + 1 ) ) __lowercase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(A__ ) ): for j in range(i + 1 , len(A__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowercase = 0 # filters actual prime numbers. __lowercase = [x for x in begin_list if x != 0] # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" __lowercase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(A__ ): ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and number >= 0, "'number' must been an int and >= 0" __lowercase = [] # this list will be returns of the function. # potential prime number factors. __lowercase = 2 __lowercase = number if number == 0 or number == 1: ans.append(A__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(A__ ): while quotient != 1: if is_prime(A__ ) and (quotient % factor == 0): ans.append(A__ ) quotient /= factor else: factor += 1 else: ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(A__ ) __lowercase = max(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(A__ ) __lowercase = min(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , A__ ), "compare bust been from type bool" return number % 2 == 0 def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , A__ ), "compare bust been from type bool" return number % 2 != 0 def _A ( A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and (number > 2) and is_even(A__ ) ), "'number' must been an int, even and > 2" __lowercase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowercase = get_prime_numbers(A__ ) __lowercase = len(A__ ) # run variable for while-loops. __lowercase = 0 __lowercase = None # exit variable. for break up the loops __lowercase = True while i < len_pn and loop: __lowercase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowercase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(A__ , A__ ) and (len(A__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowercase = 0 while numbera != 0: __lowercase = numbera % numbera __lowercase = numbera __lowercase = rest # precondition assert isinstance(A__ , A__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowercase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowercase = prime_factorization(A__ ) __lowercase = prime_factorization(A__ ) elif numbera == 1 or numbera == 1: __lowercase = [] __lowercase = [] __lowercase = max(A__ , A__ ) __lowercase = 0 __lowercase = 0 __lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowercase = prime_fac_a.count(A__ ) __lowercase = prime_fac_a.count(A__ ) for _ in range(max(A__ , A__ ) ): ans *= n else: __lowercase = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowercase = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # precondition assert isinstance(A__ , A__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'number' must been a positive int" __lowercase = 0 __lowercase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(A__ ): ans += 1 # precondition assert isinstance(A__ , A__ ) and is_prime( A__ ), "'ans' must been a prime number and from type int" return ans def _A ( A__ , A__ ): """simple docstring""" assert ( is_prime(A__ ) and is_prime(A__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowercase = p_number_a + 1 # jump to the next number __lowercase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(A__ ): number += 1 while number < p_number_a: ans.append(A__ ) number += 1 # fetch the next prime number. while not is_prime(A__ ): number += 1 # precondition assert ( isinstance(A__ , A__ ) and ans[0] != p_number_a and ans[len(A__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 1), "'n' must been int and >= 1" __lowercase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(A__ ) # precondition assert ans[0] == 1 and ans[len(A__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowercase = get_divisors(A__ ) # precondition assert ( isinstance(A__ , A__ ) and (divisors[0] == 1) and (divisors[len(A__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _A ( A__ , A__ ): """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowercase = gcd(abs(A__ ) , abs(A__ ) ) # precondition assert ( isinstance(A__ , A__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been a int and >= 0" __lowercase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been an int and >= 0" __lowercase = 0 __lowercase = 1 __lowercase = 1 # this will be return for _ in range(n - 1 ): __lowercase = ans ans += fiba __lowercase = tmp return ans
52
0
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowerCamelCase : Optional[int] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={} state_dict.pop('pixel_mean' , _UpperCamelCase ) state_dict.pop('pixel_std' , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _SCREAMING_SNAKE_CASE =key.replace(_UpperCamelCase , _UpperCamelCase ) if re.match(_UpperCamelCase , _UpperCamelCase ): _SCREAMING_SNAKE_CASE =int(re.match(_UpperCamelCase , _UpperCamelCase ).group(2 ) ) if layer_nb == 0: _SCREAMING_SNAKE_CASE =key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: _SCREAMING_SNAKE_CASE =key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: _SCREAMING_SNAKE_CASE =key.replace('layers.2' , 'proj_out' ) _SCREAMING_SNAKE_CASE =value _SCREAMING_SNAKE_CASE =model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Dict="ybelkada/segment-anything" ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =hf_hub_download(_UpperCamelCase , f"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: _SCREAMING_SNAKE_CASE =SamConfig() elif "sam_vit_l" in model_name: _SCREAMING_SNAKE_CASE =SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _SCREAMING_SNAKE_CASE =SamConfig( vision_config=_UpperCamelCase , ) elif "sam_vit_h" in model_name: _SCREAMING_SNAKE_CASE =SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _SCREAMING_SNAKE_CASE =SamConfig( vision_config=_UpperCamelCase , ) _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location='cpu' ) _SCREAMING_SNAKE_CASE =replace_keys(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =SamImageProcessor() _SCREAMING_SNAKE_CASE =SamProcessor(image_processor=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =SamModel(_UpperCamelCase ) hf_model.load_state_dict(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =hf_model.to('cuda' ) _SCREAMING_SNAKE_CASE ='https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' _SCREAMING_SNAKE_CASE =Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert('RGB' ) _SCREAMING_SNAKE_CASE =[[[4_00, 6_50]]] _SCREAMING_SNAKE_CASE =[[1]] _SCREAMING_SNAKE_CASE =processor(images=np.array(_UpperCamelCase ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE =hf_model(**_UpperCamelCase ) _SCREAMING_SNAKE_CASE =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _SCREAMING_SNAKE_CASE =processor( images=np.array(_UpperCamelCase ) , input_points=_UpperCamelCase , input_labels=_UpperCamelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE =hf_model(**_UpperCamelCase ) _SCREAMING_SNAKE_CASE =output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _SCREAMING_SNAKE_CASE =((75, 2_75, 17_25, 8_50),) _SCREAMING_SNAKE_CASE =processor(images=np.array(_UpperCamelCase ) , input_boxes=_UpperCamelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE =hf_model(**_UpperCamelCase ) _SCREAMING_SNAKE_CASE =output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _SCREAMING_SNAKE_CASE =[[[4_00, 6_50], [8_00, 6_50]]] _SCREAMING_SNAKE_CASE =[[1, 1]] _SCREAMING_SNAKE_CASE =processor( images=np.array(_UpperCamelCase ) , input_points=_UpperCamelCase , input_labels=_UpperCamelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE =hf_model(**_UpperCamelCase ) _SCREAMING_SNAKE_CASE =output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() lowerCamelCase : int = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
47
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _lowerCamelCase( a , a , a , a , a=True , a="pt" ): __a = {"add_prefix_space": True} if isinstance(a , a ) and not line.startswith(" " ) else {} __a = padding_side return tokenizer( [line] , max_length=a , padding="max_length" if pad_to_max_length else None , truncation=a , return_tensors=a , add_special_tokens=a , **a , ) def _lowerCamelCase( a , a , a=None , ): __a = input_ids.ne(a ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase="train" , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="" , ): super().__init__() __a = Path(lowerCamelCase ).joinpath(type_path + ".source" ) __a = Path(lowerCamelCase ).joinpath(type_path + ".target" ) __a = self.get_char_lens(self.src_file ) __a = max_source_length __a = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" __a = tokenizer __a = prefix if n_obs is not None: __a = self.src_lens[:n_obs] __a = src_lang __a = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self , lowerCamelCase ): __a = index + 1 # linecache starts at 1 __a = self.prefix + linecache.getline(str(self.src_file ) , lowerCamelCase ).rstrip("\n" ) __a = linecache.getline(str(self.tgt_file ) , lowerCamelCase ).rstrip("\n" ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __a = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer ) __a = self.tokenizer.generator if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer __a = encode_line(lowerCamelCase , lowerCamelCase , self.max_source_length , "right" ) __a = encode_line(lowerCamelCase , lowerCamelCase , self.max_target_length , "right" ) __a = source_inputs["input_ids"].squeeze() __a = target_inputs["input_ids"].squeeze() __a = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def a__ ( lowerCamelCase ): return [len(lowerCamelCase ) for x in Path(lowerCamelCase ).open().readlines()] def a__ ( self , lowerCamelCase ): __a = torch.stack([x["input_ids"] for x in batch] ) __a = torch.stack([x["attention_mask"] for x in batch] ) __a = torch.stack([x["decoder_input_ids"] for x in batch] ) __a = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer.pad_token_id ) __a = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer.pad_token_id ) __a = trim_batch(lowerCamelCase , lowerCamelCase ) __a , __a = trim_batch(lowerCamelCase , lowerCamelCase , attention_mask=lowerCamelCase ) __a = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch SCREAMING_SNAKE_CASE__:Tuple = getLogger(__name__) def _lowerCamelCase( a ): return list(itertools.chain.from_iterable(a ) ) def _lowerCamelCase( a ): __a = get_git_info() save_json(a , os.path.join(a , "git_log.json" ) ) def _lowerCamelCase( a , a , a=4 , **a ): with open(a , "w" ) as f: json.dump(a , a , indent=a , **a ) def _lowerCamelCase( a ): with open(a ) as f: return json.load(a ) def _lowerCamelCase( ): __a = git.Repo(search_parent_directories=a ) __a = { "repo_id": str(a ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def _lowerCamelCase( a , a ): return list(map(a , a ) ) def _lowerCamelCase( a , a ): with open(a , "wb" ) as f: return pickle.dump(a , a ) def _lowerCamelCase( a ): def remove_articles(a ): return re.sub(R"\b(a|an|the)\b" , " " , a ) def white_space_fix(a ): return " ".join(text.split() ) def remove_punc(a ): __a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a ) ) ) ) def _lowerCamelCase( a , a ): __a = normalize_answer(a ).split() __a = normalize_answer(a ).split() __a = Counter(a ) & Counter(a ) __a = sum(common.values() ) if num_same == 0: return 0 __a = 1.0 * num_same / len(a ) __a = 1.0 * num_same / len(a ) __a = (2 * precision * recall) / (precision + recall) return fa def _lowerCamelCase( a , a ): return normalize_answer(a ) == normalize_answer(a ) def _lowerCamelCase( a , a ): assert len(a ) == len(a ) __a = 0 for hypo, pred in zip(a , a ): em += exact_match_score(a , a ) if len(a ) > 0: em /= len(a ) return {"em": em} def _lowerCamelCase( a ): return model_prefix.startswith("rag" ) def _lowerCamelCase( a , a , a ): __a = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __a = "dropout_rate" for p in extra_params: if getattr(a , a , a ): if not hasattr(a , a ) and not hasattr(a , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(a ) ) delattr(a , a ) continue __a = p if hasattr(a , a ) else equivalent_param[p] setattr(a , a , getattr(a , a ) ) delattr(a , a ) return hparams, config
261
0
import numpy as np def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ) -> Optional[Any]: return np.where(vector > 0 , lowercase__ , (alpha * (np.exp(lowercase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
362
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str]=5 ) -> Dict: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 UpperCAmelCase_ = torch.tensor(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ).unsqueeze(0 ) # Batch size 1 UpperCAmelCase_ = model(__UpperCamelCase )[0] # The last hidden-state is the first element of the output tuple UpperCAmelCase_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCAmelCase_ = logits[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ = prob.topk(k=__UpperCamelCase , dim=0 ) UpperCAmelCase_ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__UpperCamelCase ) )] ) UpperCAmelCase_ = tokenizer.mask_token UpperCAmelCase_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): UpperCAmelCase_ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(__UpperCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__UpperCamelCase ) , __UpperCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__UpperCamelCase , __UpperCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _lowerCamelCase = CamembertTokenizer.from_pretrained('camembert-base') _lowerCamelCase = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() _lowerCamelCase = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
177
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : List[str] = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: # Initialise PyTorch model lowerCamelCase : Any = TaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) lowerCamelCase : str = TaForConditionalGeneration(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_ta(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
48
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = (PNDMScheduler,) lowerCAmelCase_ : str = (("num_inference_steps", 50),) def lowercase__ ( self : int , **UpperCAmelCase_ : List[Any] ): lowerCAmelCase : List[str] = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**UpperCAmelCase_ ) return config def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[str]=0 , **UpperCAmelCase_ : Dict ): lowerCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) lowerCAmelCase : Optional[int] = kwargs.pop('num_inference_steps' , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.dummy_sample lowerCAmelCase : int = 0.1 * sample lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase : Any = self.get_scheduler_config(**UpperCAmelCase_ ) lowerCAmelCase : List[Any] = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals lowerCAmelCase : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) lowerCAmelCase : List[str] = scheduler_class.from_pretrained(UpperCAmelCase_ ) new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals lowerCAmelCase : List[str] = dummy_past_residuals[:] lowerCAmelCase : List[str] = scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : Dict = new_scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase : List[str] = scheduler.step_plms(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : str = new_scheduler.step_plms(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[int] ): pass def lowercase__ ( self : int , UpperCAmelCase_ : Any=0 , **UpperCAmelCase_ : List[str] ): lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : Dict = kwargs.pop('num_inference_steps' , UpperCAmelCase_ ) lowerCAmelCase : str = self.dummy_sample lowerCAmelCase : Union[str, Any] = 0.1 * sample lowerCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(UpperCAmelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase : Union[str, Any] = dummy_past_residuals[:] lowerCAmelCase : Dict = scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : Tuple = new_scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase : Optional[int] = scheduler.step_plms(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : List[str] = new_scheduler.step_plms(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[Any] , **UpperCAmelCase_ : Tuple ): lowerCAmelCase : int = self.scheduler_classes[0] lowerCAmelCase : Optional[Any] = self.get_scheduler_config(**UpperCAmelCase_ ) lowerCAmelCase : Tuple = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 10 lowerCAmelCase : Optional[Any] = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCAmelCase : str = model(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCAmelCase : str = model(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Tuple = scheduler.step_plms(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample return sample def lowercase__ ( self : Dict ): lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase : Any = kwargs.pop('num_inference_steps' , UpperCAmelCase_ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Any = self.dummy_sample lowerCAmelCase : int = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase_ , 'set_timesteps' ): scheduler.set_timesteps(UpperCAmelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCAmelCase_ , 'set_timesteps' ): lowerCAmelCase : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase : Optional[int] = dummy_past_residuals[:] lowerCAmelCase : str = scheduler.step_prk(UpperCAmelCase_ , 0 , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : Optional[Any] = scheduler.step_prk(UpperCAmelCase_ , 1 , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase : List[str] = scheduler.step_plms(UpperCAmelCase_ , 0 , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample lowerCAmelCase : Any = scheduler.step_plms(UpperCAmelCase_ , 1 , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : Dict ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def lowercase__ ( self : str ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase_ ) lowerCAmelCase : int = self.scheduler_classes[0] lowerCAmelCase : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase : Tuple = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowercase__ ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_ ) def lowercase__ ( self : Any ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def lowercase__ ( self : Dict ): for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCAmelCase_ ) def lowercase__ ( self : Dict ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowerCAmelCase : Dict = 27 for scheduler_class in self.scheduler_classes: lowerCAmelCase : List[Any] = self.dummy_sample lowerCAmelCase : List[Any] = 0.1 * sample lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCAmelCase : List[str] = scheduler.step_prk(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample def lowercase__ ( self : Optional[Any] ): with self.assertRaises(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCAmelCase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.full_loop() lowerCAmelCase : Tuple = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : str = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def lowercase__ ( self : Tuple ): lowerCAmelCase : List[str] = self.full_loop(prediction_type='v_prediction' ) lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[int] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def lowercase__ ( self : Dict ): # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase : Any = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01 ) lowerCAmelCase : Tuple = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def lowercase__ ( self : Optional[int] ): # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase : Any = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01 ) lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[int] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
323
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() A_ = logging.get_logger("transformers.models.speecht5") def A_ ( snake_case , snake_case , snake_case ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE:List[str] = checkpoint['''input_conv.weight_g'''] SCREAMING_SNAKE_CASE:Any = checkpoint['''input_conv.weight_v'''] SCREAMING_SNAKE_CASE:Dict = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE:Optional[Any] = checkpoint[F'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE:List[str] = checkpoint[F'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE:Dict = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE:int = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE:Dict = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE:Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE:Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE:Optional[Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE:str = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE:Tuple = checkpoint['''output_conv.1.weight_g'''] SCREAMING_SNAKE_CASE:Dict = checkpoint['''output_conv.1.weight_v'''] SCREAMING_SNAKE_CASE:List[str] = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def A_ ( snake_case , snake_case , snake_case , snake_case=None , snake_case=None , ): if config_path is not None: SCREAMING_SNAKE_CASE:int = SpeechTaHifiGanConfig.from_pretrained(__a ) else: SCREAMING_SNAKE_CASE:int = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE:Any = SpeechTaHifiGan(__a ) SCREAMING_SNAKE_CASE:Tuple = torch.load(__a ) load_weights(orig_checkpoint["model"]["generator"] , __a , __a ) SCREAMING_SNAKE_CASE:Optional[int] = np.load(__a ) SCREAMING_SNAKE_CASE:int = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE:Optional[int] = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE:str = torch.from_numpy(__a ).float() SCREAMING_SNAKE_CASE:List[Any] = torch.from_numpy(__a ).float() model.save_pretrained(__a ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__a ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) A_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
139
'''simple docstring''' import csv import tweepy # Twitter API credentials __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' def a ( __a ) -> None: '''simple docstring''' UpperCamelCase__ :List[Any] = tweepy.OAuthHandler(__a , __a ) auth.set_access_token(__a , __a ) UpperCamelCase__ :List[str] = tweepy.API(__a ) # initialize a list to hold all the tweepy Tweets UpperCamelCase__ :Dict = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCamelCase__ :Tuple = api.user_timeline(screen_name=__a , count=200 ) # save most recent tweets alltweets.extend(__a ) # save the id of the oldest tweet less one UpperCamelCase__ :Union[str, Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__a ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates UpperCamelCase__ :Union[str, Any] = api.user_timeline( screen_name=__a , count=200 , max_id=__a ) # save most recent tweets alltweets.extend(__a ) # update the id of the oldest tweet less one UpperCamelCase__ :Tuple = alltweets[-1].id - 1 print(f'''...{len(__a )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCamelCase__ :int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' , '''w''' ) as f: UpperCamelCase__ :Tuple = csv.writer(__a ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__a ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
97
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return EnvironmentCommand() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @staticmethod def snake_case__ ( _lowerCAmelCase : Optional[int] ): __snake_case : Optional[int] = parser.add_parser("""env""" ) download_parser.set_defaults(func=_lowerCAmelCase ) download_parser.add_argument( """--accelerate-config_file""" , default=_lowerCAmelCase , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self : int , _lowerCAmelCase : Any , *_lowerCAmelCase : List[Any] ): __snake_case : Union[str, Any] = accelerate_config_file def snake_case__ ( self : int ): __snake_case : Optional[Any] = '''not installed''' if is_safetensors_available(): import safetensors __snake_case : Any = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors __snake_case : Any = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __snake_case : Any = '''not installed''' __snake_case : str = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __snake_case : int = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowerCAmelCase ): __snake_case : Optional[int] = load_config_from_file(self._accelerate_config_file ).to_dict() __snake_case : str = ( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else f'''\t{accelerate_config}''' ) __snake_case : str = '''not installed''' __snake_case : Union[str, Any] = '''NA''' if is_torch_available(): import torch __snake_case : Tuple = torch.__version__ __snake_case : int = torch.cuda.is_available() __snake_case : Union[str, Any] = '''not installed''' __snake_case : List[Any] = '''NA''' if is_tf_available(): import tensorflow as tf __snake_case : int = tf.__version__ try: # deprecated in v2.1 __snake_case : Tuple = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __snake_case : int = bool(tf.config.list_physical_devices("""GPU""" ) ) __snake_case : Union[str, Any] = '''not installed''' __snake_case : Union[str, Any] = '''not installed''' __snake_case : int = '''not installed''' __snake_case : Any = '''NA''' if is_flax_available(): import flax import jax import jaxlib __snake_case : List[str] = flax.__version__ __snake_case : Any = jax.__version__ __snake_case : Optional[Any] = jaxlib.__version__ __snake_case : Any = jax.lib.xla_bridge.get_backend().platform __snake_case : Union[str, Any] = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f'''{safetensors_version}''', '''Accelerate version''': f'''{accelerate_version}''', '''Accelerate config''': f'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': f'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': f'''{flax_version} ({jax_backend})''', '''Jax version''': f'''{jax_version}''', '''JaxLib version''': f'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(_lowerCAmelCase ) ) return info @staticmethod def snake_case__ ( _lowerCAmelCase : Dict ): return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
351
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } lowercase_ = { "junnyu/roformer_chinese_small": 15_36, "junnyu/roformer_chinese_base": 15_36, "junnyu/roformer_chinese_char_small": 5_12, "junnyu/roformer_chinese_char_base": 5_12, "junnyu/roformer_small_discriminator": 1_28, "junnyu/roformer_small_generator": 1_28, } lowercase_ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = PRETRAINED_INIT_CONFIGURATION A : List[str] = RoFormerTokenizer def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents ): __snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) __snake_case : List[Any] = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : List[str] = pre_tok_class(**_lowerCAmelCase ) __snake_case : Optional[Any] = do_lower_case def __getstate__( self : Optional[Any] ): __snake_case : Optional[int] = self.__dict__.copy() __snake_case : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : str , _lowerCAmelCase : Dict ): __snake_case : str = d __snake_case : int = self.__dict__["""_tokenizer"""].get_vocab() __snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ): __snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ): __snake_case : Tuple = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
