code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( snake_case : str , snake_case : str ): '''simple docstring''' snake_case_ = list(snake_case ) snake_case_ = list(snake_case ) snake_case_ = 0 for i in range(len(snake_case ) ): if lista[i] != lista[i]: count += 1 snake_case_ = "_" if count > 1: return False else: return "".join(snake_case ) def UpperCamelCase_( snake_case : list[str] ): '''simple docstring''' snake_case_ = [] while True: snake_case_ = ["$"] * len(snake_case ) snake_case_ = [] for i in range(len(snake_case ) ): for j in range(i + 1 , len(snake_case ) ): snake_case_ = compare_string(binary[i] , binary[j] ) if k is False: snake_case_ = "*" snake_case_ = "*" temp.append("X" ) for i in range(len(snake_case ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case ) == 0: return pi snake_case_ = list(set(snake_case ) ) def UpperCamelCase_( snake_case : int , snake_case : Sequence[float] ): '''simple docstring''' snake_case_ = [] for minterm in minterms: snake_case_ = "" for _ in range(snake_case ): snake_case_ = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case ) return temp def UpperCamelCase_( snake_case : str , snake_case : str , snake_case : int ): '''simple docstring''' snake_case_ = list(snake_case ) snake_case_ = list(snake_case ) snake_case_ = 0 for i in range(len(snake_case ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( snake_case : list[list[int]] , snake_case : list[str] ): '''simple docstring''' snake_case_ = [] snake_case_ = [0] * len(snake_case ) for i in range(len(chart[0] ) ): snake_case_ = 0 snake_case_ = -1 for j in range(len(snake_case ) ): if chart[j][i] == 1: count += 1 snake_case_ = j if count == 1: snake_case_ = 1 for i in range(len(snake_case ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case ) ): snake_case_ = 0 temp.append(prime_implicants[i] ) while True: snake_case_ = 0 snake_case_ = -1 snake_case_ = 0 for i in range(len(snake_case ) ): snake_case_ = chart[i].count(1 ) if count_n > max_n: snake_case_ = count_n snake_case_ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case ) ): snake_case_ = 0 def UpperCamelCase_( snake_case : list[str] , snake_case : list[str] ): '''simple docstring''' snake_case_ = [[0 for x in range(len(snake_case ) )] for x in range(len(snake_case ) )] for i in range(len(snake_case ) ): snake_case_ = prime_implicants[i].count("_" ) for j in range(len(snake_case ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case ): snake_case_ = 1 return chart def UpperCamelCase_( ): '''simple docstring''' snake_case_ = int(input("Enter the no. of variables\n" ) ) snake_case_ = [ float(snake_case ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] snake_case_ = decimal_to_binary(snake_case , snake_case ) snake_case_ = check(snake_case ) print("Prime Implicants are:" ) print(snake_case ) snake_case_ = prime_implicant_chart(snake_case , snake_case ) snake_case_ = selection(snake_case , snake_case ) print("Essential Prime Implicants are:" ) print(snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
85
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'longformer' def __init__( self , lowercase = 512 , lowercase = 2 , lowercase = 1 , lowercase = 0 , lowercase = 2 , lowercase = 30_522 , lowercase = 768 , lowercase = 12 , lowercase = 12 , lowercase = 3_072 , lowercase = "gelu" , lowercase = 0.1 , lowercase = 0.1 , lowercase = 512 , lowercase = 2 , lowercase = 0.02 , lowercase = 1e-12 , lowercase = False , **lowercase , ) -> Optional[int]: super().__init__(pad_token_id=lowercase , **lowercase ) lowerCAmelCase = attention_window lowerCAmelCase = sep_token_id lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = onnx_export class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase = "default" , lowercase = None ) -> Tuple: super().__init__(lowercase , lowercase , lowercase ) lowerCAmelCase = True @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase = super().outputs if self.task == "default": lowerCAmelCase = {0: """batch"""} return outputs @property def _snake_case ( self ) -> float: return 1e-4 @property def _snake_case ( self ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def _snake_case ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: lowerCAmelCase = super().generate_dummy_inputs( preprocessor=lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCAmelCase = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global lowerCAmelCase = 1 return inputs
46
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) UpperCAmelCase__ = logging.getLogger() def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'all_results.json' ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase , 'r' ) as f: _UpperCAmelCase = json.load(_UpperCAmelCase ) else: raise ValueError(F"can't find {path}" ) return results UpperCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" import xla_spawn _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(A , 'argv' , A): _UpperCAmelCase = time() xla_spawn.main() _UpperCAmelCase = time() _UpperCAmelCase = get_results(A) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00) def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" import xla_spawn _UpperCAmelCase = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(A , 'argv' , A): xla_spawn.main()
290
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''xmod''' def __init__( self : Optional[int] , A : int=3_05_22 , A : Tuple=7_68 , A : Optional[Any]=12 , A : Tuple=12 , A : str=30_72 , A : List[str]="gelu" , A : Any=0.1 , A : int=0.1 , A : Dict=5_12 , A : Optional[Any]=2 , A : Optional[Any]=0.0_2 , A : List[Any]=1E-12 , A : int=1 , A : Tuple=0 , A : Optional[Any]=2 , A : int="absolute" , A : Union[str, Any]=True , A : List[Any]=None , A : Optional[Any]=False , A : List[str]=2 , A : int=False , A : str=True , A : Optional[Any]=True , A : Tuple=("en_XX",) , A : Optional[int]=None , **A : List[str] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout _UpperCAmelCase = pre_norm _UpperCAmelCase = adapter_reduction_factor _UpperCAmelCase = adapter_layer_norm _UpperCAmelCase = adapter_reuse_layer_norm _UpperCAmelCase = ln_before_adapter _UpperCAmelCase = list(A) _UpperCAmelCase = default_language class __lowerCAmelCase ( A ): @property def _lowerCamelCase ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
290
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = {"""vocab_file""": """spm_char.model"""} _A = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } _A = { """microsoft/speecht5_asr""": 10_24, """microsoft/speecht5_tts""": 10_24, """microsoft/speecht5_vc""": 10_24, } class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__(self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) UpperCAmelCase__ : Optional[Any] = vocab_file UpperCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def _a (self ): """simple docstring""" return self.sp_model.get_piece_size() def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.__dict__.copy() UpperCAmelCase__ : Optional[Any] = None return state def __setstate__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ : Any = {} UpperCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a (self , _lowerCamelCase ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a (self , _lowerCamelCase ): """simple docstring""" return self.sp_model.piece_to_id(_lowerCamelCase ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = self.sp_model.IdToPiece(_lowerCamelCase ) return token def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = [] UpperCAmelCase__ : List[str] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token UpperCAmelCase__ : Tuple = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def _a (self , _lowerCamelCase , _lowerCamelCase=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : Tuple = [1] if token_ids_a is None: return ([0] * len(_lowerCamelCase )) + suffix_ones return ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : Optional[Any] = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , """wb""" ) as fi: UpperCAmelCase__ : int = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
171
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _A = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 10_00, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } _A = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 10_00, """block_out_channels""": [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } _A = { """sample_size""": 2_56, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } _A = { """num_train_timesteps""": 40, """sigma_min""": 0.002, """sigma_max""": 80.0, } _A = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } _A = { """num_train_timesteps""": 1_51, """sigma_min""": 0.002, """sigma_max""": 80.0, } def a__ ( lowerCAmelCase ) -> Tuple: if isinstance(lowerCAmelCase , lowerCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ) -> List[str]: UpperCAmelCase__ : int = checkpoint[F"""{old_prefix}.in_layers.0.weight"""] UpperCAmelCase__ : Optional[int] = checkpoint[F"""{old_prefix}.in_layers.0.bias"""] UpperCAmelCase__ : Optional[Any] = checkpoint[F"""{old_prefix}.in_layers.2.weight"""] UpperCAmelCase__ : str = checkpoint[F"""{old_prefix}.in_layers.2.bias"""] UpperCAmelCase__ : Any = checkpoint[F"""{old_prefix}.emb_layers.1.weight"""] UpperCAmelCase__ : Optional[int] = checkpoint[F"""{old_prefix}.emb_layers.1.bias"""] UpperCAmelCase__ : str = checkpoint[F"""{old_prefix}.out_layers.0.weight"""] UpperCAmelCase__ : List[Any] = checkpoint[F"""{old_prefix}.out_layers.0.bias"""] UpperCAmelCase__ : Dict = checkpoint[F"""{old_prefix}.out_layers.3.weight"""] UpperCAmelCase__ : Union[str, Any] = checkpoint[F"""{old_prefix}.out_layers.3.bias"""] if has_skip: UpperCAmelCase__ : int = checkpoint[F"""{old_prefix}.skip_connection.weight"""] UpperCAmelCase__ : Dict = checkpoint[F"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> Optional[int]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = checkpoint[F"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = checkpoint[F"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) UpperCAmelCase__ : List[Any] = checkpoint[F"""{old_prefix}.norm.weight"""] UpperCAmelCase__ : str = checkpoint[F"""{old_prefix}.norm.bias"""] UpperCAmelCase__ : Union[str, Any] = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Optional[Any] = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Any = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : int = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : int = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Any = ( checkpoint[F"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase__ : str = checkpoint[F"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: UpperCAmelCase__ : Optional[Any] = torch.load(lowerCAmelCase , map_location="""cpu""" ) UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : List[Any] = checkpoint["""time_embed.0.weight"""] UpperCAmelCase__ : str = checkpoint["""time_embed.0.bias"""] UpperCAmelCase__ : List[str] = checkpoint["""time_embed.2.weight"""] UpperCAmelCase__ : Dict = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: UpperCAmelCase__ : Dict = checkpoint["""label_emb.weight"""] UpperCAmelCase__ : str = checkpoint["""input_blocks.0.0.weight"""] UpperCAmelCase__ : List[str] = checkpoint["""input_blocks.0.0.bias"""] UpperCAmelCase__ : List[str] = unet_config["""down_block_types"""] UpperCAmelCase__ : Tuple = unet_config["""layers_per_block"""] UpperCAmelCase__ : int = unet_config["""attention_head_dim"""] UpperCAmelCase__ : Union[str, Any] = unet_config["""block_out_channels"""] UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Union[str, Any] = channels_list[0] for i, layer_type in enumerate(lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = channels_list[i] UpperCAmelCase__ : int = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowerCAmelCase ): UpperCAmelCase__ : Tuple = F"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase__ : List[Any] = F"""input_blocks.{current_layer}.0""" UpperCAmelCase__ : Dict = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase__ : Optional[Any] = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , has_skip=lowerCAmelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowerCAmelCase ): UpperCAmelCase__ : Any = F"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase__ : Optional[Any] = F"""input_blocks.{current_layer}.0""" UpperCAmelCase__ : int = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase__ : Union[str, Any] = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , has_skip=lowerCAmelCase ) UpperCAmelCase__ : Dict = F"""down_blocks.{i}.attentions.{j}""" UpperCAmelCase__ : int = F"""input_blocks.{current_layer}.1""" UpperCAmelCase__ : Union[str, Any] = convert_attention( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) current_layer += 1 if i != len(lowerCAmelCase ) - 1: UpperCAmelCase__ : Any = F"""down_blocks.{i}.downsamplers.0""" UpperCAmelCase__ : List[str] = F"""input_blocks.{current_layer}.0""" UpperCAmelCase__ : Tuple = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) current_layer += 1 UpperCAmelCase__ : Tuple = current_channels # hardcoded the mid-block for now UpperCAmelCase__ : List[Any] = """mid_block.resnets.0""" UpperCAmelCase__ : str = """middle_block.0""" UpperCAmelCase__ : List[str] = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[str] = """mid_block.attentions.0""" UpperCAmelCase__ : Any = """middle_block.1""" UpperCAmelCase__ : Optional[int] = convert_attention(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[Any] = """mid_block.resnets.1""" UpperCAmelCase__ : Tuple = """middle_block.2""" UpperCAmelCase__ : Union[str, Any] = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : Dict = unet_config["""up_block_types"""] for i, layer_type in enumerate(lowerCAmelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase__ : Tuple = F"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase__ : Optional[Any] = F"""output_blocks.{current_layer}.0""" UpperCAmelCase__ : Dict = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , has_skip=lowerCAmelCase ) current_layer += 1 if i != len(lowerCAmelCase ) - 1: UpperCAmelCase__ : List[str] = F"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase__ : Any = F"""output_blocks.{current_layer-1}.1""" UpperCAmelCase__ : Union[str, Any] = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase__ : List[str] = F"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase__ : Dict = F"""output_blocks.{current_layer}.0""" UpperCAmelCase__ : Any = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , has_skip=lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = F"""up_blocks.{i}.attentions.{j}""" UpperCAmelCase__ : List[str] = F"""output_blocks.{current_layer}.1""" UpperCAmelCase__ : Dict = convert_attention( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) current_layer += 1 if i != len(lowerCAmelCase ) - 1: UpperCAmelCase__ : int = F"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase__ : int = F"""output_blocks.{current_layer-1}.2""" UpperCAmelCase__ : Union[str, Any] = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = checkpoint["""out.0.weight"""] UpperCAmelCase__ : List[Any] = checkpoint["""out.0.bias"""] UpperCAmelCase__ : Tuple = checkpoint["""out.2.weight"""] UpperCAmelCase__ : Optional[Any] = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") _A = parser.parse_args() _A = strabool(args.class_cond) _A = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: _A = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _A = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: _A = None _A = con_pt_to_diffuser(args.unet_path, unet_config) _A = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _A = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _A = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') _A = CMStochasticIterativeScheduler(**scheduler_config) _A = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
171
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig SCREAMING_SNAKE_CASE__ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring SCREAMING_SNAKE_CASE__ = 'UperNetConfig' class a_ ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 1 , ) -> None: """simple docstring""" super().__init__() UpperCamelCase = nn.Convad( in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE , ) UpperCamelCase = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) UpperCamelCase = nn.ReLU() def A__ ( self , _SCREAMING_SNAKE_CASE ) -> torch.Tensor: """simple docstring""" UpperCamelCase = self.conv(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.batch_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.activation(_SCREAMING_SNAKE_CASE ) return output class a_ ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" super().__init__() UpperCamelCase = [ nn.AdaptiveAvgPoolad(_SCREAMING_SNAKE_CASE ), UperNetConvModule(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> torch.Tensor: """simple docstring""" UpperCamelCase = input for layer in self.layers: UpperCamelCase = layer(_SCREAMING_SNAKE_CASE ) return hidden_state class a_ ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" super().__init__() UpperCamelCase = pool_scales UpperCamelCase = align_corners UpperCamelCase = in_channels UpperCamelCase = channels UpperCamelCase = [] for i, pool_scale in enumerate(_SCREAMING_SNAKE_CASE ): UpperCamelCase = UperNetPyramidPoolingBlock(pool_scale=_SCREAMING_SNAKE_CASE , in_channels=_SCREAMING_SNAKE_CASE , channels=_SCREAMING_SNAKE_CASE ) self.blocks.append(_SCREAMING_SNAKE_CASE ) self.add_module(str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[torch.Tensor]: """simple docstring""" UpperCamelCase = [] for ppm in self.blocks: UpperCamelCase = ppm(_SCREAMING_SNAKE_CASE ) UpperCamelCase = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(_SCREAMING_SNAKE_CASE ) return ppm_outs class a_ ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" super().__init__() UpperCamelCase = config UpperCamelCase = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase = in_channels UpperCamelCase = config.hidden_size UpperCamelCase = False UpperCamelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase = nn.ModuleList() UpperCamelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase = UperNetConvModule(_SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_SCREAMING_SNAKE_CASE ) self.fpn_convs.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def A__ ( self ) -> Tuple: """simple docstring""" self.apply(self._init_weights ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = inputs[-1] UpperCamelCase = [x] psp_outs.extend(self.psp_modules(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.cat(_SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase = self.bottleneck(_SCREAMING_SNAKE_CASE ) return output def A__ ( self , _SCREAMING_SNAKE_CASE ) -> torch.Tensor: """simple docstring""" UpperCamelCase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase = laterals[i - 1].shape[2:] UpperCamelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_SCREAMING_SNAKE_CASE , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs UpperCamelCase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) UpperCamelCase = torch.cat(_SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase = self.fpn_bottleneck(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.classifier(_SCREAMING_SNAKE_CASE ) return output class a_ ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 1 ) -> None: """simple docstring""" super().__init__() UpperCamelCase = config UpperCamelCase = config.auxiliary_in_channels UpperCamelCase = config.auxiliary_channels UpperCamelCase = config.auxiliary_num_convs UpperCamelCase = config.auxiliary_concat_input UpperCamelCase = in_index UpperCamelCase = (kernel_size // 2) * dilation UpperCamelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase = nn.Identity() else: UpperCamelCase = nn.Sequential(*_SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def A__ ( self ) -> Dict: """simple docstring""" self.apply(self._init_weights ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def A__ ( self , _SCREAMING_SNAKE_CASE ) -> torch.Tensor: """simple docstring""" UpperCamelCase = encoder_hidden_states[self.in_index] UpperCamelCase = self.convs(_SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase = self.classifier(_SCREAMING_SNAKE_CASE ) return output class a_ ( lowerCamelCase ): lowercase = UperNetConfig lowercase = """pixel_values""" lowercase = True def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def A__ ( self ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = value SCREAMING_SNAKE_CASE__ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE__ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , lowerCamelCase , ) class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) UpperCamelCase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase = UperNetHead(_SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase = UperNetFCNHead(_SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def A__ ( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase = self.backbone.forward_with_filtered_kwargs( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) UpperCamelCase = outputs.feature_maps UpperCamelCase = self.decode_head(_SCREAMING_SNAKE_CASE ) UpperCamelCase = nn.functional.interpolate(_SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=_SCREAMING_SNAKE_CASE ) UpperCamelCase = None if self.auxiliary_head is not None: UpperCamelCase = self.auxiliary_head(_SCREAMING_SNAKE_CASE ) UpperCamelCase = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=_SCREAMING_SNAKE_CASE ) UpperCamelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss UpperCamelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase = (logits,) + outputs[1:] else: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
366
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput SCREAMING_SNAKE_CASE__ = 'scheduler_config.json' class a_ ( lowerCamelCase ): lowercase = 1 lowercase = 2 lowercase = 3 lowercase = 4 lowercase = 5 lowercase = 6 lowercase = 7 lowercase = 8 lowercase = 9 lowercase = 10 lowercase = 11 lowercase = 12 lowercase = 13 lowercase = 14 @dataclass class a_ ( lowerCamelCase ): lowercase = 42 class a_ : lowercase = SCHEDULER_CONFIG_NAME lowercase = [] lowercase = True @classmethod def A__ ( cls , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase ,UpperCamelCase = cls.load_config( pretrained_model_name_or_path=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE , return_commit_hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) return cls.from_config(_SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" self.save_config(save_directory=_SCREAMING_SNAKE_CASE , push_to_hub=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> Tuple: """simple docstring""" return self._get_compatibles() @classmethod def A__ ( cls ) -> List[Any]: """simple docstring""" UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase = importlib.import_module(__name__.split(""".""" )[0] ) UpperCamelCase = [ getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for c in compatible_classes_str if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] return compatible_classes
183
0
"""simple docstring""" from math import isclose, sqrt def _snake_case ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> tuple[float, float, float]: '''simple docstring''' lowerCAmelCase_ :Optional[int] = point_y / 4 / point_x lowerCAmelCase_ :Dict = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase_ :Union[str, Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase_ :str = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase_ :Tuple = outgoing_gradient**2 + 4 lowerCAmelCase_ :Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase_ :str = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 lowerCAmelCase_ :Optional[Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase_ :Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase_ :List[Any] = x_minus if isclose(lowercase__ , lowercase__ ) else x_plus lowerCAmelCase_ :List[str] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _snake_case ( lowercase__ : float = 1.4 , lowercase__ : float = -9.6 ) -> int: '''simple docstring''' lowerCAmelCase_ :int = 0 lowerCAmelCase_ :float = first_x_coord lowerCAmelCase_ :float = first_y_coord lowerCAmelCase_ :float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[str] = next_point(lowercase__ , lowercase__ , lowercase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
84
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = GPTSanJapaneseTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {"""do_clean_text""": False, """add_prefix_space""": False} def UpperCAmelCase__ ( self : Union[str, Any] ): super().setUp() # fmt: off __snake_case: str = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on __snake_case: List[Any] = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 __snake_case: Optional[int] = {"""unk_token""": """<unk>"""} __snake_case: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(A ) ) def UpperCAmelCase__ ( self : Optional[int] , **A : int ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ ( self : Optional[Any] , A : Dict ): __snake_case: Tuple = """こんにちは、世界。 \nこんばんは、㔺界。😀""" __snake_case: str = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def UpperCAmelCase__ ( self : Optional[int] , A : Optional[int] ): __snake_case , __snake_case: Optional[int] = self.get_input_output_texts(A ) __snake_case: Optional[Any] = tokenizer.encode(A , add_special_tokens=A ) __snake_case: int = tokenizer.decode(A , clean_up_tokenization_spaces=A ) return text, ids def UpperCAmelCase__ ( self : int ): pass # TODO add if relevant def UpperCAmelCase__ ( self : Dict ): pass # TODO add if relevant def UpperCAmelCase__ ( self : Optional[int] ): pass # TODO add if relevant def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Dict = self.get_tokenizer() # Testing tokenization __snake_case: List[str] = """こんにちは、世界。 こんばんは、㔺界。""" __snake_case: Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] __snake_case: Any = tokenizer.tokenize(A ) self.assertListEqual(A , A ) # Testing conversion to ids without special tokens __snake_case: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __snake_case: str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) # Testing conversion to ids with special tokens __snake_case: Optional[int] = tokens + [tokenizer.unk_token] __snake_case: List[str] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __snake_case: str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ ( self : str ): __snake_case: Union[str, Any] = self.get_tokenizer() # Testing tokenization __snake_case: Optional[Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" __snake_case: Optional[Any] = """こんにちは、、、、世界。こんばんは、、、、世界。""" __snake_case: Union[str, Any] = tokenizer.encode(A ) __snake_case: List[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) @slow def UpperCAmelCase__ ( self : Any ): __snake_case: Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __snake_case: Any = """こんにちは、世界。""" __snake_case: Tuple = """こんばんは、㔺界。😀""" __snake_case: Optional[Any] = """こんにちは、世界。こんばんは、世界。😀""" __snake_case: int = tokenizer.encode(prefix_text + input_text ) __snake_case: Union[str, Any] = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) __snake_case: Tuple = tokenizer.encode(A , prefix_text=A ) __snake_case: Union[str, Any] = tokenizer.decode(A ) __snake_case: Dict = tokenizer.decode(A ) __snake_case: Optional[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) @slow def UpperCAmelCase__ ( self : List[str] ): __snake_case: int = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __snake_case: Optional[int] = """こんにちは、世界。""" __snake_case: Any = """こんばんは、㔺界。😀""" __snake_case: Optional[int] = len(tokenizer.encode(A ) ) - 2 __snake_case: str = len(tokenizer.encode(A ) ) - 2 __snake_case: Dict = [1] + [0] * (len_prefix + len_text + 1) __snake_case: str = [1] * (len_prefix + len_text + 1) + [0] __snake_case: List[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __snake_case: int = tokenizer(prefix_text + input_text ).token_type_ids __snake_case: Optional[int] = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids __snake_case: Tuple = tokenizer(A , prefix_text=A ).token_type_ids self.assertListEqual(A , A ) self.assertListEqual(A , A ) self.assertListEqual(A , A ) @slow def UpperCAmelCase__ ( self : Dict ): __snake_case: Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __snake_case: int = tokenizer.encode("""あンいワ""" ) __snake_case: Optional[int] = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) __snake_case: List[Any] = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertNotEqual(A , A ) self.assertNotEqual(A , A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCAmelCase__ ( self : int ): __snake_case: List[str] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __snake_case: Union[str, Any] = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] __snake_case: Optional[int] = tokenizer(A , padding=A ) __snake_case: int = tokenizer.batch_encode_plus(A , padding=A ) # fmt: off __snake_case: List[str] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] __snake_case: int = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __snake_case: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , A ) self.assertListEqual(x_token.token_type_ids , A ) self.assertListEqual(x_token.attention_mask , A ) self.assertListEqual(x_token_a.input_ids , A ) self.assertListEqual(x_token_a.token_type_ids , A ) self.assertListEqual(x_token_a.attention_mask , A ) def UpperCAmelCase__ ( self : Union[str, Any] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCAmelCase__ ( self : List[str] ): # tokenizer has no padding token pass
111
0
import math from numpy import inf from scipy.integrate import quad def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(_a , 0 , _a , args=(_a) )[0] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" return math.pow(_a , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
361
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __lowerCAmelCase ( unittest.TestCase, _a ): def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Dict = load_tool('''text-to-speech''' ) self.tool.setup() def lowerCamelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[int] = self.tool('''hey''' ) snake_case_ : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Any = self.tool('''hey''' ) snake_case_ : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
279
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any]=7 , UpperCAmelCase_: int=3 , UpperCAmelCase_: List[str]=30 , UpperCAmelCase_: Union[str, Any]=400 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase_: Any=[0.5, 0.5, 0.5] , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]=1 / 255 , UpperCAmelCase_: int=True , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_pad def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Any=False ): '''simple docstring''' if not batched: _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[0] )[0] _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[Any] = YolosImageProcessor if is_vision_available() else None def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = YolosImageProcessingTester(self ) @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' pass def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) _SCREAMING_SNAKE_CASE = self.image_processing_class(do_resize=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ , do_rescale=UpperCAmelCase_ ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _SCREAMING_SNAKE_CASE = image_processing_a.pad(UpperCAmelCase_ , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = image_processing_a(UpperCAmelCase_ , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _SCREAMING_SNAKE_CASE = json.loads(f.read() ) _SCREAMING_SNAKE_CASE = {"""image_id""": 39_769, """annotations""": target} # encode them _SCREAMING_SNAKE_CASE = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) _SCREAMING_SNAKE_CASE = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , return_tensors="""pt""" ) # verify pixel values _SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase_ ) ) # verify boxes _SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase_ ) ) # verify is_crowd _SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase_ ) ) # verify class_labels _SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase_ ) ) # verify orig_size _SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase_ ) ) # verify size _SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase_ ) ) @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _SCREAMING_SNAKE_CASE = json.loads(f.read() ) _SCREAMING_SNAKE_CASE = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} _SCREAMING_SNAKE_CASE = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _SCREAMING_SNAKE_CASE = YolosImageProcessor(format="""coco_panoptic""" ) _SCREAMING_SNAKE_CASE = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , masks_path=UpperCAmelCase_ , return_tensors="""pt""" ) # verify pixel values _SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase_ ) ) # verify boxes _SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase_ ) ) # verify is_crowd _SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase_ ) ) # verify class_labels _SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase_ ) ) # verify masks _SCREAMING_SNAKE_CASE = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCAmelCase_ ) # verify orig_size _SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase_ ) ) # verify size _SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase_ ) )
306
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE_: str =get_tests_dir('fixtures') class __A ( unittest.TestCase ): def _lowercase (self : str ): # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCamelCase_ ) as mock_head: UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase (self : List[str] ): # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class __A ( unittest.TestCase ): @classmethod def _lowercase (cls : Optional[int] ): UpperCAmelCase_ = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def _lowercase (cls : List[str] ): try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def _lowercase (self : str ): UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id="test-feature-extractor" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def _lowercase (self : Dict ): CustomFeatureExtractor.register_for_auto_class() UpperCAmelCase_ = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=UpperCamelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