20
0
"""simple docstring""" from __future__ import annotations import pandas as pd def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = [0] * no_of_processes UpperCAmelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowercase_ ): UpperCAmelCase = burst_time[i] UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 999999999 UpperCAmelCase = 0 UpperCAmelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowercase_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: UpperCAmelCase = remaining_time[j] UpperCAmelCase = j UpperCAmelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 UpperCAmelCase = remaining_time[short] if minm == 0: UpperCAmelCase = 999999999 if remaining_time[short] == 0: complete += 1 UpperCAmelCase = False # Find finish time of current process UpperCAmelCase = increment_time + 1 # Calculate waiting time UpperCAmelCase = finish_time - arrival_time[short] UpperCAmelCase = finar - burst_time[short] if waiting_time[short] < 0: UpperCAmelCase = 0 # Increment time increment_time += 1 return waiting_time def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = [0] * no_of_processes for i in range(lowercase_ ): UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = 0 UpperCAmelCase = 0 for i in range(lowercase_ ): UpperCAmelCase = total_waiting_time + waiting_time[i] UpperCAmelCase = total_turn_around_time + turn_around_time[i] print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") snake_case_ = int(input()) snake_case_ = [0] * no_of_processes snake_case_ = [0] * no_of_processes snake_case_ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) snake_case_ , snake_case_ = map(int, input().split()) snake_case_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) snake_case_ = burst_time snake_case_ = no_of_processes snake_case_ = waiting_time snake_case_ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) snake_case_ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
78
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Union[str, Any] ) -> str: UpperCAmelCase = {} def UpperCAmelCase__ ( self :Any , lowercase_ :List[Any] , lowercase_ :List[str] , lowercase_ :Dict=1 ) -> List[Any]: if self.graph.get(lowercase_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCAmelCase = [[w, v]] if not self.graph.get(lowercase_ ): UpperCAmelCase = [] def UpperCAmelCase__ ( self :Any ) -> Optional[int]: return list(self.graph ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Optional[int] , lowercase_ :Optional[Any] ) -> Dict: if self.graph.get(lowercase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_ ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :Tuple=-2 , lowercase_ :List[Any]=-1 ) -> List[Any]: if s == d: return [] UpperCAmelCase = [] UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return visited def UpperCAmelCase__ ( self :List[str] , lowercase_ :int=-1 ) -> Tuple: if c == -1: UpperCAmelCase = floor(random() * 1_00_00 ) + 10 for i in range(lowercase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1 ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Optional[Any]=-2 ) -> Optional[int]: UpperCAmelCase = deque() UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] d.append(lowercase_ ) visited.append(lowercase_ ) while d: UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase__ ( self :Any , lowercase_ :Optional[int] ) -> List[Any]: UpperCAmelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCAmelCase__ ( self :Tuple , lowercase_ :List[str] ) -> List[str]: return len(self.graph[u] ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Any=-2 ) -> int: UpperCAmelCase = [] UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return sorted_nodes def UpperCAmelCase__ ( self :str ) -> str: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return list(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> Tuple: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return False def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :int=-2 , lowercase_ :List[str]=-1 ) -> Any: UpperCAmelCase = time() self.dfs(lowercase_ , lowercase_ ) UpperCAmelCase = time() return end - begin def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[str]=-2 ) -> str: UpperCAmelCase = time() self.bfs(lowercase_ ) UpperCAmelCase = time() return end - begin class A_ : """simple docstring""" def __init__( self :List[str] ) -> Union[str, Any]: UpperCAmelCase = {} def UpperCAmelCase__ ( self :str , lowercase_ :Dict , lowercase_ :Optional[Any] , lowercase_ :Optional[int]=1 ) -> Dict: # check if the u exists if self.graph.get(lowercase_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCAmelCase = [[w, v]] # add the other way if self.graph.get(lowercase_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCAmelCase = [[w, u]] def UpperCAmelCase__ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :Tuple ) -> Optional[Any]: if self.graph.get(lowercase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_ ) # the other way round if self.graph.get(lowercase_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Optional[int]=-2 , lowercase_ :Optional[int]=-1 ) -> List[str]: if s == d: return [] UpperCAmelCase = [] UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return visited def UpperCAmelCase__ ( self :List[str] , lowercase_ :Optional[int]=-1 ) -> Any: if c == -1: UpperCAmelCase = floor(random() * 1_00_00 ) + 10 for i in range(lowercase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1 ) def UpperCAmelCase__ ( self :Dict , lowercase_ :int=-2 ) -> int: UpperCAmelCase = deque() UpperCAmelCase = [] if s == -2: UpperCAmelCase = list(self.graph )[0] d.append(lowercase_ ) visited.append(lowercase_ ) while d: UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[Any] ) -> str: return len(self.graph[u] ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Any: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return list(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> str: UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) UpperCAmelCase = -2 UpperCAmelCase = [] UpperCAmelCase = s UpperCAmelCase = False UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase = len(lowercase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase = True if len(lowercase_ ) != 0: UpperCAmelCase = stack[len(lowercase_ ) - 1] else: UpperCAmelCase = False indirect_parents.append(lowercase_ ) UpperCAmelCase = s UpperCAmelCase = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return False def UpperCAmelCase__ ( self :Union[str, Any] ) -> Union[str, Any]: return list(self.graph ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Union[str, Any]=-2 , lowercase_ :List[str]=-1 ) -> str: UpperCAmelCase = time() self.dfs(lowercase_ , lowercase_ ) UpperCAmelCase = time() return end - begin def UpperCAmelCase__ ( self :Any , lowercase_ :int=-2 ) -> str: UpperCAmelCase = time() self.bfs(lowercase_ ) UpperCAmelCase = time() return end - begin
78
1
'''simple docstring''' def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" stooge(a_ , 0 , len(a_ ) - 1 ) return arr def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: A_ : Optional[int] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: A_ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(a_ , a_ , (h - t) ) # Recursively sort last 2/3 elements stooge(a_ , i + t , (a_) ) # Recursively sort first 2/3 elements stooge(a_ , a_ , (h - t) ) if __name__ == "__main__": UpperCamelCase__ : List[str] = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase__ : Union[str, Any] = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
361
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Any = 0 def UpperCAmelCase_ ( self ) -> Dict: A_ : str = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: A_ : Optional[int] = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : List[str] = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) A_ : Dict = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[str] = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : Tuple = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) A_ : Dict = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: A_ : int = CLIPConfig() # Create a dummy config file with image_proceesor_type A_ : Dict = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : Any = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally A_ : str = AutoImageProcessor.from_pretrained(_lowerCamelCase ).to_dict() config_dict.pop("""image_processor_type""" ) A_ : Dict = CLIPImageProcessor(**_lowerCamelCase ) # save in new folder model_config.save_pretrained(_lowerCamelCase ) config.save_pretrained(_lowerCamelCase ) A_ : Any = AutoImageProcessor.from_pretrained(_lowerCamelCase ) # make sure private variable is not incorrectly saved A_ : int = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = Path(_lowerCamelCase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) A_ : Tuple = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: with self.assertRaisesRegex( _lowerCamelCase , """clip-base is not a local folder and is not a valid model identifier""" ): A_ : Optional[Any] = AutoImageProcessor.from_pretrained("""clip-base""" ) def UpperCAmelCase_ ( self ) -> Dict: with self.assertRaisesRegex( _lowerCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): A_ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase , revision="""aaaaaa""" ) def UpperCAmelCase_ ( self ) -> Any: with self.assertRaisesRegex( _lowerCamelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): A_ : List[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase_ ( self ) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCamelCase ): A_ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCamelCase ): A_ : List[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) A_ : str = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase , trust_remote_code=_lowerCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def UpperCAmelCase_ ( self ) -> Dict: try: AutoConfig.register("""custom""" , _lowerCamelCase ) AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCamelCase ): AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : Optional[Any] = Path(_lowerCamelCase ) / """preprocessor_config.json""" A_ : Dict = Path(_lowerCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_lowerCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowerCamelCase , """w""" ) ) A_ : Optional[int] = CustomImageProcessor.from_pretrained(_lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCamelCase ) A_ : List[str] = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self ) -> List[str]: class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = True try: AutoConfig.register("""custom""" , _lowerCamelCase ) AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) # If remote code is not set, the default is to use local A_ : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. A_ : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub A_ : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(_lowerCamelCase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
164
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = ['pixel_values'] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , lowercase = True , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase ) A__ = size if size is not None else {"height": 384, "width": 384} A__ = get_size_dict(lowercase , default_to_square=lowercase ) A__ = do_resize A__ = size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def UpperCamelCase ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' A__ = get_size_dict(lowercase , default_to_square=lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) A__ = (size["height"], size["width"]) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> Optional[Any]: '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = size if size is not None else self.size A__ = get_size_dict(lowercase , default_to_square=lowercase ) A__ = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(lowercase ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(lowercase ) for image in images] if do_resize: A__ = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_rescale: A__ = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: A__ = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] A__ = [to_channel_dimension_format(lowercase , lowercase ) for image in images] A__ = BatchFeature(data={"pixel_values": images} , tensor_type=lowercase ) return encoded_outputs
68
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__ = """\ Text data. Second line of data.""" lowerCAmelCase__ = """file""" @pytest.fixture(scope="session" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[int]: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") A__ = bytes(SCREAMING_SNAKE_CASE_ , "utf-8" ) with zstd.open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any ) -> List[str]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , "w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: int ) -> Any: '''simple docstring''' A__ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} A__ = input_paths[compression_format] A__ = tmp_path / "cache" A__ = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) A__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: str ) -> Dict: '''simple docstring''' A__ = "custom_cache" A__ = "custom_extracted_dir" A__ = tmp_path / "custom_extracted_path" if default_extracted: A__ = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(SCREAMING_SNAKE_CASE_ ) ) A__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A__ = xz_file A__ = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) ) A__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[int]: '''simple docstring''' A__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file # relative path A__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[str]: '''simple docstring''' A__ = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) # relative path A__ = "./__missing_file__.txt" with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> Union[str, Any]: '''simple docstring''' A__ = get_from_cache(F'tmp://{tmpfs_file}' ) with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( ) -> List[Any]: '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> int: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_get("https://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[Any]: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_get("ftp://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> str: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_get("s3://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_head("s3://huggingface.co" )
68
1
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : Any = emb.weight.shape __snake_case : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: """simple docstring""" __snake_case : List[str] = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Optional[int] = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : List[str] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Tuple = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Optional[Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Dict = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : List[str] = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Optional[Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : Tuple = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : List[str] = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> str: """simple docstring""" __snake_case : int = [] __snake_case : Any = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : str = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : List[Any] = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Any = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : Dict = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : Dict = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : str = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Optional[int] = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : Tuple = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : int = shard_file # Add the metadata __snake_case : int = {"""total_size""": total_size} __snake_case : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : str = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
13
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
1
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" if n_term == "": return [] lowercase_ : list = [] for temp in range(int(__SCREAMING_SNAKE_CASE ) ): series.append(F'''1/{temp + 1}''' if series else '''1''' ) return series if __name__ == "__main__": _lowercase : Tuple = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
93
def A ( _SCREAMING_SNAKE_CASE = 100_0000 ) -> int: lowerCamelCase : Tuple = 1 lowerCamelCase : int = 1 lowerCamelCase : Optional[Any] = {1: 1} for inputa in range(2 ,_SCREAMING_SNAKE_CASE ): lowerCamelCase : Union[str, Any] = 0 lowerCamelCase : List[str] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase : str = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase : str = counter if counter > pre_counter: lowerCamelCase : str = inputa lowerCamelCase : Any = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
48
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging snake_case : Optional[int] = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=None ): return field(default_factory=lambda: default , metadata=_snake_case ) @dataclass class snake_case_ : UpperCAmelCase__ : Union[str, Any] = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) UpperCAmelCase__ : Optional[Any] = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) UpperCAmelCase__ : List[Any] = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) UpperCAmelCase__ : Optional[Any] = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) UpperCAmelCase__ : List[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) UpperCAmelCase__ : Dict = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) UpperCAmelCase__ : Dict = field(default=lowerCamelCase_ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) UpperCAmelCase__ : Any = field(default=lowerCamelCase_ , metadata={'''help''': '''Benchmark training of model'''} ) UpperCAmelCase__ : Optional[Any] = field(default=lowerCamelCase_ , metadata={'''help''': '''Verbose memory tracing'''} ) UpperCAmelCase__ : Tuple = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) UpperCAmelCase__ : Optional[Any] = field( default=lowerCamelCase_ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) UpperCAmelCase__ : Tuple = field(default=lowerCamelCase_ , metadata={'''help''': '''Trace memory line by line'''} ) UpperCAmelCase__ : str = field(default=lowerCamelCase_ , metadata={'''help''': '''Save result to a CSV file'''} ) UpperCAmelCase__ : Tuple = field(default=lowerCamelCase_ , metadata={'''help''': '''Save all print statements in a log file'''} ) UpperCAmelCase__ : List[Any] = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether to print environment information'''} ) UpperCAmelCase__ : List[Any] = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) UpperCAmelCase__ : Optional[int] = field( default=f'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) UpperCAmelCase__ : Any = field( default=f'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) UpperCAmelCase__ : Union[str, Any] = field( default=f'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) UpperCAmelCase__ : Optional[Any] = field( default=f'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) UpperCAmelCase__ : Optional[Any] = field( default=f'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) UpperCAmelCase__ : str = field( default=f'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) UpperCAmelCase__ : str = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) UpperCAmelCase__ : Tuple = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' ,_a ,) def lowerCamelCase__( self :str ) -> str: return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def lowerCamelCase__( self :Tuple ) -> Optional[Any]: if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
369
from __future__ import annotations def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
109
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase : Any = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["ConvNextFeatureExtractor"] lowercase : Dict = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
42
"""simple docstring""" def lowerCamelCase__ ( __snake_case = 10_00 ) -> int: """simple docstring""" _UpperCamelCase = 2**power _UpperCamelCase = str(__snake_case ) _UpperCamelCase = list(__snake_case ) _UpperCamelCase = 0 for i in list_num: sum_of_num += int(__snake_case ) return sum_of_num if __name__ == "__main__": _a = int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) _a = solution(power) print("""Sum of the digits is: """, result)
194
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : List[Any] = {'''vocab_file''': '''spiece.model'''} lowercase : Tuple = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowercase : Optional[int] = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class lowerCamelCase__ ( a__): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] _A = [] def __init__( self :Optional[Any] , a :Optional[Any] , a :Dict="<unk>" , a :List[Any]="<s>" , a :Any="</s>" , a :List[str]="<pad>" , a :Optional[Any]="[SEP]" , a :Tuple="[MASK]" , a :List[Any]="[CLS]" , a :Dict = None , **a :str , ) -> None: __UpperCamelCase : Optional[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token __UpperCamelCase : Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token __UpperCamelCase : Optional[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else unk_token __UpperCamelCase : List[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token __UpperCamelCase : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token __UpperCamelCase : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase : Any = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token __UpperCamelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , sep_token=_lowerCamelCase , mask_token=_lowerCamelCase , cls_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) __UpperCamelCase : Tuple = vocab_file __UpperCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def _lowerCamelCase ( self :List[str] ) -> Optional[int]: return self.sp_model.get_piece_size() def _lowerCamelCase ( self :Tuple ) -> Optional[Any]: __UpperCamelCase : List[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Dict ) -> Dict: __UpperCamelCase : int = self.__dict__.copy() __UpperCamelCase : List[Any] = None return state def __setstate__( self :Any , a :int ) -> Tuple: __UpperCamelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Tuple = {} __UpperCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :Optional[int] , a :Any ) -> List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _lowerCamelCase ( self :Optional[int] , a :str ) -> Union[str, Any]: return self.sp_model.piece_to_id(_lowerCamelCase ) def _lowerCamelCase ( self :List[str] , a :Union[str, Any] ) -> Any: __UpperCamelCase : Union[str, Any] = self.sp_model.IdToPiece(_lowerCamelCase ) return token def _lowerCamelCase ( self :List[str] , a :str ) -> Optional[Any]: __UpperCamelCase : List[str] = [] __UpperCamelCase : List[Any] = '''''' __UpperCamelCase : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase ) + token __UpperCamelCase : str = True __UpperCamelCase : Dict = [] else: current_sub_tokens.append(_lowerCamelCase ) __UpperCamelCase : int = False out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def _lowerCamelCase ( self :str , a :List[Any] , a :Tuple = False , a :Union[str, Any] = None , a :Optional[Any] = True , **a :Optional[int] , ) -> str: __UpperCamelCase : List[str] = kwargs.pop("use_source_tokenizer" , _lowerCamelCase ) __UpperCamelCase : Optional[int] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __UpperCamelCase : List[str] = [] __UpperCamelCase : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) __UpperCamelCase : Any = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __UpperCamelCase : List[str] = re.sub(r" (\[(MASK|SEP)\])" , r"\1" , " ".join(_lowerCamelCase ) ) else: __UpperCamelCase : Any = ''''''.join(_lowerCamelCase ) __UpperCamelCase : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __UpperCamelCase : Union[str, Any] = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def _lowerCamelCase ( self :List[Any] , a :Union[str, Any] , a :int = None ) -> Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , "wb" ) as fi: __UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def _lowerCamelCase ( self :str , a :Optional[Any] , a :List[Any] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase : int = [self.cls_token_id] __UpperCamelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self :Optional[Any] , a :Dict , a :Union[str, Any] = None , a :Union[str, Any] = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] def _lowerCamelCase ( self :int , a :Tuple , a :Optional[Any] = None ) -> List[int]: __UpperCamelCase : Union[str, Any] = [self.sep_token_id] __UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
369
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : int) -> int: '''simple docstring''' return int((input_a, input_a).count(0) == 0) def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' assert and_gate(0 , 0) == 0 assert and_gate(0 , 1) == 0 assert and_gate(1 , 0) == 0 assert and_gate(1 , 1) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
151
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=33 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Optional[int]: '''simple docstring''' lowercase__: Optional[int] = parent lowercase__: Optional[Any] = batch_size lowercase__: Optional[int] = seq_length lowercase__: Dict = is_training lowercase__: List[str] = use_input_mask lowercase__: Optional[Any] = use_token_type_ids lowercase__: Optional[int] = use_labels lowercase__: Dict = vocab_size lowercase__: Tuple = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: str = num_attention_heads lowercase__: Tuple = intermediate_size lowercase__: Union[str, Any] = hidden_act lowercase__: Optional[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = max_position_embeddings lowercase__: int = type_vocab_size lowercase__: Dict = type_sequence_label_size lowercase__: int = initializer_range lowercase__: List[str] = num_labels lowercase__: Dict = num_choices lowercase__: Dict = scope def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Any = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Union[str, Any] = None lowercase__: int = None lowercase__: Optional[Any] = None if self.use_labels: lowercase__: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: str = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Optional[Any] = EsmModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) lowercase__: Union[str, Any] = model(lowerCAmelCase__ ) lowercase__: Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Optional[int] = EsmForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: int = self.num_labels lowercase__: Union[str, Any] = EsmForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: int = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): str = config_and_inputs lowercase__: List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __a ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): __lowercase : Optional[Any] = False __lowercase : str = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __lowercase : Dict = () __lowercase : Optional[Any] = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) __lowercase : int = True def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: Dict = EsmModelTester(self ) lowercase__: List[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__: Dict = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: int = EsmModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: str = self.model_tester.prepare_config_and_inputs()[0] lowercase__: str = EsmEmbeddings(config=lowerCAmelCase__ ) lowercase__: List[str] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase__: Any = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase__: int = create_position_ids_from_input_ids(lowerCAmelCase__ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: str = self.model_tester.prepare_config_and_inputs()[0] lowercase__: str = EsmEmbeddings(config=lowerCAmelCase__ ) lowercase__: str = torch.empty(2 , 4 , 30 ) lowercase__: List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase__: Dict = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase__: List[str] = embeddings.create_position_ids_from_inputs_embeds(lowerCAmelCase__ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch class __a ( __UpperCamelCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' with torch.no_grad(): lowercase__: List[str] = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase__: Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__: Dict = model(lowerCAmelCase__ )[0] lowercase__: Optional[int] = 33 lowercase__: Any = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__: Optional[int] = torch.tensor( [[[8.9_2_1_5, -1_0.5_8_9_8, -6.4_6_7_1], [-6.3_9_6_7, -1_3.9_1_1_4, -1.1_2_1_2], [-7.7_8_1_2, -1_3.9_5_1_6, -3.7_4_0_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' with torch.no_grad(): lowercase__: str = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase__: Any = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase__: str = model(lowerCAmelCase__ )[0] # compare the actual values for a slice. lowercase__: Optional[int] = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
196
import unittest from knapsack import knapsack as k class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: List[Any] = 0 lowercase__: List[Any] = [0] lowercase__: str = [0] lowercase__: Tuple = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) lowercase__: Optional[Any] = [60] lowercase__: Dict = [10] lowercase__: str = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = 3 lowercase__: List[str] = [1, 2, 3] lowercase__: Union[str, Any] = [3, 2, 1] lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 5 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = 50 lowercase__: str = [60, 100, 120] lowercase__: Any = [10, 20, 30] lowercase__: List[Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
196
1
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : Tuple = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'data2vec-audio' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=32 , _SCREAMING_SNAKE_CASE: List[Any]=768 , _SCREAMING_SNAKE_CASE: List[Any]=12 , _SCREAMING_SNAKE_CASE: str=12 , _SCREAMING_SNAKE_CASE: List[str]=3072 , _SCREAMING_SNAKE_CASE: Union[str, Any]="gelu" , _SCREAMING_SNAKE_CASE: Optional[int]=0.1 , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: List[Any]=0.1 , _SCREAMING_SNAKE_CASE: Dict=0.0 , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: List[str]=0.1 , _SCREAMING_SNAKE_CASE: int=0.02 , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]="gelu" , _SCREAMING_SNAKE_CASE: Dict=(512, 512, 512, 512, 512, 512, 512) , _SCREAMING_SNAKE_CASE: Tuple=(5, 2, 2, 2, 2, 2, 2) , _SCREAMING_SNAKE_CASE: int=(10, 3, 3, 3, 3, 2, 2) , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: Dict=16 , _SCREAMING_SNAKE_CASE: Dict=19 , _SCREAMING_SNAKE_CASE: Optional[Any]=5 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.05 , _SCREAMING_SNAKE_CASE: int=10 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: Tuple=10 , _SCREAMING_SNAKE_CASE: Optional[Any]=0 , _SCREAMING_SNAKE_CASE: int="sum" , _SCREAMING_SNAKE_CASE: Optional[int]=False , _SCREAMING_SNAKE_CASE: List[Any]=False , _SCREAMING_SNAKE_CASE: Optional[int]=256 , _SCREAMING_SNAKE_CASE: List[Any]=(512, 512, 512, 512, 1500) , _SCREAMING_SNAKE_CASE: Dict=(5, 3, 3, 1, 1) , _SCREAMING_SNAKE_CASE: Optional[Any]=(1, 2, 3, 1, 1) , _SCREAMING_SNAKE_CASE: Optional[int]=512 , _SCREAMING_SNAKE_CASE: Optional[int]=0 , _SCREAMING_SNAKE_CASE: Optional[Any]=1 , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Tuple=3 , _SCREAMING_SNAKE_CASE: Optional[int]=2 , _SCREAMING_SNAKE_CASE: Optional[int]=3 , _SCREAMING_SNAKE_CASE: Tuple=None , **_SCREAMING_SNAKE_CASE: Tuple , ) -> List[str]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = hidden_size __lowerCAmelCase : Optional[int] = feat_extract_activation __lowerCAmelCase : Optional[int] = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = conv_bias __lowerCAmelCase : Any = num_conv_pos_embeddings __lowerCAmelCase : str = num_conv_pos_embedding_groups __lowerCAmelCase : List[Any] = conv_pos_kernel_size __lowerCAmelCase : str = len(self.conv_dim) __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : str = hidden_dropout __lowerCAmelCase : Tuple = attention_dropout __lowerCAmelCase : Optional[Any] = activation_dropout __lowerCAmelCase : Union[str, Any] = feat_proj_dropout __lowerCAmelCase : Union[str, Any] = final_dropout __lowerCAmelCase : Tuple = layerdrop __lowerCAmelCase : str = layer_norm_eps __lowerCAmelCase : Any = initializer_range __lowerCAmelCase : Optional[int] = vocab_size __lowerCAmelCase : Dict = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase : str = mask_time_prob __lowerCAmelCase : Optional[Any] = mask_time_length __lowerCAmelCase : Optional[int] = mask_time_min_masks __lowerCAmelCase : List[str] = mask_feature_prob __lowerCAmelCase : int = mask_feature_length __lowerCAmelCase : str = mask_feature_min_masks # ctc loss __lowerCAmelCase : List[Any] = ctc_loss_reduction __lowerCAmelCase : str = ctc_zero_infinity # adapter __lowerCAmelCase : Any = add_adapter __lowerCAmelCase : Any = adapter_kernel_size __lowerCAmelCase : str = adapter_stride __lowerCAmelCase : List[Any] = num_adapter_layers __lowerCAmelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCAmelCase : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase : Union[str, Any] = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self: str) -> Optional[Any]: """simple docstring""" return math.prod(self.conv_stride)
58
"""simple docstring""" __snake_case : Dict = 65_521 def _lowercase ( __snake_case ) -> int: __lowerCAmelCase : str = 1 __lowerCAmelCase : Union[str, Any] = 0 for plain_chr in plain_text: __lowerCAmelCase : List[str] = (a + ord(__snake_case )) % MOD_ADLER __lowerCAmelCase : str = (b + a) % MOD_ADLER return (b << 16) | a
58
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case : Union[str, Any] = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
94
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _lowerCAmelCase ( yaml.SafeLoader ): """simple docstring""" def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] lowerCAmelCase__ :str = [tuple(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else key for key in keys] lowerCAmelCase__ :Optional[int] = Counter(__UpperCAmelCase ) lowerCAmelCase__ :int = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"Got duplicate yaml keys: {duplicate_keys}" ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = super().construct_mapping(__UpperCAmelCase , deep=__UpperCAmelCase ) self._check_no_duplicates_on_constructed_node(__UpperCAmelCase ) return mapping def __A (_SCREAMING_SNAKE_CASE ) ->Tuple[Optional[str], str]: """simple docstring""" lowerCAmelCase__ :Optional[Any] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowerCAmelCase__ :Optional[int] = full_content[1:].index('---' ) + 1 lowerCAmelCase__ :Union[str, Any] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :List[str] = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def snake_case ( cls , __UpperCAmelCase ): '''simple docstring''' with open(__UpperCAmelCase , encoding='utf-8' ) as readme_file: lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__UpperCAmelCase ) else: return cls() def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if path.exists(): with open(__UpperCAmelCase , encoding='utf-8' ) as readme_file: lowerCAmelCase__ :Optional[Any] = readme_file.read() else: lowerCAmelCase__ :Union[str, Any] = None lowerCAmelCase__ :Union[str, Any] = self._to_readme(__UpperCAmelCase ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase = None ): '''simple docstring''' if readme_content is not None: lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = _split_yaml_from_readme(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: lowerCAmelCase__ :str = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def snake_case ( cls , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = yaml.load(__UpperCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowerCAmelCase__ :int = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__UpperCAmelCase , allow_unicode=__UpperCAmelCase , encoding='utf-8' , ).decode('utf-8' ) __A = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser __A = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") __A = ap.parse_args() __A = Path(args.readme_filepath) __A = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
293
0
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __lowerCAmelCase : Union[str, Any] =False __lowerCAmelCase : Any =True __lowerCAmelCase : Optional[Any] =False if __name__ == "__main__": __lowerCAmelCase : int =argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase : str =parser.parse_args() __lowerCAmelCase : List[Any] ={ "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } __lowerCAmelCase : List[str] ={ "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } __lowerCAmelCase : Optional[int] ="" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: __lowerCAmelCase : Tuple =reader.read() __lowerCAmelCase : Union[str, Any] =json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): __lowerCAmelCase : Optional[int] =UNetaDModel(**config) else: __lowerCAmelCase : str =UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel __lowerCAmelCase : Tuple =class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __lowerCAmelCase : Union[str, Any] =dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __lowerCAmelCase : str =config[key] del config[key] __lowerCAmelCase : Union[str, Any] =[k.replace("UNetRes", "") for k in config["down_block_types"]] __lowerCAmelCase : Union[str, Any] =[k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: __lowerCAmelCase : List[str] =torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) __lowerCAmelCase : Optional[int] ={} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue __lowerCAmelCase : int =False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: __lowerCAmelCase : Optional[Any] =param_value __lowerCAmelCase : Tuple =True if not has_changed: __lowerCAmelCase : Any =param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
364
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : List[Any] ="examples/" __lowerCAmelCase : Dict ={ "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] ={ "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : str ="README.md" def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] ): with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: A__ = f.read() A__, A__ = REPLACE_PATTERNS[pattern] A__ = replace.replace("VERSION" , _lowerCamelCase ) A__ = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : int ): for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="examples" ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def UpperCamelCase ( ): A__ = "🤗 Transformers currently provides the following architectures" A__ = "1. Want to contribute a new model?" with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: A__ = f.readlines() # Find the start of the list. A__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): A__ = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_lowerCamelCase ) def UpperCamelCase ( ): with open(REPLACE_FILES["init"] , "r" ) as f: A__ = f.read() A__ = REPLACE_PATTERNS["init"][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Dict=False ): A__ = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: A__ = default_version.base_version elif patch: A__ = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: A__ = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. A__ = input(F"Which version are you releasing? [{default_version}]" ) if len(_lowerCamelCase ) == 0: A__ = default_version print(F"Updating version to {version}." ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def UpperCamelCase ( ): A__ = get_version() A__ = F"{current_version.major}.{current_version.minor + 1}.0.dev0" A__ = current_version.base_version # Check with the user we got that right. A__ = input(F"Which version are we developing now? [{dev_version}]" ) if len(_lowerCamelCase ) == 0: A__ = dev_version print(F"Updating version to {version}." ) global_version_update(_lowerCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : int =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
123
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
89
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : def __init__( self : List[str] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str]=13 ,_UpperCAmelCase : Any=32 ,_UpperCAmelCase : Union[str, Any]=3 ,_UpperCAmelCase : Optional[int]=4 ,_UpperCAmelCase : Optional[Any]=[10, 20, 30, 40] ,_UpperCAmelCase : Tuple=[2, 2, 3, 2] ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Union[str, Any]=37 ,_UpperCAmelCase : Optional[int]="gelu" ,_UpperCAmelCase : Optional[Any]=10 ,_UpperCAmelCase : Tuple=0.02 ,_UpperCAmelCase : Any=["stage2", "stage3", "stage4"] ,_UpperCAmelCase : Any=[2, 3, 4] ,_UpperCAmelCase : Tuple=None ,): _a : Optional[Any] = parent _a : List[Any] = batch_size _a : str = image_size _a : Union[str, Any] = num_channels _a : List[Any] = num_stages _a : Dict = hidden_sizes _a : int = depths _a : Tuple = is_training _a : List[str] = use_labels _a : Dict = intermediate_size _a : int = hidden_act _a : int = num_labels _a : Any = initializer_range _a : Tuple = out_features _a : int = out_indices _a : List[Any] = scope def __lowercase ( self : Dict ): _a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Union[str, Any] = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.num_labels ) _a : str = self.get_config() return config, pixel_values, labels def __lowercase ( self : Any ): return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_UpperCAmelCase ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def __lowercase ( self : Tuple ,_UpperCAmelCase : Any ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[Any] ): _a : Optional[Any] = ConvNextVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Any = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowercase ( self : Tuple ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ): _a : List[Any] = ConvNextVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : List[str] = model(_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : str ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ): _a : Optional[int] = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Dict = model(_UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a : Tuple = None _a : List[Any] = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : List[str] = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowercase ( self : Optional[Any] ): _a : Any = self.prepare_config_and_inputs() _a , _a , _a : Union[str, Any] = config_and_inputs _a : Any = {'pixel_values': pixel_values} return config, inputs_dict def __lowercase ( self : str ): _a : Tuple = self.prepare_config_and_inputs() _a , _a , _a : Tuple = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : str = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCAmelCase : str = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : int = False lowerCAmelCase : str = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : List[str] = False lowerCAmelCase : Optional[int] = False def __lowercase ( self : List[Any] ): _a : str = ConvNextVaModelTester(self ) _a : Tuple = ConfigTester(self ,config_class=_UpperCAmelCase ,has_text_modality=_UpperCAmelCase ,hidden_size=37 ) def __lowercase ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : str ): return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def __lowercase ( self : List[Any] ): pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def __lowercase ( self : Optional[int] ): pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def __lowercase ( self : Any ): pass def __lowercase ( self : List[str] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _a : Any = True if model_class.__name__ in [ *get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase ), ]: continue _a : Optional[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() _a : str = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : Optional[int] = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : str ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _a : Optional[int] = False _a : Tuple = True if ( model_class.__name__ in [*get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue _a : Tuple = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() _a : Any = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : List[Any] = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : List[Any] ): _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = model_class(_UpperCAmelCase ) _a : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Dict = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_UpperCAmelCase ) def __lowercase ( self : int ): _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __lowercase ( self : Any ): def check_hidden_states_output(_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Dict ): _a : Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _a : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : str = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = True check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Optional[Any] = True check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : List[Any] ): _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def __lowercase ( self : int ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = ConvNextVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCamelCase ( ) -> List[Any]: _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def __lowercase ( self : Optional[Any] ): return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def __lowercase ( self : Any ): _a : List[str] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_UpperCAmelCase ) _a : Optional[int] = self.default_image_processor _a : str = prepare_img() _a : str = preprocessor(images=_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _a : Dict = model(**_UpperCAmelCase ) # verify the logits _a : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_UpperCAmelCase ) _a : Optional[Any] = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_UpperCAmelCase ,atol=1E-4 ) )
89
1
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = CpmAntTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : Optional[int] ): '''simple docstring''' super().setUp() _a : List[Any] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def __lowercase ( self : str ): '''simple docstring''' _a : Dict = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) _a : Optional[int] = """今天天气真好!""" _a : Optional[int] = ["""今天""", """天气""", """真""", """好""", """!"""] _a : Optional[Any] = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) _a : Optional[Any] = """今天天气真好!""" _a : Any = [tokenizer.bos_token] + tokens _a : Dict = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,_UpperCamelCase ) _a : Optional[Any] = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase ,_UpperCamelCase )
357
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) A_ : Optional[int] = 'bert-base-cased' A_ : int = 'fp16' A_ : Any = 'bf16' A_ : Optional[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class A_ ( _a ): '''simple docstring''' def lowerCAmelCase_ (self ) -> int: super().setUp() __UpperCAmelCase = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def lowerCAmelCase_ (self ) -> Optional[int]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowercase__ ): __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = F'''{i + 1}''' __UpperCAmelCase = strategy with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowerCAmelCase_ (self ) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowercase__ ): __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = prefetch_policy with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowerCAmelCase_ (self ) -> Tuple: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowercase__ ): __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = state_dict_type with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = AutoModel.from_pretrained(lowercase__ ) for policy in FSDP_AUTO_WRAP_POLICY: __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = policy if policy == "TRANSFORMER_BASED_WRAP": __UpperCAmelCase = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": __UpperCAmelCase = '''2000''' with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase__ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = '''TRANSFORMER_BASED_WRAP''' __UpperCAmelCase = '''T5Layer''' with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() with self.assertRaises(lowercase__ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowercase__ ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = '''SIZE_BASED_WRAP''' __UpperCAmelCase = '''0''' with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase__ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowerCAmelCase_ (self ) -> Any: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = mp_dtype with mockenv_context(**lowercase__ ): __UpperCAmelCase = Accelerator() if mp_dtype == "fp16": __UpperCAmelCase = torch.floataa elif mp_dtype == "bf16": __UpperCAmelCase = torch.bfloataa __UpperCAmelCase = MixedPrecision(param_dtype=lowercase__ , reduce_dtype=lowercase__ , buffer_dtype=lowercase__ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowercase__ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowercase__ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowercase__ ) def lowerCAmelCase_ (self ) -> str: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = str(lowercase__ ).lower() with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowercase__ ) ) @require_fsdp @require_multi_gpu @slow class A_ ( _a ): '''simple docstring''' def lowerCAmelCase_ (self ) -> List[Any]: super().setUp() __UpperCAmelCase = 0.82 __UpperCAmelCase = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] __UpperCAmelCase = { '''multi_gpu_fp16''': 3_200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __UpperCAmelCase = 160 __UpperCAmelCase = 160 __UpperCAmelCase = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: __UpperCAmelCase = cmd.copy() for i, strategy in enumerate(lowercase__ ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase__ , env=os.environ.copy() ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) __UpperCAmelCase = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(lowercase__ ): __UpperCAmelCase = cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue __UpperCAmelCase = len(lowercase__ ) for state_dict_type in FSDP_STATE_DICT_TYPE: __UpperCAmelCase = cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase__ , env=os.environ.copy() ) __UpperCAmelCase = cmd_config[:-1] __UpperCAmelCase = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase__ , env=os.environ.copy() ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) __UpperCAmelCase = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __UpperCAmelCase = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(lowercase__ ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase__ , env=os.environ.copy() )
333
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase_ = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") lowerCamelCase_ = f'''https://www.google.com/search?q={query}&num=100''' lowerCamelCase_ = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: lowerCamelCase_ = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: lowerCamelCase_ = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
351
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : Any = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _snake_case ( A__ ): _lowercase : Dict = '''encodec''' def __init__( self , a=[1.5, 3.0, 6.0, 12.0, 24.0] , a=2_4000 , a=1 , a=False , a=None , a=None , a=128 , a=32 , a=1 , a=[8, 5, 4, 2] , a="weight_norm" , a=7 , a=7 , a=3 , a=2 , a=True , a="reflect" , a=2 , a=2 , a=1.0 , a=1024 , a=None , a=True , **a , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = target_bandwidths SCREAMING_SNAKE_CASE = sampling_rate SCREAMING_SNAKE_CASE = audio_channels SCREAMING_SNAKE_CASE = normalize SCREAMING_SNAKE_CASE = chunk_length_s SCREAMING_SNAKE_CASE = overlap SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_filters SCREAMING_SNAKE_CASE = num_residual_layers SCREAMING_SNAKE_CASE = upsampling_ratios SCREAMING_SNAKE_CASE = norm_type SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = last_kernel_size SCREAMING_SNAKE_CASE = residual_kernel_size SCREAMING_SNAKE_CASE = dilation_growth_rate SCREAMING_SNAKE_CASE = use_causal_conv SCREAMING_SNAKE_CASE = pad_mode SCREAMING_SNAKE_CASE = compress SCREAMING_SNAKE_CASE = num_lstm_layers SCREAMING_SNAKE_CASE = trim_right_ratio SCREAMING_SNAKE_CASE = codebook_size SCREAMING_SNAKE_CASE = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''') super().__init__(**a) @property def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10))
137
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a_ : Tuple = logging.getLogger() def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('-f') SCREAMING_SNAKE_CASE = parser.parse_args() return args.f class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> None: SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> str: SCREAMING_SNAKE_CASE = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py') with patch.object(a , 'argv' , a): SCREAMING_SNAKE_CASE = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(a , 0.6_66) @slow @require_torch_non_multi_gpu def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(a) SCREAMING_SNAKE_CASE = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(a) SCREAMING_SNAKE_CASE = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(a)
137