357
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) SCREAMING_SNAKE_CASE_: int =OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) SCREAMING_SNAKE_CASE_: str =OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) SCREAMING_SNAKE_CASE_: str =OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) SCREAMING_SNAKE_CASE_: Optional[int] =OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) SCREAMING_SNAKE_CASE_: Optional[Any] =OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) SCREAMING_SNAKE_CASE_: int =OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) SCREAMING_SNAKE_CASE_: Optional[int] =OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) SCREAMING_SNAKE_CASE_: str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: List[str] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: List[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: Any =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: List[str] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Any =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __A ( _BaseAutoModelClass ): a__ : int = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update(FlaxAutoModel) class __A ( _BaseAutoModelClass ): a__ : str = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __A ( _BaseAutoModelClass ): a__ : Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_: Tuple =auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __A ( _BaseAutoModelClass ): a__ : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_: Optional[Any] =auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __A ( _BaseAutoModelClass ): a__ : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_: Optional[Any] =auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __A ( _BaseAutoModelClass ): a__ : Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: Optional[int] =auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __A ( _BaseAutoModelClass ): a__ : Optional[int] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_: List[Any] =auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __A ( _BaseAutoModelClass ): a__ : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: List[Any] =auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __A ( _BaseAutoModelClass ): a__ : Dict = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_: Any =auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __A ( _BaseAutoModelClass ): a__ : Union[str, Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_: int =auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __A ( _BaseAutoModelClass ): a__ : int = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __A ( _BaseAutoModelClass ): a__ : Any = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_: Optional[int] =auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __A ( _BaseAutoModelClass ): a__ : List[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_: Union[str, Any] =auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
106
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__(self : Dict , __a : List[Any] , __a : str=12 , __a : Optional[Any]=7 , __a : Optional[int]=True , __a : Union[str, Any]=True , __a : Optional[int]=True , __a : Dict=99 , __a : Union[str, Any]=32 , __a : Dict=32 , __a : Dict=2 , __a : Tuple=4 , __a : Optional[int]=37 , __a : Tuple=0.1 , __a : Union[str, Any]=0.1 , __a : Optional[Any]=512 , __a : Tuple=0.02 , __a : Union[str, Any]=0 , __a : Optional[int]=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = bos_token_id def _lowercase (self : List[Any] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase_ = input_mask.numpy() UpperCAmelCase_ , UpperCAmelCase_ = input_mask.shape UpperCAmelCase_ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCamelCase ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCamelCase ) def _lowercase (self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _lowercase (self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ): UpperCAmelCase_ = TFBlipTextModel(config=_UpperCamelCase ) UpperCAmelCase_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , training=_UpperCamelCase ) UpperCAmelCase_ = model(_UpperCamelCase , training=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase (self : str ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __A ( __A , unittest.TestCase ): a__ : List[Any] = (TFBlipTextModel,) if is_tf_available() else () a__ : Any = False a__ : Optional[Any] = False a__ : str = False def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = BlipTextModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def _lowercase (self : int ): self.config_tester.run_common_tests() def _lowercase (self : Dict ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowercase (self : Any ): pass def _lowercase (self : int ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def _lowercase (self : Optional[int] ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _lowercase (self : Tuple ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _lowercase (self : int ): pass @slow def _lowercase (self : str ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFBlipTextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _lowercase (self : List[str] , __a : Tuple=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase )
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
"""simple docstring""" import requests lowercase__ = """""" # <-- Put your OpenWeatherMap appid here! lowercase__ = """https://api.openweathermap.org/data/2.5/""" def __lowerCamelCase ( __UpperCamelCase = "Chicago" , __UpperCamelCase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "weather" , params=locals() ).json() def __lowerCamelCase ( __UpperCamelCase = "Kolkata, India" , __UpperCamelCase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "forecast" , params=locals() ).json() def __lowerCamelCase ( __UpperCamelCase = 55.68 , __UpperCamelCase = 12.57 , __UpperCamelCase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowercase__ = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
161
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase__ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
161
1
import numpy as np class lowercase__ : def __init__( self : Any ): SCREAMING_SNAKE_CASE__ = (0, 0) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 def __eq__( self : Any , UpperCAmelCase_ : str ): return self.position == cell.position def A_ ( self : str ): print(self.position ) class lowercase__ : def __init__( self : str , UpperCAmelCase_ : List[Any]=(5, 5) ): SCREAMING_SNAKE_CASE__ = np.zeros(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = world_size[0] SCREAMING_SNAKE_CASE__ = world_size[1] def A_ ( self : List[str] ): print(self.w ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] SCREAMING_SNAKE_CASE__ = cell.position[0] SCREAMING_SNAKE_CASE__ = cell.position[1] SCREAMING_SNAKE_CASE__ = [] for n in neughbour_cord: SCREAMING_SNAKE_CASE__ = current_x + n[0] SCREAMING_SNAKE_CASE__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: SCREAMING_SNAKE_CASE__ = Cell() SCREAMING_SNAKE_CASE__ = (x, y) SCREAMING_SNAKE_CASE__ = cell neighbours.append(UpperCAmelCase_ ) return neighbours def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] _open.append(UpperCamelCase_ ) while _open: SCREAMING_SNAKE_CASE__ = np.argmin([n.f for n in _open] ) SCREAMING_SNAKE_CASE__ = _open[min_f] _closed.append(_open.pop(UpperCamelCase_ ) ) if current == goal: break for n in world.get_neigbours(UpperCamelCase_ ): for c in _closed: if c == n: continue SCREAMING_SNAKE_CASE__ = current.g + 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = n.position SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = goal.position SCREAMING_SNAKE_CASE__ = (ya - ya) ** 2 + (xa - xa) ** 2 SCREAMING_SNAKE_CASE__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = [] while current.parent is not None: path.append(current.position ) SCREAMING_SNAKE_CASE__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __snake_case = Gridworld() # Start position and goal __snake_case = Cell() __snake_case = (0, 0) __snake_case = Cell() __snake_case = (4, 4) print(F"""path from {start.position} to {goal.position}""") __snake_case = astar(world, start, goal) # Just for visual reasons. for i in s: __snake_case = 1 print(world.w)
176
import os def _lowercase ( ) -> List[str]: '''simple docstring''' with open(os.path.dirname(UpperCamelCase_ ) + '/p022_names.txt' ) as file: SCREAMING_SNAKE_CASE__ = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE__ = names.replace('"' , '' ).split(',' ) names.sort() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i, name in enumerate(UpperCamelCase_ ): for letter in name: name_score += ord(UpperCamelCase_ ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE__ = 0 return total_score if __name__ == "__main__": print(solution())
176
1
import os import sys __SCREAMING_SNAKE_CASE : int = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __SCREAMING_SNAKE_CASE : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> Dict: '''simple docstring''' return AutoConfig.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModel.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> int: '''simple docstring''' return AutoModel.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> List[Any]: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> Optional[int]: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> Tuple: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> Tuple: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*__lowercase , **__lowercase )
284
def snake_case (__lowercase ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__lowercase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
284
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[Any] = False def a ( self ): super().setUp() snake_case_ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a ( self , snake_case ): snake_case_ = """UNwant\u00E9d,running""" snake_case_ = """unwanted, running""" return input_text, output_text def a ( self ): snake_case_ = self.tokenizer_class(self.vocab_file ) snake_case_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a ( self ): snake_case_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a ( self ): snake_case_ = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a ( self ): snake_case_ = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a ( self ): snake_case_ = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a ( self ): snake_case_ = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a ( self ): snake_case_ = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a ( self ): snake_case_ = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a ( self ): snake_case_ = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a ( self ): snake_case_ = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a ( self ): snake_case_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] snake_case_ = {} for i, token in enumerate(__UpperCAmelCase ): snake_case_ = i snake_case_ = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a ( self ): snake_case_ = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) snake_case_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] snake_case_ = [1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102] snake_case_ = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) snake_case_ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a ( self ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a ( self ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a ( self ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a ( self ): snake_case_ = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) snake_case_ = tokenizer.encode('sequence builders' , add_special_tokens=__UpperCAmelCase ) snake_case_ = tokenizer.encode('multi-sequence build' , add_special_tokens=__UpperCAmelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
285
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowerCAmelCase__ : str = set() # Replace all the whitespace in our sentence lowerCAmelCase__ : Tuple = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCamelCase ) == 26 def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowerCAmelCase__ : Any = [False] * 26 for char in input_str: if char.islower(): lowerCAmelCase__ : Optional[Any] = True elif char.isupper(): lowerCAmelCase__ : Any = True return all(UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" from timeit import timeit lowerCAmelCase__ : Union[str, Any] = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=UpperCamelCase ) ) print(timeit("""is_pangram_faster()""" , setup=UpperCamelCase ) ) print(timeit("""is_pangram_fastest()""" , setup=UpperCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
37
0
import functools def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = len(lowerCamelCase_ ) A__ = len(lowerCamelCase_ ) @functools.cache def min_distance(lowercase_ , lowercase_ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa A__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
358
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if "cls_token" in name: A__ = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: A__ = name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: A__ = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: A__ = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: A__ = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A__ = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: A__ = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: A__ = name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: A__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: A__ = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: A__ = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: A__ = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: A__ = name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: A__ = name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split('''.''' ) A__ = int(key_split[1] ) if "decoder_blocks" in key: A__ = config.decoder_hidden_size A__ = '''decoder.decoder_layers.''' if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = config.hidden_size A__ = '''vit.encoder.layer.''' if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = ViTMAEConfig() if "large" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 elif "huge" in checkpoint_url: A__ = 14 A__ = 1_280 A__ = 5_120 A__ = 32 A__ = 16 A__ = ViTMAEForPreTraining(lowercase_ ) A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' )['''model'''] A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() A__ = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = image_processor(images=lowercase_ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) A__ = model(**lowercase_ ) A__ = outputs.logits if "large" in checkpoint_url: A__ = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: A__ = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: A__ = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase_ , atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
231
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :torch.FloatTensor class lowercase__ ( snake_case__, snake_case__ ): @register_to_config def __init__( self : Optional[int] , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : Tuple[str] = ("DownEncoderBlock2D",) , snake_case__ : Tuple[str] = ("UpDecoderBlock2D",) , snake_case__ : Tuple[int] = (64,) , snake_case__ : int = 1 , snake_case__ : str = "silu" , snake_case__ : int = 3 , snake_case__ : int = 32 , snake_case__ : int = 256 , snake_case__ : int = 32 , snake_case__ : Optional[int] = None , snake_case__ : float = 0.18_215 , snake_case__ : str = "group" , ): super().__init__() # pass init params to Encoder lowerCamelCase_ : List[str] =Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) lowerCamelCase_ : Union[str, Any] =vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase_ : List[Any] =nn.Convad(snake_case__ , snake_case__ , 1 ) lowerCamelCase_ : int =VectorQuantizer(snake_case__ , snake_case__ , beta=0.25 , remap=snake_case__ , sane_index_shape=snake_case__ ) lowerCamelCase_ : int =nn.Convad(snake_case__ , snake_case__ , 1 ) # pass init params to Decoder lowerCamelCase_ : Union[str, Any] =Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , norm_type=snake_case__ , ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : int =self.encoder(snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.quant_conv(snake_case__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=snake_case__ ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = False , snake_case__ : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =self.quantize(snake_case__ ) else: lowerCamelCase_ : List[Any] =h lowerCamelCase_ : List[Any] =self.post_quant_conv(snake_case__ ) lowerCamelCase_ : Dict =self.decoder(snake_case__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : Dict =sample lowerCamelCase_ : Optional[Any] =self.encode(snake_case__ ).latents lowerCamelCase_ : str =self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
144
0
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class _lowerCAmelCase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = jnp.floataa def lowerCAmelCase ( self : str )-> Any: snake_case = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[Any] , __snake_case : int )-> Optional[Any]: snake_case , snake_case , snake_case , snake_case = hidden_states.shape snake_case = jax.image.resize( _a , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) snake_case = self.conv(_a ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = jnp.floataa def lowerCAmelCase ( self : str )-> Optional[Any]: snake_case = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , __snake_case : List[str] )-> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) snake_case = self.conv(_a ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = None snake_case_ = 0.0 snake_case_ = None snake_case_ = jnp.floataa def lowerCAmelCase ( self : List[str] )-> Optional[int]: snake_case = self.in_channels if self.out_channels is None else self.out_channels snake_case = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) snake_case = nn.Conv( _a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) snake_case = nn.Dense(_a , dtype=self.dtype ) snake_case = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) snake_case = nn.Dropout(self.dropout_prob ) snake_case = nn.Conv( _a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) snake_case = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut snake_case = None if use_nin_shortcut: snake_case = nn.Conv( _a , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Tuple=True )-> Tuple: snake_case = hidden_states snake_case = self.norma(_a ) snake_case = nn.swish(_a ) snake_case = self.conva(_a ) snake_case = self.time_emb_proj(nn.swish(_a ) ) snake_case = jnp.expand_dims(jnp.expand_dims(_a , 1 ) , 1 ) snake_case = hidden_states + temb snake_case = self.norma(_a ) snake_case = nn.swish(_a ) snake_case = self.dropout(_a , _a ) snake_case = self.conva(_a ) if self.conv_shortcut is not None: snake_case = self.conv_shortcut(_a ) return hidden_states + residual
371
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: if point: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): for item in point: if not isinstance(_UpperCAmelCase ,(int, float) ): snake_case : str = ( 'Expected a list of numbers as input, found ' f"""{type(_UpperCAmelCase ).__name__}""" ) raise TypeError(_UpperCAmelCase ) else: snake_case : Optional[Any] = f"""Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}""" raise TypeError(_UpperCAmelCase ) else: raise ValueError("""Missing an input""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
124
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
0
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _lowercase = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() ) _lowercase = """|""".join(sys.argv[1:]) _lowercase = re.compile(RF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
229
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self , _lowercase , _lowercase = None , _lowercase = None ): """simple docstring""" super().__init__() _lowerCAmelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowerCAmelCase = torch.zeros(_lowercase , _lowercase ) else: _lowerCAmelCase = None _lowerCAmelCase = torch.nn.Parameter(_lowercase ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : VQModel _lowercase : CLIPTextModel _lowercase : CLIPTokenizer _lowercase : TransformeraDModel _lowercase : LearnedClassifierFreeSamplingEmbeddings _lowercase : VQDiffusionScheduler def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): """simple docstring""" super().__init__() self.register_modules( vqvae=_lowercase , transformer=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = len(_lowercase ) if isinstance(_lowercase , _lowercase ) else 1 # get prompt text embeddings _lowerCAmelCase = self.tokenizer( _lowercase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _lowerCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] _lowerCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowerCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase = prompt_embeds.repeat_interleave(_lowercase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowerCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings _lowerCAmelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(_lowercase , 1 , 1 ) else: _lowerCAmelCase = [""""""] * batch_size _lowerCAmelCase = text_input_ids.shape[-1] _lowerCAmelCase = self.tokenizer( _lowercase , padding="""max_length""" , max_length=_lowercase , truncation=_lowercase , return_tensors="""pt""" , ) _lowerCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowerCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase = negative_prompt_embeds.shape[1] _lowerCAmelCase = negative_prompt_embeds.repeat(1 , _lowercase , 1 ) _lowerCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _lowercase , _lowercase = 100 , _lowercase = 5.0 , _lowercase = 1.0 , _lowercase = 1 , _lowercase = None , _lowercase = None , _lowercase = "pil" , _lowercase = True , _lowercase = None , _lowercase = 1 , ): """simple docstring""" if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = 1 elif isinstance(_lowercase , _lowercase ): _lowerCAmelCase = len(_lowercase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_lowercase )}' ) _lowerCAmelCase = batch_size * num_images_per_prompt _lowerCAmelCase = guidance_scale > 1.0 _lowerCAmelCase = self._encode_prompt(_lowercase , _lowercase , _lowercase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(_lowercase )}.' ) # get the initial completely masked latents unless the user supplied it _lowerCAmelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: _lowerCAmelCase = self.transformer.num_vector_embeds - 1 _lowerCAmelCase = torch.full(_lowercase , _lowercase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) _lowerCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) _lowerCAmelCase = self.scheduler.timesteps.to(self.device ) _lowerCAmelCase = latents for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the sample if we are doing classifier free guidance _lowerCAmelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowerCAmelCase = self.transformer(_lowercase , encoder_hidden_states=_lowercase , timestep=_lowercase ).sample if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase = model_output.chunk(2 ) _lowerCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_lowercase , dim=1 , keepdim=_lowercase ) _lowerCAmelCase = self.truncate(_lowercase , _lowercase ) # remove `log(0)`'s (`-inf`s) _lowerCAmelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowercase , timestep=_lowercase , sample=_lowercase , generator=_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) _lowerCAmelCase = self.vqvae.config.vq_embed_dim _lowerCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowerCAmelCase = self.vqvae.quantize.get_codebook_entry(_lowercase , shape=_lowercase ) _lowerCAmelCase = self.vqvae.decode(_lowercase , force_not_quantize=_lowercase ).sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = torch.sort(_lowercase , 1 , descending=_lowercase ) _lowerCAmelCase = torch.exp(_lowercase ) _lowerCAmelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowerCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , _lowercase ) _lowerCAmelCase = torch.cat((all_true, keep_mask) , dim=1 ) _lowerCAmelCase = keep_mask[:, :-1, :] _lowerCAmelCase = keep_mask.gather(1 , indices.argsort(1 ) ) _lowerCAmelCase = log_p_x_0.clone() _lowerCAmelCase = -torch.inf # -inf = log(0) return rv
229
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __lowerCamelCase : Tuple = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase): UpperCAmelCase__ : str = KandinskyImgaImgPipeline UpperCAmelCase__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] UpperCAmelCase__ : Union[str, Any] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] UpperCAmelCase__ : Union[str, Any] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCAmelCase__ : Any = False @property def lowercase_ ( self :Tuple ) -> Any: '''simple docstring''' return 32 @property def lowercase_ ( self :Optional[int] ) -> str: '''simple docstring''' return 32 @property def lowercase_ ( self :Optional[Any] ) -> str: '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self :Optional[Any] ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return 100 @property def lowercase_ ( self :Tuple ) -> Tuple: '''simple docstring''' __A = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowercase_ ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __A = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) __A = MultilingualCLIP(_A ) __A = text_encoder.eval() return text_encoder @property def lowercase_ ( self :Optional[int] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __A = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __A = UNetaDConditionModel(**_A ) return model @property def lowercase_ ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __A = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self :List[str] ) -> str: '''simple docstring''' __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_unet __A = self.dummy_movq __A = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __A = DDIMScheduler(**_A ) __A = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase_ ( self :Dict , _A :Union[str, Any] , _A :Optional[int]=0 ) -> str: '''simple docstring''' __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image __A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) __A = image.cpu().permute(0 , 2 , 3 , 1 )[0] __A = Image.fromarray(np.uinta(_A ) ).convert('RGB' ).resize((256, 256) ) if str(_A ).startswith('mps' ): __A = torch.manual_seed(_A ) else: __A = torch.Generator(device=_A ).manual_seed(_A ) __A = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowercase_ ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' __A = 'cpu' __A = self.get_dummy_components() __A = self.pipeline_class(**_A ) __A = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __A = pipe(**self.get_dummy_inputs(_A ) ) __A = output.images __A = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __A = image[0, -3:, -3:, -1] __A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __A = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :Union[str, Any] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self :Dict ) -> Optional[int]: '''simple docstring''' __A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) __A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __A = 'A red cartoon frog, 4k' __A = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) __A = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) __A = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) __A = torch.Generator(device='cpu' ).manual_seed(0 ) __A , __A = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __A = pipeline( _A , image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) __A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A )
161
0
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' UpperCamelCase__ = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): UpperCamelCase__ = key.replace('''module.encoder''', '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): UpperCamelCase__ = key.replace('''module.decoder''', '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase__ = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] UpperCamelCase__ = key.replace(F"""patch_embed{idx}""", F"""patch_embeddings.{int(UpperCamelCase__ )-1}""" ) if "norm" in key: UpperCamelCase__ = key.replace('''norm''', '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase__ = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] UpperCamelCase__ = key.replace(F"""layer_norm{idx}""", F"""layer_norm.{int(UpperCamelCase__ )-1}""" ) if "layer_norm1" in key: UpperCamelCase__ = key.replace('''layer_norm1''', '''layer_norm_1''' ) if "layer_norm2" in key: UpperCamelCase__ = key.replace('''layer_norm2''', '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase__ = key[key.find('''block''' ) + len('''block''' )] UpperCamelCase__ = key.replace(F"""block{idx}""", F"""block.{int(UpperCamelCase__ )-1}""" ) if "attn.q" in key: UpperCamelCase__ = key.replace('''attn.q''', '''attention.self.query''' ) if "attn.proj" in key: UpperCamelCase__ = key.replace('''attn.proj''', '''attention.output.dense''' ) if "attn" in key: UpperCamelCase__ = key.replace('''attn''', '''attention.self''' ) if "fc1" in key: UpperCamelCase__ = key.replace('''fc1''', '''dense1''' ) if "fc2" in key: UpperCamelCase__ = key.replace('''fc2''', '''dense2''' ) if "linear_pred" in key: UpperCamelCase__ = key.replace('''linear_pred''', '''classifier''' ) if "linear_fuse" in key: UpperCamelCase__ = key.replace('''linear_fuse.conv''', '''linear_fuse''' ) UpperCamelCase__ = key.replace('''linear_fuse.bn''', '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase__ = key[key.find('''linear_c''' ) + len('''linear_c''' )] UpperCamelCase__ = key.replace(F"""linear_c{idx}""", F"""linear_c.{int(UpperCamelCase__ )-1}""" ) if "bot_conv" in key: UpperCamelCase__ = key.replace('''bot_conv''', '''0.convolution''' ) if "skip_conv1" in key: UpperCamelCase__ = key.replace('''skip_conv1''', '''1.convolution''' ) if "skip_conv2" in key: UpperCamelCase__ = key.replace('''skip_conv2''', '''2.convolution''' ) if "fusion1" in key: UpperCamelCase__ = key.replace('''fusion1''', '''1.fusion''' ) if "fusion2" in key: UpperCamelCase__ = key.replace('''fusion2''', '''2.fusion''' ) if "fusion3" in key: UpperCamelCase__ = key.replace('''fusion3''', '''3.fusion''' ) if "fusion" in key and "conv" in key: UpperCamelCase__ = key.replace('''conv''', '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): UpperCamelCase__ = key.replace('''module.last_layer_depth''', '''head.head''' ) UpperCamelCase__ = value return new_state_dict def lowerCamelCase_ ( UpperCamelCase__ : Any, UpperCamelCase__ : str ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase__ = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) UpperCamelCase__ = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict UpperCamelCase__ = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase__ = kv_bias[: config.hidden_sizes[i]] UpperCamelCase__ = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase__ = kv_bias[config.hidden_sizes[i] :] def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ = Image.open(requests.get(UpperCamelCase__, stream=UpperCamelCase__ ).raw ) return image @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int]=False, UpperCamelCase__ : List[Any]=None ): '''simple docstring''' UpperCamelCase__ = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) UpperCamelCase__ = GLPNImageProcessor() # prepare image UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=UpperCamelCase__, return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict UpperCamelCase__ = torch.load(UpperCamelCase__, map_location=torch.device('''cpu''' ) ) # rename keys UpperCamelCase__ = rename_keys(UpperCamelCase__ ) # key and value matrices need special treatment read_in_k_v(UpperCamelCase__, UpperCamelCase__ ) # create HuggingFace model and load state dict UpperCamelCase__ = GLPNForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # forward pass UpperCamelCase__ = model(UpperCamelCase__ ) UpperCamelCase__ = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCamelCase__ = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCamelCase__ = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCamelCase__ = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], UpperCamelCase__, atol=1e-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__, UpperCamelCase__ ), organization='''nielsr''', commit_message='''Add model''', use_temp_dir=UpperCamelCase__, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__, UpperCamelCase__ ), organization='''nielsr''', commit_message='''Add image processor''', use_temp_dir=UpperCamelCase__, ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) lowercase = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
354
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowercase = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ lowercase = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ lowercase = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple ): '''simple docstring''' return float((preds == labels).mean() ) def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : Dict ): '''simple docstring''' UpperCamelCase__ = simple_accuracy(UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = float(fa_score(y_true=UpperCamelCase__, y_pred=UpperCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = np.array(UpperCamelCase__ ) UpperCamelCase__ = np.array(UpperCamelCase__ ) UpperCamelCase__ = en_sentvecs.shape[0] # mean centering UpperCamelCase__ = en_sentvecs - np.mean(UpperCamelCase__, axis=0 ) UpperCamelCase__ = in_sentvecs - np.mean(UpperCamelCase__, axis=0 ) UpperCamelCase__ = cdist(UpperCamelCase__, UpperCamelCase__, '''cosine''' ) UpperCamelCase__ = np.array(range(UpperCamelCase__ ) ) UpperCamelCase__ = sim.argsort(axis=1 )[:, :10] UpperCamelCase__ = np.any(preds == actual[:, None], axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def A_ ( self : Optional[Any] ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def A_ ( self : str , _a : Dict , _a : Tuple ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_a , _a )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_a , _a ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
35
0
from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCamelCase__ : str = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
225
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase__ : str = 'pytorch_model.bin' lowerCamelCase__ : int = 'pytorch_model.bin.index.json' lowerCamelCase__ : List[Any] = 'adapter_config.json' lowerCamelCase__ : Optional[int] = 'adapter_model.bin' lowerCamelCase__ : Dict = 'adapter_model.safetensors' lowerCamelCase__ : List[str] = 'tf_model.h5' lowerCamelCase__ : Tuple = 'tf_model.h5.index.json' lowerCamelCase__ : Optional[int] = 'model.ckpt' lowerCamelCase__ : Any = 'flax_model.msgpack' lowerCamelCase__ : List[Any] = 'flax_model.msgpack.index.json' lowerCamelCase__ : int = 'model.safetensors' lowerCamelCase__ : str = 'model.safetensors.index.json' lowerCamelCase__ : Union[str, Any] = 'config.json' lowerCamelCase__ : List[Any] = 'preprocessor_config.json' lowerCamelCase__ : Optional[int] = FEATURE_EXTRACTOR_NAME lowerCamelCase__ : Any = 'generation_config.json' lowerCamelCase__ : Any = 'modelcard.json' lowerCamelCase__ : List[str] = '▁' lowerCamelCase__ : Union[str, Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase__ : Optional[int] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase__ : str = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase__ : Dict = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> int: if version.parse(__UpperCAmelCase ) < version.parse(__UpperCAmelCase ): if "dev" in min_version: SCREAMING_SNAKE_CASE_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: SCREAMING_SNAKE_CASE_ = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
225
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any ) -> str: __lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , 'tf_padding' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , 'depth_multiplier' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : int=0.25 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Tuple=1_0_2_4 , lowerCAmelCase_ : int=3_2 , lowerCAmelCase_ : Optional[int]="relu6" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : Union[str, Any]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = depth_multiplier __lowerCAmelCase = min_depth __lowerCAmelCase = tf_padding __lowerCAmelCase = int(last_hidden_size * depth_multiplier ) __lowerCAmelCase = output_stride __lowerCAmelCase = hidden_act __lowerCAmelCase = classifier_dropout_prob __lowerCAmelCase = use_labels __lowerCAmelCase = is_training __lowerCAmelCase = num_labels __lowerCAmelCase = initializer_range __lowerCAmelCase = scope def lowercase ( self : List[str] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase ( self : Optional[int] ) -> Tuple: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MobileNetVaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MobileNetVaForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () a_ = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[Any] ) -> Any: __lowerCAmelCase = MobileNetVaModelTester(self ) __lowerCAmelCase = MobileNetVaConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def lowercase ( self : Dict ) -> Dict: pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def lowercase ( self : Any ) -> List[Any]: pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def lowercase ( self : Union[str, Any] ) -> List[Any]: pass def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Dict: def check_hidden_states_output(lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = 2_6 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Any ) -> str: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MobileNetVaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Any ) -> Optional[Any]: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def lowercase ( self : Optional[int] ) -> List[str]: __lowerCAmelCase = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
359
from functools import lru_cache @lru_cache def a_ ( lowerCAmelCase_ : int ): if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
207
0
'''simple docstring''' from __future__ import annotations def _A ( A__ ): """simple docstring""" __lowercase = 2 __lowercase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(A__ ) if n > 1: factors.append(A__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
104
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('''https://huggingface.co''' )
104
1
'''simple docstring''' import copy import re class a__ : """simple docstring""" __UpperCamelCase : Union[str, Any] = 'hp' __UpperCamelCase : Any = {} __UpperCamelCase : List[str] = None @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = prefix __lowerCAmelCase = defaults cls.build_naming_info() @staticmethod def _snake_case (__lowercase , __lowercase ): if len(__lowercase ) == 0: return "" __lowerCAmelCase = None if any(char.isdigit() for char in word ): raise Exception(F"""Parameters should not contain numbers: '{word}' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__lowercase ) + 1 ): __lowerCAmelCase = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __lowerCAmelCase = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__lowercase ): __lowerCAmelCase = '''''' while integer != 0: __lowerCAmelCase = chr(ord('''A''' ) + integer % 10 ) + s integer //= 10 return s __lowerCAmelCase = 0 while True: __lowerCAmelCase = word + '''#''' + int_to_alphabetic(__lowercase ) if sword in info["reverse_short_word"]: continue else: __lowerCAmelCase = sword break __lowerCAmelCase = short_word __lowerCAmelCase = word return short_word @staticmethod def _snake_case (__lowercase , __lowercase ): __lowerCAmelCase = param_name.split('''_''' ) __lowerCAmelCase = [TrialShortNamer.shortname_for_word(__lowercase , __lowercase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __lowerCAmelCase = ['''''', '''_'''] for separator in separators: __lowerCAmelCase = separator.join(__lowercase ) if shortname not in info["reverse_short_param"]: __lowerCAmelCase = shortname __lowerCAmelCase = param_name return shortname return param_name @staticmethod def _snake_case (__lowercase , __lowercase ): __lowerCAmelCase = TrialShortNamer.shortname_for_key(__lowercase , __lowercase ) __lowerCAmelCase = short_name __lowerCAmelCase = param_name @classmethod def _snake_case (cls ): if cls.NAMING_INFO is not None: return __lowerCAmelCase = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } __lowerCAmelCase = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__lowercase , __lowercase ) __lowerCAmelCase = info @classmethod def _snake_case (cls , __lowercase ): cls.build_naming_info() assert cls.PREFIX is not None __lowerCAmelCase = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __lowerCAmelCase = cls.NAMING_INFO['''short_param'''][k] if isinstance(__lowercase , __lowercase ): __lowerCAmelCase = 1 if v else 0 __lowerCAmelCase = '''''' if isinstance(__lowercase , (int, float) ) else '''-''' __lowerCAmelCase = F"""{key}{sep}{v}""" name.append(__lowercase ) return "_".join(__lowercase ) @classmethod def _snake_case (cls , __lowercase ): __lowerCAmelCase = repr[len(cls.PREFIX ) + 1 :] if repr == "": __lowerCAmelCase = [] else: __lowerCAmelCase = repr.split('''_''' ) __lowerCAmelCase = {} for value in values: if "-" in value: __lowerCAmelCase , __lowerCAmelCase = value.split('''-''' ) else: __lowerCAmelCase = re.sub('''[0-9.]''' , '''''' , __lowercase ) __lowerCAmelCase = float(re.sub('''[^0-9.]''' , '''''' , __lowercase ) ) __lowerCAmelCase = cls.NAMING_INFO['''reverse_short_param'''][p_k] __lowerCAmelCase = p_v for k in cls.DEFAULTS: if k not in parameters: __lowerCAmelCase = cls.DEFAULTS[k] return parameters
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
'''simple docstring''' def __lowerCamelCase ( A__ = 10**9 ) -> int: """simple docstring""" UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCamelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
28
from sklearn.metrics import fa_score import datasets A : Any = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' A : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' A : List[Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A (datasets.Metric ): '''simple docstring''' def a_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def a_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Any="binary" , __lowerCAmelCase : Optional[int]=None ) -> List[Any]: """simple docstring""" A__ = fa_score( __lowerCAmelCase , __lowerCAmelCase , labels=__lowerCAmelCase , pos_label=__lowerCAmelCase , average=__lowerCAmelCase , sample_weight=__lowerCAmelCase ) return {"f1": float(__lowerCAmelCase ) if score.size == 1 else score}
274
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) set_seed(770) __A : List[str] = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } __A : Dict = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } __A : Dict = os.path.dirname(os.path.abspath(__file__)) __A : List[str] = os.path.join(os.path.expanduser('''~'''), '''.cache''') __A : Optional[Any] = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[str] = model_type if use_small: key += "_small" return os.path.join(_UpperCAmelCase, REMOTE_MODEL_PATHS[key]['file_name'] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' os.makedirs(_UpperCAmelCase, exist_ok=_UpperCAmelCase ) hf_hub_download(repo_id=_UpperCAmelCase, filename=_UpperCAmelCase, local_dir=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase="text" ) -> Optional[int]: '''simple docstring''' if model_type == "text": lowerCAmelCase : Optional[Any] = BarkSemanticModel lowerCAmelCase : List[Any] = BarkSemanticConfig lowerCAmelCase : str = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase : Optional[Any] = BarkCoarseModel lowerCAmelCase : List[str] = BarkCoarseConfig lowerCAmelCase : List[str] = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase : int = BarkFineModel lowerCAmelCase : List[str] = BarkFineConfig lowerCAmelCase : List[Any] = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase : Optional[Any] = f"{model_type}_small" if use_small else model_type lowerCAmelCase : Union[str, Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_UpperCAmelCase ): logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['repo_id'], model_info['file_name'] ) lowerCAmelCase : Union[str, Any] = torch.load(_UpperCAmelCase, map_location=_UpperCAmelCase ) # this is a hack lowerCAmelCase : Any = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowerCAmelCase : Union[str, Any] = model_args['vocab_size'] lowerCAmelCase : List[Any] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase : Dict = model_args.pop('n_head' ) lowerCAmelCase : Tuple = model_args.pop('n_embd' ) lowerCAmelCase : Union[str, Any] = model_args.pop('n_layer' ) lowerCAmelCase : List[str] = ConfigClass(**checkpoint['model_args'] ) lowerCAmelCase : List[str] = ModelClass(config=_UpperCAmelCase ) lowerCAmelCase : List[str] = GenerationConfigClass() lowerCAmelCase : List[str] = model_generation_config lowerCAmelCase : Union[str, Any] = checkpoint['model'] # fixup checkpoint lowerCAmelCase : Tuple = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(_UpperCAmelCase ): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase : str = k[len(_UpperCAmelCase ) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase : int = new_k.replace(_UpperCAmelCase, new_layer_name_dict[old_layer_name] ) lowerCAmelCase : List[str] = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase : Tuple = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCAmelCase : Dict = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowerCAmelCase : Tuple = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCAmelCase : Optional[Any] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(_UpperCAmelCase ) != 0: raise ValueError(f"extra keys found: {extra_keys}" ) if len(_UpperCAmelCase ) != 0: raise ValueError(f"missing keys: {missing_keys}" ) model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase ) lowerCAmelCase : List[Any] = model.num_parameters(exclude_embeddings=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = checkpoint['best_val_loss'].item() logger.info(f"model loaded: {round(n_params/1e6, 1 )}M params, {round(_UpperCAmelCase, 3 )} loss" ) model.eval() model.to(_UpperCAmelCase ) del checkpoint, state_dict return model def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase="text" ) -> Any: '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase : Tuple = 'cpu' # do conversion on cpu lowerCAmelCase : Optional[Any] = _get_ckpt_path(_UpperCAmelCase, use_small=_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = _load_model(_UpperCAmelCase, _UpperCAmelCase, model_type=_UpperCAmelCase, use_small=_UpperCAmelCase ) # load bark initial model lowerCAmelCase : Any = _bark_load_model(_UpperCAmelCase, 'cpu', model_type=_UpperCAmelCase, use_small=_UpperCAmelCase ) if model_type == "text": lowerCAmelCase : str = bark_model['model'] if model.num_parameters(exclude_embeddings=_UpperCAmelCase ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowerCAmelCase : Optional[int] = 5 lowerCAmelCase : Tuple = 10 if model_type in ["text", "coarse"]: lowerCAmelCase : str = torch.randint(256, (batch_size, sequence_length), dtype=torch.int ) lowerCAmelCase : Any = bark_model(_UpperCAmelCase )[0] lowerCAmelCase : Tuple = model(_UpperCAmelCase ) # take last logits lowerCAmelCase : Tuple = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase : Union[str, Any] = 3 lowerCAmelCase : Dict = 8 lowerCAmelCase : Dict = torch.randint(256, (batch_size, sequence_length, n_codes_total), dtype=torch.int ) lowerCAmelCase : int = model(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : str = bark_model(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : Dict = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> List[Any]: '''simple docstring''' lowerCAmelCase : str = os.path.join(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : int = BarkSemanticConfig.from_pretrained(os.path.join(_UpperCAmelCase, 'config.json' ) ) lowerCAmelCase : Optional[int] = BarkCoarseConfig.from_pretrained(os.path.join(_UpperCAmelCase, 'config.json' ) ) lowerCAmelCase : str = BarkFineConfig.from_pretrained(os.path.join(_UpperCAmelCase, 'config.json' ) ) lowerCAmelCase : Union[str, Any] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase : Union[str, Any] = BarkSemanticModel.from_pretrained(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = BarkCoarseModel.from_pretrained(_UpperCAmelCase ) lowerCAmelCase : Any = BarkFineModel.from_pretrained(_UpperCAmelCase ) lowerCAmelCase : Dict = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase : Union[str, Any] = BarkConfig.from_sub_model_configs( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : Optional[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config, coarseAcoustic.generation_config, fineAcoustic.generation_config ) lowerCAmelCase : List[str] = BarkModel(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = semantic lowerCAmelCase : Optional[Any] = coarseAcoustic lowerCAmelCase : int = fineAcoustic lowerCAmelCase : Any = codec lowerCAmelCase : Any = bark_generation_config Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) bark.save_pretrained(_UpperCAmelCase, repo_id=_UpperCAmelCase, push_to_hub=_UpperCAmelCase ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') __A : Any = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
'''simple docstring''' import math from datetime import datetime, timedelta def a ( __a ) -> datetime: '''simple docstring''' UpperCamelCase__ :Tuple = year % 19 UpperCamelCase__ :Optional[Any] = year % 4 UpperCamelCase__ :Dict = year % 7 UpperCamelCase__ :Union[str, Any] = math.floor(year / 100 ) UpperCamelCase__ :List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCamelCase__ :List[str] = leap_day_inhibits / 4 UpperCamelCase__ :Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase__ :List[str] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase__ :List[Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase__ :Optional[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 18 ) else: return datetime(__a , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): __snake_case = '''will be''' if year > datetime.now().year else '''was''' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
97
'''simple docstring''' def a ( __a , __a ) -> int: '''simple docstring''' if len(__a ) != len(__a ): raise ValueError('''String lengths must match!''' ) UpperCamelCase__ :Union[str, Any] = 0 for chara, chara in zip(__a , __a ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
97
1
"""simple docstring""" import gc import threading import time import psutil import torch class lowerCAmelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = psutil.Process() SCREAMING_SNAKE_CASE = False def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = -1 while True: SCREAMING_SNAKE_CASE = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = threading.Thread(target=self.peak_monitor ) SCREAMING_SNAKE_CASE = True self.thread.start() def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = False self.thread.join() return self.cpu_memory_peak __UpperCamelCase = PeakCPUMemory() def lowercase () -> Optional[int]: # Time SCREAMING_SNAKE_CASE = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE = torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) torch.cuda.reset_peak_memory_stats() return measures def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: # Time SCREAMING_SNAKE_CASE = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 SCREAMING_SNAKE_CASE = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE = (torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20 SCREAMING_SNAKE_CASE = (torch.cuda.max_memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20 return measures def lowercase (SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(SCREAMING_SNAKE_CASE_ )]:.2f}MiB' ) SCREAMING_SNAKE_CASE = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
38
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) if "model" in sd.keys(): SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['model'] # pop unnecessary weights SCREAMING_SNAKE_CASE = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: SCREAMING_SNAKE_CASE = sd.pop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V SCREAMING_SNAKE_CASE = key.replace('.qkv_proj.' , '.q_proj.' ) SCREAMING_SNAKE_CASE = key.replace('.qkv_proj.' , '.k_proj.' ) SCREAMING_SNAKE_CASE = key.replace('.qkv_proj.' , '.v_proj.' ) SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.split(SCREAMING_SNAKE_CASE_ , depth // 3 , dim=0 ) SCREAMING_SNAKE_CASE = q SCREAMING_SNAKE_CASE = k SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int]=None ) -> List[Any]: SCREAMING_SNAKE_CASE = load_checkpoint(SCREAMING_SNAKE_CASE_ ) if config is not None: SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = OPTConfig() SCREAMING_SNAKE_CASE = OPTModel(SCREAMING_SNAKE_CASE_ ).half().eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check results Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __UpperCamelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
38
1
def lowerCamelCase_ ( ) -> Dict: """simple docstring""" return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowercase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
90
from queue import PriorityQueue from typing import Any import numpy as np def UpperCamelCase ( __lowercase : dict ,__lowercase : str ,__lowercase : set ,__lowercase : set ,__lowercase : dict ,__lowercase : dict ,__lowercase : PriorityQueue ,__lowercase : dict ,__lowercase : float | int ,): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue A_ : List[str] = cst_fwd.get(__lowercase ,np.inf ) A_ : Any = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ : Any = new_cost_f A_ : Optional[int] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ : str = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCamelCase ( __lowercase : str ,__lowercase : str ,__lowercase : dict ,__lowercase : dict ): '''simple docstring''' A_ : List[str] = -1 A_ : List[Any] = set() A_ : Union[str, Any] = set() A_ : int = {source: 0} A_ : List[Any] = {destination: 0} A_ : Dict = {source: None} A_ : Optional[int] = {destination: None} A_ : PriorityQueue[Any] = PriorityQueue() A_ : PriorityQueue[Any] = PriorityQueue() A_ : Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ : List[str] = queue_forward.get() visited_forward.add(__lowercase ) A_ , A_ : Union[str, Any] = queue_backward.get() visited_backward.add(__lowercase ) A_ : int = pass_and_relaxation( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,) A_ : str = pass_and_relaxation( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ : int = shortest_distance return shortest_path_distance _UpperCAmelCase = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } _UpperCAmelCase = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
140
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : str = {'vocab_file': 'sentencepiece.model'} snake_case_ : Any = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } snake_case_ : List[str] = { 'google/rembert': 256, } class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Dict=False ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : List[Any]="[CLS]" ,lowerCamelCase__ : List[str]="[SEP]" ,lowerCamelCase__ : Union[str, Any]="[UNK]" ,lowerCamelCase__ : List[Any]="[SEP]" ,lowerCamelCase__ : Dict="[PAD]" ,lowerCamelCase__ : List[Any]="[CLS]" ,lowerCamelCase__ : List[Any]="[MASK]" ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' super().__init__( do_lower_case=lowerCamelCase__ ,remove_space=lowerCamelCase__ ,keep_accents=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,**lowerCamelCase__ ,) _UpperCamelCase : List[str] = do_lower_case _UpperCamelCase : List[Any] = remove_space _UpperCamelCase : Optional[Any] = keep_accents _UpperCamelCase : str = vocab_file _UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor() self.sp_model.Load(lowerCamelCase__ ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : str = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.__dict__.copy() _UpperCamelCase : Any = None return state def __setstate__( self : List[str] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : int = d _UpperCamelCase : List[str] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : int=False ): '''simple docstring''' _UpperCamelCase : Dict = self.sp_model.EncodeAsPieces(lowerCamelCase__ ) return pieces def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.sp_model.decode_pieces(lowerCamelCase__ ) return out_string def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Dict = [self.sep_token_id] _UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCamelCase__ ) ) return _UpperCamelCase : List[Any] = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file ,lowerCamelCase__ ) return (out_vocab_file,)
236
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # Initialise PyTorch model _UpperCamelCase : Any = LxmertConfig.from_json_file(UpperCAmelCase_ ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCamelCase : int = LxmertForPreTraining(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
236
1
"""simple docstring""" __UpperCAmelCase = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __UpperCAmelCase = [{'type': 'code', 'content': INSTALL_CONTENT}] __UpperCAmelCase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
84
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
84
1
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml UpperCAmelCase__ = NewType('DataClass', Any) UpperCAmelCase__ = NewType('DataClassType', Any) def _UpperCAmelCase ( __lowerCamelCase : int ) -> int: if isinstance(__lowerCamelCase , __lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def _UpperCAmelCase ( __lowerCamelCase : list ) -> Callable[[str], Any]: _snake_case = {str(__lowerCamelCase ): choice for choice in choices} return lambda __lowerCamelCase : str_to_choice.get(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( *, __lowerCamelCase : Union[str, List[str]] = None , __lowerCamelCase : str = None , __lowerCamelCase : Any = dataclasses.MISSING , __lowerCamelCase : Callable[[], Any] = dataclasses.MISSING , __lowerCamelCase : dict = None , **__lowerCamelCase : str , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _snake_case = {} if aliases is not None: _snake_case = aliases if help is not None: _snake_case = help return dataclasses.field(metadata=__lowerCamelCase , default=__lowerCamelCase , default_factory=__lowerCamelCase , **__lowerCamelCase ) class lowerCAmelCase__ ( A_ ): __a = 42 def __init__( self : Any , _lowerCamelCase : Union[DataClassType, Iterable[DataClassType]] , **_lowerCamelCase : List[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: _snake_case = ArgumentDefaultsHelpFormatter super().__init__(**_lowerCamelCase ) if dataclasses.is_dataclass(_lowerCamelCase ): _snake_case = [dataclass_types] _snake_case = list(_lowerCamelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_lowerCamelCase ) @staticmethod def lowercase ( _lowerCamelCase : ArgumentParser , _lowerCamelCase : dataclasses.Field ): _snake_case = f'''--{field.name}''' _snake_case = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _lowerCamelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) _snake_case = kwargs.pop('''aliases''' , [] ) if isinstance(_lowerCamelCase , _lowerCamelCase ): _snake_case = [aliases] _snake_case = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(_lowerCamelCase , '''UnionType''' ) and isinstance(_lowerCamelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_lowerCamelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f''' Problem encountered in field \'{field.name}\'.''' ) if type(_lowerCamelCase ) not in field.type.__args__: # filter `str` in Union _snake_case = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _snake_case = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _snake_case = ( field.type.__args__[0] if isinstance(_lowerCamelCase , field.type.__args__[1] ) else field.type.__args__[1] ) _snake_case = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _snake_case = {} if origin_type is Literal or (isinstance(field.type , _lowerCamelCase ) and issubclass(field.type , _lowerCamelCase )): if origin_type is Literal: _snake_case = field.type.__args__ else: _snake_case = [x.value for x in field.type] _snake_case = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: _snake_case = field.default else: _snake_case = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _snake_case = copy(_lowerCamelCase ) # Hack because type=bool in argparse does not behave as we want. _snake_case = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _snake_case = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _snake_case = default # This tells argparse we accept 0 or 1 value after --field_name _snake_case = '''?''' # This is the value that will get picked if we do --field_name (without value) _snake_case = True elif isclass(_lowerCamelCase ) and issubclass(_lowerCamelCase , _lowerCamelCase ): _snake_case = field.type.__args__[0] _snake_case = '''+''' if field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() elif field.default is dataclasses.MISSING: _snake_case = True else: _snake_case = field.type if field.default is not dataclasses.MISSING: _snake_case = field.default elif field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() else: _snake_case = True parser.add_argument(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _snake_case = False parser.add_argument(f'''--no_{field.name}''' , action='''store_false''' , dest=field.name , **_lowerCamelCase ) def lowercase ( self : Any , _lowerCamelCase : DataClassType ): if hasattr(_lowerCamelCase , '''_argument_group_name''' ): _snake_case = self.add_argument_group(dtype._argument_group_name ) else: _snake_case = self try: _snake_case = get_type_hints(_lowerCamelCase ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowerCamelCase ): _snake_case = '''.'''.join(map(_lowerCamelCase , sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_lowerCamelCase ): if not field.init: continue _snake_case = type_hints[field.name] self._parse_dataclass_field(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : List[Any] , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Dict=False , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : int=None , _lowerCamelCase : Tuple=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _snake_case = [] if args_filename: args_files.append(Path(_lowerCamelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _snake_case = ArgumentParser() args_file_parser.add_argument(_lowerCamelCase , type=_lowerCamelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) _snake_case , _snake_case = args_file_parser.parse_known_args(args=_lowerCamelCase ) _snake_case = vars(_lowerCamelCase ).get(args_file_flag.lstrip('''-''' ) , _lowerCamelCase ) if cmd_args_file_paths: args_files.extend([Path(_lowerCamelCase ) for p in cmd_args_file_paths] ) _snake_case = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _snake_case = file_args + args if args is not None else file_args + sys.argv[1:] _snake_case , _snake_case = self.parse_known_args(args=_lowerCamelCase ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(_lowerCamelCase ) if f.init} _snake_case = {k: v for k, v in vars(_lowerCamelCase ).items() if k in keys} for k in keys: delattr(_lowerCamelCase , _lowerCamelCase ) _snake_case = dtype(**_lowerCamelCase ) outputs.append(_lowerCamelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_lowerCamelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def lowercase ( self : int , _lowerCamelCase : Dict[str, Any] , _lowerCamelCase : bool = False ): _snake_case = set(args.keys() ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(_lowerCamelCase ) if f.init} _snake_case = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _snake_case = dtype(**_lowerCamelCase ) outputs.append(_lowerCamelCase ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(_lowerCamelCase )}''' ) return tuple(_lowerCamelCase ) def lowercase ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : bool = False ): with open(Path(_lowerCamelCase ) , encoding='''utf-8''' ) as open_json_file: _snake_case = json.loads(open_json_file.read() ) _snake_case = self.parse_dict(_lowerCamelCase , allow_extra_keys=_lowerCamelCase ) return tuple(_lowerCamelCase ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : bool = False ): _snake_case = self.parse_dict(yaml.safe_load(Path(_lowerCamelCase ).read_text() ) , allow_extra_keys=_lowerCamelCase ) return tuple(_lowerCamelCase )
357
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): __a = MODEL_FOR_MASKED_LM_MAPPING __a = TF_MODEL_FOR_MASKED_LM_MAPPING def lowercase ( self : Optional[int] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowercase ( self : Tuple ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 38015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 25506, '''token_str''': ''' accuser'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 38015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 25506, '''token_str''': ''' accuser''', }, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowercase ( self : List[str] ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13606, '''token_str''': ''' Clara'''}, ] , ) _snake_case = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ [ { '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def lowercase ( self : Optional[Any] ): _snake_case = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() _snake_case = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) @slow @require_torch def lowercase ( self : Dict ): _snake_case = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(_lowerCamelCase ) @slow @require_tf def lowercase ( self : Tuple ): _snake_case = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(_lowerCamelCase ) def lowercase ( self : Tuple , _lowerCamelCase : Optional[int] ): _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_0_8, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_0_7, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_5_1, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_1_4, '''token''': 12790, '''token_str''': ''' Lyon''', }, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_0_5, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_0_0, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_0_0, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowercase ( self : str ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) _snake_case = None _snake_case = None self.run_pipeline_test(_lowerCamelCase , [] ) @require_tf def lowercase ( self : Any ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) _snake_case = None _snake_case = None self.run_pipeline_test(_lowerCamelCase , [] ) def lowercase ( self : int , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def lowercase ( self : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] ): _snake_case = fill_masker.tokenizer _snake_case = fill_masker.model _snake_case = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _lowerCamelCase , [ [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], ] , ) with self.assertRaises(_lowerCamelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowerCamelCase ): fill_masker('''This is''' ) self.run_test_top_k(_lowerCamelCase , _lowerCamelCase ) self.run_test_targets(_lowerCamelCase , _lowerCamelCase ) self.run_test_top_k_targets(_lowerCamelCase , _lowerCamelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowerCamelCase , _lowerCamelCase ) self.fill_mask_with_multiple_masks(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): _snake_case = tokenizer.get_vocab() _snake_case = sorted(vocab.keys() )[:2] # Pipeline argument _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase , targets=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowerCamelCase ) _snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowerCamelCase ) ) # Call argument _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowerCamelCase ) _snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowerCamelCase ) ) # Score equivalence _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) _snake_case = [top_mask['''token_str'''] for top_mask in outputs] _snake_case = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCamelCase ) == set(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) _snake_case = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) # Raises with invalid with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets='''''' ) def lowercase ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Tuple ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase , top_k=2 ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : List[str] ): _snake_case = tokenizer.get_vocab() _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) # top_k=2, ntargets=3 _snake_case = sorted(vocab.keys() )[:3] _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_lowerCamelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results _snake_case = [el['''token_str'''] for el in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x["score"] , reverse=_lowerCamelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCamelCase ).issubset(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_lowerCamelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = tokenizer.get_vocab() # String duplicates + id duplicates _snake_case = sorted(vocab.keys() )[:3] _snake_case = [targets[0], targets[1], targets[0], targets[2], targets[1]] _snake_case = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=_lowerCamelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowerCamelCase ) , 3 ) def lowercase ( self : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowerCamelCase , [ [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], ] , )