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = {"vocab_file": "sentencepiece.bpe.model"} A__ = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } A__ = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } A__ = "▁" class a ( SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : str = ['''input_ids''', '''attention_mask'''] def __init__( self :int ,__lowercase :Union[str, Any] ,__lowercase :Optional[int]="<s>" ,__lowercase :Optional[Any]="</s>" ,__lowercase :Any="</s>" ,__lowercase :Optional[int]="<s>" ,__lowercase :int="<unk>" ,__lowercase :Optional[int]="<pad>" ,__lowercase :Dict="<mask>" ,__lowercase :List[str] = None ,**__lowercase :str ,): # Mask token behave like a normal word, i.e. include the space before it snake_case__ : int = AddedToken(A__ ,lstrip=A__ ,rstrip=A__ ) if isinstance(A__ ,A__ ) else mask_token snake_case__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A__ ,eos_token=A__ ,unk_token=A__ ,sep_token=A__ ,cls_token=A__ ,pad_token=A__ ,mask_token=A__ ,sp_model_kwargs=self.sp_model_kwargs ,**A__ ,) snake_case__ : Optional[Any] = vocab_file snake_case__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) snake_case__ : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} snake_case__ : Optional[Any] = len(self.sp_model ) - 1 snake_case__ : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[int] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Optional[Any] = [self.cls_token_id] snake_case__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCamelCase ( self :Tuple ,__lowercase :Tuple ,__lowercase :str = None ,__lowercase :Tuple = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ ,token_ids_a=A__ ,already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1, 1] + ([0] * len(A__ )) + [1] def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[Any] ,__lowercase :Union[str, Any] = None ): snake_case__ : str = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCamelCase ( self :Dict ): return len(self.sp_model ) def __lowerCamelCase ( self :List[str] ): snake_case__ : Optional[int] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self :Tuple ,__lowercase :Any ): return self.sp_model.encode(A__ ,out_type=A__ ) def __lowerCamelCase ( self :Tuple ,__lowercase :List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ : int = self.sp_model.PieceToId(A__ ) return spm_id if spm_id else self.unk_token_id def __lowerCamelCase ( self :Optional[int] ,__lowercase :Dict ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A__ ) def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[Any] ): snake_case__ : int = [] snake_case__ : Dict = '''''' snake_case__ : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A__ ) + token snake_case__ : List[Any] = True snake_case__ : Dict = [] else: current_sub_tokens.append(A__ ) snake_case__ : List[str] = False out_string += self.sp_model.decode(A__ ) return out_string.strip() def __getstate__( self :str ): snake_case__ : Tuple = self.__dict__.copy() snake_case__ : List[Any] = None return state def __setstate__( self :Dict ,__lowercase :Tuple ): snake_case__ : Optional[Any] = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): snake_case__ : Optional[int] = {} snake_case__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Optional[int] ,__lowercase :Optional[int] = None ): if not os.path.isdir(A__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : int = os.path.join( A__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ ,'''wb''' ) as fi: snake_case__ : int = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
358
import argparse from collections import defaultdict def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__lowerCAmelCase , '''r''' ) as f: snake_case__ : str = f.readlines() snake_case__ : List[str] = f"""class {class_name}(""" snake_case__ : Any = f"""{4 * ' '}def {test_name}(""" snake_case__ : Optional[int] = f"""{8 * ' '}{correct_line.split()[0]}""" snake_case__ : List[str] = f"""{16 * ' '}{correct_line.split()[0]}""" snake_case__ : Any = False snake_case__ : Optional[int] = False snake_case__ : Optional[Any] = False snake_case__ : int = False snake_case__ : Union[str, Any] = 0 snake_case__ : str = 0 snake_case__ : Union[str, Any] = [] for line in lines: if line.startswith(__lowerCAmelCase ): snake_case__ : Optional[Any] = True elif in_class and line.startswith(__lowerCAmelCase ): snake_case__ : Optional[int] = True elif in_class and in_func and (line.startswith(__lowerCAmelCase ) or line.startswith(__lowerCAmelCase )): snake_case__ : int = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: snake_case__ : Tuple = True if in_class and in_func and in_line: if ")" not in line: continue else: snake_case__ : List[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) snake_case__ : Optional[int] = False else: new_lines.append(__lowerCAmelCase ) with open(__lowerCAmelCase , '''w''' ) as f: for line in new_lines: f.write(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Dict: """simple docstring""" if fail is not None: with open(__lowerCAmelCase , '''r''' ) as f: snake_case__ : Optional[int] = {l.strip() for l in f.readlines()} else: snake_case__ : Tuple = None with open(__lowerCAmelCase , '''r''' ) as f: snake_case__ : Optional[int] = f.readlines() snake_case__ : Tuple = defaultdict(__lowerCAmelCase ) for line in correct_lines: snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) A__ = parser.parse_args() main(args.correct_filename, args.fail_filename)
44
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : Any = logging.get_logger(__name__) _A : Any = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[Any] = """convbert""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : int=7_68 , SCREAMING_SNAKE_CASE__ : Optional[int]=12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12 , SCREAMING_SNAKE_CASE__ : Dict=30_72 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : int=0.0_2 , SCREAMING_SNAKE_CASE__ : Any=1e-1_2 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Tuple=7_68 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : Any=9 , SCREAMING_SNAKE_CASE__ : Optional[int]=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Dict: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = embedding_size __lowerCAmelCase = head_ratio __lowerCAmelCase = conv_kernel_size __lowerCAmelCase = num_groups __lowerCAmelCase = classifier_dropout class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
229
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCAmelCase = str(bin(snake_case_ ) )[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(snake_case_ ) )[2:] # remove the leading "0b" __lowerCAmelCase = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
229
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
370
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
229
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A : Union[str, Any] = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[str] = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _A : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
229
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ :Tuple = logging.get_logger(__name__) a_ :Union[str, Any] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """deberta-v2""" def __init__( self : Union[str, Any], _snake_case : Dict=1_2_8_1_0_0, _snake_case : Any=1_5_3_6, _snake_case : Tuple=2_4, _snake_case : int=2_4, _snake_case : Optional[int]=6_1_4_4, _snake_case : Optional[int]="gelu", _snake_case : Optional[int]=0.1, _snake_case : List[str]=0.1, _snake_case : str=5_1_2, _snake_case : Optional[int]=0, _snake_case : Optional[int]=0.0_2, _snake_case : Dict=1e-7, _snake_case : int=False, _snake_case : Any=-1, _snake_case : List[str]=0, _snake_case : Tuple=True, _snake_case : Any=None, _snake_case : Union[str, Any]=0, _snake_case : Tuple="gelu", **_snake_case : Union[str, Any], ) ->Optional[int]: super().__init__(**_snake_case ) snake_case__ : Dict = hidden_size snake_case__ : Optional[int] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : List[str] = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : Optional[Any] = initializer_range snake_case__ : Optional[int] = relative_attention snake_case__ : Tuple = max_relative_positions snake_case__ : Union[str, Any] = pad_token_id snake_case__ : Optional[int] = position_biased_input # Backwards compatibility if type(_snake_case ) == str: snake_case__ : int = [x.strip() for x in pos_att_type.lower().split('|' )] snake_case__ : List[str] = pos_att_type snake_case__ : Union[str, Any] = vocab_size snake_case__ : Optional[int] = layer_norm_eps snake_case__ : Optional[int] = kwargs.get('pooler_hidden_size', _snake_case ) snake_case__ : int = pooler_dropout snake_case__ : str = pooler_hidden_act class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" @property def lowercase_ ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case__ : int = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase_ ( self : Dict ) ->int: return 1_2 def lowercase_ ( self : Tuple, _snake_case : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], _snake_case : int = -1, _snake_case : int = -1, _snake_case : int = -1, _snake_case : bool = False, _snake_case : Optional["TensorType"] = None, _snake_case : int = 3, _snake_case : int = 4_0, _snake_case : int = 4_0, _snake_case : "PreTrainedTokenizerBase" = None, ) ->Mapping[str, Any]: snake_case__ : Union[str, Any] = super().generate_dummy_inputs(preprocessor=_snake_case, framework=_snake_case ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
277
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowercase : str = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowercase : Union[str, Any] = concatenate_datasets lowercase : Tuple = DownloadConfig lowercase : Optional[int] = DownloadManager lowercase : Tuple = DownloadMode lowercase : Optional[Any] = DownloadConfig lowercase : List[Any] = DownloadMode lowercase : str = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
225
import enum import shutil import sys lowercase , lowercase : List[Any] = shutil.get_terminal_size() lowercase : Union[str, Any] = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class A__ ( enum.Enum ): """simple docstring""" __A : List[str] = 0 __A : str = 1 def A_ ( A__ , A__="" ) -> int: sys.stdout.write(str(A__ ) + end ) sys.stdout.flush() def A_ ( A__ , A__ , A__="" ) -> int: forceWrite(F'\u001b[{color}m{content}\u001b[0m' , A__ ) def A_ ( ) -> Any: forceWrite('\r' ) def A_ ( A__ , A__ ) -> List[str]: forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def A_ ( ) -> Any: forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def A_ ( ) -> Any: reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
225
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[int] , __UpperCAmelCase : NestedDataStructureLike[PathLike] , __UpperCAmelCase : Optional[NamedSplit] = None , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : Any , ) ->str: """simple docstring""" super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) a = field a = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths} a = Json( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , field=__UpperCAmelCase , **__UpperCAmelCase , ) def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" if self.streaming: a = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a = None a = None a = None a = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) a = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowercase_ : '''simple docstring''' def __init__( self : List[str] , __UpperCAmelCase : Dataset , __UpperCAmelCase : Union[PathLike, BinaryIO] , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : List[Any] , ) ->int: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) a = dataset a = path_or_buf a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a = num_proc a = '''utf-8''' a = to_json_kwargs def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = self.to_json_kwargs.pop('''path_or_buf''' , __UpperCAmelCase ) a = self.to_json_kwargs.pop('''orient''' , '''records''' ) a = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) a = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) a = self.to_json_kwargs.pop('''compression''' , __UpperCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=__UpperCAmelCase ) as buffer: a = self._write(file_obj=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ''' was passed. Please provide a local path instead.''' ) a = self._write( file_obj=self.path_or_buf , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) return written def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[Any] ) ->Dict: """simple docstring""" a , a , a , a , a = args a = query_table( table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) a = batch.to_pandas().to_json( path_or_buf=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **__UpperCAmelCase ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : BinaryIO , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[Any] , ) ->int: """simple docstring""" a = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): a = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__UpperCAmelCase ) else: a , a = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__UpperCAmelCase ) return written
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ): # test for the above condition self.test() def lowerCamelCase__ ( self ): _lowercase : Any = 0 _lowercase : Tuple = False while not completed: if counter == 1: self.reset() _lowercase : Optional[Any] = self.advance() if not self.does_advance(UpperCAmelCase_ ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) _lowercase , _lowercase , _lowercase : Optional[Any] = self.update(UpperCAmelCase_ ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ): super(UpperCAmelCase_ ,self ).__init__() if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) _lowercase : int = token_ids _lowercase : str = len(self.token_ids ) _lowercase : List[str] = -1 # the index of the currently fulfilled step _lowercase : Optional[Any] = False def lowerCamelCase__ ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[Any] = False if self.does_advance(UpperCAmelCase_ ): self.fulfilled_idx += 1 _lowercase : Any = True if self.fulfilled_idx == (self.seqlen - 1): _lowercase : int = True _lowercase : Union[str, Any] = completed else: # failed to make progress. _lowercase : Optional[Any] = True self.reset() return stepped, completed, reset def lowerCamelCase__ ( self ): _lowercase : Optional[int] = False _lowercase : List[str] = 0 def lowerCamelCase__ ( self ): return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): _lowercase : Any = PhrasalConstraint(self.token_ids ) if stateful: _lowercase : Dict = self.seqlen _lowercase : Tuple = self.fulfilled_idx _lowercase : Tuple = self.completed return new_constraint class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=True ): _lowercase : Optional[int] = max([len(UpperCAmelCase_ ) for one in nested_token_ids] ) _lowercase : List[Any] = {} for token_ids in nested_token_ids: _lowercase : Union[str, Any] = root for tidx, token_id in enumerate(UpperCAmelCase_ ): if token_id not in level: _lowercase : int = {} _lowercase : str = level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f""" {nested_token_ids}.""" ) _lowercase : int = root def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Any = self.trie for current_token in current_seq: _lowercase : Optional[Any] = start[current_token] _lowercase : Any = list(start.keys() ) return next_tokens def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : str = self.next_tokens(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) == 0 def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[Any] = list(root.values() ) if len(UpperCAmelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase_ ) for nn in next_nodes] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = self.count_leaves(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) != leaf_count class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ): super(UpperCAmelCase_ ,self ).__init__() if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) _lowercase : str = DisjunctiveTrie(UpperCAmelCase_ ) _lowercase : Optional[Any] = nested_token_ids _lowercase : Optional[Any] = self.trie.max_height _lowercase : Optional[int] = [] _lowercase : int = False def lowerCamelCase__ ( self ): _lowercase : str = self.trie.next_tokens(self.current_seq ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Dict = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : List[str] = False if self.does_advance(UpperCAmelCase_ ): self.current_seq.append(UpperCAmelCase_ ) _lowercase : Union[str, Any] = True else: _lowercase : Optional[int] = True self.reset() _lowercase : List[str] = self.trie.reached_leaf(self.current_seq ) _lowercase : Optional[int] = completed return stepped, completed, reset def lowerCamelCase__ ( self ): _lowercase : Tuple = False _lowercase : Union[str, Any] = [] def lowerCamelCase__ ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): _lowercase : Tuple = DisjunctiveConstraint(self.token_ids ) if stateful: _lowercase : Optional[Any] = self.seqlen _lowercase : Any = self.current_seq _lowercase : Dict = self.completed return new_constraint class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : Dict = constraints # max # of steps required to fulfill a given constraint _lowercase : str = max([c.seqlen for c in constraints] ) _lowercase : str = len(UpperCAmelCase_ ) _lowercase : Any = False self.init_state() def lowerCamelCase__ ( self ): _lowercase : List[str] = [] _lowercase : Dict = None _lowercase : List[str] = [constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.constraints] def lowerCamelCase__ ( self ): _lowercase : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase__ ( self ): _lowercase : Any = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _lowercase : Any = constraint.advance() if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) else: _lowercase : List[Any] = self.inprogress_constraint.advance() if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def lowerCamelCase__ ( self ,UpperCAmelCase_ ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _lowercase , _lowercase : int = self.add(UpperCAmelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) _lowercase , _lowercase : Tuple = False, False if self.completed: _lowercase : Union[str, Any] = True _lowercase : List[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _lowercase , _lowercase , _lowercase : List[Any] = self.inprogress_constraint.update(UpperCAmelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) ) _lowercase : List[Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _lowercase : List[Any] = None if len(self.pending_constraints ) == 0: # we're done! _lowercase : int = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCAmelCase_ ): _lowercase , _lowercase , _lowercase : Dict = pending_constraint.update(UpperCAmelCase_ ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(UpperCAmelCase_ ) _lowercase : Tuple = None if not complete and stepped: _lowercase : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _lowercase : Optional[Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _lowercase : Any = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase__ ( self ,UpperCAmelCase_=True ): _lowercase : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _lowercase : int = [ constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _lowercase : Optional[int] = self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) _lowercase : Dict = [constraint.copy() for constraint in self.pending_constraints] return new_state
336
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
1
"""simple docstring""" def lowercase__ ( _UpperCAmelCase = 10**12 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = 1 lowercase : Dict = 0 lowercase : int = 1 lowercase : Any = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
365
"""simple docstring""" import unittest from transformers import DonutProcessor _UpperCamelCase: Any = 'naver-clova-ix/donut-base' class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Tuple: lowercase : Any = DonutProcessor.from_pretrained(lowerCAmelCase ) def lowercase ( self : Dict ) -> Union[str, Any]: lowercase : Tuple = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } lowercase : Tuple = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) lowercase : Any = self.processor.tokenajson(lowerCAmelCase ) self.assertDictEqual(lowerCAmelCase, lowerCAmelCase )
53
0
'''simple docstring''' import argparse a_ : Union[str, Any] = """docs/source/_static/js/custom.js""" def __snake_case ( UpperCAmelCase_ : Dict ): with open(UpperCAmelCase_ , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 lowerCamelCase_ = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(UpperCAmelCase_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") a_ : Optional[int] = parser.parse_args() update_custom_js(args.version)
55
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = "naver-clova-ix/donut-base-finetuned-docvqa" _UpperCamelCase : Dict = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) _UpperCamelCase : Optional[int] = "document_qa" _UpperCamelCase : Any = AutoProcessor _UpperCamelCase : Union[str, Any] = VisionEncoderDecoderModel _UpperCamelCase : Union[str, Any] = ["image", "text"] _UpperCamelCase : List[str] = ["text"] def __init__( self , *a__ , **a__ ): if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*a__ , **a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[int] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _lowerCAmelCase : Dict = task_prompt.replace("""{user_input}""" , a__ ) _lowerCAmelCase : str = self.pre_processor.tokenizer( a__ , add_special_tokens=a__ , return_tensors="""pt""" ).input_ids _lowerCAmelCase : Dict = self.pre_processor(a__ , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __A ( self , a__ ): return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=a__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=a__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=a__ , ).sequences def __A ( self , a__ ): _lowerCAmelCase : Tuple = self.pre_processor.batch_decode(a__ )[0] _lowerCAmelCase : int = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) _lowerCAmelCase : List[str] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) _lowerCAmelCase : List[str] = re.sub(r"""<.*?>""" , """""" , a__ , count=1 ).strip() # remove first task start token _lowerCAmelCase : List[str] = self.pre_processor.tokenajson(a__ ) return sequence["answer"]
44
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Tuple = UnCLIPImageVariationPipeline _UpperCAmelCase : Tuple = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} _UpperCAmelCase : List[str] = IMAGE_VARIATION_BATCH_PARAMS _UpperCAmelCase : Union[str, Any] = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] _UpperCAmelCase : Tuple = False @property def A ( self : Tuple ): '''simple docstring''' return 32 @property def A ( self : Dict ): '''simple docstring''' return 32 @property def A ( self : Dict ): '''simple docstring''' return self.time_input_dim @property def A ( self : Any ): '''simple docstring''' return self.time_input_dim * 4 @property def A ( self : List[Any] ): '''simple docstring''' return 100 @property def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowercase ) @property def A ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } _snake_case = UnCLIPTextProjModel(**lowercase ) return model @property def A ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } _snake_case = UNetaDConditionModel(**lowercase ) return model @property def A ( self : Optional[int] ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def A ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def A ( self : int ): '''simple docstring''' torch.manual_seed(1 ) _snake_case = UNetaDModel(**self.dummy_super_res_kwargs ) return model def A ( self : Dict ): '''simple docstring''' _snake_case = self.dummy_decoder _snake_case = self.dummy_text_proj _snake_case = self.dummy_text_encoder _snake_case = self.dummy_tokenizer _snake_case = self.dummy_super_res_first _snake_case = self.dummy_super_res_last _snake_case = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) _snake_case = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) _snake_case = CLIPImageProcessor(crop_size=32 , size=32 ) _snake_case = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def A ( self : List[Any] , lowercase : Optional[Any] , lowercase : Optional[Any]=0 , lowercase : List[str]=True ): '''simple docstring''' _snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) if str(lowercase ).startswith('mps' ): _snake_case = torch.manual_seed(lowercase ) else: _snake_case = torch.Generator(device=lowercase ).manual_seed(lowercase ) if pil_image: _snake_case = input_image * 0.5 + 0.5 _snake_case = input_image.clamp(0 , 1 ) _snake_case = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _snake_case = DiffusionPipeline.numpy_to_pil(lowercase )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def A ( self : int ): '''simple docstring''' _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowercase ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase , pil_image=lowercase ) _snake_case = pipe(**lowercase ) _snake_case = output.images _snake_case = self.get_dummy_inputs(lowercase , pil_image=lowercase ) _snake_case = pipe( **lowercase , return_dict=lowercase , )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : List[Any] ): '''simple docstring''' _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowercase ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase , pil_image=lowercase ) _snake_case = pipe(**lowercase ) _snake_case = output.images _snake_case = self.get_dummy_inputs(lowercase , pil_image=lowercase ) _snake_case = pipe( **lowercase , return_dict=lowercase , )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ): '''simple docstring''' _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowercase ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase , pil_image=lowercase ) _snake_case = [ pipeline_inputs['image'], pipeline_inputs['image'], ] _snake_case = pipe(**lowercase ) _snake_case = output.images _snake_case = self.get_dummy_inputs(lowercase , pil_image=lowercase ) _snake_case = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] _snake_case = pipe( **lowercase , return_dict=lowercase , )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _snake_case = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Any ): '''simple docstring''' _snake_case = torch.device('cpu' ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Optional[int] = 1 _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowercase ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = torch.Generator(device=lowercase ).manual_seed(0 ) _snake_case = pipe.decoder.dtype _snake_case = 1 _snake_case = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _snake_case = pipe.prepare_latents( lowercase , dtype=lowercase , device=lowercase , generator=lowercase , latents=lowercase , scheduler=DummyScheduler() ) _snake_case = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _snake_case = pipe.prepare_latents( lowercase , dtype=lowercase , device=lowercase , generator=lowercase , latents=lowercase , scheduler=DummyScheduler() ) _snake_case = self.get_dummy_inputs(lowercase , pil_image=lowercase ) _snake_case = pipe( **lowercase , decoder_latents=lowercase , super_res_latents=lowercase ).images _snake_case = self.get_dummy_inputs(lowercase , pil_image=lowercase ) # Don't pass image, instead pass embedding _snake_case = pipeline_inputs.pop('image' ) _snake_case = pipe.image_encoder(lowercase ).image_embeds _snake_case = pipe( **lowercase , decoder_latents=lowercase , super_res_latents=lowercase , image_embeddings=lowercase , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def A ( self : Dict ): '''simple docstring''' _snake_case = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _snake_case = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=lowercase , expected_max_diff=lowercase ) @skip_mps def A ( self : Optional[int] ): '''simple docstring''' _snake_case = torch_device == 'cpu' _snake_case = True _snake_case = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=lowercase , relax_max_difference=lowercase , additional_params_copy_to_batched_inputs=lowercase , ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _snake_case = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowercase , additional_params_copy_to_batched_inputs=lowercase , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowercase ) @skip_mps def A ( self : int ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def A ( self : Dict ): '''simple docstring''' return super().test_save_load_local() @skip_mps def A ( self : List[Any] ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Tuple ): '''simple docstring''' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) _snake_case = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) _snake_case = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) _snake_case = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case = pipeline( lowercase , generator=lowercase , output_type='np' , ) _snake_case = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(lowercase , lowercase , 15 )