40
0
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" return "".join(sorted(A ) ) def _SCREAMING_SNAKE_CASE (A ) -> list[str]: """simple docstring""" return word_by_signature[signature(A )] lowerCamelCase : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') lowerCamelCase : List[Any] = sorted({word.strip().lower() for word in data.splitlines()}) lowerCamelCase : List[str] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCamelCase : Any = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
2
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def a ( *_UpperCAmelCase : List[str] ): '''simple docstring''' with open(_UpperCAmelCase , '''r''' ) as fh: fcntl.flock(_UpperCAmelCase , fcntl.LOCK_EX ) try: print(*_UpperCAmelCase ) finally: fcntl.flock(_UpperCAmelCase , fcntl.LOCK_UN ) __A =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __A =torch.device("cuda", local_rank) __A =socket.gethostname() __A =f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __A =dist.get_rank() __A =dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
226
0
"""simple docstring""" import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = [0] __UpperCamelCase = [0] __UpperCamelCase = len(__UpperCAmelCase ) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , 0 ) __UpperCamelCase = [60] __UpperCamelCase = [10] __UpperCamelCase = len(__UpperCAmelCase ) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , 0 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 3 __UpperCamelCase = [1, 2, 3] __UpperCamelCase = [3, 2, 1] __UpperCamelCase = len(__UpperCAmelCase ) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , 5 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 50 __UpperCamelCase = [60, 100, 120] __UpperCamelCase = [10, 20, 30] __UpperCamelCase = len(__UpperCAmelCase ) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , 220 ) if __name__ == "__main__": unittest.main()
368
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A ( ) -> Any: __UpperCamelCase = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 2_0, 'a ' * 3_0, 'b ' * 7], } __UpperCamelCase = Dataset.from_dict(snake_case ) return dataset class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = get_dataset() __UpperCamelCase = make_duplicate_clusters(__UpperCAmelCase , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = get_dataset() __UpperCamelCase , __UpperCamelCase = deduplicate_dataset(__UpperCAmelCase ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) print(__UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , __UpperCAmelCase )
263
0
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = 0 lowerCamelCase_ = 0 while num > 0: lowerCamelCase_ = num % 8 lowerCamelCase_ = octal + (remainder * math.floor(math.pow(10 , UpperCAmelCase_ ) )) counter += 1 lowerCamelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(UpperCAmelCase_ )}''' def __snake_case ( ): print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
55
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase__ ( a , a , a=8 ) -> List[Any]: _A: int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A: str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase__ ( a , a=5_12 , a=5_12 ) -> Dict: _A: Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _A: Tuple = np.array(pil_image.convert('''RGB''' ) ) _A: List[str] = arr.astype(np.floataa ) / 127.5 - 1 _A: Tuple = np.transpose(a , [2, 0, 1] ) _A: Any = torch.from_numpy(a ).unsqueeze(0 ) return image class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , ) _A: List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" # get the original timestep using init_timestep _A: Union[str, Any] = min(int(num_inference_steps * strength ) , lowerCAmelCase_ ) _A: str = max(num_inference_steps - init_timestep , 0 ) _A: str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_ )}""" ) _A: Optional[int] = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _A: Union[str, Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _A: Optional[int] = image else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase_ ) ] _A: Optional[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) else: _A: Optional[int] = self.movq.encode(lowerCAmelCase_ ).latent_dist.sample(lowerCAmelCase_ ) _A: int = self.movq.config.scaling_factor * init_latents _A: Optional[Any] = torch.cat([init_latents] , dim=0 ) _A: Any = init_latents.shape _A: Optional[Any] = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) # get latents _A: Union[str, Any] = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[str] = init_latents return latents def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _A: Any = torch.device(F"""cuda:{gpu_id}""" ) _A: int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Any=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _A: Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowerCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A: int = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A: List[Any] = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_ ) # We'll offload the last model manually. _A: Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __magic_name__ ( self : List[Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_ ) def __call__( self : Optional[Any] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : float = 0.3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Any = self._execution_device _A: Any = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Any = torch.cat(lowerCAmelCase_ , dim=0 ) _A: int = image_embeds.shape[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = torch.cat(lowerCAmelCase_ , dim=0 ) if do_classifier_free_guidance: _A: Any = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) _A: str = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) _A: Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase_ ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[str] = [image] if not all(isinstance(lowerCAmelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(lowerCAmelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _A: List[str] = torch.cat([prepare_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in image] , dim=0 ) _A: Tuple = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase_ ) _A: Optional[Any] = self.movq.encode(lowerCAmelCase_ )['''latents'''] _A: Optional[int] = latents.repeat_interleave(lowerCAmelCase_ , dim=0 ) self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_ ) _A , _A: List[Any] = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: Dict = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _A , _A: Optional[int] = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor ) _A: Any = self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _A: Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A: str = {'''image_embeds''': image_embeds} _A: Optional[int] = self.unet( sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] if do_classifier_free_guidance: _A , _A: str = noise_pred.split(latents.shape[1] , dim=1 ) _A , _A: int = noise_pred.chunk(2 ) _A , _A: int = variance_pred.chunk(2 ) _A: Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A: List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A: Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A: Any = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0] # post-processing _A: Tuple = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _A: int = image * 0.5 + 0.5 _A: Any = image.clamp(0 , 1 ) _A: Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A: Union[str, Any] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
121
0
"""simple docstring""" def A_ ( _lowerCAmelCase : list, _lowerCAmelCase : int = 0 ): """simple docstring""" _a = length or len(_lowerCAmelCase ) _a = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _a , _a = list_data[i + 1], list_data[i] _a = True return list_data if not swapped else bubble_sort(_lowerCAmelCase, length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
153
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=True , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> str: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_multiple_size _a = hidden_act _a = hidden_dropout _a = attention_dropout _a = weight_tying _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Optional[int]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a , _a , _a = self.prepare_config_and_inputs() _a = True return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: _a = GPTNeoXJapaneseModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: _a = True _a = GPTNeoXJapaneseModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _a = True _a = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) _a = output_from_no_past['''hidden_states'''][0] _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : str = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () A_ : Tuple = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () A_ : List[str] = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) A_ : Any = False A_ : Optional[Any] = False A_ : Tuple = False A_ : Optional[int] = False def _UpperCAmelCase ( self ) -> Optional[Any]: _a = GPTNeoXJapaneseModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> str: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: # This regression test was failing with PyTorch < 1.3 _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs_for_decoder() _a = None self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: _a = '''abeja/gpt-neox-japanese-2.7b''' _a = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] _a = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] _a = GPTNeoXJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) _a = GPTNeoXJapaneseForCausalLM.from_pretrained(__UpperCAmelCase ) _a = [] for prompt in prompts: _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' ).input_ids _a = model.generate(__UpperCAmelCase , max_length=50 ) _a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
153
1
import argparse import os from accelerate.test_utils import execute_subprocess_async def _a ( SCREAMING_SNAKE_CASE : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" if subparsers is not None: __lowerCAmelCase: Tuple = subparsers.add_parser('test' ) else: __lowerCAmelCase: List[str] = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=A_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=A_ ) return parser def _a ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase: int = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __lowerCAmelCase: Tuple = script_name else: __lowerCAmelCase: List[Any] = f'''--config_file={args.config_file} {script_name}''' __lowerCAmelCase: Tuple = ['''accelerate-launch'''] + test_args.split() __lowerCAmelCase: List[Any] = execute_subprocess_async(A_ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _a ( ) -> Dict: """simple docstring""" __lowerCAmelCase: Tuple = test_command_parser() __lowerCAmelCase: List[Any] = parser.parse_args() test_command(A_ ) if __name__ == "__main__": main()
322
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCamelCase : Union[str, Any] = TextStreamer(__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCamelCase : int = cs.out[:-1] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : List[str] = tokenizer.decode(greedy_ids[0] ) _lowerCamelCase : Tuple = TextIteratorStreamer(__lowerCAmelCase ) _lowerCamelCase : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _lowerCamelCase : List[Any] = Thread(target=model.generate , kwargs=__lowerCAmelCase ) thread.start() _lowerCamelCase : int = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = greedy_ids[:, input_ids.shape[1] :] _lowerCamelCase : int = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCamelCase : Any = TextStreamer(__lowerCAmelCase , skip_prompt=__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCamelCase : Union[str, Any] = cs.out[:-1] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''distilgpt2''' ) _lowerCamelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = -1 _lowerCamelCase : Any = torch.ones((1, 5) , device=__lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCamelCase : List[Any] = TextStreamer(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCamelCase : Any = cs.out[:-1] # Remove the final "\n" _lowerCamelCase : int = tokenizer(__lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = -1 _lowerCamelCase : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = TextIteratorStreamer(__lowerCAmelCase , timeout=0.0_01 ) _lowerCamelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _lowerCamelCase : List[Any] = Thread(target=model.generate , kwargs=__lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text
72
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=False ): '''simple docstring''' UpperCAmelCase__ = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase__ = """""" else: UpperCAmelCase__ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase__ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ = in_proj_bias[: config.hidden_size] UpperCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ = in_proj_bias[-config.hidden_size :] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = dct.pop(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = val def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict=False ): '''simple docstring''' UpperCAmelCase__ = BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = ViTHybridConfig(backbone_config=SCREAMING_SNAKE_CASE__ , image_size=384 , num_labels=1000 ) UpperCAmelCase__ = False # load original model from timm UpperCAmelCase__ = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase__ = timm_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = create_rename_keys(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = """huggingface/label-files""" UpperCAmelCase__ = """imagenet-1k-id2label.json""" UpperCAmelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": UpperCAmelCase__ = ViTHybridModel(SCREAMING_SNAKE_CASE__ ).eval() else: UpperCAmelCase__ = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # create image processor UpperCAmelCase__ = create_transform(**resolve_data_config({} , model=SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = transform.transforms UpperCAmelCase__ = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } UpperCAmelCase__ = ViTHybridImageProcessor( do_resize=SCREAMING_SNAKE_CASE__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=SCREAMING_SNAKE_CASE__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=SCREAMING_SNAKE_CASE__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = transform(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) UpperCAmelCase__ = processor(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # verify logits with torch.no_grad(): UpperCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: UpperCAmelCase__ = timm_model.forward_features(SCREAMING_SNAKE_CASE__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.pooler_output , atol=1e-3 ) else: UpperCAmelCase__ = timm_model(SCREAMING_SNAKE_CASE__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) UpperCAmelCase_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
61
'''simple docstring''' import os def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = len(grid[0] ) UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(n_rows - 3 ): UpperCAmelCase__ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] UpperCAmelCase__ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: UpperCAmelCase__ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: UpperCAmelCase__ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) UpperCAmelCase__ = max( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if max_product > largest: UpperCAmelCase__ = max_product return largest def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = [] with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) UpperCAmelCase__ = [[int(SCREAMING_SNAKE_CASE__ ) for i in grid[j]] for j in range(len(SCREAMING_SNAKE_CASE__ ) )] return largest_product(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution())
61
1
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> list[float]: lowercase__ , lowercase__ : str = coefficient_matrix.shape lowercase__ , lowercase__ : Any = constant_matrix.shape if rowsa != colsa: lowercase__ : Union[str, Any] = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(__lowerCamelCase ) if colsa != 1: lowercase__ : List[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(__lowerCamelCase ) if rowsa != rowsa: lowercase__ : Dict = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != rowsa: lowercase__ : List[Any] = ( '''Number of initial values must be equal to number of rows in coefficient ''' f"""matrix but received {len(__lowerCamelCase )} and {rowsa}""" ) raise ValueError(__lowerCamelCase ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) lowercase__ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowercase__ , lowercase__ : Dict = table.shape strictly_diagonally_dominant(__lowerCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__lowerCamelCase ): lowercase__ : Optional[Any] = [] for row in range(__lowerCamelCase ): lowercase__ : Optional[int] = 0 for col in range(__lowerCamelCase ): if col == row: lowercase__ : List[Any] = table[row][col] elif col == cols - 1: lowercase__ : List[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowercase__ : Any = (temp + val) / denom new_val.append(__lowerCamelCase ) lowercase__ : int = new_val return [float(__lowerCamelCase ) for i in new_val] def __UpperCAmelCase ( __lowerCamelCase ) -> bool: lowercase__ , lowercase__ : Tuple = table.shape lowercase__ : Dict = True for i in range(0 , __lowerCamelCase ): lowercase__ : List[str] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
1
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() def a ( self : str ): __UpperCAmelCase , __UpperCAmelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=_lowercase , dtype=jnp.bfloataa ) __UpperCAmelCase , __UpperCAmelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=_lowercase , from_pt=_lowercase , dtype=jnp.bfloataa ) __UpperCAmelCase = controlnet_params __UpperCAmelCase = '''bird''' __UpperCAmelCase = jax.device_count() __UpperCAmelCase = pipe.prepare_text_inputs([prompts] * num_samples ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) __UpperCAmelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) __UpperCAmelCase = jax.random.PRNGKey(0 ) __UpperCAmelCase = jax.random.split(_lowercase , jax.device_count() ) __UpperCAmelCase = replicate(_lowercase ) __UpperCAmelCase = shard(_lowercase ) __UpperCAmelCase = shard(_lowercase ) __UpperCAmelCase = pipe( prompt_ids=_lowercase , image=_lowercase , params=_lowercase , prng_seed=_lowercase , num_inference_steps=50 , jit=_lowercase , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) __UpperCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __UpperCAmelCase = images[0, 2_53:2_56, 2_53:2_56, -1] __UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __UpperCAmelCase = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def a ( self : Any ): __UpperCAmelCase , __UpperCAmelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=_lowercase , dtype=jnp.bfloataa ) __UpperCAmelCase , __UpperCAmelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=_lowercase , from_pt=_lowercase , dtype=jnp.bfloataa ) __UpperCAmelCase = controlnet_params __UpperCAmelCase = '''Chef in the kitchen''' __UpperCAmelCase = jax.device_count() __UpperCAmelCase = pipe.prepare_text_inputs([prompts] * num_samples ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) __UpperCAmelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) __UpperCAmelCase = jax.random.PRNGKey(0 ) __UpperCAmelCase = jax.random.split(_lowercase , jax.device_count() ) __UpperCAmelCase = replicate(_lowercase ) __UpperCAmelCase = shard(_lowercase ) __UpperCAmelCase = shard(_lowercase ) __UpperCAmelCase = pipe( prompt_ids=_lowercase , image=_lowercase , params=_lowercase , prng_seed=_lowercase , num_inference_steps=50 , jit=_lowercase , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) __UpperCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __UpperCAmelCase = images[0, 2_53:2_56, 2_53:2_56, -1] __UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __UpperCAmelCase = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
86
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : Tuple = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } _lowercase : str = {'allegro/herbert-base-cased': 5_14} _lowercase : Tuple = {} class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Any = PRETRAINED_INIT_CONFIGURATION a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = HerbertTokenizer def __init__( self : List[Any] , _lowercase : Optional[int]=None , _lowercase : int=None , _lowercase : Tuple=None , _lowercase : str="<s>" , _lowercase : List[str]="<unk>" , _lowercase : int="<pad>" , _lowercase : str="<mask>" , _lowercase : List[Any]="</s>" , **_lowercase : List[Any] , ): super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sep_token=_lowercase , **_lowercase , ) def a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : str , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
86
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __snake_case ( UpperCAmelCase_ : Optional[int] ): lowerCamelCase_ = filter(lambda UpperCAmelCase_ : p.requires_grad , model.parameters() ) lowerCamelCase_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params a_ : List[str] = logging.getLogger(__name__) def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ): if metric == "rouge2": lowerCamelCase_ = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": lowerCamelCase_ = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": lowerCamelCase_ = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": lowerCamelCase_ = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) lowerCamelCase_ = ModelCheckpoint( dirpath=UpperCAmelCase_ , filename=UpperCAmelCase_ , monitor=F'''val_{metric}''' , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] ): return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=UpperCAmelCase_ , verbose=UpperCAmelCase_ , ) class snake_case ( pl.Callback ): """simple docstring""" def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = {f'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCamelCase ) @rank_zero_only def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=True ): """simple docstring""" logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) lowerCamelCase_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results lowerCamelCase_ = Path(pl_module.hparams.output_dir ) if type_path == "test": lowerCamelCase_ = od / "test_results.txt" lowerCamelCase_ = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowerCamelCase_ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' lowerCamelCase_ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=UpperCamelCase ) generations_file.parent.mkdir(exist_ok=UpperCamelCase ) with open(UpperCamelCase , "a+" ) as writer: for key in sorted(UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue lowerCamelCase_ = metrics[key] if isinstance(UpperCamelCase , torch.Tensor ): lowerCamelCase_ = val.item() lowerCamelCase_ = f'''{key}: {val:.6f}\n''' writer.write(UpperCamelCase ) if not save_generations: return if "preds" in metrics: lowerCamelCase_ = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(UpperCamelCase ) @rank_zero_only def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" try: lowerCamelCase_ = pl_module.model.model.num_parameters() except AttributeError: lowerCamelCase_ = pl_module.model.num_parameters() lowerCamelCase_ = count_trainable_parameters(UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCamelCase , UpperCamelCase , "test" ) @rank_zero_only def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
55
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if len(lowercase ) != 2 or len(a[0] ) != 2 or len(lowercase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) snake_case : int = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[list, list, list, list]: if len(lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) snake_case : Optional[int] = len(lowercase ) snake_case : str = matrix_length // 2 snake_case : int = [[a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase )] snake_case : str = [ [a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase ,lowercase ) ] snake_case : Optional[Any] = [[a[i][j] for j in range(lowercase )] for i in range(lowercase )] snake_case : str = [[a[i][j] for j in range(lowercase )] for i in range(lowercase ,lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[int, int]: return len(lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: print("""\n""".join(str(lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase ) == (2, 2): return default_matrix_multiplication(lowercase ,lowercase ) snake_case , snake_case , snake_case , snake_case : Optional[Any] = split_matrix(lowercase ) snake_case , snake_case , snake_case , snake_case : Any = split_matrix(lowercase ) snake_case : List[Any] = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : List[str] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Tuple = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : str = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : Union[str, Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : int = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : List[Any] = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : str = matrix_addition(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) snake_case : List[str] = matrix_addition(lowercase ,lowercase ) snake_case : Any = matrix_addition(lowercase ,lowercase ) snake_case : List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) # construct the new matrix from our 4 quadrants snake_case : Optional[Any] = [] for i in range(len(lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase )[1] != matrix_dimensions(lowercase )[0]: snake_case : Optional[Any] = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(lowercase ) snake_case : str = matrix_dimensions(lowercase ) snake_case : Optional[Any] = matrix_dimensions(lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case : Dict = max(*lowercase ,*lowercase ) snake_case : Optional[Any] = int(math.pow(2 ,math.ceil(math.loga(lowercase ) ) ) ) snake_case : Any = matrixa snake_case : Optional[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case : Optional[int] = actual_strassen(lowercase ,lowercase ) # Removing the additional zeros for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase : int = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
124
0
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> str: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __A ( self ) -> str: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __A ( self ) -> Any: for model_name in ["bert-base-cased", "bert-large-uncased"]: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ ): return model(**lowerCAmelCase__ ) eval(**lowerCAmelCase__ ).block_until_ready() @slow def __A ( self ) -> int: for model_name in ["roberta-base", "roberta-large"]: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = FlaxRobertaModel.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ ): return model(**lowerCAmelCase__ ) eval(**lowerCAmelCase__ ).block_until_ready() def __A ( self ) -> Union[str, Any]: with self.assertRaisesRegex( lowerCAmelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained('bert-base' ) def __A ( self ) -> str: with self.assertRaisesRegex( lowerCAmelCase__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained(lowerCAmelCase__ , revision='aaaaaa' ) def __A ( self ) -> int: with self.assertRaisesRegex( lowerCAmelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def __A ( self ) -> List[str]: with self.assertRaisesRegex(lowerCAmelCase__ , 'Use `from_pt=True` to load this model' ): SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
38
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = """resnet""" SCREAMING_SNAKE_CASE_ : Tuple = ["""basic""", """bottleneck"""] def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=64 , lowerCAmelCase__=[256, 512, 1_024, 2_048] , lowerCAmelCase__=[3, 4, 6, 3] , lowerCAmelCase__="bottleneck" , lowerCAmelCase__="relu" , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Union[str, Any]: super().__init__(**lowerCAmelCase__ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ['stem'] + [F'stage{idx}' for idx in range(1 , len(lowerCAmelCase__ ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = version.parse("""1.11""" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __A ( self ) -> float: return 1e-3
38
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str = 50 ) -> int: __lowercase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
325
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
91