130
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a_ ( __lowercase : np.ndarray , __lowercase : np.ndarray , __lowercase : np.ndarray , __lowercase : int , __lowercase : int ) -> np.ndarray: _snake_case = cva.getAffineTransform(__lowercase , __lowercase ) return cva.warpAffine(__lowercase , __lowercase , (rows, cols) ) if __name__ == "__main__": # read original image _lowerCamelCase : Optional[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value _lowerCamelCase : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape _lowerCamelCase , _lowerCamelCase : List[Any] = gray_img.shape # set different points to rotate image _lowerCamelCase : str = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) _lowerCamelCase : Optional[Any] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) _lowerCamelCase : List[str] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) _lowerCamelCase : Dict = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list _lowerCamelCase : int = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations _lowerCamelCase : Any = plt.figure(1) _lowerCamelCase : List[Any] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
130
1
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ["flax", "transformers"] def __init__( self : Optional[int] , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Any: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : List[str] , *_UpperCamelCase : int , **_UpperCamelCase : str ) ->Any: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : Union[str, Any] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : Any ) ->Dict: requires_backends(cls , ['''flax''', '''transformers'''] ) class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ["flax", "transformers"] def __init__( self : Any , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : Optional[int] ) ->Dict: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : str , *_UpperCamelCase : List[Any] , **_UpperCamelCase : int ) ->str: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : str , *_UpperCamelCase : List[Any] , **_UpperCamelCase : Dict ) ->Union[str, Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ["flax", "transformers"] def __init__( self : Union[str, Any] , *_UpperCamelCase : Dict , **_UpperCamelCase : Tuple ) ->List[str]: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : str ) ->Union[str, Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : Any , *_UpperCamelCase : Any , **_UpperCamelCase : List[str] ) ->int: requires_backends(cls , ['''flax''', '''transformers'''] ) class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ["flax", "transformers"] def __init__( self : Tuple , *_UpperCamelCase : str , **_UpperCamelCase : int ) ->Any: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : List[Any] , *_UpperCamelCase : List[str] , **_UpperCamelCase : Union[str, Any] ) ->List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : Union[str, Any] , *_UpperCamelCase : str , **_UpperCamelCase : List[Any] ) ->List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] )
8
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] UpperCAmelCase__ = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] UpperCAmelCase__ = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): UpperCAmelCase__ = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
0
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int = 1_00 ) -> int: __A : Dict = set() __A : str = 0 __A : List[str] = n + 1 # maximum limit for a in range(2 , _UpperCAmelCase ): for b in range(2 , _UpperCAmelCase ): __A : Optional[int] = a**b # calculates the current power collect_powers.add(_UpperCAmelCase ) # adds the result to the set return len(_UpperCAmelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
190
'''simple docstring''' from __future__ import annotations from typing import TypedDict class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str __UpperCamelCase : int def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> list[str]: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(_UpperCAmelCase ) )] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _a : List[Any] =all_rotations(_UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _a : BWTTransformDict ={ "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_UpperCAmelCase ), } return response def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _a : List[str] =int(_UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(_UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _a : Optional[int] =[""""""] * len(_UpperCAmelCase ) for _ in range(len(_UpperCAmelCase ) ): for i in range(len(_UpperCAmelCase ) ): _a : int =bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": A__: Any = '''Provide a string that I will generate its BWT transform: ''' A__: Union[str, Any] = input(entry_msg).strip() A__: Optional[int] = bwt_transform(s) print( F"Burrows Wheeler transform for string '{s}' results " F"in '{result['bwt_string']}'" ) A__: Union[str, Any] = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " F"we get original string '{original_string}'" )
276
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : Union[str, Any] = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[Any] = 'funnel' lowercase : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , __UpperCamelCase=3_05_22 , __UpperCamelCase=[4, 4, 4] , __UpperCamelCase=None , __UpperCamelCase=2 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=64 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu_new" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase=None , __UpperCamelCase=1E-9 , __UpperCamelCase="mean" , __UpperCamelCase="relative_shift" , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , **__UpperCamelCase , ) -> List[Any]: '''simple docstring''' __UpperCamelCase : int = vocab_size __UpperCamelCase : Optional[int] = block_sizes __UpperCamelCase : List[str] = [1] * len(__UpperCamelCase ) if block_repeats is None else block_repeats assert len(__UpperCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __UpperCamelCase : Optional[Any] = num_decoder_layers __UpperCamelCase : Optional[Any] = d_model __UpperCamelCase : Optional[int] = n_head __UpperCamelCase : Union[str, Any] = d_head __UpperCamelCase : List[Any] = d_inner __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : str = hidden_dropout __UpperCamelCase : Optional[Any] = attention_dropout __UpperCamelCase : List[Any] = activation_dropout __UpperCamelCase : Any = initializer_range __UpperCamelCase : Optional[int] = initializer_std __UpperCamelCase : List[Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __UpperCamelCase : List[str] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __UpperCamelCase : Optional[int] = attention_type __UpperCamelCase : Tuple = separate_cls __UpperCamelCase : int = truncate_seq __UpperCamelCase : List[Any] = pool_q_only super().__init__(**__UpperCamelCase ) @property def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def __lowerCamelCase ( self , __UpperCamelCase ) -> int: '''simple docstring''' raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def __lowerCamelCase ( self ) -> str: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def __lowerCamelCase ( self , __UpperCamelCase ) -> str: '''simple docstring''' raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
171
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase : int = logging.get_logger(__name__) lowercase : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict ): for attribute in key.split("." ): __UpperCamelCase : Any = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: __UpperCamelCase : Union[str, Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: __UpperCamelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCamelCase : Dict = value elif weight_type == "weight_g": __UpperCamelCase : Union[str, Any] = value elif weight_type == "weight_v": __UpperCamelCase : Union[str, Any] = value elif weight_type == "bias": __UpperCamelCase : str = value else: __UpperCamelCase : Union[str, Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): __UpperCamelCase : Optional[int] = [] __UpperCamelCase : List[Any] = fairseq_model.state_dict() __UpperCamelCase : List[str] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase : Any = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) __UpperCamelCase : Any = True else: for key, mapped_key in MAPPING.items(): __UpperCamelCase : Tuple = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): __UpperCamelCase : Dict = True if "*" in mapped_key: __UpperCamelCase : str = name.split(_lowerCAmelCase )[0].split("." )[-2] __UpperCamelCase : Optional[Any] = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: __UpperCamelCase : Any = "weight_g" elif "weight_v" in name: __UpperCamelCase : Optional[int] = "weight_v" elif "weight" in name: __UpperCamelCase : str = "weight" elif "bias" in name: __UpperCamelCase : List[str] = "bias" else: __UpperCamelCase : Optional[Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str ): __UpperCamelCase : Tuple = full_name.split("conv_layers." )[-1] __UpperCamelCase : Dict = name.split("." ) __UpperCamelCase : Optional[int] = int(items[0] ) __UpperCamelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCamelCase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCamelCase : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCamelCase : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCamelCase : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=True ): if config_path is not None: __UpperCamelCase : Dict = HubertConfig.from_pretrained(_lowerCAmelCase ) else: __UpperCamelCase : List[Any] = HubertConfig() if is_finetuned: if dict_path: __UpperCamelCase : int = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase : Optional[Any] = target_dict.pad_index __UpperCamelCase : Any = target_dict.bos_index __UpperCamelCase : List[str] = target_dict.eos_index __UpperCamelCase : Tuple = len(target_dict.symbols ) __UpperCamelCase : str = os.path.join(_lowerCAmelCase , "vocab.json" ) if not os.path.isdir(_lowerCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , _lowerCAmelCase ) __UpperCamelCase : int = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCAmelCase , ) __UpperCamelCase : List[Any] = True if config.feat_extract_norm == "layer" else False __UpperCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) __UpperCamelCase : int = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) __UpperCamelCase : Optional[Any] = HubertForCTC(_lowerCAmelCase ) else: __UpperCamelCase : Union[str, Any] = HubertModel(_lowerCAmelCase ) if is_finetuned: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCamelCase : Optional[Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowercase : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
171
1
from collections import defaultdict from math import ceil, sqrt def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0_0_0 , snake_case__ = 1_0 ) -> int: lowerCAmelCase = defaultdict(UpperCamelCase__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCAmelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f'{solution() = }')
338
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __A = 10 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" for i in range(UpperCamelCase__ , UpperCamelCase__ ): if array[i] == target: return i return -1 def lowerCamelCase_ ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = len(UpperCamelCase__ ) while left <= right: if right - left < precision: return lin_search(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowerCamelCase = one_third - 1 elif array[two_third] < target: __lowerCamelCase = two_third + 1 else: __lowerCamelCase = one_third + 1 __lowerCamelCase = two_third - 1 else: return -1 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCamelCase__ , one_third - 1 , UpperCamelCase__ , UpperCamelCase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCamelCase__ , UpperCamelCase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __A = input("Enter numbers separated by comma:\n").strip() __A = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __A = int(input("Enter the number to be found in the list:\n").strip()) __A = ite_ternary_search(collection, target) __A = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
90
0
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : int ) -> List[str]: """simple docstring""" if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(lowerCamelCase__ ) // (factorial(lowerCamelCase__ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( "If a class of 40 students must be arranged into groups of", f"""4 for group projects, there are {combinations(40, 4)} ways""", "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f"""are {combinations(10, 3)} ways that first, second and""", "third place can be awarded.", )
350
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=False ) -> Any: """simple docstring""" try: snake_case = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case = default else: # KEY is set, convert it to True or False. try: snake_case = strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value SCREAMING_SNAKE_CASE__ = parse_flag_from_env("RUN_SLOW", default=False) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> str: """simple docstring""" return unittest.skip('Test was skipped' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> str: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> Dict: """simple docstring""" return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> int: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> str: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict=None , _UpperCamelCase : Dict=None ) -> int: """simple docstring""" if test_case is None: return partial(_UpperCamelCase , version=_UpperCamelCase ) return unittest.skipUnless(is_torch_version('>=' , _UpperCamelCase ) , f"""test requires torch version >= {version}""" )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> int: """simple docstring""" return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_UpperCamelCase ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = True @classmethod def snake_case ( cls ): """simple docstring""" snake_case = tempfile.mkdtemp() @classmethod def snake_case ( cls ): """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def snake_case ( self ): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCAmelCase ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = mocks if isinstance(lowerCAmelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Any: """simple docstring""" snake_case = AcceleratorState() snake_case = tensor[None].clone().to(state.device ) snake_case = gather(_UpperCamelCase ).cpu() snake_case = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCamelCase ): return False return True class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = returncode snake_case = stdout snake_case = stderr async def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> List[Any]: """simple docstring""" while True: snake_case = await stream.readline() if line: callback(_UpperCamelCase ) else: break async def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=False , _UpperCamelCase : Optional[int]=False ) -> _RunOutput: """simple docstring""" if echo: print('\nRunning: ' , ' '.join(_UpperCamelCase ) ) snake_case = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case = [] snake_case = [] def tee(_UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str]="" ): snake_case = line.decode('utf-8' ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : str=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Tuple=1_8_0 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[Any]=True ) -> _RunOutput: """simple docstring""" snake_case = asyncio.get_event_loop() snake_case = loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) snake_case = ' '.join(_UpperCamelCase ) if result.returncode > 0: snake_case = '\n'.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) return result class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" pass def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" try: snake_case = subprocess.check_output(_UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCamelCase , 'decode' ): snake_case = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"""Command `{" ".join(_UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
149
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( __lowerCamelCase : int = 4 ) ->list[list[int]]: _SCREAMING_SNAKE_CASE = abs(__lowerCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__lowerCamelCase )] for y in range(__lowerCamelCase )] def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: return reverse_row(transpose(__lowerCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: return reverse_row(reverse_column(__lowerCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: return reverse_column(transpose(__lowerCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: _SCREAMING_SNAKE_CASE = [list(__lowerCamelCase ) for x in zip(*__lowerCamelCase )] return matrix def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: _SCREAMING_SNAKE_CASE = matrix[::-1] return matrix def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: _SCREAMING_SNAKE_CASE = [x[::-1] for x in matrix] return matrix def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->None: for i in matrix: print(*__lowerCamelCase ) if __name__ == "__main__": lowercase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) lowercase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) lowercase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
58
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( __lowerCamelCase : int ) ->list[int]: if num <= 0: _SCREAMING_SNAKE_CASE = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = [True] * (num + 1) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = int(math.sqrt(__lowerCamelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__lowerCamelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , __lowerCamelCase ): if sieve[i] is True: _SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__lowerCamelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
58
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "rwkv" a_ = {"max_position_embeddings": "context_length"} def __init__( self : Optional[Any] , __A : List[str]=5_0_2_7_7 , __A : Dict=1_0_2_4 , __A : Optional[Any]=4_0_9_6 , __A : List[str]=3_2 , __A : Any=None , __A : str=None , __A : List[Any]=1e-5 , __A : int=0 , __A : List[str]=0 , __A : List[Any]=6 , __A : List[str]=False , __A : Union[str, Any]=True , **__A : int , ): snake_case__ : Dict = vocab_size snake_case__ : Tuple = context_length snake_case__ : Optional[int] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case__ : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case__ : List[Any] = layer_norm_epsilon snake_case__ : List[str] = rescale_every snake_case__ : Optional[int] = use_cache snake_case__ : Optional[int] = bos_token_id snake_case__ : Tuple = eos_token_id super().__init__( tie_word_embeddings=__A , bos_token_id=__A , eos_token_id=__A , **__A )
359
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : List[str] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : Any = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Optional[int] = { """allenai/led-base-16384""": 1_6384, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = LEDTokenizer a_ = ["input_ids", "attention_mask"] def __init__( self : int , __A : Optional[int]=None , __A : Any=None , __A : Any=None , __A : int="replace" , __A : Optional[Any]="<s>" , __A : List[Any]="</s>" , __A : Dict="</s>" , __A : Union[str, Any]="<s>" , __A : List[Any]="<unk>" , __A : Optional[Any]="<pad>" , __A : Optional[int]="<mask>" , __A : str=False , __A : Optional[Any]=True , **__A : List[Any] , ): super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) snake_case__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : List[str] = getattr(__A , pre_tok_state.pop("type" ) ) snake_case__ : Tuple = add_prefix_space snake_case__ : Any = pre_tok_class(**__A ) snake_case__ : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case__ : str = "post_processor" snake_case__ : Union[str, Any] = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: snake_case__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ : int = tuple(state["sep"] ) if "cls" in state: snake_case__ : Optional[int] = tuple(state["cls"] ) snake_case__ : Union[str, Any] = False if state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : Optional[Any] = add_prefix_space snake_case__ : List[str] = True if state.get("trim_offsets" , __A ) != trim_offsets: snake_case__ : str = trim_offsets snake_case__ : Tuple = True if changes_to_apply: snake_case__ : Any = getattr(__A , state.pop("type" ) ) snake_case__ : Optional[Any] = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowercase ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self : str , __A : int ): snake_case__ : str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value snake_case__ : Optional[int] = value def _lowercase ( self : List[str] , *__A : Union[str, Any] , **__A : int ): snake_case__ : Dict = kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def _lowercase ( self : Union[str, Any] , *__A : Tuple , **__A : Union[str, Any] ): snake_case__ : List[str] = kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def _lowercase ( self : Union[str, Any] , __A : str , __A : Optional[str] = None ): snake_case__ : str = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def _lowercase ( self : Union[str, Any] , __A : int , __A : str=None ): snake_case__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : str , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Dict = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Optional[Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : List[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : Dict = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : Optional[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Optional[Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
286
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A = random.Random() def lowerCAmelCase_ ( __a , __a=1.0 , __a=None , __a=None ) -> Optional[Any]: """simple docstring""" if rng is None: lowerCamelCase__: Union[str, Any] =global_rng lowerCamelCase__: List[Any] =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Dict=2_000 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=16_000 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[Any]=True , ) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =parent lowerCamelCase__: int =batch_size lowerCamelCase__: Tuple =min_seq_length lowerCamelCase__: Dict =max_seq_length lowerCamelCase__: Optional[int] =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__: Any =feature_size lowerCamelCase__: List[str] =padding_value lowerCamelCase__: Union[str, Any] =sampling_rate lowerCamelCase__: Dict =return_attention_mask lowerCamelCase__: Optional[Any] =do_normalize def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=False) ->List[Any]: '''simple docstring''' def _flatten(UpperCAmelCase_ : Optional[int]): return list(itertools.chain(*UpperCAmelCase_)) if equal_length: lowerCamelCase__: List[Any] =floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size lowerCamelCase__: Dict =[ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: lowerCamelCase__: List[str] =[np.asarray(UpperCAmelCase_) for x in speech_inputs] return speech_inputs class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = WavaVecaFeatureExtractor def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: Any =WavaVecaFeatureExtractionTester(self) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' self.assertTrue(np.all(np.mean(UpperCAmelCase_ , axis=0) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase_ , axis=0) - 1) < 1E-3)) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' lowerCamelCase__: str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__: Optional[Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: Any =[np.asarray(UpperCAmelCase_) for speech_input in speech_inputs] # Test not batched input lowerCamelCase__: str =feat_extract(speech_inputs[0] , return_tensors="np").input_values lowerCamelCase__: int =feat_extract(np_speech_inputs[0] , return_tensors="np").input_values self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) # Test batched lowerCamelCase__: List[str] =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values lowerCamelCase__: Dict =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) # Test 2-D numpy arrays are batched. lowerCamelCase__: Union[str, Any] =[floats_list((1, x))[0] for x in (800, 800, 800)] lowerCamelCase__: Union[str, Any] =np.asarray(UpperCAmelCase_) lowerCamelCase__: Optional[int] =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values lowerCamelCase__: Dict =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Optional[int] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: List[Any] =["longest", "max_length", "do_not_pad"] lowerCamelCase__: Optional[Any] =[None, 1_600, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: str =feat_extract(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors="np") lowerCamelCase__: Tuple =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self.assertTrue(input_values[0][800:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[1][:1_000]) self.assertTrue(input_values[0][1_000:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[2][:1_200]) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Union[str, Any] =range(800 , 1_400 , 200) lowerCamelCase__: Optional[int] =[floats_list((1, x))[0] for x in lengths] lowerCamelCase__: Any =["longest", "max_length", "do_not_pad"] lowerCamelCase__: int =[None, 1_600, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =feat_extract(UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding=UpperCAmelCase_) lowerCamelCase__: Any =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self._check_zero_mean_unit_variance(input_values[1][:1_000]) self._check_zero_mean_unit_variance(input_values[2][:1_200]) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Union[str, Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: Tuple =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_000 , padding="max_length" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Any =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: str =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_000 , padding="longest" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1_000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000)) lowerCamelCase__: Optional[Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: str =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=2_000 , padding="longest" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1_000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200)) @require_torch def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' import torch lowerCamelCase__: Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: int =np.random.rand(100).astype(np.floataa) lowerCamelCase__: Any =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase__: str =feature_extractor.pad([{"input_values": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.floataa) lowerCamelCase__: Any =feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.floataa) @slow @require_torch def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCamelCase__: Optional[int] =WavaVecaConfig.from_pretrained(UpperCAmelCase_) lowerCamelCase__: List[str] =WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase_) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer")
10
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : Union[str, Any] ): """simple docstring""" stooge(snake_case__ , 0 , len(snake_case__ ) - 1 ) return arr def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _snake_case , _snake_case : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _snake_case : Dict = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case__ , snake_case__ , (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case__ , i + t , (snake_case__) ) # Recursively sort first 2/3 elements stooge(snake_case__ , snake_case__ , (h - t) ) if __name__ == "__main__": A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
64
0
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase : List[Any] = logging.get_logger(__name__) lowercase : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } lowercase : List[Any] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A ) -> Union[str, Any]: for attribute in key.split('.' ): _snake_case = getattr(__A , __A ) if weight_type is not None: _snake_case = getattr(__A , __A ).shape else: _snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value else: _snake_case = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Dict: _snake_case = [] _snake_case = fairseq_model.state_dict() _snake_case = hf_model.feature_extractor for name, value in fairseq_dict.items(): _snake_case = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) _snake_case = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _snake_case = True if "*" in mapped_key: _snake_case = name.split(__A )[0].split('.' )[-2] _snake_case = mapped_key.replace('*' , __A ) if "weight_g" in name: _snake_case = 'weight_g' elif "weight_v" in name: _snake_case = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: _snake_case = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _snake_case = 'weight' else: _snake_case = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A ) -> Optional[Any]: _snake_case = full_name.split('conv_layers.' )[-1] _snake_case = name.split('.' ) _snake_case = int(items[0] ) _snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _snake_case = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _snake_case = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _snake_case = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _snake_case = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__A ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=None ) -> Any: # load the pre-trained checkpoints _snake_case = torch.load(__A ) _snake_case = WavLMConfigOrig(checkpoint['cfg'] ) _snake_case = WavLMOrig(__A ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: _snake_case = WavLMConfig.from_pretrained(__A ) else: _snake_case = WavLMConfig() _snake_case = WavLMModel(__A ) recursively_load_weights(__A , __A ) hf_wavlm.save_pretrained(__A ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowercase : List[Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
160
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( ) -> int: return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(__A , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'''{solution() = }''')
160
1
import qiskit def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> qiskit.result.counts.Counts: lowerCAmelCase_ : Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register lowerCAmelCase_ : Optional[int] = qiskit.QuantumCircuit(lowerCAmelCase_ , lowerCAmelCase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowerCAmelCase_ : Dict = qiskit.execute(lowerCAmelCase_ , lowerCAmelCase_ , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": print(f"""Total count for various states are: {single_qubit_measure(1, 1)}""")
262
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
262
1
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __snake_case : int = logging.getLogger(__name__) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'summarization' __lowercase : int = ['loss'] __lowercase : int = ROUGE_KEYS __lowercase : Tuple = 'rouge2' def __init__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: A_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , mode=self.mode , **_SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) A_ = Path(self.output_dir ) / '''metrics.json''' A_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) A_ = 0 A_ = defaultdict(_SCREAMING_SNAKE_CASE ) A_ = self.config.model_type A_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size A_ = { '''data_dir''': self.hparams.data_dir, '''max_source_length''': self.hparams.max_source_length, '''prefix''': self.model.config.prefix or '''''', } A_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } A_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} A_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) A_ = get_git_info()['''repo_sha'''] A_ = hparams.num_workers A_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ): A_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] A_ = self.decoder_start_token_id A_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) A_ = False A_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: A_ = self.hparams.eval_max_gen_length else: A_ = self.model.config.max_length A_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __A ( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, List[str]]: A_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_SCREAMING_SNAKE_CASE , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) A_ = True return readable_batch def __A ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: return self.model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: A_ = self.tokenizer.batch_decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) return lmap(str.strip , _SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = self.tokenizer.pad_token_id A_ , A_ = batch['''input_ids'''], batch['''attention_mask'''] A_ = batch['''labels'''] if isinstance(self.model , _SCREAMING_SNAKE_CASE ): A_ = self.model._shift_right(_SCREAMING_SNAKE_CASE ) else: A_ = shift_tokens_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero A_ = decoder_input_ids self.save_readable_batch(_SCREAMING_SNAKE_CASE ) A_ = self(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) A_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id A_ = nn.CrossEntropyLoss(ignore_index=_SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size A_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: A_ = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) A_ , A_ = label_smoothed_nll_loss( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=_SCREAMING_SNAKE_CASE ) return (loss,) @property def __A ( self ) -> int: return self.tokenizer.pad_token_id def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = self._step(_SCREAMING_SNAKE_CASE ) A_ = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) ) # tokens per batch A_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() A_ = batch['''input_ids'''].shape[0] A_ = batch['''input_ids'''].eq(self.pad ).sum() A_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: return self._generative_step(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="val" ) -> Dict: self.step_count += 1 A_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} A_ = losses['''loss'''] A_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } A_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ).type_as(_SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_SCREAMING_SNAKE_CASE ) A_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} A_ = self.step_count self.metrics[prefix].append(_SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path A_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: return calculate_rouge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> dict: A_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') A_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) A_ = (time.time() - ta) / batch['''input_ids'''].shape[0] A_ = self.ids_to_clean_text(_SCREAMING_SNAKE_CASE ) A_ = self.ids_to_clean_text(batch['''labels'''] ) A_ = self._step(_SCREAMING_SNAKE_CASE ) A_ = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) ) A_ = self.calc_generative_metrics(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = np.mean(lmap(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=_SCREAMING_SNAKE_CASE , gen_len=_SCREAMING_SNAKE_CASE , preds=_SCREAMING_SNAKE_CASE , target=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return base_metrics def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: return self._generative_step(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: return self.validation_epoch_end(_SCREAMING_SNAKE_CASE , prefix='''test''' ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> SeqaSeqDataset: A_ = self.n_obs[type_path] A_ = self.target_lens[type_path] A_ = self.dataset_class( self.tokenizer , type_path=_SCREAMING_SNAKE_CASE , n_obs=_SCREAMING_SNAKE_CASE , max_target_length=_SCREAMING_SNAKE_CASE , **self.dataset_kwargs , ) return dataset def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> DataLoader: A_ = self.get_dataset(_SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": A_ = dataset.make_sortish_sampler(_SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": A_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_sampler=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> DataLoader: A_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_SCREAMING_SNAKE_CASE ) return dataloader def __A ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def __A ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def __A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: BaseTransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) add_generic_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--max_tokens_per_batch''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--logger_name''' , type=_SCREAMING_SNAKE_CASE , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_SCREAMING_SNAKE_CASE , default=500 , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_SCREAMING_SNAKE_CASE , default='''summarization''' , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_SCREAMING_SNAKE_CASE , default=0.0 , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--src_lang''' , type=_SCREAMING_SNAKE_CASE , default='''''' , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--tgt_lang''' , type=_SCREAMING_SNAKE_CASE , default='''''' , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--eval_beams''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--val_metric''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_SCREAMING_SNAKE_CASE , default=1 , required=_SCREAMING_SNAKE_CASE , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Union[str, Any] = 'translation' __lowercase : Dict = ['loss'] __lowercase : Union[str, Any] = ['bleu'] __lowercase : Any = 'bleu' def __init__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: super().__init__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ = hparams.src_lang A_ = hparams.tgt_lang def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> dict: return calculate_bleu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : str=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=_UpperCamelCase ) check_output_dir(_UpperCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: A_ = SummarizationModule(_UpperCamelCase ) else: A_ = TranslationModule(_UpperCamelCase ) A_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): A_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger A_ = os.environ.get('''WANDB_PROJECT''', _UpperCamelCase ) A_ = WandbLogger(name=model.output_dir.name, project=_UpperCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger A_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: A_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: A_ = False A_ = args.val_metric == '''loss''' A_ = generic_train( _UpperCamelCase, _UpperCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, _UpperCamelCase ), early_stopping_callback=_UpperCamelCase, logger=_UpperCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model A_ = '''''' A_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=_UpperCamelCase ) ) if checkpoints: A_ = checkpoints[-1] A_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser() __snake_case : List[Any] = pl.Trainer.add_argparse_args(parser) __snake_case : Optional[int] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __snake_case : List[str] = parser.parse_args() main(args)
364
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
0
from __future__ import annotations from collections.abc import Iterator class __A : """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =value __UpperCamelCase : Node | None =None __UpperCamelCase : Node | None =None class __A : """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =tree def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
71
'''simple docstring''' from collections.abc import Sequence def __a(SCREAMING_SNAKE_CASE_ : Sequence[float] , SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' if not arr: return 0 _lowerCAmelCase = 0 if allow_empty_subarrays else float("-inf" ) _lowerCAmelCase = 0.0 for num in arr: _lowerCAmelCase = max(0 if allow_empty_subarrays else num , curr_sum + num ) _lowerCAmelCase = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _SCREAMING_SNAKE_CASE = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
158
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
365
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
309
0
import qiskit def a ( _UpperCAmelCase : int , _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase : int = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __UpperCAmelCase : Tuple = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": __A =single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
226
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A =logging.get_logger(__name__) __A ={ "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """deberta-v2""" def __init__( self : Optional[int] , a_ : List[str]=12_81_00 , a_ : Optional[Any]=15_36 , a_ : Optional[Any]=24 , a_ : List[Any]=24 , a_ : Optional[int]=61_44 , a_ : List[Any]="gelu" , a_ : Any=0.1 , a_ : Tuple=0.1 , a_ : Optional[Any]=5_12 , a_ : Tuple=0 , a_ : Dict=0.0_2 , a_ : Optional[Any]=1e-7 , a_ : List[str]=False , a_ : List[Any]=-1 , a_ : List[str]=0 , a_ : Optional[Any]=True , a_ : List[Any]=None , a_ : Optional[int]=0 , a_ : Tuple="gelu" , **a_ : List[str] , ): '''simple docstring''' super().__init__(**a_ ) __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : int = type_vocab_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[int] = relative_attention __UpperCAmelCase : int = max_relative_positions __UpperCAmelCase : Any = pad_token_id __UpperCAmelCase : int = position_biased_input # Backwards compatibility if type(a_ ) == str: __UpperCAmelCase : Optional[Any] = [x.strip() for x in pos_att_type.lower().split('''|''' )] __UpperCAmelCase : Tuple = pos_att_type __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : str = kwargs.get('''pooler_hidden_size''' , a_ ) __UpperCAmelCase : Union[str, Any] = pooler_dropout __UpperCAmelCase : Tuple = pooler_hidden_act class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' @property def snake_case__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : int = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return 12 def snake_case__ ( self : Any , a_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a_ : int = -1 , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional["TensorType"] = None , a_ : int = 3 , a_ : int = 40 , a_ : int = 40 , a_ : "PreTrainedTokenizerBase" = None , ): '''simple docstring''' __UpperCAmelCase : List[Any] = super().generate_dummy_inputs(preprocessor=a_ , framework=a_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
226
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase : def __init__( self :int , _lowercase :List[Any] , _lowercase :int=13 , _lowercase :List[Any]=30 , _lowercase :Tuple=2 , _lowercase :Optional[Any]=3 , _lowercase :str=True , _lowercase :Dict=True , _lowercase :int=32 , _lowercase :Tuple=5 , _lowercase :Dict=4 , _lowercase :List[Any]=37 , _lowercase :List[Any]="gelu" , _lowercase :List[Any]=0.1 , _lowercase :int=0.1 , _lowercase :str=10 , _lowercase :Optional[int]=0.02 , _lowercase :Any=3 , _lowercase :List[Any]=0.6 , _lowercase :List[str]=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self :Dict ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :Optional[int] , _lowercase :int , _lowercase :Optional[int] ): '''simple docstring''' lowercase__ = ViTMAEModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self :Dict , _lowercase :Dict , _lowercase :Union[str, Any] , _lowercase :Optional[int] ): '''simple docstring''' lowercase__ = ViTMAEForPreTraining(_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase ) lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTMAEForPreTraining(_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(_lowercase ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowerCamelCase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = ViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def UpperCAmelCase ( self :int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' pass def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :Optional[int] , _lowercase :Optional[Any] , _lowercase :Any ): '''simple docstring''' np.random.seed(2 ) lowercase__ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = torch.from_numpy(_lowercase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = pt_noise super().check_pt_tf_models(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_lowercase ) model.to(_lowercase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_lowercase , _lowercase ) ) lowercase__ = outputs[0].cpu().numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase ) lowercase__ = model_class.from_pretrained(_lowercase ) model.to(_lowercase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_lowercase , _lowercase ) ) # Make sure we don't have nans lowercase__ = after_outputs[0].cpu().numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowercase , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase ( self :Any ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' pass @slow def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTMAEModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _A ( ): lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self :Any ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' np.random.seed(2 ) lowercase__ = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(_lowercase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_lowercase , return_tensors="pt" ).to(_lowercase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowercase__ = model(**_lowercase , noise=torch.from_numpy(_lowercase ).to(device=_lowercase ) ) # verify the logits lowercase__ = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , _lowercase ) lowercase__ = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_lowercase ) , atol=1e-4 ) )
366
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
201
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowercase__ : str = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCamelCase = os.path.abspath('''examples''' ) for item in os.listdir(SCREAMING_SNAKE_CASE_ ): if item not in EXCLUDE_EXAMPLES: __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if os.path.isfile(SCREAMING_SNAKE_CASE_ ) and ".py" in item_path: with self.subTest( tested_script=SCREAMING_SNAKE_CASE_ , feature_script=SCREAMING_SNAKE_CASE_ , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCamelCase = compare_against_test( os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = '''\n'''.join(SCREAMING_SNAKE_CASE_ ) if special_strings is not None: for string in special_strings: __UpperCamelCase = diff.replace(SCREAMING_SNAKE_CASE_ , '''''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''''' ) def A__ ( self )-> str: '''simple docstring''' self.one_complete_example('''complete_nlp_example.py''' , SCREAMING_SNAKE_CASE_ ) self.one_complete_example('''complete_nlp_example.py''' , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCamelCase = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.one_complete_example('''complete_cv_example.py''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = False @classmethod def A__ ( cls )-> Tuple: '''simple docstring''' super().setUpClass() __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def A__ ( cls )-> int: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() __UpperCamelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() __UpperCamelCase = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ ) self.assertNotIn('''epoch 0:''' , SCREAMING_SNAKE_CASE_ ) self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() __UpperCamelCase = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ ) if torch.cuda.is_available(): __UpperCamelCase = torch.cuda.device_count() else: __UpperCamelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , SCREAMING_SNAKE_CASE_ ) self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE_ ) else: self.assertIn('''epoch 0:''' , SCREAMING_SNAKE_CASE_ ) self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCamelCase = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = re.findall('''({.+})''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCamelCase = ast.literal_eval(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: __UpperCamelCase = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''tracking''' ) ) ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
328
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'whisper' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCamelCase = {0: '''batch'''} else: __UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) return common_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = encoder_inputs['''input_features'''].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_inputs.pop('''input_features''' ) __UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def A__ ( self )-> float: '''simple docstring''' return 1E-3
328
1
def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowerCAmelCase , n - 1 , __lowerCAmelCase ) * a) % mod else: lowercase__: List[Any] = binary_exponentiation(__lowerCAmelCase , n / 2 , __lowerCAmelCase ) return (b * b) % mod # a prime number __lowerCAmelCase = 7_01 __lowerCAmelCase = 10_00_00_00_00 __lowerCAmelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
362
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : Optional[int] = CLIPTokenizer __lowercase : str = CLIPTokenizerFast __lowercase : Tuple = True __lowercase : str = {} __lowercase : Dict = False def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' super().setUp() # fmt: off lowercase__: str = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase__: List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) lowercase__: int = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] lowercase__: Optional[int] = {'unk_token': '<unk>'} lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = 'lower newer' lowercase__: Dict = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Dict = 'lower newer' lowercase__: Union[str, Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] lowercase__: Any = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Tuple = tokens + [tokenizer.unk_token] lowercase__: Tuple = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) @require_ftfy def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase__: List[str] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Optional[int] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' lowercase__: Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Dict = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowercase__: Dict = 'xa\u0303y' + ' ' + 'x\xe3y' lowercase__: Tuple = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: int = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on unicode of space type lowercase__: str = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowercase__: Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Tuple = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on unicode of line break type lowercase__: str = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowercase__: Optional[int] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Optional[int] = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase__: Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowercase__: Optional[int] = F'{text_of_1_token} {text_of_1_token}' lowercase__: int = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , ) lowercase__: Dict = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) lowercase__: Any = F' {text}' lowercase__: Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , ) lowercase__: int = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ) + 1, 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_tokenization_python_rust_equals() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # CLIP always lower cases letters pass