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __snake_case ( lowerCamelCase_ , lowerCamelCase_ ): @register_to_config def __init__( self : Optional[int] , _lowercase : int = 1_28 , _lowercase : int = 2_56 , _lowercase : float = 20_00.0 , _lowercase : int = 7_68 , _lowercase : int = 12 , _lowercase : int = 12 , _lowercase : int = 64 , _lowercase : int = 20_48 , _lowercase : float = 0.1 , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Sequential( nn.Linear(_lowercase , d_model * 4 , bias=_lowercase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowercase ) , nn.SiLU() , ) SCREAMING_SNAKE_CASE__ = nn.Embedding(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(p=_lowercase ) SCREAMING_SNAKE_CASE__ = nn.ModuleList() for lyr_num in range(_lowercase ): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE__ = DecoderLayer(d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase ) self.decoders.append(_lowercase ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(_lowercase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(p=_lowercase ) SCREAMING_SNAKE_CASE__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) def __a ( self : str , _lowercase : Any , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __a ( self : Optional[int] , _lowercase : int , _lowercase : Tuple , _lowercase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) SCREAMING_SNAKE_CASE__ = self.conditioning_emb(_lowercase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE__ = torch.broadcast_to( torch.arange(_lowercase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) SCREAMING_SNAKE_CASE__ = self.position_encoding(_lowercase ) SCREAMING_SNAKE_CASE__ = self.continuous_inputs_projection(_lowercase ) inputs += position_encodings SCREAMING_SNAKE_CASE__ = self.dropout(_lowercase ) # decoder: No padding present. SCREAMING_SNAKE_CASE__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE__ = [(x, self.encoder_decoder_mask(_lowercase , _lowercase )) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) SCREAMING_SNAKE_CASE__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: SCREAMING_SNAKE_CASE__ = lyr( _lowercase , conditioning_emb=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , )[0] SCREAMING_SNAKE_CASE__ = self.decoder_norm(_lowercase ) SCREAMING_SNAKE_CASE__ = self.post_dropout(_lowercase ) SCREAMING_SNAKE_CASE__ = self.spec_out(_lowercase ) return spec_out class __snake_case ( nn.Module ): def __init__( self : List[str] , _lowercase : str , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : Tuple=1E-6 ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , dropout_rate=_lowercase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , dropout_rate=_lowercase , layer_norm_epsilon=_lowercase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase , layer_norm_epsilon=_lowercase ) ) def __a ( self : List[Any] , _lowercase : int , _lowercase : Union[str, Any]=None , _lowercase : Optional[int]=None , _lowercase : int=None , _lowercase : Tuple=None , _lowercase : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.layer[0]( _lowercase , conditioning_emb=_lowercase , attention_mask=_lowercase , ) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE__ = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) SCREAMING_SNAKE_CASE__ = self.layer[1]( _lowercase , key_value_states=_lowercase , attention_mask=_lowercase , ) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE__ = self.layer[-1](_lowercase , _lowercase ) return (hidden_states,) class __snake_case ( nn.Module ): def __init__( self : List[str] , _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : List[Any] ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = TaLayerNorm(_lowercase ) SCREAMING_SNAKE_CASE__ = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowercase ) SCREAMING_SNAKE_CASE__ = Attention(query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , out_bias=_lowercase , scale_qk=_lowercase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(_lowercase ) def __a ( self : List[str] , _lowercase : Dict , _lowercase : str=None , _lowercase : Tuple=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.layer_norm(_lowercase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE__ = self.FiLMLayer(_lowercase , _lowercase ) # Self-attention block SCREAMING_SNAKE_CASE__ = self.attention(_lowercase ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(_lowercase ) return hidden_states class __snake_case ( nn.Module ): def __init__( self : List[Any] , _lowercase : List[Any] , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : List[Any] ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = Attention(query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , out_bias=_lowercase , scale_qk=_lowercase ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(_lowercase , eps=_lowercase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(_lowercase ) def __a ( self : Union[str, Any] , _lowercase : int , _lowercase : str=None , _lowercase : List[Any]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.layer_norm(_lowercase ) SCREAMING_SNAKE_CASE__ = self.attention( _lowercase , encoder_hidden_states=_lowercase , attention_mask=attention_mask.squeeze(1 ) , ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(_lowercase ) return layer_output class __snake_case ( nn.Module ): def __init__( self : Tuple , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Optional[Any] ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = TaDenseGatedActDense(d_model=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase ) SCREAMING_SNAKE_CASE__ = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowercase ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(_lowercase , eps=_lowercase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(_lowercase ) def __a ( self : Union[str, Any] , _lowercase : int , _lowercase : Any=None ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.layer_norm(_lowercase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE__ = self.film(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = self.DenseReluDense(_lowercase ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(_lowercase ) return hidden_states class __snake_case ( nn.Module ): def __init__( self : int , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Tuple ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) SCREAMING_SNAKE_CASE__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) SCREAMING_SNAKE_CASE__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(_lowercase ) SCREAMING_SNAKE_CASE__ = NewGELUActivation() def __a ( self : List[Any] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.act(self.wi_a(_lowercase ) ) SCREAMING_SNAKE_CASE__ = self.wi_a(_lowercase ) SCREAMING_SNAKE_CASE__ = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE__ = self.dropout(_lowercase ) SCREAMING_SNAKE_CASE__ = self.wo(_lowercase ) return hidden_states class __snake_case ( nn.Module ): def __init__( self : Tuple , _lowercase : Any , _lowercase : int=1E-6 ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.ones(_lowercase ) ) SCREAMING_SNAKE_CASE__ = eps def __a ( self : List[str] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowercase ) SCREAMING_SNAKE_CASE__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __snake_case ( nn.Module ): def __a ( self : Union[str, Any] , _lowercase : torch.Tensor ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(_lowercase , 3.0 )) )) class __snake_case ( nn.Module ): def __init__( self : str , _lowercase : Dict , _lowercase : int ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(_lowercase , out_features * 2 , bias=_lowercase ) def __a ( self : Dict , _lowercase : str , _lowercase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scale_bias(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = torch.chunk(_lowercase , 2 , -1 ) SCREAMING_SNAKE_CASE__ = x * (1 + scale) + shift return x
204
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __snake_case : def __init__( self : Any , _lowercase : Tuple , _lowercase : str=2 , _lowercase : List[Any]=3 , _lowercase : Optional[Any]=4 , _lowercase : Optional[Any]=2 , _lowercase : str=7 , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=True , _lowercase : Dict=99 , _lowercase : Dict=36 , _lowercase : Tuple=2 , _lowercase : Optional[int]=4 , _lowercase : int=37 , _lowercase : Tuple="gelu" , _lowercase : Optional[Any]=0.1 , _lowercase : Tuple=0.1 , _lowercase : str=5_12 , _lowercase : Dict=16 , _lowercase : int=2 , _lowercase : int=0.02 , _lowercase : Any=6 , _lowercase : List[Any]=6 , _lowercase : List[Any]=3 , _lowercase : List[Any]=4 , _lowercase : int=None , _lowercase : Optional[int]=10_00 , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = coordinate_size SCREAMING_SNAKE_CASE__ = shape_size SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE__ = text_seq_length SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE__ = self.text_seq_length + self.image_seq_length def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) SCREAMING_SNAKE_CASE__ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE__ = bbox[i, j, 3] SCREAMING_SNAKE_CASE__ = bbox[i, j, 1] SCREAMING_SNAKE_CASE__ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE__ = bbox[i, j, 2] SCREAMING_SNAKE_CASE__ = bbox[i, j, 0] SCREAMING_SNAKE_CASE__ = tmp_coordinate SCREAMING_SNAKE_CASE__ = tf.constant(_lowercase ) SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self : List[str] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : str , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel(config=_lowercase ) # text + image SCREAMING_SNAKE_CASE__ = model(_lowercase , pixel_values=_lowercase , training=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , training=_lowercase , ) SCREAMING_SNAKE_CASE__ = model(_lowercase , bbox=_lowercase , pixel_values=_lowercase , training=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE__ = model(_lowercase , training=_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE__ = model({"""pixel_values""": pixel_values} , training=_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self : int , _lowercase : int , _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForSequenceClassification(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , training=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Any , _lowercase : Dict , _lowercase : Tuple , _lowercase : int , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForTokenClassification(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , training=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self : str , _lowercase : int , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = TFLayoutLMvaForQuestionAnswering(config=_lowercase ) SCREAMING_SNAKE_CASE__ = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , training=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __a ( self : Union[str, Any] , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any] ): """simple docstring""" return True def __a ( self : List[str] , _lowercase : List[Any] , _lowercase : str , _lowercase : str=False ): """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(_lowercase ) if model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = { k: tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_lowercase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowercase ): SCREAMING_SNAKE_CASE__ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(_lowercase ) if getattr(_lowercase , """hf_compute_loss""" , _lowercase ): # The number of elements in the loss should be the same as the number of elements in the label SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_lowercase )[0] ] SCREAMING_SNAKE_CASE__ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = prepared_for_class.pop("""input_ids""" ) SCREAMING_SNAKE_CASE__ = model(_lowercase , **_lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: SCREAMING_SNAKE_CASE__ = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: SCREAMING_SNAKE_CASE__ = -1_00 SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase , **_lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple SCREAMING_SNAKE_CASE__ = self._prepare_for_class(inputs_dict.copy() , _lowercase , return_labels=_lowercase ) # Get keys that were added with the _prepare_for_class function SCREAMING_SNAKE_CASE__ = prepared_for_class.keys() - inputs_dict.keys() SCREAMING_SNAKE_CASE__ = inspect.signature(model.call ).parameters SCREAMING_SNAKE_CASE__ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple SCREAMING_SNAKE_CASE__ = {0: """input_ids"""} for label_key in label_keys: SCREAMING_SNAKE_CASE__ = signature_names.index(_lowercase ) SCREAMING_SNAKE_CASE__ = label_key SCREAMING_SNAKE_CASE__ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple SCREAMING_SNAKE_CASE__ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: SCREAMING_SNAKE_CASE__ = prepared_for_class[value] SCREAMING_SNAKE_CASE__ = tuple(_lowercase ) # Send to model SCREAMING_SNAKE_CASE__ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self : Optional[int] ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : int ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : int ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : str ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) def __a ( self : List[str] ): """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) @slow def __a ( self : Tuple ): """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class __snake_case ( unittest.TestCase ): @cached_property def __a ( self : Optional[int] ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_lowercase ) if is_vision_available() else None @slow def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=_lowercase , return_tensors="""tf""" ).pixel_values SCREAMING_SNAKE_CASE__ = tf.constant([[1, 2]] ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass SCREAMING_SNAKE_CASE__ = model(input_ids=_lowercase , bbox=_lowercase , pixel_values=_lowercase , training=_lowercase ) # verify the logits SCREAMING_SNAKE_CASE__ = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , _lowercase ) SCREAMING_SNAKE_CASE__ = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1E-4 ) )
204
1
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } __lowerCamelCase = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } __lowerCamelCase = { "jukebox": 5_12, } class UpperCamelCase__( __A ): lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : List[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : int = ['input_ids', 'attention_mask'] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=["v3", "v2", "v2"] ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=5 ,__UpperCAmelCase="<|endoftext|>" ,**__UpperCAmelCase ,) -> List[Any]: A__ = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else unk_token super().__init__( unk_token=__UpperCAmelCase ,n_genres=__UpperCAmelCase ,version=__UpperCAmelCase ,max_n_lyric_tokens=__UpperCAmelCase ,**__UpperCAmelCase ,) A__ = version A__ = max_n_lyric_tokens A__ = n_genres with open(__UpperCAmelCase ,encoding='utf-8' ) as vocab_handle: A__ = json.load(__UpperCAmelCase ) with open(__UpperCAmelCase ,encoding='utf-8' ) as vocab_handle: A__ = json.load(__UpperCAmelCase ) with open(__UpperCAmelCase ,encoding='utf-8' ) as vocab_handle: A__ = json.load(__UpperCAmelCase ) A__ = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: A__ = oov.replace(R'\-\'' ,R'\-+\'' ) A__ = regex.compile(__UpperCAmelCase ) A__ = {v: k for k, v in self.artists_encoder.items()} A__ = {v: k for k, v in self.genres_encoder.items()} A__ = {v: k for k, v in self.lyrics_encoder.items()} @property def snake_case__ ( self ) -> Optional[int]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def snake_case__ ( self ) -> Tuple: return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: A__ = [self.artists_encoder.get(__UpperCAmelCase ,0 ) for artist in list_artists] for genres in range(len(__UpperCAmelCase ) ): A__ = [self.genres_encoder.get(__UpperCAmelCase ,0 ) for genre in list_genres[genres]] A__ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) A__ = [[self.lyrics_encoder.get(__UpperCAmelCase ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: return list(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: A__ , A__ , A__ = self.prepare_for_tokenization(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) A__ = self._tokenize(__UpperCAmelCase ) return artist, genre, lyrics def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": A__ = artists[idx].lower() A__ = [genres[idx].lower()] else: A__ = self._normalize(artists[idx] ) + '.v2' A__ = [ self._normalize(__UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": A__ = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) A__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' A__ = {vocab[index]: index + 1 for index in range(len(__UpperCAmelCase ) )} A__ = 0 A__ = len(__UpperCAmelCase ) + 1 A__ = self.vocab A__ = {v: k for k, v in self.vocab.items()} A__ = '' else: A__ = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) A__ = self._run_strip_accents(__UpperCAmelCase ) A__ = lyrics.replace('\\' ,'\n' ) A__ = self.out_of_vocab.sub('' ,__UpperCAmelCase ), [], [] return artists, genres, lyrics def snake_case__ ( self ,__UpperCAmelCase ) -> str: A__ = unicodedata.normalize('NFD' ,__UpperCAmelCase ) A__ = [] for char in text: A__ = unicodedata.category(__UpperCAmelCase ) if cat == "Mn": continue output.append(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> str: A__ = ( [chr(__UpperCAmelCase ) for i in range(ord('a' ) ,ord('z' ) + 1 )] + [chr(__UpperCAmelCase ) for i in range(ord('A' ) ,ord('Z' ) + 1 )] + [chr(__UpperCAmelCase ) for i in range(ord('0' ) ,ord('9' ) + 1 )] + ['.'] ) A__ = frozenset(__UpperCAmelCase ) A__ = re.compile(R'_+' ) A__ = ''.join([c if c in accepted else '_' for c in text.lower()] ) A__ = pattern.sub('_' ,__UpperCAmelCase ).strip('_' ) return text def snake_case__ ( self ,__UpperCAmelCase ) -> str: return " ".join(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> Tuple: # Convert to TensorType if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ): A__ = TensorType(__UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf A__ = tf.constant A__ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch A__ = torch.tensor A__ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 A__ = jnp.array A__ = _is_jax else: A__ = np.asarray A__ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: A__ = [inputs] if not is_tensor(__UpperCAmelCase ): A__ = as_tensor(__UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase="" ,__UpperCAmelCase="pt" ) -> BatchEncoding: A__ = [0, 0, 0] A__ = [artist] * len(self.version ) A__ = [genres] * len(self.version ) A__ , A__ , A__ = self.tokenize(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) A__ , A__ , A__ = self._convert_token_to_id(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) A__ = [-INFINITY] * len(full_tokens[-1] ) A__ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ = os.path.join( __UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(__UpperCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=__UpperCAmelCase ) ) A__ = os.path.join( __UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(__UpperCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=__UpperCAmelCase ) ) A__ = os.path.join( __UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(__UpperCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: A__ = self.artists_decoder.get(__UpperCAmelCase ) A__ = [self.genres_decoder.get(__UpperCAmelCase ) for genre in genres_index] A__ = [self.lyrics_decoder.get(__UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
221
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["ChineseCLIPFeatureExtractor"] __lowerCamelCase = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
221
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : Any = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __UpperCAmelCase : List[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __UpperCAmelCase : List[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class __snake_case ( __UpperCamelCase ): '''simple docstring''' lowerCAmelCase__ = """whisper""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , A : Any=51_865 , A : Optional[int]=80 , A : Union[str, Any]=6 , A : int=4 , A : Tuple=6 , A : Union[str, Any]=4 , A : Any=1_536 , A : Optional[Any]=1_536 , A : Tuple=0.0 , A : Optional[Any]=0.0 , A : List[str]=50_257 , A : int=True , A : str=True , A : Tuple="gelu" , A : Tuple=256 , A : List[str]=0.0 , A : int=0.0 , A : List[Any]=0.0 , A : List[str]=0.02 , A : Tuple=False , A : Union[str, Any]=1_500 , A : Optional[int]=448 , A : Optional[int]=50_256 , A : str=50_256 , A : str=50_256 , A : Union[str, Any]=None , A : List[Any]=[220, 50_256] , A : Optional[Any]=False , A : Any=256 , A : Optional[int]=False , A : Optional[Any]=0.05 , A : int=10 , A : Any=2 , A : Any=0.0 , A : List[Any]=10 , A : Tuple=0 , A : Optional[int]=7 , **A : Union[str, Any] , ): __snake_case: int = vocab_size __snake_case: Optional[Any] = num_mel_bins __snake_case: int = d_model __snake_case: int = encoder_layers __snake_case: int = encoder_attention_heads __snake_case: Any = decoder_layers __snake_case: str = decoder_attention_heads __snake_case: Optional[Any] = decoder_ffn_dim __snake_case: Tuple = encoder_ffn_dim __snake_case: int = dropout __snake_case: Dict = attention_dropout __snake_case: Union[str, Any] = activation_dropout __snake_case: List[Any] = activation_function __snake_case: str = init_std __snake_case: Tuple = encoder_layerdrop __snake_case: List[str] = decoder_layerdrop __snake_case: List[Any] = use_cache __snake_case: Optional[int] = encoder_layers __snake_case: Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case: int = max_source_positions __snake_case: Any = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __snake_case: Optional[int] = classifier_proj_size __snake_case: Dict = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case: List[Any] = apply_spec_augment __snake_case: Any = mask_time_prob __snake_case: Dict = mask_time_length __snake_case: List[Any] = mask_time_min_masks __snake_case: str = mask_feature_prob __snake_case: Dict = mask_feature_length __snake_case: Dict = mask_feature_min_masks __snake_case: Any = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class __snake_case ( __UpperCamelCase ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Any ): __snake_case: List[str] = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: __snake_case: int = {0: """batch"""} else: __snake_case: Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def UpperCAmelCase__ ( self : str , A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , A : int = -1 , A : int = -1 , A : bool = False , A : Optional["TensorType"] = None , A : int = 22_050 , A : float = 5.0 , A : int = 220 , ): __snake_case: Tuple = OrderedDict() __snake_case: List[str] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) __snake_case: Optional[Any] = encoder_inputs["""input_features"""].shape[2] __snake_case: List[str] = encoder_sequence_length // 2 if self.use_past else seq_length __snake_case: Optional[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) __snake_case: int = encoder_inputs.pop("""input_features""" ) __snake_case: Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: __snake_case: Optional[Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def UpperCAmelCase__ ( self : List[Any] ): return 1E-3
356
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __UpperCAmelCase : Tuple = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def A__ ( SCREAMING_SNAKE_CASE__) -> Union[str, Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> str: if args.student_type == "roberta": __snake_case: Optional[Any] = False elif args.student_type == "gpt2": __snake_case: str = False def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: if args.student_type == "roberta": __snake_case: Optional[int] = False def A__ ( ) -> Tuple: __snake_case: Optional[int] = argparse.ArgumentParser(description="""Training""") parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""") parser.add_argument( """--dump_path""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The output directory (log, checkpoints, parameters, etc.)""") parser.add_argument( """--data_file""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=SCREAMING_SNAKE_CASE__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=SCREAMING_SNAKE_CASE__ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""Path to the student configuration.""") parser.add_argument( """--student_pretrained_weights""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Load student initialization checkpoint.""") parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=SCREAMING_SNAKE_CASE__ , help="""Teacher type (BERT, RoBERTa).""") parser.add_argument("""--teacher_name""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The teacher model.""") parser.add_argument("""--temperature""" , default=2.0 , type=SCREAMING_SNAKE_CASE__ , help="""Temperature for the softmax temperature.""") parser.add_argument( """--alpha_ce""" , default=0.5 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight for the distillation loss. Must be >=0.""") parser.add_argument( """--alpha_mlm""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight for the CLM loss. Must be >=0.""") parser.add_argument("""--alpha_mse""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight of the MSE loss. Must be >=0.""") parser.add_argument( """--alpha_cos""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""") parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""") parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens to mask out.""") parser.add_argument("""--word_keep""" , default=0.1 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens to keep.""") parser.add_argument("""--word_rand""" , default=0.1 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens to randomly replace.""") parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=SCREAMING_SNAKE_CASE__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=SCREAMING_SNAKE_CASE__ , help="""The token counts in the data_file for MLM.""") parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=SCREAMING_SNAKE_CASE__ , default=3 , help="""Number of pass on the whole dataset.""") parser.add_argument("""--batch_size""" , type=SCREAMING_SNAKE_CASE__ , default=5 , help="""Batch size (for each process).""") parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE__ , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=SCREAMING_SNAKE_CASE__ , help="""Linear warmup proportion.""") parser.add_argument("""--weight_decay""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Weight decay if we apply some.""") parser.add_argument("""--learning_rate""" , default=5e-4 , type=SCREAMING_SNAKE_CASE__ , help="""The initial learning rate for Adam.""") parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=SCREAMING_SNAKE_CASE__ , help="""Epsilon for Adam optimizer.""") parser.add_argument("""--max_grad_norm""" , default=5.0 , type=SCREAMING_SNAKE_CASE__ , help="""Max gradient norm.""") parser.add_argument("""--initializer_range""" , default=0.02 , type=SCREAMING_SNAKE_CASE__ , help="""Random initialization range.""") parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=SCREAMING_SNAKE_CASE__ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="""Number of GPUs in the node.""") parser.add_argument("""--local_rank""" , type=SCREAMING_SNAKE_CASE__ , default=-1 , help="""Distributed training - Local rank""") parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE__ , default=56 , help="""Random seed""") parser.add_argument("""--log_interval""" , type=SCREAMING_SNAKE_CASE__ , default=500 , help="""Tensorboard logging interval.""") parser.add_argument("""--checkpoint_interval""" , type=SCREAMING_SNAKE_CASE__ , default=4000 , help="""Checkpoint interval.""") __snake_case: List[Any] = parser.parse_args() sanity_checks(SCREAMING_SNAKE_CASE__) # ARGS # init_gpu_params(SCREAMING_SNAKE_CASE__) set_seed(SCREAMING_SNAKE_CASE__) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""") else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''') # SAVE PARAMS # logger.info(F'''Param: {args}''') with open(os.path.join(args.dump_path , """parameters.json""") , """w""") as f: json.dump(vars(SCREAMING_SNAKE_CASE__) , SCREAMING_SNAKE_CASE__ , indent=4) git_log(args.dump_path) __snake_case , __snake_case , __snake_case: str = MODEL_CLASSES[args.student_type] __snake_case , __snake_case , __snake_case: Union[str, Any] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __snake_case: Tuple = teacher_tokenizer_class.from_pretrained(args.teacher_name) __snake_case: str = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __snake_case: List[str] = tokenizer.all_special_tokens.index(SCREAMING_SNAKE_CASE__) __snake_case: Optional[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''') __snake_case: Optional[Any] = special_tok_ids __snake_case: List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file , """rb""") as fp: __snake_case: int = pickle.load(SCREAMING_SNAKE_CASE__) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''') with open(args.token_counts , """rb""") as fp: __snake_case: List[str] = pickle.load(SCREAMING_SNAKE_CASE__) __snake_case: Dict = np.maximum(SCREAMING_SNAKE_CASE__ , 1) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __snake_case: Union[str, Any] = 0.0 # do not predict special tokens __snake_case: Any = torch.from_numpy(SCREAMING_SNAKE_CASE__) else: __snake_case: Any = None __snake_case: Union[str, Any] = LmSeqsDataset(params=SCREAMING_SNAKE_CASE__ , data=SCREAMING_SNAKE_CASE__) logger.info("""Data loader created.""") # STUDENT # logger.info(F'''Loading student config from {args.student_config}''') __snake_case: Tuple = student_config_class.from_pretrained(args.student_config) __snake_case: List[str] = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''') __snake_case: Optional[int] = student_model_class.from_pretrained(args.student_pretrained_weights , config=SCREAMING_SNAKE_CASE__) else: __snake_case: Union[str, Any] = student_model_class(SCREAMING_SNAKE_CASE__) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''') logger.info("""Student loaded.""") # TEACHER # __snake_case: Optional[int] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=SCREAMING_SNAKE_CASE__) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''') logger.info(F'''Teacher loaded from {args.teacher_name}.''') # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if args.freeze_token_type_embds: freeze_token_type_embeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __snake_case: List[str] = Distiller( params=SCREAMING_SNAKE_CASE__ , dataset=SCREAMING_SNAKE_CASE__ , token_probs=SCREAMING_SNAKE_CASE__ , student=SCREAMING_SNAKE_CASE__ , teacher=SCREAMING_SNAKE_CASE__) distiller.train() logger.info("""Let's go get some drinks.""") if __name__ == "__main__": main()
293
0
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) class _snake_case ( lowerCAmelCase_ ): lowerCAmelCase_ : List[str] = 'masked_bert' def __init__( self , a__=30_522 , a__=768 , a__=12 , a__=12 , a__=3_072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=0 , a__="topK" , a__="constant" , a__=0.0 , **a__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = pruning_method snake_case_ = mask_init snake_case_ = mask_scale
85
"""simple docstring""" from math import pow def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,): """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _UpperCAmelCase = int(pow(lowercase ,lowercase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _UpperCAmelCase , _UpperCAmelCase = backtrack( lowercase ,lowercase ,current_number + 1 ,lowercase ,lowercase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _UpperCAmelCase , _UpperCAmelCase = backtrack( lowercase ,lowercase ,current_number + 1 ,lowercase ,lowercase ) return current_sum, solutions_count def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowercase ,lowercase ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
289
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase__ = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''ConvNextFeatureExtractor'''] UpperCamelCase__ = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
299
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : str = 3 UpperCAmelCase__ : str = (32, 32) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Tuple = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : Dict ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : List[str] = (32, 32) UpperCAmelCase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : List[Any] = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (4, 32, 32) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() UpperCAmelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : Union[str, Any] = noise.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_A ) UpperCAmelCase__ : Any = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() UpperCAmelCase__ : Optional[int] = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1e-3 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : str = noise.to(_A ) UpperCAmelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-3 ) ) class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any , _A : str=(32, 32) ): '''simple docstring''' UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : List[str] = self.dummy_input UpperCAmelCase__ : Dict = floats_tensor((4, 3) + (256, 256) ).to(_A ) UpperCAmelCase__ : Optional[Any] = noise UpperCAmelCase__ : Any = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Dict = (256, 256) UpperCAmelCase__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : int = (32, 32) UpperCAmelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : int = model(_A , _A ).sample UpperCAmelCase__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
299
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : List[Any] = """mobilenet_v2""" def __init__( self : str , snake_case_ : List[str]=3 , snake_case_ : Any=2_2_4 , snake_case_ : Union[str, Any]=1.0 , snake_case_ : int=8 , snake_case_ : List[str]=8 , snake_case_ : Dict=6 , snake_case_ : Union[str, Any]=3_2 , snake_case_ : Optional[int]=True , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]="relu6" , snake_case_ : int=True , snake_case_ : Any=0.8 , snake_case_ : List[str]=0.0_2 , snake_case_ : Optional[int]=0.0_0_1 , snake_case_ : Dict=2_5_5 , **snake_case_ : Dict , ): super().__init__(**snake_case_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = depth_multiplier _UpperCAmelCase = depth_divisible_by _UpperCAmelCase = min_depth _UpperCAmelCase = expand_ratio _UpperCAmelCase = output_stride _UpperCAmelCase = first_layer_is_expansion _UpperCAmelCase = finegrained_output _UpperCAmelCase = hidden_act _UpperCAmelCase = tf_padding _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = semantic_loss_ignore_index class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = version.parse("""1.11""" ) @property def lowercase ( self : Optional[int] ): return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase ( self : Union[str, Any] ): if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase ( self : List[Any] ): return 1e-4
22
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :int = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : int = """perceiver""" def __init__( self : Any , snake_case_ : List[Any]=2_5_6 , snake_case_ : str=1_2_8_0 , snake_case_ : Optional[int]=7_6_8 , snake_case_ : int=1 , snake_case_ : List[Any]=2_6 , snake_case_ : Dict=8 , snake_case_ : List[Any]=8 , snake_case_ : Tuple=None , snake_case_ : Tuple=None , snake_case_ : Any="kv" , snake_case_ : Any=1 , snake_case_ : List[str]=1 , snake_case_ : Optional[int]="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : Dict=0.0_2 , snake_case_ : int=1e-12 , snake_case_ : List[str]=True , snake_case_ : str=2_6_2 , snake_case_ : Optional[Any]=2_0_4_8 , snake_case_ : Union[str, Any]=5_6 , snake_case_ : Dict=[3_6_8, 4_9_6] , snake_case_ : Tuple=1_6 , snake_case_ : Union[str, Any]=1_9_2_0 , snake_case_ : List[Any]=1_6 , snake_case_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **snake_case_ : List[Any] , ): super().__init__(**snake_case_ ) _UpperCAmelCase = num_latents _UpperCAmelCase = d_latents _UpperCAmelCase = d_model _UpperCAmelCase = num_blocks _UpperCAmelCase = num_self_attends_per_block _UpperCAmelCase = num_self_attention_heads _UpperCAmelCase = num_cross_attention_heads _UpperCAmelCase = qk_channels _UpperCAmelCase = v_channels _UpperCAmelCase = cross_attention_shape_for_attention _UpperCAmelCase = self_attention_widening_factor _UpperCAmelCase = cross_attention_widening_factor _UpperCAmelCase = hidden_act _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_query_residual # masked language modeling attributes _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings # image classification attributes _UpperCAmelCase = image_size # flow attributes _UpperCAmelCase = train_size # multimodal autoencoding attributes _UpperCAmelCase = num_frames _UpperCAmelCase = audio_samples_per_frame _UpperCAmelCase = samples_per_patch _UpperCAmelCase = output_shape class A_ ( lowerCAmelCase_ ): @property def lowercase ( self : int ): if self.task == "multiple-choice": _UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def lowercase ( self : Optional[Any] ): return 1e-4 def lowercase ( self : List[str] , snake_case_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , snake_case_ : int = 3 , snake_case_ : int = 4_0 , snake_case_ : int = 4_0 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(snake_case_ , snake_case_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = preprocessor.num_special_tokens_to_add(snake_case_ ) _UpperCAmelCase = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [" ".join(["a"] ) * seq_length] * batch_size _UpperCAmelCase = dict(preprocessor(snake_case_ , return_tensors=snake_case_ ) ) _UpperCAmelCase = inputs.pop("input_ids" ) return inputs elif isinstance(snake_case_ , snake_case_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension(snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch ) _UpperCAmelCase = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _UpperCAmelCase = dict(preprocessor(images=snake_case_ , return_tensors=snake_case_ ) ) _UpperCAmelCase = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