288
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __magic_name__ = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __magic_name__ = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" __magic_name__ = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def snake_case_ ( self): if version.parse(scb.__version__) < version.parse("""1.4.12"""): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""") , id="""references"""), }) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ): __SCREAMING_SNAKE_CASE = len(references[0]) if any(len(lowerCAmelCase__) != references_per_prediction for refs in references): raise ValueError("""Sacrebleu requires the same number of references for each prediction""") __SCREAMING_SNAKE_CASE = [[refs[i] for refs in references] for i in range(lowerCAmelCase__)] __SCREAMING_SNAKE_CASE = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
100
"""simple docstring""" from __future__ import annotations __magic_name__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __magic_name__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = -1 for j in range(i + 1 , UpperCamelCase_ ): if arr[i] < arr[j]: __SCREAMING_SNAKE_CASE = arr[j] break result.append(UpperCamelCase_ ) return result def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] for i, outer in enumerate(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = -1 for inner in arr[i + 1 :]: if outer < inner: __SCREAMING_SNAKE_CASE = inner break result.append(UpperCamelCase_ ) return result def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [-1] * arr_size for index in reversed(range(UpperCamelCase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __SCREAMING_SNAKE_CASE = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __magic_name__ = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
100
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase__ : '''simple docstring''' def snake_case__ ( self : str , a_ : int ): '''simple docstring''' raise NotImplementedError() def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' raise NotImplementedError() class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , a_ : "AutoTokenizer" , a_ : bool = False , **a_ : int ): '''simple docstring''' __UpperCAmelCase : Tuple = tokenizer __UpperCAmelCase : Union[str, Any] = skip_prompt __UpperCAmelCase : Optional[int] = decode_kwargs # variables used in the streaming process __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : str = 0 __UpperCAmelCase : int = True def snake_case__ ( self : int , a_ : Dict ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: __UpperCAmelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __UpperCAmelCase : Dict = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __UpperCAmelCase : Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): __UpperCAmelCase : Tuple = text[self.print_len :] __UpperCAmelCase : Any = [] __UpperCAmelCase : Tuple = 0 # If the last token is a CJK character, we print the characters. elif len(a_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __UpperCAmelCase : List[Any] = text[self.print_len :] self.print_len += len(a_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __UpperCAmelCase : Union[str, Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(a_ ) self.on_finalized_text(a_ ) def snake_case__ ( self : Any ): '''simple docstring''' if len(self.token_cache ) > 0: __UpperCAmelCase : Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __UpperCAmelCase : str = text[self.print_len :] __UpperCAmelCase : int = [] __UpperCAmelCase : Any = 0 else: __UpperCAmelCase : int = '''''' __UpperCAmelCase : List[Any] = True self.on_finalized_text(a_ , stream_end=a_ ) def snake_case__ ( self : Dict , a_ : str , a_ : bool = False ): '''simple docstring''' print(a_ , flush=a_ , end='''''' if not stream_end else None ) def snake_case__ ( self : str , a_ : Any ): '''simple docstring''' if ( (cp >= 0x4e_00 and cp <= 0x9f_ff) or (cp >= 0x34_00 and cp <= 0x4d_bf) # or (cp >= 0x2_00_00 and cp <= 0x2_a6_df) # or (cp >= 0x2_a7_00 and cp <= 0x2_b7_3f) # or (cp >= 0x2_b7_40 and cp <= 0x2_b8_1f) # or (cp >= 0x2_b8_20 and cp <= 0x2_ce_af) # or (cp >= 0xf9_00 and cp <= 0xfa_ff) or (cp >= 0x2_f8_00 and cp <= 0x2_fa_1f) # ): # return True return False class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def __init__( self : str , a_ : "AutoTokenizer" , a_ : bool = False , a_ : Optional[float] = None , **a_ : Dict ): '''simple docstring''' super().__init__(a_ , a_ , **a_ ) __UpperCAmelCase : Dict = Queue() __UpperCAmelCase : str = None __UpperCAmelCase : str = timeout def snake_case__ ( self : int , a_ : str , a_ : bool = False ): '''simple docstring''' self.text_queue.put(a_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Union[str, Any] ): '''simple docstring''' return self def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
226
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = k_size // 2 __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCAmelCase : Any = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = image.shape[0], image.shape[1] # dst image height and width __UpperCAmelCase : str = height - k_size + 1 __UpperCAmelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCAmelCase : str = zeros((dst_height * dst_width, k_size * k_size) ) __UpperCAmelCase : Optional[Any] = 0 for i, j in product(range(_UpperCAmelCase ) , range(_UpperCAmelCase ) ): __UpperCAmelCase : int = ravel(image[i : i + k_size, j : j + k_size] ) __UpperCAmelCase : Union[str, Any] = window row += 1 # turn the kernel into shape(k*k, 1) __UpperCAmelCase : Tuple = gen_gaussian_kernel(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : List[Any] = ravel(_UpperCAmelCase ) # reshape and get the dst image __UpperCAmelCase : Optional[Any] = dot(_UpperCAmelCase , _UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image __A =imread(R"../image_data/lena.jpg") # turn image in gray scale value __A =cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __A =gaussian_filter(gray, 3, sigma=1) __A =gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
226
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __A = NewType("DataClass", Any) __A = NewType("DataClassType", Any) def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" if isinstance(__a , __a ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowerCAmelCase_ ( __a ) -> Callable[[str], Any]: """simple docstring""" lowerCamelCase__: Optional[int] ={str(__a ): choice for choice in choices} return lambda __a : str_to_choice.get(__a , __a ) def lowerCAmelCase_ ( *, __a = None , __a = None , __a = dataclasses.MISSING , __a = dataclasses.MISSING , __a = None , **__a , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCamelCase__: Optional[Any] ={} if aliases is not None: lowerCamelCase__: str =aliases if help is not None: lowerCamelCase__: Dict =help return dataclasses.field(metadata=__a , default=__a , default_factory=__a , **__a ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 def __init__(self : Optional[int] , UpperCAmelCase_ : Union[DataClassType, Iterable[DataClassType]] , **UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if "formatter_class" not in kwargs: lowerCamelCase__: List[Any] =ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase_) if dataclasses.is_dataclass(UpperCAmelCase_): lowerCamelCase__: Tuple =[dataclass_types] lowerCamelCase__: str =list(UpperCAmelCase_) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase_) @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser , UpperCAmelCase_ : dataclasses.Field) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =F"""--{field.name}""" lowerCamelCase__: Union[str, Any] =field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase_): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default") lowerCamelCase__: int =kwargs.pop("aliases" , []) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Dict =[aliases] lowerCamelCase__: Any =getattr(field.type , "__origin__" , field.type) if origin_type is Union or (hasattr(UpperCAmelCase_ , "UnionType") and isinstance(UpperCAmelCase_ , types.UnionType)): if str not in field.type.__args__ and ( len(field.type.__args__) != 2 or type(UpperCAmelCase_) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F""" Problem encountered in field '{field.name}'.""") if type(UpperCAmelCase_) not in field.type.__args__: # filter `str` in Union lowerCamelCase__: str =field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCamelCase__: Optional[int] =getattr(field.type , "__origin__" , field.type) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCamelCase__: Optional[Any] =( field.type.__args__[0] if isinstance(UpperCAmelCase_ , field.type.__args__[1]) else field.type.__args__[1] ) lowerCamelCase__: List[Any] =getattr(field.type , "__origin__" , field.type) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCamelCase__: int ={} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase_) and issubclass(field.type , UpperCAmelCase_)): if origin_type is Literal: lowerCamelCase__: List[str] =field.type.__args__ else: lowerCamelCase__: Tuple =[x.value for x in field.type] lowerCamelCase__: Tuple =make_choice_type_function(kwargs["choices"]) if field.default is not dataclasses.MISSING: lowerCamelCase__: Optional[int] =field.default else: lowerCamelCase__: int =True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCamelCase__: List[Any] =copy(UpperCAmelCase_) # Hack because type=bool in argparse does not behave as we want. lowerCamelCase__: Tuple =string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCamelCase__: Any =False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCamelCase__: Tuple =default # This tells argparse we accept 0 or 1 value after --field_name lowerCamelCase__: Dict ="?" # This is the value that will get picked if we do --field_name (without value) lowerCamelCase__: int =True elif isclass(UpperCAmelCase_) and issubclass(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Optional[Any] =field.type.__args__[0] lowerCamelCase__: List[str] ="+" if field.default_factory is not dataclasses.MISSING: lowerCamelCase__: List[str] =field.default_factory() elif field.default is dataclasses.MISSING: lowerCamelCase__: Any =True else: lowerCamelCase__: List[str] =field.type if field.default is not dataclasses.MISSING: lowerCamelCase__: int =field.default elif field.default_factory is not dataclasses.MISSING: lowerCamelCase__: Tuple =field.default_factory() else: lowerCamelCase__: int =True parser.add_argument(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCamelCase__: Union[str, Any] =False parser.add_argument(F"""--no_{field.name}""" , action="store_false" , dest=field.name , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : DataClassType) ->List[str]: '''simple docstring''' if hasattr(UpperCAmelCase_ , "_argument_group_name"): lowerCamelCase__: Dict =self.add_argument_group(dtype._argument_group_name) else: lowerCamelCase__: List[str] =self try: lowerCamelCase__: Dict[str, type] =get_type_hints(UpperCAmelCase_) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)") except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase_): lowerCamelCase__: Optional[int] =".".join(map(UpperCAmelCase_ , sys.version_info[:3])) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`.") from ex raise for field in dataclasses.fields(UpperCAmelCase_): if not field.init: continue lowerCamelCase__: int =type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , ) ->Tuple[DataClass, ...]: '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)): lowerCamelCase__: Tuple =[] if args_filename: args_files.append(Path(UpperCAmelCase_)) elif look_for_args_file and len(sys.argv): args_files.append(Path(sys.argv[0]).with_suffix(".args")) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCamelCase__: Tuple =ArgumentParser() args_file_parser.add_argument(UpperCAmelCase_ , type=UpperCAmelCase_ , action="append") # Use only remaining args for further parsing (remove the args_file_flag) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =args_file_parser.parse_known_args(args=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =vars(UpperCAmelCase_).get(args_file_flag.lstrip("-") , UpperCAmelCase_) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase_) for p in cmd_args_file_paths]) lowerCamelCase__: List[str] =[] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCamelCase__: Optional[int] =file_args + args if args is not None else file_args + sys.argv[1:] lowerCamelCase__ , lowerCamelCase__: str =self.parse_known_args(args=UpperCAmelCase_) lowerCamelCase__: Optional[int] =[] for dtype in self.dataclass_types: lowerCamelCase__: Dict ={f.name for f in dataclasses.fields(UpperCAmelCase_) if f.init} lowerCamelCase__: List[str] ={k: v for k, v in vars(UpperCAmelCase_).items() if k in keys} for k in keys: delattr(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[Any] =dtype(**UpperCAmelCase_) outputs.append(UpperCAmelCase_) if len(namespace.__dict__) > 0: # additional namespace. outputs.append(UpperCAmelCase_) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""") return (*outputs,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict[str, Any] , UpperCAmelCase_ : bool = False) ->Tuple[DataClass, ...]: '''simple docstring''' lowerCamelCase__: Any =set(args.keys()) lowerCamelCase__: int =[] for dtype in self.dataclass_types: lowerCamelCase__: int ={f.name for f in dataclasses.fields(UpperCAmelCase_) if f.init} lowerCamelCase__: List[str] ={k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys()) lowerCamelCase__: List[str] =dtype(**UpperCAmelCase_) outputs.append(UpperCAmelCase_) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase_)}""") return tuple(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False) ->Tuple[DataClass, ...]: '''simple docstring''' with open(Path(UpperCAmelCase_) , encoding="utf-8") as open_json_file: lowerCamelCase__: Any =json.loads(open_json_file.read()) lowerCamelCase__: Tuple =self.parse_dict(UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_) return tuple(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False) ->Tuple[DataClass, ...]: '''simple docstring''' lowerCamelCase__: Dict =self.parse_dict(yaml.safe_load(Path(UpperCAmelCase_).read_text()) , allow_extra_keys=UpperCAmelCase_) return tuple(UpperCAmelCase_)
273
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["torch", "torchsde"] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' requires_backends(self , ["torch", "torchsde"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int]) ->List[Any]: '''simple docstring''' requires_backends(cls , ["torch", "torchsde"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Tuple , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' requires_backends(cls , ["torch", "torchsde"])
273
1
"""simple docstring""" from jiwer import compute_measures import datasets UpperCAmelCase : Dict = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' UpperCAmelCase : Tuple = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' UpperCAmelCase : str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def lowerCamelCase__ ( self : int , UpperCamelCase : List[str]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Dict=False ): '''simple docstring''' if concatenate_texts: return compute_measures(UpperCamelCase , UpperCamelCase )["wer"] else: __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Union[str, Any] = 0 for prediction, reference in zip(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : List[Any] = compute_measures(UpperCamelCase , UpperCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
115
"""simple docstring""" from collections.abc import Callable def lowerCamelCase ( _UpperCamelCase : Callable[[float], float] , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : float = a __UpperCAmelCase : float = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: __UpperCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: __UpperCAmelCase : Union[str, Any] = mid else: __UpperCAmelCase : List[Any] = mid __UpperCAmelCase : Optional[Any] = start + (end - start) / 2.0 return mid def lowerCamelCase ( _UpperCamelCase : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
115
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = '''▁''' _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''spiece.model'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } _SCREAMING_SNAKE_CASE = { '''google/reformer-crime-and-punishment''': 5_2_4_2_8_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[str] = VOCAB_FILES_NAMES a : List[Any] = PRETRAINED_VOCAB_FILES_MAP a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Any = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase ,_lowerCamelCase="</s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase=[] ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase ,unk_token=_lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCamelCase ,) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _UpperCAmelCase (self ) -> Dict[str, int]: '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Any: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__(self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCamelCase ,out_type=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' if index < self.sp_model.get_piece_size(): __lowercase = self.sp_model.IdToPiece(_lowerCamelCase ) return token def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = [] __lowercase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token __lowercase = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
217
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[Any] = CanineTokenizer a : Union[str, Any] = False def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().setUp() __lowercase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return CanineTokenizer.from_pretrained('''google/canine-s''' ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> CanineTokenizer: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) __lowercase = 1024 return tokenizer @require_torch def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off __lowercase = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors='''pt''' ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual((2, 39) ,batch.input_ids.shape ) self.assertEqual((2, 39) ,batch.attention_mask.shape ) @require_torch def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' ,_lowerCamelCase ) self.assertIn('''attention_mask''' ,_lowerCamelCase ) self.assertIn('''token_type_ids''' ,_lowerCamelCase ) @require_torch def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] __lowercase = tokenizer( text_target=_lowerCamelCase ,max_length=32 ,padding='''max_length''' ,truncation=_lowerCamelCase ,return_tensors='''pt''' ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) __lowercase = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) shutil.rmtree(_lowerCamelCase ) __lowercase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __lowercase = chr(0xe_0_0_7 ) additional_special_tokens.append(_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) __lowercase = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertIn(_lowerCamelCase ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase , __lowercase = self.get_clean_sequence(_lowerCamelCase ) # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_5 __lowercase = chr(_lowerCamelCase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) ,1 ) __lowercase = tokenizer.decode(ids + encoded_special_token ,clean_up_tokenization_spaces=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,input_encoded + special_token_id ) __lowercase = tokenizer.decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = chr(0xe_0_0_5 ) __lowercase = chr(0xe_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] ,special_tokens=_lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) __lowercase = tokenizer.tokenize(_lowerCamelCase ) __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) ,1 ) self.assertEqual(len(_lowerCamelCase ) ,1 ) self.assertEqual(token_a[0] ,_lowerCamelCase ) self.assertEqual(token_a[0] ,_lowerCamelCase ) @require_tokenizers def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCamelCase ) tokenizer.from_pretrained(_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''special_tokens_map.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''tokenizer_config.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(_lowerCamelCase ) # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) __lowercase = [new_token_a] __lowercase = [new_token_a] with open(os.path.join(_lowerCamelCase ,'''special_tokens_map.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''tokenizer_config.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowercase = tokenizer_class.from_pretrained(_lowerCamelCase ,extra_ids=0 ) self.assertIn(_lowerCamelCase ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) ,) __lowercase = 0xe_0_0_7 __lowercase = chr(_lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowercase = [AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase )] __lowercase = tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,extra_ids=0 ) self.assertIn(_lowerCamelCase ,tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = '''hello world''' if self.space_between_special_tokens: __lowercase = '''[CLS] hello world [SEP]''' else: __lowercase = input __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ,spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCamelCase ,[output, output.lower()] ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __lowercase = '''a''' __lowercase = ord(_lowerCamelCase ) for attr in attributes_list: setattr(_lowerCamelCase ,attr + '''_id''' ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + '''_id''' ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,attr + '''_id''' ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + '''_id''' ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens''' ) ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[] ) __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) setattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ,[additional_special_token_id] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens''' ) ,[additional_special_token] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[additional_special_token_id] ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' pass def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Any: '''simple docstring''' pass def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass
217
1
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) SCREAMING_SNAKE_CASE__ : int = Accelerator() SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) try: pickle.loads(pickle.dumps(SCREAMING_SNAKE_CASE__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
25
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def lowercase_ ( _snake_case ,_snake_case ,_snake_case = None ): SCREAMING_SNAKE_CASE__ : Dict = tesseract_config if tesseract_config is not None else """""" # apply OCR SCREAMING_SNAKE_CASE__ : List[Any] = to_pil_image(_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = pil_image.size SCREAMING_SNAKE_CASE__ : Tuple = pytesseract.image_to_data(_snake_case ,lang=_snake_case ,output_type="""dict""" ,config=_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE__ : Union[str, Any] = [idx for idx, word in enumerate(_snake_case ) if not word.strip()] SCREAMING_SNAKE_CASE__ : Dict = [word for idx, word in enumerate(_snake_case ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : List[str] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Tuple = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : int = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Tuple = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE__ : List[Any] = [] for x, y, w, h in zip(_snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [x, y, x + w, y + h] actual_boxes.append(_snake_case ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE__ : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_snake_case ,_snake_case ,_snake_case ) ) assert len(_snake_case ) == len(_snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[int] = ['''pixel_values'''] def __init__(self , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "" , **SCREAMING_SNAKE_CASE__ , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else {"""height""": 2_24, """width""": 2_24} SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = do_resize SCREAMING_SNAKE_CASE__ : Any = size SCREAMING_SNAKE_CASE__ : List[Any] = resample SCREAMING_SNAKE_CASE__ : Dict = apply_ocr SCREAMING_SNAKE_CASE__ : List[str] = ocr_lang SCREAMING_SNAKE_CASE__ : Tuple = tesseract_config def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE__ : Any = (size["""height"""], size["""width"""]) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : Optional[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE__ : Optional[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE__ : Dict = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE__ : Optional[int] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Dict = [] for image in images: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = apply_tesseract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) words_batch.append(SCREAMING_SNAKE_CASE__ ) boxes_batch.append(SCREAMING_SNAKE_CASE__ ) if do_resize: SCREAMING_SNAKE_CASE__ : Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [flip_channel_order(SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE__ : Optional[Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=SCREAMING_SNAKE_CASE__ ) if apply_ocr: SCREAMING_SNAKE_CASE__ : List[Any] = words_batch SCREAMING_SNAKE_CASE__ : List[str] = boxes_batch return data
25
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case : List[Any] = logging.get_logger() @dataclass class _snake_case : UpperCamelCase__ = 42 UpperCamelCase__ = field(default_factory=lowerCamelCase__ ) UpperCamelCase__ = field(default_factory=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Union[str, Any] = len(list(m.modules() ) ) == 1 or isinstance(__snake_case , nn.Convad ) or isinstance(__snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(__snake_case ) def __call__( self , _a ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__snake_case ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _snake_case : UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 0 UpperCamelCase__ = field(default_factory=lowerCamelCase__ ) UpperCamelCase__ = field(default_factory=lowerCamelCase__ ) def __call__( self , _a ): __magic_name__ : List[Any] = Tracker(self.dest )(__snake_case ).parametrized __magic_name__ : Tuple = Tracker(self.src )(__snake_case ).parametrized __magic_name__ : Tuple = list(filter(lambda _a : type(__snake_case ) not in self.src_skip , __snake_case ) ) __magic_name__ : Optional[int] = list(filter(lambda _a : type(__snake_case ) not in self.dest_skip , __snake_case ) ) if len(__snake_case ) != len(__snake_case ): raise Exception( f'''Numbers of operations are different. Source module has {len(__snake_case )} operations while''' f''' destination module has {len(__snake_case )}.''' ) for dest_m, src_m in zip(__snake_case , __snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def lowerCAmelCase_ ( _snake_case : Any , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Optional[int] = True ) -> Union[str, Any]: '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): __magic_name__ : Optional[int] = timm.create_model(_A , pretrained=_A ).eval() __magic_name__ : List[Any] = ResNetForImageClassification(_A ).eval() __magic_name__ : Any = ModuleTransfer(src=_A , dest=_A ) __magic_name__ : Tuple = torch.randn((1, 3, 224, 224) ) module_transfer(_A ) assert torch.allclose(from_model(_A ) , our_model(_A ).logits ), "The model logits don't match the original one." __magic_name__ : Optional[int] = F'''resnet{"-".join(name.split("resnet" ) )}''' print(_A ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=_A , ) # we can use the convnext one __magic_name__ : int = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=_A , ) print(F'''Pushed {checkpoint_name}''' ) def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : List[Any] = None , _snake_case : Optional[Any] = True ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Optional[int] = 'imagenet-1k-id2label.json' __magic_name__ : Optional[int] = 1000 __magic_name__ : str = (1, num_labels) __magic_name__ : Union[str, Any] = 'huggingface/label-files' __magic_name__ : List[Any] = num_labels __magic_name__ : List[str] = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) __magic_name__ : Any = {int(_A ): v for k, v in idalabel.items()} __magic_name__ : Optional[int] = idalabel __magic_name__ : List[str] = {v: k for k, v in idalabel.items()} __magic_name__ : Optional[int] = partial(_A , num_labels=_A , idalabel=_A , labelaid=_A ) __magic_name__ : Tuple = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(_A , names_to_config[model_name] , _A , _A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_A , _A , _A , _A ) return config, expected_shape if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) snake_case : int = parser.parse_args() snake_case : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
357
from typing import Any class _snake_case : def __init__( self , _a ): __magic_name__ : Union[str, Any] = data __magic_name__ : str = None class _snake_case : def __init__( self ): __magic_name__ : List[str] = None def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.head while temp is not None: print(temp.data , end=" " ) __magic_name__ : Optional[int] = temp.next print() def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Union[str, Any] = Node(_a ) __magic_name__ : List[str] = self.head __magic_name__ : Union[str, Any] = new_node def SCREAMING_SNAKE_CASE ( self , _a , _a ): if node_data_a == node_data_a: return else: __magic_name__ : Optional[Any] = self.head while node_a is not None and node_a.data != node_data_a: __magic_name__ : Tuple = node_a.next __magic_name__ : Dict = self.head while node_a is not None and node_a.data != node_data_a: __magic_name__ : List[Any] = node_a.next if node_a is None or node_a is None: return __magic_name__ , __magic_name__ : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": snake_case : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
41
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCAmelCase_ ( _A , _A ): '''simple docstring''' a__ = """pixel_values""" a__ = False a__ = TimmBackboneConfig def __init__( self : str , UpperCamelCase__ : List[str] , **UpperCamelCase__ : Any ) -> str: """simple docstring""" requires_backends(self , """timm""" ) super().__init__(UpperCamelCase__ ) __magic_name__ = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(UpperCamelCase__ , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) __magic_name__ = getattr(UpperCamelCase__ , """use_pretrained_backbone""" , UpperCamelCase__ ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. __magic_name__ = config.out_indices if getattr(UpperCamelCase__ , """out_indices""" , UpperCamelCase__ ) is not None else (-1,) __magic_name__ = timm.create_model( config.backbone , pretrained=UpperCamelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCamelCase__ , **UpperCamelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __magic_name__ = self._backbone.return_layers __magic_name__ = {layer["""module"""]: str(UpperCamelCase__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCamelCase__ ) @classmethod def _lowercase ( cls : Optional[Any] , UpperCamelCase__ : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig __magic_name__ = kwargs.pop("""config""" , TimmBackboneConfig() ) __magic_name__ = kwargs.pop("""use_timm_backbone""" , UpperCamelCase__ ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) __magic_name__ = kwargs.pop("""num_channels""" , config.num_channels ) __magic_name__ = kwargs.pop("""features_only""" , config.features_only ) __magic_name__ = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) __magic_name__ = kwargs.pop("""out_indices""" , config.out_indices ) __magic_name__ = TimmBackboneConfig( backbone=UpperCamelCase__ , num_channels=UpperCamelCase__ , features_only=UpperCamelCase__ , use_pretrained_backbone=UpperCamelCase__ , out_indices=UpperCamelCase__ , ) return super()._from_config(UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : Tuple , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" pass def _lowercase ( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : int=None , **UpperCamelCase__ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: """simple docstring""" __magic_name__ = return_dict if return_dict is not None else self.config.use_return_dict __magic_name__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __magic_name__ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __magic_name__ = self._all_layers __magic_name__ = self._backbone(UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = self._return_layers __magic_name__ = tuple(hidden_states[i] for i in self.out_indices ) else: __magic_name__ = self._backbone(UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = None __magic_name__ = tuple(UpperCamelCase__ ) __magic_name__ = tuple(UpperCamelCase__ ) if hidden_states is not None else None if not return_dict: __magic_name__ = (feature_maps,) if output_hidden_states: __magic_name__ = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCamelCase__ , hidden_states=UpperCamelCase__ , attentions=UpperCamelCase__ )
88
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = torch.nn.Linear(10 , 10 ) __magic_name__ = torch.optim.SGD(model.parameters() , 0.1 ) __magic_name__ = Accelerator() __magic_name__ = accelerator.prepare(UpperCamelCase__ ) try: pickle.loads(pickle.dumps(UpperCamelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
88
1
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : Any , *_a : int , **_a : Tuple ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *_a : int , **_a : Union[str, Any] ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Any , *_a : List[str] , **_a : int ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : Any , *_a : Dict , **_a : Tuple ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Dict , *_a : int , **_a : List[str] ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *_a : Any , **_a : Union[str, Any] ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : Optional[int] , *_a : List[Any] , **_a : List[str] ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *_a : str , **_a : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : List[str] , *_a : Optional[Any] , **_a : int ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : List[Any] , *_a : Dict , **_a : str ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Dict , *_a : str , **_a : int ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : str , *_a : str , **_a : Optional[int] ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : int , *_a : List[Any] , **_a : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *_a : List[Any] , **_a : Any ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : List[str] , *_a : str , **_a : Union[str, Any] ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : Optional[int] , *_a : Optional[int] , **_a : str ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : str , *_a : Union[str, Any] , **_a : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : int , *_a : Any , **_a : Optional[Any] ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : Optional[int] , *_a : List[Any] , **_a : Union[str, Any] ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *_a : Optional[Any] , **_a : Union[str, Any] ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Tuple , *_a : Any , **_a : Tuple ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : int , *_a : List[str] , **_a : Tuple ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : str , *_a : int , **_a : str ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : str , *_a : Any , **_a : List[Any] ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : Union[str, Any] , *_a : int , **_a : int ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : int , *_a : int , **_a : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : str , *_a : str , **_a : Union[str, Any] ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : int , *_a : List[Any] , **_a : Union[str, Any] ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : int , *_a : List[str] , **_a : Any ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : int , *_a : Optional[int] , **_a : Any ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : List[str] , *_a : str , **_a : Dict ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Dict , *_a : Optional[Any] , **_a : int ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *_a : Dict , **_a : Dict ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : List[Any] , *_a : Union[str, Any] , **_a : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *_a : int , **_a : Union[str, Any] ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *_a : Tuple , **_a : int ): requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=_a ): _lowerCAmelCase = ['''flax'''] def __init__( self : Dict , *_a : Dict , **_a : Any ): requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls : List[str] , *_a : List[Any] , **_a : int ): requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *_a : int , **_a : Tuple ): requires_backends(cls , ["flax"] )
42
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __lowerCamelCase ( __magic_name__ : List[Any] ): if hor == 128: a__: Union[str, Any] =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a__: Optional[int] =(32, 128, 256) a__: Tuple =("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: a__: Tuple =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a__: List[Any] =(32, 64, 128, 256) a__: List[str] =("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") a__: Dict =torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) a__: Optional[int] =model.state_dict() a__: str ={ "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65_536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } a__: List[Any] =UNetaDModel(**__magic_name__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) a__: Tuple =dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a__: Dict =state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) def __lowerCamelCase ( ): a__: Union[str, Any] ={ "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65_536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } a__: Union[str, Any] =torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) a__: Any =model a__: str =UNetaDModel(**__magic_name__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) a__: List[str] =dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a__: List[Any] =state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _A : Tuple =logging.get_logger(__name__) _A : Optional[Any] ={ '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class _lowercase ( A__ ): a = """t5""" a = ["""past_key_values"""] a = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self: Union[str, Any] , UpperCamelCase__: str=32_128 , UpperCamelCase__: List[Any]=512 , UpperCamelCase__: Optional[int]=64 , UpperCamelCase__: List[Any]=2_048 , UpperCamelCase__: Optional[Any]=6 , UpperCamelCase__: List[str]=None , UpperCamelCase__: List[str]=8 , UpperCamelCase__: int=32 , UpperCamelCase__: Dict=128 , UpperCamelCase__: str=0.1 , UpperCamelCase__: Dict=1e-6 , UpperCamelCase__: List[Any]=1.0 , UpperCamelCase__: str="relu" , UpperCamelCase__: List[str]=True , UpperCamelCase__: Optional[int]=True , UpperCamelCase__: List[Any]=0 , UpperCamelCase__: Union[str, Any]=1 , **UpperCamelCase__: List[Any] , ): lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Tuple = d_model lowerCamelCase__ : List[str] = d_kv lowerCamelCase__ : Union[str, Any] = d_ff lowerCamelCase__ : List[Any] = num_layers lowerCamelCase__ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase__ : str = num_heads lowerCamelCase__ : Optional[int] = relative_attention_num_buckets lowerCamelCase__ : Dict = relative_attention_max_distance lowerCamelCase__ : Optional[int] = dropout_rate lowerCamelCase__ : str = layer_norm_epsilon lowerCamelCase__ : str = initializer_factor lowerCamelCase__ : Tuple = feed_forward_proj lowerCamelCase__ : Tuple = use_cache lowerCamelCase__ : List[Any] = self.feed_forward_proj.split("""-""" ) lowerCamelCase__ : Any = act_info[-1] lowerCamelCase__ : Dict = act_info[0] == """gated""" if len(__lowerCamelCase ) > 1 and act_info[0] != "gated" or len(__lowerCamelCase ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """\'gated-gelu\' or \'relu\'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCamelCase__ : Dict = """gelu_new""" super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase , ) class _lowercase ( A__ ): @property def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: lowerCamelCase__ : List[Any] = """past_encoder_sequence + sequence""" lowerCamelCase__ : str = {0: """batch"""} lowerCamelCase__ : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCamelCase__ : Dict = {0: """batch""", 1: """decoder_sequence"""} lowerCamelCase__ : str = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="""inputs""" ) return common_inputs @property def lowerCamelCase_ ( self: Tuple ): return 13
41
from ... import PretrainedConfig _SCREAMING_SNAKE_CASE : Dict = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a = "nezha" def __init__( self : Optional[Any] , __lowerCamelCase : str=2_1128 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : Any , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = max_relative_position SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = use_cache
314
0
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase : Optional[Any] = logging.getLogger(__name__) def lowerCamelCase__ ( A : torch.nn.Module , A : BnbQuantizationConfig , A : Union[str, os.PathLike] = None , A : Optional[Dict[str, Union[int, str, torch.device]]] = None , A : Optional[List[str]] = None , A : Optional[Dict[Union[int, str], Union[int, str]]] = None , A : Optional[Union[str, os.PathLike]] = None , A : bool = False , ): '''simple docstring''' UpperCAmelCase = bnb_quantization_config.load_in_abit UpperCAmelCase = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCAmelCase = [] # custom device map if isinstance(A , A ) and len(device_map.keys() ) > 1: UpperCAmelCase = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCAmelCase = get_keys_to_not_convert(A ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(A ) UpperCAmelCase = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCAmelCase = [] UpperCAmelCase = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(A ) # compatibility with peft UpperCAmelCase = load_in_abit UpperCAmelCase = load_in_abit UpperCAmelCase = get_parameter_device(A ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCAmelCase = replace_with_bnb_layers(A , A , modules_to_not_convert=A ) # convert param to the right dtype UpperCAmelCase = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCAmelCase = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCAmelCase = getattr(A , A , A ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(A ): param.to(A ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): UpperCAmelCase = replace_with_bnb_layers( A , A , modules_to_not_convert=A ) UpperCAmelCase = get_quantized_model_device_map( A , A , A , max_memory=A , no_split_module_classes=A , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCAmelCase = True UpperCAmelCase = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( A , A , A , dtype=bnb_quantization_config.torch_dtype , offload_folder=A , offload_state_dict=A , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(A , device_map=A , offload_dir=A ) def lowerCamelCase__ ( A : Union[str, Any] , A : Dict , A : Union[str, Any]=None , A : Optional[Any]=None , A : Optional[int]=None ): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): UpperCAmelCase = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(A , A ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCAmelCase = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCAmelCase = {} UpperCAmelCase = special_dtypes UpperCAmelCase = no_split_module_classes UpperCAmelCase = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCAmelCase = get_balanced_memory( A , low_zero=(device_map == '''balanced_low_0''') , max_memory=A , **A , ) UpperCAmelCase = max_memory UpperCAmelCase = infer_auto_device_map(A , **A ) if isinstance(A , A ): # check if don't have any quantized module on the cpu UpperCAmelCase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCAmelCase = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def lowerCamelCase__ ( A : str , A : Union[str, Any] , A : str=None , A : Tuple=None ): '''simple docstring''' if modules_to_not_convert is None: UpperCAmelCase = [] UpperCAmelCase , UpperCAmelCase = _replace_with_bnb_layers( A , A , A , A ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def lowerCamelCase__ ( A : Optional[int] , A : List[str] , A : List[Any]=None , A : Tuple=None , ): '''simple docstring''' UpperCAmelCase = False for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase = [] current_key_name.append(A ) if isinstance(A , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCAmelCase = '''.'''.join(A ) UpperCAmelCase = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCAmelCase = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCAmelCase = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=A , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCAmelCase = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCAmelCase = module.weight.data if module.bias is not None: UpperCAmelCase = module.bias.data bnb_module.requires_grad_(A ) setattr(A , A , A ) UpperCAmelCase = True if len(list(module.children() ) ) > 0: UpperCAmelCase , UpperCAmelCase = _replace_with_bnb_layers( A , A , A , A ) UpperCAmelCase = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase__ ( A : int ): '''simple docstring''' with init_empty_weights(): UpperCAmelCase = deepcopy(A ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCAmelCase = find_tied_parameters(A ) # For compatibility with Accelerate < 0.18 if isinstance(A , A ): UpperCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase = sum(A , [] ) UpperCAmelCase = len(A ) > 0 # Check if it is a base model UpperCAmelCase = False if hasattr(A , '''base_model_prefix''' ): UpperCAmelCase = not hasattr(A , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase = list(model.named_children() ) UpperCAmelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase = set(A ) - set(A ) UpperCAmelCase = list(set(A ) ) + list(A ) # remove ".weight" from the keys UpperCAmelCase = ['''.weight''', '''.bias'''] UpperCAmelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase = name.replace(A , '''''' ) filtered_module_names.append(A ) return filtered_module_names def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' for m in model.modules(): if isinstance(A , bnb.nn.Linearabit ): return True return False def lowerCamelCase__ ( A : nn.Module ): '''simple docstring''' return next(parameter.parameters() ).device def lowerCamelCase__ ( A : str , A : Tuple , A : Tuple , A : Optional[Any] , A : int , A : Optional[int] , A : List[Any] ): '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(A , A , 0 , dtype=A , value=A ) UpperCAmelCase = param_name UpperCAmelCase = model if "." in tensor_name: UpperCAmelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCAmelCase = getattr(A , A ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) UpperCAmelCase = new_module UpperCAmelCase = splits[-1] # offload weights UpperCAmelCase = False offload_weight(module._parameters[tensor_name] , A , A , index=A ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , A , index=A , ) else: offload_weight(A , A , A , index=A ) offload_weight(A , param_name.replace('''weight''' , '''SCB''' ) , A , index=A ) set_module_tensor_to_device(A , A , '''meta''' , dtype=A , value=torch.empty(*param.size() ) )
91
'''simple docstring''' def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' while a != 0: UpperCAmelCase , UpperCAmelCase = b % a, a return b def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' if gcd(A , A ) != 1: UpperCAmelCase = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1, 0, a UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0, 1, m while va != 0: UpperCAmelCase = ua // va UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
91
1
def A ( a_ ,a_ ) -> int: return number | (1 << position) def A ( a_ ,a_ ) -> int: return number & ~(1 << position) def A ( a_ ,a_ ) -> int: return number ^ (1 << position) def A ( a_ ,a_ ) -> bool: return ((number >> position) & 1) == 1 def A ( a_ ,a_ ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
71
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __A : """simple docstring""" UpperCamelCase__ : int =XGLMConfig UpperCamelCase__ : Optional[Any] ={} UpperCamelCase__ : List[str] ="""gelu""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ): """simple docstring""" __UpperCamelCase : Tuple =parent __UpperCamelCase : List[str] =batch_size __UpperCamelCase : str =seq_length __UpperCamelCase : Dict =is_training __UpperCamelCase : Tuple =use_input_mask __UpperCamelCase : List[Any] =use_labels __UpperCamelCase : Any =vocab_size __UpperCamelCase : List[Any] =d_model __UpperCamelCase : Optional[int] =num_hidden_layers __UpperCamelCase : List[str] =num_attention_heads __UpperCamelCase : Optional[int] =ffn_dim __UpperCamelCase : str =activation_function __UpperCamelCase : Any =activation_dropout __UpperCamelCase : Optional[int] =attention_dropout __UpperCamelCase : Optional[int] =max_position_embeddings __UpperCamelCase : Any =initializer_range __UpperCamelCase : Dict =None __UpperCamelCase : Optional[int] =0 __UpperCamelCase : Optional[Any] =2 __UpperCamelCase : str =1 def __lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __UpperCamelCase : Union[str, Any] =None if self.use_input_mask: __UpperCamelCase : Dict =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Any =self.get_config() __UpperCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase__ , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : int =config_and_inputs __UpperCamelCase : Optional[Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ : str =(TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ : Optional[Any] =( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ : Tuple =False UpperCamelCase__ : Tuple =False UpperCamelCase__ : Optional[Any] =False def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMModelTester(self ) __UpperCamelCase : Dict =ConfigTester(self , config_class=lowerCamelCase__ , n_embd=37 ) def __lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[Any] =TFXGLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self , lowerCamelCase__=True ): """simple docstring""" __UpperCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : List[str] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase : str =[2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase : Optional[Any] =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Union[str, Any] =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase : str =tokenizer('Today is a nice day and' , return_tensors='tf' ) __UpperCamelCase : Union[str, Any] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase : Any =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , seed=[7, 0] ) __UpperCamelCase : Tuple =tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : List[Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] ='left' # use different length sentences to test batching __UpperCamelCase : Optional[int] =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase : List[Any] =tokenizer(lowerCamelCase__ , return_tensors='tf' , padding=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =inputs['input_ids'] __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __UpperCamelCase : List[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Any =tokenizer(sentences[1] , return_tensors='tf' ).input_ids __UpperCamelCase : Optional[Any] =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Optional[int] =tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Any =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , [non_padded_sentence, padded_sentence] )
71
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _snake_case ( _lowercase ): lowerCamelCase__: Any = "naver-clova-ix/donut-base-finetuned-docvqa" lowerCamelCase__: Union[str, Any] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) lowerCamelCase__: int = "document_qa" lowerCamelCase__: List[str] = AutoProcessor lowerCamelCase__: List[str] = VisionEncoderDecoderModel lowerCamelCase__: str = ["image", "text"] lowerCamelCase__: Union[str, Any] = ["text"] def __init__( self: str , *__lowerCamelCase: List[Any] , **__lowerCamelCase: Optional[int] ) -> List[str]: if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: "Image" , __lowerCamelCase: str ) -> int: __UpperCAmelCase : Optional[int] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" __UpperCAmelCase : Union[str, Any] = task_prompt.replace("{user_input}" , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.pre_processor.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors="pt" ).input_ids __UpperCAmelCase : Union[str, Any] = self.pre_processor(__lowerCamelCase , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] ) -> Optional[Any]: return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowerCamelCase , ).sequences def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Any ) -> Union[str, Any]: __UpperCAmelCase : str = self.pre_processor.batch_decode(__lowerCamelCase )[0] __UpperCAmelCase : Tuple = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) __UpperCAmelCase : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) __UpperCAmelCase : Optional[Any] = re.sub(R"<.*?>" , "" , __lowerCamelCase , count=1 ).strip() # remove first task start token __UpperCAmelCase : Union[str, Any] = self.pre_processor.tokenajson(__lowerCamelCase ) return sequence["answer"]
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0