364
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "realm" def __init__( self , A_=30522 , A_=768 , A_=128 , A_=12 , A_=12 , A_=8 , A_=3072 , A_="gelu_new" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1E-12 , A_=256 , A_=10 , A_=1E-3 , A_=5 , A_=320 , A_=13353718 , A_=5000 , A_=1 , A_=0 , A_=2 , **A_ , ) -> Dict: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) # Common config __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =hidden_size __UpperCamelCase =retriever_proj_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =num_candidates __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =type_vocab_size __UpperCamelCase =layer_norm_eps # Reader config __UpperCamelCase =span_hidden_size __UpperCamelCase =max_span_width __UpperCamelCase =reader_layer_norm_eps __UpperCamelCase =reader_beam_size __UpperCamelCase =reader_seq_len # Retrieval config __UpperCamelCase =num_block_records __UpperCamelCase =searcher_beam_size
117
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCAmelCase_ : Any = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : torch.nn.Module , __A : BnbQuantizationConfig , __A : Union[str, os.PathLike] = None , __A : Optional[Dict[str, Union[int, str, torch.device]]] = None , __A : Optional[List[str]] = None , __A : Optional[Dict[Union[int, str], Union[int, str]]] = None , __A : Optional[Union[str, os.PathLike]] = None , __A : bool = False , ) -> Dict: """simple docstring""" a_ : Optional[int] = bnb_quantization_config.load_in_abit a_ : Any = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) a_ : List[Any] = [] # custom device map if isinstance(__A , __A ) and len(device_map.keys() ) > 1: a_ : Optional[int] = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: a_ : List[str] = get_keys_to_not_convert(__A ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__A ) a_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: a_ : List[Any] = [] a_ : str = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__A ) # compatibility with peft a_ : Any = load_in_abit a_ : List[Any] = load_in_abit a_ : List[Any] = get_parameter_device(__A ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) a_ : Any = replace_with_bnb_layers(__A , __A , modules_to_not_convert=__A ) # convert param to the right dtype a_ : Union[str, Any] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: a_ : int = name.replace('.weight' , '' ).replace('.bias' , '' ) a_ : int = getattr(__A , __A , __A ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__A ): param.to(__A ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): a_ : List[Any] = replace_with_bnb_layers( __A , __A , modules_to_not_convert=__A ) a_ : Any = get_quantized_model_device_map( __A , __A , __A , max_memory=__A , no_split_module_classes=__A , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): a_ : Dict = True a_ : Any = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( __A , __A , __A , dtype=bnb_quantization_config.torch_dtype , offload_folder=__A , offload_state_dict=__A , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__A , device_map=__A , offload_dir=__A ) def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : Dict , __A : List[Any]=None , __A : Union[str, Any]=None , __A : Optional[Any]=None ) -> str: """simple docstring""" if device_map is None: if torch.cuda.is_available(): a_ : Dict = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(__A , __A ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) a_ : Any = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) a_ : Optional[Any] = {} a_ : Union[str, Any] = special_dtypes a_ : Optional[int] = no_split_module_classes a_ : str = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": a_ : Optional[Any] = get_balanced_memory( __A , low_zero=(device_map == 'balanced_low_0') , max_memory=__A , **__A , ) a_ : int = max_memory a_ : Optional[int] = infer_auto_device_map(__A , **__A ) if isinstance(__A , __A ): # check if don't have any quantized module on the cpu a_ : str = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules a_ : Optional[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : List[str] , __A : List[Any]=None , __A : List[Any]=None ) -> Any: """simple docstring""" if modules_to_not_convert is None: a_ : Union[str, Any] = [] a_ , a_ : List[str] = _replace_with_bnb_layers( __A , __A , __A , __A ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int , __A : Tuple=None , __A : Any=None , ) -> Any: """simple docstring""" a_ : int = False for name, module in model.named_children(): if current_key_name is None: a_ : List[str] = [] current_key_name.append(__A ) if isinstance(__A , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` a_ : Union[str, Any] = '.'.join(__A ) a_ : Any = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: a_ : int = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: a_ : Union[str, Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__A , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: a_ : Optional[int] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) a_ : Union[str, Any] = module.weight.data if module.bias is not None: a_ : str = module.bias.data bnb_module.requires_grad_(__A ) setattr(__A , __A , __A ) a_ : int = True if len(list(module.children() ) ) > 0: a_ , a_ : List[str] = _replace_with_bnb_layers( __A , __A , __A , __A ) a_ : List[str] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def SCREAMING_SNAKE_CASE_ ( __A : Tuple ) -> Optional[int]: """simple docstring""" with init_empty_weights(): a_ : List[str] = deepcopy(__A ) # this has 0 cost since it is done inside `init_empty_weights` context manager` a_ : List[str] = find_tied_parameters(__A ) # For compatibility with Accelerate < 0.18 if isinstance(__A , __A ): a_ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: a_ : Any = sum(__A , [] ) a_ : Optional[int] = len(__A ) > 0 # Check if it is a base model a_ : Union[str, Any] = False if hasattr(__A , 'base_model_prefix' ): a_ : Union[str, Any] = not hasattr(__A , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head a_ : Tuple = list(model.named_children() ) a_ : str = [list_modules[-1][0]] # add last module together with tied weights a_ : List[str] = set(__A ) - set(__A ) a_ : Dict = list(set(__A ) ) + list(__A ) # remove ".weight" from the keys a_ : List[str] = ['.weight', '.bias'] a_ : List[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: a_ : Dict = name.replace(__A , '' ) filtered_module_names.append(__A ) return filtered_module_names def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Any: """simple docstring""" for m in model.modules(): if isinstance(__A , bnb.nn.Linearabit ): return True return False def SCREAMING_SNAKE_CASE_ ( __A : nn.Module ) -> Union[str, Any]: """simple docstring""" return next(parameter.parameters() ).device def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : int , __A : Optional[Any] , __A : List[str] , __A : Dict , __A : Tuple , __A : Optional[Any] ) -> Dict: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(__A , __A , 0 , dtype=__A , value=__A ) a_ : Optional[int] = param_name a_ : List[str] = model if "." in tensor_name: a_ : int = tensor_name.split('.' ) for split in splits[:-1]: a_ : int = getattr(__A , __A ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) a_ : Optional[Any] = new_module a_ : List[str] = splits[-1] # offload weights a_ : Union[str, Any] = False offload_weight(module._parameters[tensor_name] , __A , __A , index=__A ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , __A , index=__A , ) else: offload_weight(__A , __A , __A , index=__A ) offload_weight(__A , param_name.replace('weight' , 'SCB' ) , __A , index=__A ) set_module_tensor_to_device(__A , __A , 'meta' , dtype=__A , value=torch.empty(*param.size() ) )
32
"""simple docstring""" from bisect import bisect from itertools import accumulate def lowercase ( A_ , A_ , A_ , A_ )-> Union[str, Any]: '''simple docstring''' a : Any = sorted(zip(A_ , A_ ) , key=lambda A_ : x[0] / x[1] , reverse=A_ ) a , a : int = [i[0] for i in r], [i[1] for i in r] a : Union[str, Any] = list(accumulate(A_ ) ) a : Optional[Any] = bisect(A_ , A_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
40
0
'''simple docstring''' from collections import defaultdict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = 1 _snake_case = True for v in tree[start]: if v not in visited: ret += dfs(_SCREAMING_SNAKE_CASE ) if ret % 2 == 0: cuts.append(_SCREAMING_SNAKE_CASE ) return ret def __SCREAMING_SNAKE_CASE ( ): dfs(1 ) if __name__ == "__main__": __lowerCAmelCase , __lowerCAmelCase = 10, 9 __lowerCAmelCase = defaultdict(list) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
270
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( __snake_case , __snake_case ): '''simple docstring''' lowerCAmelCase_ = "nat" lowerCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=64 , UpperCAmelCase=[3, 4, 6, 5] , UpperCAmelCase=[2, 4, 8, 16] , UpperCAmelCase=7 , UpperCAmelCase=3.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> str: super().__init__(**UpperCAmelCase ) _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(UpperCAmelCase ) _snake_case = num_heads _snake_case = kernel_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = layer_norm_eps _snake_case = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) _snake_case = layer_scale_init_value _snake_case = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase ) + 1 )] _snake_case, _snake_case = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
270
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : int , __A : Optional[int] ) -> Tuple: """simple docstring""" a_ : Tuple = os.path.abspath(__A ) logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model a_ : List[str] = tf.train.list_variables(__A ) a_ : Dict = [] a_ : str = [] a_ : List[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") a_ : Union[str, Any] = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(F"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' a_ : Dict = name[1:] # figure out how many levels deep the name is a_ : str = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(__A ) # read data a_ : Any = tf.train.load_variable(__A , __A ) names.append('/'.join(__A ) ) arrays.append(__A ) logger.info(F"""Read a total of {len(__A ):,} layers""" ) # Sanity check if len(set(__A ) ) != 1: raise ValueError(F"""Found layer names with different depths (layer depth {list(set(__A ) )})""" ) a_ : Union[str, Any] = list(set(__A ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(__A , __A ): a_ : List[str] = full_name.split('/' ) a_ : List[str] = model a_ : int = [] for i, m_name in enumerate(__A ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): a_ : Optional[Any] = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) a_ : List[str] = getattr(__A , 'embeddings' ) a_ : Any = getattr(__A , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) a_ : Optional[int] = getattr(__A , 'encoder' ) a_ : Union[str, Any] = getattr(__A , 'layer' ) a_ : List[str] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) a_ : str = getattr(__A , 'pooler' ) a_ : List[Any] = getattr(__A , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) a_ : Optional[int] = getattr(__A , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) a_ : int = getattr(__A , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) a_ : List[str] = getattr(__A , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) a_ : str = getattr(__A , 'token_type_embeddings' ) else: raise ValueError(F"""Unknown embedding layer with name {full_name}""" ) trace.append('weight' ) a_ : Any = getattr(__A , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) a_ : Dict = getattr(__A , 'attention' ) a_ : Optional[int] = getattr(__A , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) a_ : Optional[int] = getattr(__A , 'attention' ) a_ : Dict = getattr(__A , 'output' ) a_ : Any = getattr(__A , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) a_ : Optional[int] = getattr(__A , 'attention' ) a_ : int = getattr(__A , 'output' ) a_ : List[Any] = getattr(__A , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) a_ : Any = getattr(__A , 'output' ) a_ : Any = getattr(__A , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) a_ : Tuple = getattr(__A , 'output' ) a_ : Any = getattr(__A , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) a_ : Optional[int] = getattr(__A , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) a_ : Tuple = getattr(__A , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) a_ : Any = getattr(__A , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) a_ : Any = getattr(__A , 'intermediate' ) a_ : Optional[int] = getattr(__A , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) a_ : Optional[int] = getattr(__A , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) a_ : Any = getattr(__A , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) a_ : str = getattr(__A , 'weight' ) else: logger.warning(F"""Ignored {m_name}""" ) # for certain layers reshape is necessary a_ : Union[str, Any] = '.'.join(__A ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , __A ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , __A ): a_ : Dict = array.reshape(pointer.data.shape ) if "kernel" in full_name: a_ : Optional[Any] = array.transpose() if pointer.shape == array.shape: a_ : Tuple = torch.from_numpy(__A ) else: raise ValueError( F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" F""" {array.shape}""" ) logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Optional[int] , __A : List[str] ) -> List[Any]: """simple docstring""" logger.info(F"""Loading model based on config from {config_path}...""" ) a_ : str = BertConfig.from_json_file(__A ) a_ : Optional[Any] = BertModel(__A ) # Load weights from checkpoint logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__A , __A , __A ) # Save pytorch-model logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
32
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple=1_3 , SCREAMING_SNAKE_CASE__ : str=7 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=9_9 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE__ : List[str]=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Tuple=3_7 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=5_1_2 , SCREAMING_SNAKE_CASE__ : int=1_6 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ) -> Any: a_ : Tuple = parent a_ : int = batch_size a_ : Tuple = seq_length a_ : List[Any] = is_training a_ : List[str] = use_token_type_ids a_ : Dict = use_labels a_ : Any = vocab_size a_ : List[str] = hidden_size a_ : Tuple = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : Dict = intermediate_size a_ : Any = hidden_act a_ : List[str] = hidden_dropout_prob a_ : Tuple = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : List[Any] = type_vocab_size a_ : int = type_sequence_label_size a_ : List[Any] = initializer_range a_ : List[str] = num_labels a_ : Union[str, Any] = num_choices a_ : str = scope a_ : Tuple = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Any = None if self.use_token_type_ids: a_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : List[Any] = None a_ : Union[str, Any] = None a_ : List[Any] = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) a_ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) a_ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: a_ : Dict = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: a_ : str = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: a_ : int = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : str ) -> List[str]: a_ : Any = self.num_labels a_ : Dict = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : Optional[Any] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Optional[Any] = config_and_inputs a_ : Optional[int] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Tuple = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ : List[str] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ : Dict = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any=False ) -> List[str]: a_ : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) a_ : str = inputs_dict['labels'] a_ : Optional[int] = inputs_dict['labels'] a_ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) a_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: a_ : str = OpenAIGPTModelTester(self ) a_ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , n_embd=3_7 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : str = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Dict = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) # the president is a_ : Tuple = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the a_ : Dict = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE__ )
32
1
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , "sklearn" ) return (preds == labels).mean() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , "sklearn" ) _UpperCAmelCase : Any = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : int = fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , "sklearn" ) _UpperCAmelCase : List[Any] = pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] _UpperCAmelCase : Any = spearmanr(__lowerCAmelCase , __lowerCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , "sklearn" ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F"""Predictions and labels have mismatched lengths {len(__lowerCAmelCase )} and {len(__lowerCAmelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCAmelCase , __lowerCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCAmelCase , __lowerCAmelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCAmelCase , __lowerCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} else: raise KeyError(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , "sklearn" ) if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(__lowerCAmelCase )} and {len(__lowerCAmelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} else: raise KeyError(__lowerCAmelCase )
359
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (__lowerCAmelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCAmelCase , "_dynamo" ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Dict = is_compiled_module(__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : List[Any] = getattr(__lowerCAmelCase , "forward" ) _UpperCAmelCase : Dict = model.__dict__.pop("_original_forward" , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , "__wrapped__" ): _UpperCAmelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Dict = forward if getattr(__lowerCAmelCase , "_converted_to_transformer_engine" , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _UpperCAmelCase : int = model _UpperCAmelCase : str = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def __lowerCAmelCase (**__lowerCAmelCase ): for key, value in kwargs.items(): _UpperCAmelCase : str = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (__lowerCAmelCase ): if not hasattr(__lowerCAmelCase , "__qualname__" ) and not hasattr(__lowerCAmelCase , "__name__" ): _UpperCAmelCase : List[str] = getattr(__lowerCAmelCase , "__class__" , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCAmelCase , "__name__" ): return obj.__name__ return str(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = value return destination def __lowerCAmelCase (__lowerCAmelCase = None ): if port is None: _UpperCAmelCase : Tuple = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
322
0
import random from typing import Any def lowercase_ ( _lowerCamelCase : list): for _ in range(len(_lowerCamelCase)): lowercase__ : Dict = random.randint(0 , len(_lowerCamelCase) - 1) lowercase__ : Union[str, Any] = random.randint(0 , len(_lowerCamelCase) - 1) lowercase__ , lowercase__ : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
87
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_ ( __A ): __A : Optional[Any] = ["image_processor", "tokenizer"] __A : Tuple = "LayoutLMv3ImageProcessor" __A : List[Any] = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : str=None , **lowercase_ : Optional[Any] ) -> Optional[int]: lowercase__ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) lowercase__ : Optional[int] = kwargs.pop("feature_extractor" ) lowercase__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) def __call__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase_ : Union[List[List[int]], List[List[List[int]]]] = None , lowercase_ : Optional[Union[List[int], List[List[int]]]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : Dict , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor lowercase__ : Union[str, Any] = self.image_processor(images=lowercase_ , return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_ ): lowercase__ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase__ : Any = features["words"] lowercase__ : Tuple = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values lowercase__ : Optional[int] = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowercase__ : Dict = self.get_overflowing_images(lowercase_ , encoded_inputs["overflow_to_sample_mapping"] ) lowercase__ : str = images return encoded_inputs def __UpperCamelCase ( self : List[Any] , lowercase_ : Tuple , lowercase_ : List[Any] ) -> Dict: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowercase__ : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F''' {len(lowercase_ )} and {len(lowercase_ )}''' ) return images_with_overflow def __UpperCamelCase ( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : List[str] ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] , *lowercase_ : str , **lowercase_ : int ) -> Dict: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def __UpperCamelCase ( self : Any ) -> Any: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : List[Any] ) -> Tuple: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
87
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : Dict = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Any , __lowerCamelCase : Any=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]="[UNK]" , __lowerCamelCase : Union[str, Any]="[SEP]" , __lowerCamelCase : Optional[Any]="[PAD]" , __lowerCamelCase : Optional[Any]="[CLS]" , __lowerCamelCase : Any="[MASK]" , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : Dict , ) -> Tuple: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : Optional[int] , __lowerCamelCase : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[str]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Dict=False , **__lowerCamelCase : Union[str, Any] , ) -> Tuple: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
355
from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) SCREAMING_SNAKE_CASE__ = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(_A ) # Let's go SCREAMING_SNAKE_CASE__ = parser.parse_args() if not hasattr(_A , '''func''' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE__ = args.func(_A ) service.run() if __name__ == "__main__": main()
218
0
"""simple docstring""" from __future__ import annotations def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> set[str]: SCREAMING_SNAKE_CASE__ : Dict = set(__lowerCAmelCase ), [start] while stack: SCREAMING_SNAKE_CASE__ : int = stack.pop() explored.add(__lowerCAmelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__lowerCAmelCase ) return explored a :Tuple = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
132
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) # TODO Update this __snake_case = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Tuple = """esm""" def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : List[str] =vocab_size UpperCAmelCase : str =hidden_size UpperCAmelCase : List[Any] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : str =intermediate_size UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : int =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : Union[str, Any] =layer_norm_eps UpperCAmelCase : Dict =position_embedding_type UpperCAmelCase : Optional[Any] =use_cache UpperCAmelCase : int =emb_layer_norm_before UpperCAmelCase : List[str] =token_dropout UpperCAmelCase : Optional[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase : Optional[Any] =EsmFoldConfig() elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ ) UpperCAmelCase : Tuple =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase : Any =get_default_vocab_list() else: UpperCAmelCase : Tuple =vocab_list else: UpperCAmelCase : Optional[int] =None UpperCAmelCase : Union[str, Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , snake_case__ ): UpperCAmelCase : str =self.esmfold_config.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.trunk is None: UpperCAmelCase : str =TrunkConfig() elif isinstance(self.trunk , snake_case__ ): UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =asdict(self ) UpperCAmelCase : Any =self.trunk.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.structure_module is None: UpperCAmelCase : Any =StructureModuleConfig() elif isinstance(self.structure_module , snake_case__ ): UpperCAmelCase : str =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =asdict(self ) UpperCAmelCase : Tuple =self.structure_module.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1E-8 __lowerCamelCase : float = 1E5 def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
348
0
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=0.999 , UpperCamelCase__ : Optional[int]="cosine" , )->Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) A__ = [] for i in range(UpperCamelCase__ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self,__lowerCamelCase = 1000,__lowerCamelCase = 0.0001,__lowerCamelCase = 0.02,__lowerCamelCase = "linear",__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = True,__lowerCamelCase = 0,__lowerCamelCase = "epsilon",__lowerCamelCase = 1.0,**__lowerCamelCase,): if kwargs.get('''set_alpha_to_one''',__lowerCamelCase ) is not None: A__ = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''','''1.0.0''',__lowerCamelCase,standard_warn=__lowerCamelCase ) A__ = kwargs['''set_alpha_to_one'''] if trained_betas is not None: A__ = torch.tensor(__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "linear": A__ = torch.linspace(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A__ = ( torch.linspace(beta_start**0.5,beta_end**0.5,__lowerCamelCase,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A__ = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) A__ = 1.0 - self.betas A__ = torch.cumprod(self.alphas,dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. A__ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution A__ = 1.0 # setable values A__ = None A__ = torch.from_numpy(np.arange(0,__lowerCamelCase ).copy().astype(np.intaa ) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): return sample def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) A__ = num_inference_steps A__ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(0,__lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) A__ = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) self.timesteps += self.config.steps_offset def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = 0.0,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = True,): # 1. get previous step value (=t+1) A__ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process A__ = self.alphas_cumprod[timestep] A__ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) A__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": A__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 A__ = model_output elif self.config.prediction_type == "sample": A__ = model_output A__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": A__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output A__ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: A__ = pred_original_sample.clamp( -self.config.clip_sample_range,self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase,pred_original_sample=__lowerCamelCase ) def __len__( self ): return self.config.num_train_timesteps
39
from __future__ import annotations import time import numpy as np a__: Optional[Any] = [8, 5, 9, 7] a__: Dict = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a__: List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): A__ = claim_vector A__ = allocated_resources_table A__ = maximum_claim_table def UpperCamelCase ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCamelCase ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCamelCase ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCamelCase ( self ): return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def UpperCamelCase ( self,**__lowerCamelCase ): A__ = self.__need() A__ = self.__allocated_resources_table A__ = self.__available_resources() A__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: A__ = False for each_need in need_list: A__ = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: A__ = False break if execution: A__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A__ = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack A__ = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def UpperCamelCase ( self ): print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
39
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = 2**power A__ = 0 while n: A__ , A__ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
7
"""simple docstring""" from __future__ import annotations from collections import namedtuple def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
165
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
288
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case_ ( snake_case , snake_case , snake_case = False ) -> list[float]: if radian_mode: return [magnitude * cos(snake_case ), magnitude * sin(snake_case )] return [magnitude * cos(radians(snake_case ) ), magnitude * sin(radians(snake_case ) )] def snake_case_ ( snake_case , snake_case , snake_case = 10**-1 ) -> bool: lowercase__: NDArray[floataa] = cross(snake_case , snake_case ) lowercase__: float = sum(snake_case ) return abs(snake_case ) < eps if __name__ == "__main__": # Test to check if it works __lowerCAmelCase = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) __lowerCAmelCase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __lowerCAmelCase = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) __lowerCAmelCase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __lowerCAmelCase = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) __lowerCAmelCase = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
288
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __SCREAMING_SNAKE_CASE :Optional[int] = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
'''simple docstring''' import re from filelock import FileLock try: import nltk __SCREAMING_SNAKE_CASE :Optional[int] = True except (ImportError, ModuleNotFoundError): __SCREAMING_SNAKE_CASE :str = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' re.sub("<n>" , "" , __lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowercase ) )
22
1
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Union[str, Any] , _lowercase : str=None , _lowercase : Tuple=None , *_lowercase : List[str] , **_lowercase : Dict ): super().__init__(*_lowercase , **_lowercase ) if config is None: assert isinstance(self.model , _lowercase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) __UpperCAmelCase = self.model.config else: __UpperCAmelCase = config __UpperCAmelCase = data_args __UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , _lowercase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: __UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __UpperCAmelCase = label_smoothed_nll_loss def a ( self : Any , _lowercase : int ): if self.optimizer is None: __UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] __UpperCAmelCase = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] __UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __UpperCAmelCase = Adafactor __UpperCAmelCase = {'''scale_parameter''': False, '''relative_step''': False} else: __UpperCAmelCase = AdamW __UpperCAmelCase = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } __UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: __UpperCAmelCase = OSS( params=_lowercase , optim=_lowercase , **_lowercase , ) else: __UpperCAmelCase = optimizer_cls(_lowercase , **_lowercase ) if self.lr_scheduler is None: __UpperCAmelCase = self._get_lr_scheduler(_lowercase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def a ( self : int , _lowercase : List[Any] ): __UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_lowercase ) return scheduler def a ( self : Union[str, Any] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a ( self : Optional[int] , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Any ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __UpperCAmelCase = model(**_lowercase , use_cache=_lowercase )[0] __UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __UpperCAmelCase , __UpperCAmelCase = model(**_lowercase , labels=_lowercase , use_cache=_lowercase )[:2] else: # compute label smoothed loss __UpperCAmelCase = model(**_lowercase , use_cache=_lowercase )[0] __UpperCAmelCase = torch.nn.functional.log_softmax(_lowercase , dim=-1 ) __UpperCAmelCase , __UpperCAmelCase = self.loss_fn(_lowercase , _lowercase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a ( self : Tuple , _lowercase : List[str] , _lowercase : int ): __UpperCAmelCase = inputs.pop('''labels''' ) __UpperCAmelCase , __UpperCAmelCase = self._compute_loss(_lowercase , _lowercase , _lowercase ) return loss def a ( self : Any , _lowercase : nn.Module , _lowercase : Dict[str, Union[torch.Tensor, Any]] , _lowercase : bool , _lowercase : Optional[List[str]] = None , ): __UpperCAmelCase = self._prepare_inputs(_lowercase ) __UpperCAmelCase = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __UpperCAmelCase = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **_lowercase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __UpperCAmelCase = self._pad_tensors_to_max_len(_lowercase , gen_kwargs['''max_length'''] ) __UpperCAmelCase = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data __UpperCAmelCase , __UpperCAmelCase = self._compute_loss(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __UpperCAmelCase = self._pad_tensors_to_max_len(_lowercase , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Any ): # If PAD token is not defined at least EOS token has to be defined __UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F''' padded to `max_length`={max_length}''' ) __UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __UpperCAmelCase = tensor return padded_tensor
86
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Tuple = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
1
def __A ( __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = abs(__lowerCAmelCase ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def __A ( __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __A ( __lowerCAmelCase )-> int: """simple docstring""" return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def __A ( )-> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) -> None: _UpperCAmelCase = F"""{func.__name__}({value})""" _UpperCAmelCase = timeit(F"""__main__.{call}""" , setup='import __main__' ) print(F"""{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds""" ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
39
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = TransfoXLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = '<unk> UNwanted , running' _UpperCAmelCase = '<unk> unwanted, running' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(UpperCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [0, 4, 8, 7] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) _UpperCAmelCase = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' _UpperCAmelCase = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = len(UpperCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
39
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _UpperCAmelCase : Optional[int] = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a__) class __lowerCAmelCase ( a__): _a = "rag" _a = True def __init__( self: Optional[int] , _lowerCAmelCase: Optional[Any]=None , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: Optional[int]=None , _lowerCAmelCase: str=None , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Tuple=None , _lowerCAmelCase: List[str]=" / " , _lowerCAmelCase: Union[str, Any]=" // " , _lowerCAmelCase: List[Any]=5 , _lowerCAmelCase: Any=3_00 , _lowerCAmelCase: Union[str, Any]=7_68 , _lowerCAmelCase: Optional[int]=8 , _lowerCAmelCase: Union[str, Any]="wiki_dpr" , _lowerCAmelCase: str="train" , _lowerCAmelCase: List[Any]="compressed" , _lowerCAmelCase: Tuple=None , _lowerCAmelCase: Any=None , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Union[str, Any]=0.0 , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: List[str]=False , _lowerCAmelCase: List[Any]=False , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: Optional[Any]=None , **_lowerCAmelCase: Union[str, Any] , ): super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , prefix=SCREAMING_SNAKE_CASE_ , vocab_size=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase :Union[str, Any] = kwargs.pop("question_encoder" ) lowercase :str = question_encoder_config.pop("model_type" ) lowercase :Optional[Any] = kwargs.pop("generator" ) lowercase :List[Any] = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowercase :str = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase :Tuple = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase :Optional[Any] = reduce_loss lowercase :Optional[Any] = label_smoothing lowercase :int = exclude_bos_score lowercase :Tuple = do_marginalize lowercase :Optional[Any] = title_sep lowercase :Any = doc_sep lowercase :List[str] = n_docs lowercase :Optional[int] = max_combined_length lowercase :List[Any] = dataset lowercase :Union[str, Any] = dataset_split lowercase :str = index_name lowercase :List[str] = retrieval_vector_size lowercase :Any = retrieval_batch_size lowercase :Optional[Any] = passages_path lowercase :Dict = index_path lowercase :Optional[Any] = use_dummy_dataset lowercase :Any = output_retrieved lowercase :Optional[int] = do_deduplication lowercase :List[str] = use_cache if self.forced_eos_token_id is None: lowercase :int = getattr(self.generator , "forced_eos_token_id" , SCREAMING_SNAKE_CASE_ ) @classmethod def SCREAMING_SNAKE_CASE ( cls: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase :str = copy.deepcopy(self.__dict__ ) lowercase :str = self.question_encoder.to_dict() lowercase :Union[str, Any] = self.generator.to_dict() lowercase :Optional[Any] = self.__class__.model_type return output
365
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( lowerCAmelCase): _a = (DDIMParallelScheduler,) _a = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def SCREAMING_SNAKE_CASE ( self: Any , **_lowerCAmelCase: Optional[Any] ): lowercase :List[Any] = { "num_train_timesteps": 10_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self: str , **_lowerCAmelCase: Any ): lowercase :Optional[int] = self.scheduler_classes[0] lowercase :Dict = self.get_scheduler_config(**_lowerCAmelCase ) lowercase :List[str] = scheduler_class(**_lowerCAmelCase ) lowercase , lowercase :str = 10, 0.0 lowercase :List[Any] = self.dummy_model() lowercase :int = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for t in scheduler.timesteps: lowercase :Optional[int] = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase :Dict = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) lowercase :Optional[Any] = self.scheduler_classes[0] lowercase :List[str] = self.get_scheduler_config(steps_offset=1 ) lowercase :Optional[int] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def SCREAMING_SNAKE_CASE ( self: Tuple ): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict ): self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: str ): for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCAmelCase , eta=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Dict = self.scheduler_classes[0] lowercase :Tuple = self.get_scheduler_config() lowercase :Optional[Any] = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Union[str, Any] = self.scheduler_classes[0] lowercase :Union[str, Any] = self.get_scheduler_config() lowercase :Union[str, Any] = scheduler_class(**_lowerCAmelCase ) lowercase , lowercase :Union[str, Any] = 10, 0.0 scheduler.set_timesteps(_lowerCAmelCase ) lowercase :Dict = self.dummy_model() lowercase :Dict = self.dummy_sample_deter lowercase :Union[str, Any] = self.dummy_sample_deter + 0.1 lowercase :int = self.dummy_sample_deter - 0.1 lowercase :Dict = samplea.shape[0] lowercase :Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase :Optional[Any] = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) lowercase :Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase :Optional[int] = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCAmelCase ) lowercase :int = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :int = self.full_loop() lowercase :Optional[int] = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Any = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Dict = self.full_loop(prediction_type="v_prediction" ) lowercase :int = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Optional[int] ): # We specify different beta, so that the first alpha is 0.99 lowercase :List[Any] = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) lowercase :List[Any] = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Any ): # We specify different beta, so that the first alpha is 0.99 lowercase :Tuple = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) lowercase :str = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :List[str] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
158
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCAmelCase ( A ): lowerCAmelCase_ = "WhisperFeatureExtractor" lowerCAmelCase_ = "WhisperTokenizer" def __init__( self : Any , __lowercase : Optional[Any] , __lowercase : Tuple ): """simple docstring""" super().__init__(__lowercase , __lowercase ) __lowercase =self.feature_extractor __lowercase =False def snake_case ( self : List[Any] , __lowercase : Optional[int]=None , __lowercase : Any=None , __lowercase : Tuple=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=__lowercase , language=__lowercase , no_timestamps=__lowercase ) def __call__( self : List[Any] , *__lowercase : Tuple , **__lowercase : Dict ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowercase , **__lowercase ) __lowercase =kwargs.pop('audio' , __lowercase ) __lowercase =kwargs.pop('sampling_rate' , __lowercase ) __lowercase =kwargs.pop('text' , __lowercase ) if len(__lowercase ) > 0: __lowercase =args[0] __lowercase =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __lowercase =self.feature_extractor(__lowercase , *__lowercase , sampling_rate=__lowercase , **__lowercase ) if text is not None: __lowercase =self.tokenizer(__lowercase , **__lowercase ) if text is None: return inputs elif audio is None: return encodings else: __lowercase =encodings['input_ids'] return inputs def snake_case ( self : List[Any] , *__lowercase : Dict , **__lowercase : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def snake_case ( self : Union[str, Any] , *__lowercase : str , **__lowercase : str ): """simple docstring""" return self.tokenizer.decode(*__lowercase , **__lowercase ) def snake_case ( self : str , __lowercase : str , __lowercase : Dict="np" ): """simple docstring""" return self.tokenizer.get_prompt_ids(__lowercase , return_tensors=__lowercase )
141
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : int, lowercase__ : str ): '''simple docstring''' try: with open(lowercase__, 'rb' ) as flax_state_f: __lowercase =from_bytes(lowercase__, flax_state_f.read() ) except UnpicklingError as e: try: with open(lowercase__ ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(lowercase__, lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str], lowercase__ : List[str] ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __lowercase =flatten_dict(jax.tree_util.tree_map(lambda lowercase__ : x.dtype == jnp.bfloataa, lowercase__ ) ).values() if any(lowercase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __lowercase =jax.tree_util.tree_map( lambda lowercase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, lowercase__ ) __lowercase ='' __lowercase =flatten_dict(lowercase__, sep='.' ) __lowercase =pt_model.state_dict() # keep track of unexpected & missing keys __lowercase =[] __lowercase =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowercase =flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __lowercase =flax_key_tuple_array[:-1] + ['weight'] __lowercase =jnp.transpose(lowercase__, (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __lowercase =flax_key_tuple_array[:-1] + ['weight'] __lowercase =flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __lowercase =flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowercase__ ): __lowercase =( flax_key_tuple_string.replace('_0', '.0' ) .replace('_1', '.1' ) .replace('_2', '.2' ) .replace('_3', '.3' ) .replace('_4', '.4' ) .replace('_5', '.5' ) .replace('_6', '.6' ) .replace('_7', '.7' ) .replace('_8', '.8' ) .replace('_9', '.9' ) ) __lowercase ='.'.join(lowercase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict __lowercase =np.asarray(lowercase__ ) if not isinstance(lowercase__, np.ndarray ) else flax_tensor __lowercase =torch.from_numpy(lowercase__ ) # remove from missing keys missing_keys.remove(lowercase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase__ ) pt_model.load_state_dict(lowercase__ ) # re-transform missing_keys to list __lowercase =list(lowercase__ ) if len(lowercase__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(lowercase__ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ' use it for predictions and inference.' ) return pt_model
141
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __lowerCamelCase : '''simple docstring''' a_ : int a_ : TreeNode | None = None a_ : TreeNode | None = None lowercase__ = namedtuple("""CoinsDistribResult""", """moves excess""") def __lowerCamelCase ( __UpperCamelCase ) -> Optional[Any]: """simple docstring""" if root is None: return 0 # Validation def count_nodes(__UpperCamelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__UpperCamelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__UpperCamelCase ) != count_coins(__UpperCamelCase ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(__UpperCamelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = get_distrib(node.left ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = get_distrib(node.right ) lowerCAmelCase_ : Optional[int] = 1 - left_distrib_excess lowerCAmelCase_ : List[str] = 1 - right_distrib_excess lowerCAmelCase_ : int = ( left_distrib_moves + right_distrib_moves + abs(__UpperCamelCase ) + abs(__UpperCamelCase ) ) lowerCAmelCase_ : List[Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__UpperCamelCase , __UpperCamelCase ) return get_distrib(__UpperCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """vocab.txt"""} lowercase__ = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } lowercase__ = { """openbmb/cpm-ant-10b""": 1024, } def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase_ : int = collections.OrderedDict() with open(__UpperCamelCase , "r" , encoding="utf-8" ) as reader: lowerCAmelCase_ : List[Any] = reader.readlines() for index, token in enumerate(__UpperCamelCase ): lowerCAmelCase_ : List[str] = token.rstrip("\n" ) lowerCAmelCase_ : str = index return vocab class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : Tuple , a_ : Dict , a_ : Optional[Any]="<unk>" , a_ : List[str]=2_00 ): lowerCAmelCase_ : int = vocab lowerCAmelCase_ : List[Any] = unk_token lowerCAmelCase_ : List[Any] = max_input_chars_per_word def lowerCamelCase ( self : Any , a_ : Optional[int] ): lowerCAmelCase_ : Optional[int] = list(a_ ) if len(a_ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = [] while start < len(a_ ): lowerCAmelCase_ : Any = len(a_ ) lowerCAmelCase_ : Any = None while start < end: lowerCAmelCase_ : Union[str, Any] = "".join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase_ : Any = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a_ ) lowerCAmelCase_ : int = end return sub_tokens class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = VOCAB_FILES_NAMES a_ : int = PRETRAINED_VOCAB_FILES_MAP a_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] = ["""input_ids""", """attention_mask"""] a_ : Union[str, Any] = False def __init__( self : Union[str, Any] , a_ : List[str] , a_ : Dict="<d>" , a_ : Tuple="</d>" , a_ : Tuple="<s>" , a_ : int="</s>" , a_ : Tuple="<pad>" , a_ : Dict="<unk>" , a_ : Any="</n>" , a_ : Optional[int]="</_>" , a_ : List[Any]="left" , **a_ : List[Any] , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=a_ , eod_token=a_ , bos_token=a_ , eos_token=a_ , pad_token=a_ , unk_token=a_ , line_token=a_ , space_token=a_ , padding_side=a_ , **a_ , ) lowerCAmelCase_ : Optional[Any] = bod_token lowerCAmelCase_ : Union[str, Any] = eod_token lowerCAmelCase_ : Optional[Any] = load_vocab(a_ ) lowerCAmelCase_ : List[str] = self.encoder[space_token] lowerCAmelCase_ : int = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase_ : Tuple = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) lowerCAmelCase_ : Any = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : str = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCamelCase ( self : List[Any] ): return self.encoder[self.bod_token] @property def lowerCamelCase ( self : List[str] ): return self.encoder[self.eod_token] @property def lowerCamelCase ( self : int ): return self.encoder["\n"] @property def lowerCamelCase ( self : Tuple ): return len(self.encoder ) def lowerCamelCase ( self : Optional[int] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase ( self : Optional[int] , a_ : Any ): lowerCAmelCase_ : Optional[int] = [] for x in jieba.cut(a_ , cut_all=a_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a_ ) ) return output_tokens def lowerCamelCase ( self : Optional[Any] , a_ : List[str] , **a_ : Tuple ): lowerCAmelCase_ : List[Any] = [i for i in token_ids if i >= 0] lowerCAmelCase_ : List[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a_ , **a_ ) def lowerCamelCase ( self : Optional[Any] , a_ : Union[str, Any] ): return token in self.encoder def lowerCamelCase ( self : List[Any] , a_ : List[str] ): return "".join(a_ ) def lowerCamelCase ( self : Union[str, Any] , a_ : str ): return self.encoder.get(a_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase ( self : Union[str, Any] , a_ : int ): return self.decoder.get(a_ , self.unk_token ) def lowerCamelCase ( self : List[str] , a_ : str , a_ : Optional[str] = None ): if os.path.isdir(a_ ): lowerCAmelCase_ : Union[str, Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowerCAmelCase_ : Tuple = (filename_prefix + "-" if filename_prefix else "") + save_directory lowerCAmelCase_ : str = 0 if " " in self.encoder: lowerCAmelCase_ : Optional[int] = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase_ : Optional[int] = self.encoder["\n"] del self.encoder["\n"] lowerCAmelCase_ : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) with open(a_ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase_ : List[Any] = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def lowerCamelCase ( self : int , a_ : List[int] , a_ : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCamelCase ( self : List[str] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) return [1] + ([0] * len(a_ ))
161
0
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> None: lowerCAmelCase__ : List[str] = num_of_nodes lowerCAmelCase__ : list[list[int]] = [] lowerCAmelCase__ : dict[int, int] = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase__ : Optional[Any] = self.find_component(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: if component_size[u_node] <= component_size[v_node]: lowerCAmelCase__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(__UpperCAmelCase ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase__ : Union[str, Any] = self.find_component(__UpperCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> None: lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase__ : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = edge lowerCAmelCase__ : Union[str, Any] = self.m_component[u] lowerCAmelCase__ : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase__ : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = edge lowerCAmelCase__ : Optional[int] = self.m_component[u] lowerCAmelCase__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 lowerCAmelCase__ : Tuple = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
37
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __A = logging.get_logger(__name__) enable_full_determinism() class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = UNetaDModel snake_case__ = "sample" @property def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : int = 4 __lowerCamelCase : List[Any] = 3 __lowerCamelCase : List[Any] = (32, 32) __lowerCamelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) __lowerCamelCase : List[Any] = torch.tensor([10] ).to(UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self : int ): return (3, 32, 32) @property def lowerCamelCase__ ( self : Tuple ): return (3, 32, 32) def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Tuple = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } __lowerCamelCase : Tuple = self.dummy_input return init_dict, inputs_dict class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = UNetaDModel snake_case__ = "sample" @property def lowerCamelCase__ ( self : str ): __lowerCamelCase : Optional[Any] = 4 __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = (32, 32) __lowerCamelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = torch.tensor([10] ).to(UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self : Union[str, Any] ): return (4, 32, 32) @property def lowerCamelCase__ ( self : Any ): return (4, 32, 32) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Dict = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } __lowerCamelCase : Dict = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : Any ): __lowerCamelCase , __lowerCamelCase : Tuple = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase ) __lowerCamelCase : Any = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase , __lowerCamelCase : List[Any] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase ) model.to(UpperCAmelCase ) __lowerCamelCase : int = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase__ ( self : Tuple ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` __lowerCamelCase , __lowerCamelCase : Optional[int] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase ) model_accelerate.to(UpperCAmelCase ) model_accelerate.eval() __lowerCamelCase : List[Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) __lowerCamelCase : int = noise.to(UpperCAmelCase ) __lowerCamelCase : Optional[int] = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase ) __lowerCamelCase : int = model_accelerate(UpperCAmelCase , UpperCAmelCase )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() __lowerCamelCase , __lowerCamelCase : str = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase , low_cpu_mem_usage=UpperCAmelCase ) model_normal_load.to(UpperCAmelCase ) model_normal_load.eval() __lowerCamelCase : Any = model_normal_load(UpperCAmelCase , UpperCAmelCase )["sample"] assert torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-3 ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Tuple = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(UpperCAmelCase ) __lowerCamelCase : str = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __lowerCamelCase : Optional[int] = noise.to(UpperCAmelCase ) __lowerCamelCase : Tuple = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : Optional[Any] = model(UpperCAmelCase , UpperCAmelCase ).sample __lowerCamelCase : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __lowerCamelCase : Optional[Any] = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-3 ) ) class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = UNetaDModel snake_case__ = "sample" @property def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any]=(32, 32) ): __lowerCamelCase : Tuple = 4 __lowerCamelCase : int = 3 __lowerCamelCase : Dict = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) __lowerCamelCase : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self : Optional[Any] ): return (3, 32, 32) @property def lowerCamelCase__ ( self : Optional[Any] ): return (3, 32, 32) def lowerCamelCase__ ( self : int ): __lowerCamelCase : Union[str, Any] = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1E-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } __lowerCamelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase__ ( self : Any ): __lowerCamelCase , __lowerCamelCase : List[str] = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase ) __lowerCamelCase : int = self.dummy_input __lowerCamelCase : int = floats_tensor((4, 3) + (256, 256) ).to(UpperCAmelCase ) __lowerCamelCase : int = noise __lowerCamelCase : int = model(**UpperCAmelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : int = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = 4 __lowerCamelCase : List[Any] = 3 __lowerCamelCase : Tuple = (256, 256) __lowerCamelCase : int = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) __lowerCamelCase : List[Any] = torch.tensor(batch_size * [1E-4] ).to(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : Tuple = model(UpperCAmelCase , UpperCAmelCase ).sample __lowerCamelCase : Optional[int] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __lowerCamelCase : List[Any] = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-2 ) ) def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : str = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = 4 __lowerCamelCase : Any = 3 __lowerCamelCase : Union[str, Any] = (32, 32) __lowerCamelCase : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) __lowerCamelCase : Dict = torch.tensor(batch_size * [1E-4] ).to(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : List[str] = model(UpperCAmelCase , UpperCAmelCase ).sample __lowerCamelCase : int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __lowerCamelCase : int = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-2 ) ) def lowerCamelCase__ ( self : int ): # not required for this model pass
135
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): def __init__( self : str , a : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): """simple docstring""" super().__init__() __lowerCamelCase = nn.ModuleList(a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : torch.FloatTensor , a : Union[torch.Tensor, float, int] , a : torch.Tensor , a : List[torch.tensor] , a : List[float] , a : Optional[torch.Tensor] = None , a : Optional[torch.Tensor] = None , a : Optional[torch.Tensor] = None , a : Optional[Dict[str, Any]] = None , a : bool = False , a : bool = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(a , a , self.nets ) ): __lowerCamelCase , __lowerCamelCase = controlnet( a , a , a , a , a , a , a , a , a , a , a , ) # merge samples if i == 0: __lowerCamelCase , __lowerCamelCase = down_samples, mid_sample else: __lowerCamelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a , a ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : Union[str, os.PathLike] , a : bool = True , a : Callable = None , a : bool = False , a : Optional[str] = None , ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( a , is_main_process=a , save_function=a , safe_serialization=a , variant=a , ) idx += 1 __lowerCamelCase = model_path_to_save + f"""_{idx}""" @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , a : Optional[Union[str, os.PathLike]] , **a : Optional[int] ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __lowerCamelCase = pretrained_model_path while os.path.isdir(a ): __lowerCamelCase = ControlNetModel.from_pretrained(a , **a ) controlnets.append(a ) idx += 1 __lowerCamelCase = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(a )} controlnets loaded from {pretrained_model_path}.""" ) if len(a ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(a )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(a )
350
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> float: if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __lowerCamelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCamelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
237
0
'''simple docstring''' import qiskit def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[str] = qiskit.Aer.get_backend('aer_simulator' ) __magic_name__ : Optional[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __magic_name__ : Dict = qiskit.execute(lowerCAmelCase , lowerCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :Tuple = half_adder(1, 1) print(F'Half Adder Output Qubit Counts: {counts}')
331
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(test_script.main ) def _UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(test_ops.main )
364
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Tuple: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase : Union[str, Any] = model_type_to_module_name(lowerCAmelCase ) _UpperCAmelCase : Optional[int] = importlib.import_module(F'.{module_name}' , "transformers.models" ) try: return getattr(lowerCAmelCase , lowerCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase , "__name__" , lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase : Any = importlib.import_module("transformers" ) if hasattr(lowerCAmelCase , lowerCAmelCase ): return getattr(lowerCAmelCase , lowerCAmelCase ) return None def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, os.PathLike] , lowerCAmelCase: Optional[Union[str, os.PathLike]] = None , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: Optional[Dict[str, str]] = None , lowerCAmelCase: Optional[Union[bool, str]] = None , lowerCAmelCase: Optional[str] = None , lowerCAmelCase: bool = False , **lowerCAmelCase: List[Any] , ) -> Any: _UpperCAmelCase : List[Any] = get_file_from_repo( lowerCAmelCase , lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , resume_download=lowerCAmelCase , proxies=lowerCAmelCase , use_auth_token=lowerCAmelCase , revision=lowerCAmelCase , local_files_only=lowerCAmelCase , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(lowerCAmelCase , encoding="utf-8" ) as reader: return json.load(lowerCAmelCase ) class a : def __init__( self ): '''simple docstring''' raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(A_ ) def _UpperCAmelCase ( cls , A_ , **A_ ): '''simple docstring''' _UpperCAmelCase : str = kwargs.pop("config" , A_ ) _UpperCAmelCase : Dict = kwargs.pop("trust_remote_code" , A_ ) _UpperCAmelCase : str = True _UpperCAmelCase , _UpperCAmelCase : Tuple = ImageProcessingMixin.get_image_processor_dict(A_ , **A_ ) _UpperCAmelCase : Any = config_dict.get("image_processor_type" , A_ ) _UpperCAmelCase : str = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _UpperCAmelCase : int = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCAmelCase : Any = config_dict.pop("feature_extractor_type" , A_ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _UpperCAmelCase : Optional[Any] = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _UpperCAmelCase : Optional[Any] = config_dict["auto_map"]["AutoFeatureExtractor"] _UpperCAmelCase : List[Any] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(A_ , A_ ): _UpperCAmelCase : Any = AutoConfig.from_pretrained(A_ , **A_ ) # It could be in `config.image_processor_type`` _UpperCAmelCase : Optional[Any] = getattr(A_ , "image_processor_type" , A_ ) if hasattr(A_ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _UpperCAmelCase : Any = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _UpperCAmelCase : List[str] = image_processor_class_from_name(A_ ) _UpperCAmelCase : Optional[Any] = image_processor_auto_map is not None _UpperCAmelCase : Any = image_processor_class is not None or type(A_ ) in IMAGE_PROCESSOR_MAPPING _UpperCAmelCase : List[Any] = resolve_trust_remote_code( A_ , A_ , A_ , A_ ) if has_remote_code and trust_remote_code: _UpperCAmelCase : Optional[int] = get_class_from_dynamic_module( A_ , A_ , **A_ ) _UpperCAmelCase : Optional[int] = kwargs.pop("code_revision" , A_ ) if os.path.isdir(A_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(A_ , **A_ ) elif image_processor_class is not None: return image_processor_class.from_dict(A_ , **A_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(A_ ) in IMAGE_PROCESSOR_MAPPING: _UpperCAmelCase : Optional[int] = IMAGE_PROCESSOR_MAPPING[type(A_ )] return image_processor_class.from_dict(A_ , **A_ ) raise ValueError( f'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' f'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def _UpperCAmelCase ( A_ , A_ ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(A_ , A_ )
189
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin a : Dict = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class a : """simple docstring""" def __init__( self : Any , __lowercase : int , __lowercase : List[Any]=16 , __lowercase : Union[str, Any]=13 , __lowercase : int=7 , __lowercase : int=14 , __lowercase : Union[str, Any]=10 , __lowercase : int=19 , __lowercase : Any=5 , __lowercase : List[str]=4 , __lowercase : str=True , __lowercase : Union[str, Any]=16 , __lowercase : str=2 , __lowercase : Any=4 , __lowercase : Tuple=4 , __lowercase : str="gelu" , __lowercase : Optional[Any]=0.1 , __lowercase : List[str]=0.1 , __lowercase : Any=[1, 2, 3, 4, 5] , __lowercase : Dict=25 , __lowercase : Dict=5 , ) -> str: __UpperCAmelCase : Optional[Any] = d_model __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Dict = prediction_length __UpperCAmelCase : Optional[int] = context_length __UpperCAmelCase : int = cardinality __UpperCAmelCase : Optional[Any] = num_time_features __UpperCAmelCase : Any = lags_sequence __UpperCAmelCase : Union[str, Any] = embedding_dimension __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Any = context_length __UpperCAmelCase : Union[str, Any] = prediction_length + label_length __UpperCAmelCase : Dict = label_length __UpperCAmelCase : Any = moving_average __UpperCAmelCase : Optional[int] = autocorrelation_factor def UpperCAmelCase ( self : List[Any] ) -> str: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase ( self : Optional[int] , __lowercase : Optional[int] ) -> List[str]: __UpperCAmelCase : List[Any] = config.context_length + max(config.lags_sequence ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __UpperCAmelCase : str = floats_tensor([self.batch_size, _past_length] ) __UpperCAmelCase : Any = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, config.prediction_length] ) __UpperCAmelCase : List[Any] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def UpperCAmelCase ( self : Optional[Any] ) -> Dict: __UpperCAmelCase : Optional[int] = self.get_config() __UpperCAmelCase : Union[str, Any] = self.prepare_autoformer_inputs_dict(__lowercase ) return config, inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase ( self : Any , __lowercase : Optional[int] , __lowercase : Optional[int] ) -> Dict: __UpperCAmelCase : Any = AutoformerModel(config=__lowercase ).to(__lowercase ).eval() __UpperCAmelCase : Any = model(**__lowercase ) __UpperCAmelCase : Tuple = outputs.encoder_last_hidden_state __UpperCAmelCase : Optional[int] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = model.get_encoder() encoder.save_pretrained(__lowercase ) __UpperCAmelCase : Dict = AutoformerEncoder.from_pretrained(__lowercase ).to(__lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = model.create_network_inputs(**__lowercase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __UpperCAmelCase : str = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __UpperCAmelCase : int = encoder(inputs_embeds=__lowercase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __UpperCAmelCase : int = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __UpperCAmelCase : Tuple = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __UpperCAmelCase : Dict = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __UpperCAmelCase : int = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = model.get_decoder() decoder.save_pretrained(__lowercase ) __UpperCAmelCase : List[Any] = AutoformerDecoder.from_pretrained(__lowercase ).to(__lowercase ) __UpperCAmelCase : Optional[int] = decoder( trend=__lowercase , inputs_embeds=__lowercase , encoder_hidden_states=__lowercase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" a : int = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () a : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () a : Union[str, Any] = {'feature-extraction': AutoformerModel} if is_torch_available() else {} a : int = False a : List[Any] = False a : Tuple = False a : Optional[int] = False a : Any = False a : Dict = False def UpperCAmelCase ( self : Dict ) -> Dict: __UpperCAmelCase : Tuple = AutoformerModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCAmelCase ( self : List[str] ) -> str: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = model_class.from_pretrained(__lowercase , output_loading_info=__lowercase ) self.assertEqual(info["""missing_keys"""] , [] ) def UpperCAmelCase ( self : Tuple ) -> int: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowercase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def UpperCAmelCase ( self : int ) -> Any: pass def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase : Any = inspect.signature(getattr(__lowercase , """forward""" ) ) # The main input is the name of the argument after `self` __UpperCAmelCase : Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __lowercase ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(__lowercase ) __UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : str = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__lowercase )] , __lowercase ) def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = True __UpperCAmelCase : str = getattr(self.model_tester , """seq_length""" , __lowercase ) __UpperCAmelCase : Dict = getattr(self.model_tester , """decoder_seq_length""" , __lowercase ) __UpperCAmelCase : Dict = getattr(self.model_tester , """encoder_seq_length""" , __lowercase ) __UpperCAmelCase : int = getattr(self.model_tester , """d_model""" , __lowercase ) __UpperCAmelCase : List[str] = getattr(self.model_tester , """num_attention_heads""" , __lowercase ) __UpperCAmelCase : int = d_model // num_attention_heads for model_class in self.all_model_classes: __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = False __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __UpperCAmelCase : Tuple = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : List[Any] = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __UpperCAmelCase : Optional[int] = outputs.encoder_attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __UpperCAmelCase : Optional[int] = len(__lowercase ) __UpperCAmelCase : Optional[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__lowercase , __lowercase ) # decoder attentions __UpperCAmelCase : Any = outputs.decoder_attentions self.assertIsInstance(__lowercase , (list, tuple) ) self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __UpperCAmelCase : str = outputs.cross_attentions self.assertIsInstance(__lowercase , (list, tuple) ) self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Optional[Any] = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __UpperCAmelCase : str = model(**self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(out_len + 2 , len(__lowercase ) ) __UpperCAmelCase : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase ( self : Optional[int] ) -> Tuple: super().test_retain_grad_hidden_states_attentions() def lowerCamelCase__ ( __lowerCamelCase : Any="train-batch.pt" ): __UpperCAmelCase : Tuple = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=__lowerCamelCase , repo_type="""dataset""" ) __UpperCAmelCase : str = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) return batch @require_torch @slow class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : Optional[Any] ) -> int: __UpperCAmelCase : Union[str, Any] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowercase ) __UpperCAmelCase : str = prepare_batch() with torch.no_grad(): __UpperCAmelCase : List[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __UpperCAmelCase : Any = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __lowercase ) __UpperCAmelCase : Any = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=__lowercase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __lowercase , atol=__lowercase ) ) def UpperCAmelCase ( self : int ) -> int: __UpperCAmelCase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowercase ) __UpperCAmelCase : str = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __UpperCAmelCase : str = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __UpperCAmelCase : List[Any] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __lowercase ) __UpperCAmelCase : Tuple = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=__lowercase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __lowercase , atol=__lowercase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> str: __UpperCAmelCase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowercase ) __UpperCAmelCase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __UpperCAmelCase : str = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __UpperCAmelCase : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __lowercase ) __UpperCAmelCase : Optional[int] = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=__lowercase ) __UpperCAmelCase : List[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __lowercase , rtol=1e-1 ) )
114
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class a ( lowercase__ ): """simple docstring""" def __init__( self : Any , __lowercase : Optional[NestedDataStructureLike[PathLike]] = None , __lowercase : Optional[NamedSplit] = None , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : Optional[int] = None , **__lowercase : List[str] , ) -> Tuple: __UpperCAmelCase : Any = path_or_paths __UpperCAmelCase : Dict = split if split or isinstance(__lowercase , __lowercase ) else """train""" __UpperCAmelCase : Optional[int] = features __UpperCAmelCase : str = cache_dir __UpperCAmelCase : str = keep_in_memory __UpperCAmelCase : Optional[int] = streaming __UpperCAmelCase : Dict = num_proc __UpperCAmelCase : Tuple = kwargs @abstractmethod def UpperCAmelCase ( self : List[Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : Optional[int] = None , **__lowercase : Optional[Any] , ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = features __UpperCAmelCase : str = cache_dir __UpperCAmelCase : Optional[int] = keep_in_memory __UpperCAmelCase : Dict = streaming __UpperCAmelCase : Optional[Any] = num_proc __UpperCAmelCase : Union[str, Any] = kwargs @abstractmethod def UpperCAmelCase ( self : List[str] ) -> Union[Dataset, IterableDataset]: pass
114
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowercase : Tuple = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ lowercase : str = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ lowercase : Any = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ,id="""token""" ) ,id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" ,id="""token""" ) ,id="""sequence""" ) ,id="""references""" ), } ) ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = 1 ,snake_case = 4 ,): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case ,hypotheses=snake_case ,min_len=snake_case ,max_len=snake_case ) }
285
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase : Tuple = get_logger(__name__) lowercase : Optional[int] = Path(__file__).parent / """model_card_template.md""" lowercase : Dict = uuida().hex lowercase : Tuple = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase : str = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase : Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def _snake_case( SCREAMING_SNAKE_CASE__ = None ) -> str: lowercase : str = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> Dict: if token is None: lowercase : Optional[int] = HfFolder.get_token() if organization is None: lowercase : int = whoami(SCREAMING_SNAKE_CASE__ )["""name"""] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(SCREAMING_SNAKE_CASE__ , """local_rank""" ) and args.local_rank not in [-1, 0]: return lowercase : str = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , """hub_token""" ) else None lowercase : int = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) lowercase : str = os.path.join(args.output_dir , """README.md""" ) model_card.save(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Optional[Any]: if resolved_file is None or commit_hash is not None: return commit_hash lowercase : List[Any] = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) lowercase : Any = re.search(R"""snapshots/([^/]+)/""" , SCREAMING_SNAKE_CASE__ ) if search is None: return None lowercase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase : Optional[Any] = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowercase : Optional[int] = os.path.join(hf_cache_home, """diffusers""") def _snake_case( SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> None: if new_cache_dir is None: lowercase : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : List[str] = old_diffusers_cache lowercase : Dict = Path(SCREAMING_SNAKE_CASE__ ).expanduser() lowercase : int = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : Any = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase : Dict = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowercase : Any = 0 else: with open(cache_version_file) as f: try: lowercase : List[Any] = int(f.read()) except ValueError: lowercase : int = 0 if cache_version < 1: lowercase : Union[str, Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowercase : int = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' """the directory exists and can be written to.""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> str: if variant is not None: lowercase : List[str] = weights_name.split(""".""" ) lowercase : Optional[Any] = splits[:-1] + [variant] + splits[-1:] lowercase : int = """.""".join(SCREAMING_SNAKE_CASE__ ) return weights_name def _snake_case( SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ) -> Optional[Any]: lowercase : Optional[int] = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint lowercase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): lowercase : Any = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse("""0.20.0""" ) ): try: lowercase : Any = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}' so that the correct variant file can be added." , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual lowercase : int = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " """this model name. Check the model page at """ f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
285
1
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = ["model.decoder.embed_positions.weights"] def __snake_case( _lowerCAmelCase ) -> Any: if "emb" in name: snake_case__ : int = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: snake_case__ : int = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: snake_case__ : Optional[int] = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: snake_case__ : Union[str, Any] = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: snake_case__ : List[Any] = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: snake_case__ : int = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: snake_case__ : Any = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: snake_case__ : int = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: snake_case__ : str = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: snake_case__ : Tuple = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case__ : int = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple[Dict, Dict]: snake_case__ : Any = list(state_dict.keys() ) snake_case__ : Tuple = {} for key in keys: snake_case__ : Tuple = state_dict.pop(_lowerCAmelCase ) snake_case__ : List[Any] = rename_keys(_lowerCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj snake_case__ : List[Any] = val[:hidden_size, :] snake_case__ : List[Any] = val[hidden_size : 2 * hidden_size, :] snake_case__ : Dict = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case__ : Union[str, Any] = val else: snake_case__ : int = val return state_dict, enc_dec_proj_state_dict def __snake_case( _lowerCAmelCase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values snake_case__ : Dict = 1_024 snake_case__ : Tuple = 24 snake_case__ : int = 16 elif checkpoint == "medium": snake_case__ : List[str] = 1_536 snake_case__ : List[Any] = 48 snake_case__ : int = 24 elif checkpoint == "large": snake_case__ : Optional[Any] = 2_048 snake_case__ : Optional[int] = 48 snake_case__ : List[Any] = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) snake_case__ : List[Any] = MusicgenDecoderConfig( hidden_size=_lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_lowerCAmelCase , num_attention_heads=_lowerCAmelCase , ) return config @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="cpu" ) -> Any: snake_case__ : List[str] = MusicGen.get_pretrained(_lowerCAmelCase , device=_lowerCAmelCase ) snake_case__ : Any = decoder_config_from_checkpoint(_lowerCAmelCase ) snake_case__ : int = fairseq_model.lm.state_dict() snake_case__ , snake_case__ : List[Any] = rename_state_dict( _lowerCAmelCase , hidden_size=decoder_config.hidden_size ) snake_case__ : int = TaEncoderModel.from_pretrained("""t5-base""" ) snake_case__ : Dict = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) snake_case__ : str = MusicgenForCausalLM(_lowerCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case__ , snake_case__ : Tuple = decoder.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(_lowerCAmelCase ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model snake_case__ : Tuple = MusicgenForConditionalGeneration(text_encoder=_lowerCAmelCase , audio_encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_lowerCAmelCase ) # check we can do a forward pass snake_case__ : Optional[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case__ : List[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case__ : Optional[int] = model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor snake_case__ : Optional[int] = AutoTokenizer.from_pretrained("""t5-base""" ) snake_case__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) snake_case__ : Tuple = MusicgenProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) # set the appropriate bos/pad token ids snake_case__ : Dict = 2_048 snake_case__ : Optional[int] = 2_048 # set other default generation config params snake_case__ : Tuple = int(30 * audio_encoder.config.frame_rate ) snake_case__ : Tuple = True snake_case__ : Tuple = 3.0 if pytorch_dump_folder is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(_lowerCAmelCase ) processor.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __a = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
35
'''simple docstring''' import argparse import os import re __a = "src/transformers" # Pattern that looks at the indentation in a line. __a = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __a = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __a = re.compile(R"\[([^\]]+)\]") def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : int = _re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def __snake_case( _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: snake_case__ : str = 0 snake_case__ : Union[str, Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 snake_case__ : Tuple = ["""\n""".join(lines[:index] )] else: snake_case__ : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : Optional[int] = [lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: snake_case__ : str = [lines[index + 1]] index += 1 else: snake_case__ : int = [] else: blocks.append("""\n""".join(_lowerCAmelCase ) ) snake_case__ : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("""\n""".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __snake_case( _lowerCAmelCase ) -> Tuple: def _inner(_lowerCAmelCase ): return key(_lowerCAmelCase ).lower().replace("""_""" , """""" ) return _inner def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(_lowerCAmelCase ): return x if key is None: snake_case__ : Optional[int] = noop # Constants are all uppercase, they go first. snake_case__ : Optional[int] = [obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : int = [obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : str = [obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] snake_case__ : List[str] = ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: # This inner function sort imports between [ ]. def _replace(_lowerCAmelCase ): snake_case__ : Union[str, Any] = match.groups()[0] if "," not in imports: return f"[{imports}]" snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) + "]" snake_case__ : str = import_statement.split("""\n""" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Dict = 2 if lines[1].strip() == """[""" else 1 snake_case__ : str = [(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : str = sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) snake_case__ : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : List[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] snake_case__ : int = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def __snake_case( _lowerCAmelCase , _lowerCAmelCase=True ) -> Dict: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : Optional[int] = split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Optional[Any] = main_blocks[block_idx] snake_case__ : Dict = block.split("""\n""" ) # Get to the start of the imports. snake_case__ : Dict = 0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : List[str] = """\n""".join(block_lines[line_idx:-1] ) snake_case__ : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Optional[int] = split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Optional[Any] = [(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Dict = [(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] snake_case__ : Union[str, Any] = [x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case__ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : Dict = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase=True ) -> Tuple: snake_case__ : str = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case__ : Union[str, Any] = sort_imports(os.path.join(_lowerCAmelCase , """__init__.py""" ) , check_only=_lowerCAmelCase ) if result: snake_case__ : Union[str, Any] = [os.path.join(_lowerCAmelCase , """__init__.py""" )] if len(_lowerCAmelCase ) > 0: raise ValueError(f"Would overwrite {len(_lowerCAmelCase )} files, run `make style`." ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
35
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> Dict: '''simple docstring''' __magic_name__ : Tuple = SwinConfig(image_size=192 ) if "base" in model_name: __magic_name__ : Optional[int] = 6 __magic_name__ : Dict = 128 __magic_name__ : Any = (2, 2, 18, 2) __magic_name__ : Tuple = (4, 8, 16, 32) elif "large" in model_name: __magic_name__ : Optional[Any] = 12 __magic_name__ : List[Any] = 192 __magic_name__ : Tuple = (2, 2, 18, 2) __magic_name__ : List[Any] = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) __magic_name__ : Optional[int] = window_size __magic_name__ : Any = embed_dim __magic_name__ : List[str] = depths __magic_name__ : int = num_heads return config def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> Any: '''simple docstring''' if "encoder.mask_token" in name: __magic_name__ : Tuple = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: __magic_name__ : Union[str, Any] = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: __magic_name__ : List[str] = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: __magic_name__ : List[str] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __magic_name__ : List[str] = name.replace("attn" , "attention.self" ) if "norm1" in name: __magic_name__ : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __magic_name__ : Optional[Any] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __magic_name__ : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __magic_name__ : Optional[int] = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": __magic_name__ : Union[str, Any] = "layernorm.weight" if name == "encoder.norm.bias": __magic_name__ : Optional[Any] = "layernorm.bias" if "decoder" in name: pass else: __magic_name__ : List[str] = "swin." + name return name def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __magic_name__ : Tuple = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: __magic_name__ : str = key.split("." ) __magic_name__ : Tuple = int(key_split[2] ) __magic_name__ : List[str] = int(key_split[4] ) __magic_name__ : Any = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ : List[Any] = val[:dim, :] __magic_name__ : Dict = val[ dim : dim * 2, : ] __magic_name__ : List[str] = val[-dim:, :] else: __magic_name__ : Tuple = val[ :dim ] __magic_name__ : str = val[ dim : dim * 2 ] __magic_name__ : Dict = val[ -dim: ] else: __magic_name__ : List[Any] = val return orig_state_dict def lowerCAmelCase_ ( _snake_case : str , _snake_case : int , _snake_case : List[str] , _snake_case : Tuple ) -> Any: '''simple docstring''' __magic_name__ : Tuple = torch.load(_snake_case , map_location="cpu" )["model"] __magic_name__ : List[str] = get_swin_config(_snake_case ) __magic_name__ : int = SwinForMaskedImageModeling(_snake_case ) model.eval() __magic_name__ : Tuple = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) __magic_name__ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" __magic_name__ : int = ViTImageProcessor(size={"height": 192, "width": 192} ) __magic_name__ : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) __magic_name__ : int = image_processor(images=_snake_case , return_tensors="pt" ) with torch.no_grad(): __magic_name__ : List[str] = model(**_snake_case ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) snake_case : str = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
41
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) snake_case : List[str] = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = ["BeitFeatureExtractor"] snake_case : Optional[int] = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys snake_case : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
41
1
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a__ ( __lowerCAmelCase ): __lowerCAmelCase = 42 __lowerCAmelCase = jnp.floataa __lowerCAmelCase = True def __magic_name__ ( self ): super().setup() lowercase : int = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *_a , **_a ): lowercase : Dict = super().__call__(*_a , **_a ) lowercase : str = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a__ ( __lowerCAmelCase ): __lowerCAmelCase = FlaxBigBirdForNaturalQuestionsModule def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : int , __snake_case : Union[str, Any] ) -> Optional[Any]: def cross_entropy(__snake_case : str , __snake_case : str , __snake_case : str=None ): lowercase : Any = logits.shape[-1] lowercase : List[Any] = (labels[..., None] == jnp.arange(_SCREAMING_SNAKE_CASE )[None]).astype("f4" ) lowercase : List[str] = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) lowercase : Dict = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase : str = reduction(_SCREAMING_SNAKE_CASE ) return loss lowercase : Tuple = partial(_SCREAMING_SNAKE_CASE , reduction=jnp.mean ) lowercase : List[str] = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase : Union[str, Any] = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase : Any = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a__ : __lowerCAmelCase = """google/bigbird-roberta-base""" __lowerCAmelCase = 3000 __lowerCAmelCase = 1_0500 __lowerCAmelCase = 128 __lowerCAmelCase = 3 __lowerCAmelCase = 1 __lowerCAmelCase = 5 # tx_args __lowerCAmelCase = 3E-5 __lowerCAmelCase = 0.0 __lowerCAmelCase = 2_0000 __lowerCAmelCase = 0.0095 __lowerCAmelCase = """bigbird-roberta-natural-questions""" __lowerCAmelCase = """training-expt""" __lowerCAmelCase = """data/nq-training.jsonl""" __lowerCAmelCase = """data/nq-validation.jsonl""" def __magic_name__ ( self ): os.makedirs(self.base_dir , exist_ok=_a ) lowercase : str = os.path.join(self.base_dir , self.save_dir ) lowercase : List[str] = self.batch_size_per_device * jax.device_count() @dataclass class a__ : __lowerCAmelCase = 42 __lowerCAmelCase = 4096 # no dynamic padding on TPUs def __call__( self , _a ): lowercase : int = self.collate_fn(_a ) lowercase : Optional[int] = jax.tree_util.tree_map(_a , _a ) return batch def __magic_name__ ( self , _a ): lowercase : Dict = self.fetch_inputs(features["input_ids"] ) lowercase : List[Any] = { 'input_ids': jnp.array(_a , dtype=jnp.intaa ), 'attention_mask': jnp.array(_a , dtype=jnp.intaa ), 'start_labels': jnp.array(features["start_token"] , dtype=jnp.intaa ), 'end_labels': jnp.array(features["end_token"] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def __magic_name__ ( self , _a ): lowercase : List[Any] = [self._fetch_inputs(_a ) for ids in input_ids] return zip(*_a ) def __magic_name__ ( self , _a ): lowercase : Union[str, Any] = [1 for _ in range(len(_a ) )] while len(_a ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __magic_name__ ( __snake_case : Any , __snake_case : List[Any] , __snake_case : Tuple=None ) -> List[Any]: if seed is not None: lowercase : int = dataset.shuffle(seed=_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) // batch_size ): lowercase : Union[str, Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_SCREAMING_SNAKE_CASE ) @partial(jax.pmap , axis_name="batch" ) def __magic_name__ ( __snake_case : List[str] , __snake_case : int , **__snake_case : str ) -> Any: def loss_fn(__snake_case : Any ): lowercase : str = model_inputs.pop("start_labels" ) lowercase : Dict = model_inputs.pop("end_labels" ) lowercase : Optional[int] = model_inputs.pop("pooled_labels" ) lowercase : Optional[Any] = state.apply_fn(**_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , dropout_rng=_SCREAMING_SNAKE_CASE , train=_SCREAMING_SNAKE_CASE ) lowercase : Optional[int] = outputs return state.loss_fn( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) lowercase : Union[str, Any] = jax.random.split(_SCREAMING_SNAKE_CASE ) lowercase : List[Any] = jax.value_and_grad(_SCREAMING_SNAKE_CASE ) lowercase : str = grad_fn(state.params ) lowercase : Optional[int] = jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowercase : int = jax.lax.pmean(_SCREAMING_SNAKE_CASE , "batch" ) lowercase : Union[str, Any] = state.apply_gradients(grads=_SCREAMING_SNAKE_CASE ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def __magic_name__ ( __snake_case : Union[str, Any] , **__snake_case : List[str] ) -> Optional[Any]: lowercase : Optional[int] = model_inputs.pop("start_labels" ) lowercase : int = model_inputs.pop("end_labels" ) lowercase : Dict = model_inputs.pop("pooled_labels" ) lowercase : Union[str, Any] = state.apply_fn(**_SCREAMING_SNAKE_CASE , params=state.params , train=_SCREAMING_SNAKE_CASE ) lowercase : int = outputs lowercase : Optional[int] = state.loss_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase : Tuple = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class a__ ( train_state.TrainState ): __lowerCAmelCase = struct.field(pytree_node=__lowerCAmelCase ) @dataclass class a__ : __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = None def __magic_name__ ( self , _a , _a , _a , _a=None ): lowercase : Dict = model.params lowercase : Any = TrainState.create( apply_fn=model.__call__ , params=_a , tx=_a , loss_fn=_a , ) if ckpt_dir is not None: lowercase : Any = restore_checkpoint(_a , _a ) lowercase : Any = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } lowercase : str = build_tx(**_a ) lowercase : Optional[Any] = train_state.TrainState( step=_a , apply_fn=model.__call__ , params=_a , tx=_a , opt_state=_a , ) lowercase : int = args lowercase : Union[str, Any] = data_collator lowercase : Any = lr lowercase : Dict = params lowercase : Tuple = jax_utils.replicate(_a ) return state def __magic_name__ ( self , _a , _a , _a ): lowercase : int = self.args lowercase : str = len(_a ) // args.batch_size lowercase : Tuple = jax.random.PRNGKey(0 ) lowercase : List[Any] = jax.random.split(_a , jax.device_count() ) for epoch in range(args.max_epochs ): lowercase : str = jnp.array(0 , dtype=jnp.floataa ) lowercase : Tuple = get_batched_dataset(_a , args.batch_size , seed=_a ) lowercase : Optional[int] = 0 for batch in tqdm(_a , total=_a , desc=f"""Running EPOCH-{epoch}""" ): lowercase : List[str] = self.data_collator(_a ) lowercase : int = self.train_step_fn(_a , _a , **_a ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: lowercase : List[Any] = jax_utils.unreplicate(state.step ) lowercase : Tuple = running_loss.item() / i lowercase : Optional[Any] = self.scheduler_fn(state_step - 1 ) lowercase : List[Any] = self.evaluate(_a , _a ) lowercase : List[str] = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(_a ) ) self.logger.log(_a , commit=_a ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"""-e{epoch}-s{i}""" , state=_a ) def __magic_name__ ( self , _a , _a ): lowercase : Tuple = get_batched_dataset(_a , self.args.batch_size ) lowercase : Dict = len(_a ) // self.args.batch_size lowercase : Tuple = jnp.array(0 , dtype=jnp.floataa ) lowercase : List[Any] = 0 for batch in tqdm(_a , total=_a , desc="Evaluating ... " ): lowercase : str = self.data_collator(_a ) lowercase : List[str] = self.val_step_fn(_a , **_a ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def __magic_name__ ( self , _a , _a ): lowercase : List[Any] = jax_utils.unreplicate(_a ) print(f"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... " ) self.model_save_fn(_a , params=state.params ) with open(os.path.join(_a , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_a , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(_a , "data_collator.joblib" ) ) with open(os.path.join(_a , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , _a ) print("DONE" ) def __magic_name__ ( __snake_case : List[Any] , __snake_case : List[Any] ) -> Optional[Any]: print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(_SCREAMING_SNAKE_CASE , "flax_model.msgpack" ) , "rb" ) as f: lowercase : int = from_bytes(state.params , f.read() ) with open(os.path.join(_SCREAMING_SNAKE_CASE , "opt_state.msgpack" ) , "rb" ) as f: lowercase : Optional[Any] = from_bytes(state.opt_state , f.read() ) lowercase : Optional[Any] = joblib.load(os.path.join(_SCREAMING_SNAKE_CASE , "args.joblib" ) ) lowercase : int = joblib.load(os.path.join(_SCREAMING_SNAKE_CASE , "data_collator.joblib" ) ) with open(os.path.join(_SCREAMING_SNAKE_CASE , "training_state.json" ) , "r" ) as f: lowercase : Any = json.load(_SCREAMING_SNAKE_CASE ) lowercase : Optional[Any] = training_state['step'] print("DONE" ) return params, opt_state, step, args, data_collator def __magic_name__ ( __snake_case : str , __snake_case : str , __snake_case : Any , __snake_case : int ) -> Optional[int]: lowercase : str = num_train_steps - warmup_steps lowercase : str = optax.linear_schedule(init_value=_SCREAMING_SNAKE_CASE , end_value=_SCREAMING_SNAKE_CASE , transition_steps=_SCREAMING_SNAKE_CASE ) lowercase : List[Any] = optax.linear_schedule(init_value=_SCREAMING_SNAKE_CASE , end_value=1E-7 , transition_steps=_SCREAMING_SNAKE_CASE ) lowercase : int = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __magic_name__ ( __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : List[Any] ) -> Tuple: def weight_decay_mask(__snake_case : int ): lowercase : List[Any] = traverse_util.flatten_dict(_SCREAMING_SNAKE_CASE ) lowercase : List[str] = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(_SCREAMING_SNAKE_CASE ) lowercase : List[str] = scheduler_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase : Any = optax.adamw(learning_rate=_SCREAMING_SNAKE_CASE , weight_decay=_SCREAMING_SNAKE_CASE , mask=_SCREAMING_SNAKE_CASE ) return tx, lr
202
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __snake_case ( __lowerCAmelCase ): a__ = """decision_transformer""" a__ = ["""past_key_values"""] a__ = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase=17 , lowercase=4 , lowercase=1_28 , lowercase=40_96 , lowercase=True , lowercase=1 , lowercase=10_24 , lowercase=3 , lowercase=1 , lowercase=None , lowercase="relu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-5 , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=5_02_56 , lowercase=5_02_56 , lowercase=False , lowercase=False , **lowercase , ) -> Tuple: '''simple docstring''' a__: List[str] = state_dim a__: int = act_dim a__: List[Any] = hidden_size a__: List[str] = max_ep_len a__: List[Any] = action_tanh a__: Optional[Any] = vocab_size a__: Tuple = n_positions a__: Dict = n_layer a__: Optional[int] = n_head a__: Optional[int] = n_inner a__: Any = activation_function a__: Union[str, Any] = resid_pdrop a__: Any = embd_pdrop a__: Any = attn_pdrop a__: List[Any] = layer_norm_epsilon a__: Optional[Any] = initializer_range a__: Any = scale_attn_weights a__: Dict = use_cache a__: Optional[int] = scale_attn_by_inverse_layer_idx a__: List[str] = reorder_and_upcast_attn a__: Any = bos_token_id a__: int = eos_token_id super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase)
290
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = 0 def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = Path(__a ) / 'preprocessor_config.json' UpperCAmelCase__ = Path(__a ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(__a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(__a , 'w' ) ) UpperCAmelCase__ = AutoImageProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = Path(__a ) / 'preprocessor_config.json' UpperCAmelCase__ = Path(__a ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(__a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(__a , 'w' ) ) UpperCAmelCase__ = AutoImageProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type UpperCAmelCase__ = Path(__a ) / 'preprocessor_config.json' UpperCAmelCase__ = Path(__a ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(__a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(__a , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally UpperCAmelCase__ = AutoImageProcessor.from_pretrained(__a ).to_dict() config_dict.pop('image_processor_type' ) UpperCAmelCase__ = CLIPImageProcessor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) UpperCAmelCase__ = AutoImageProcessor.from_pretrained(__a ) # make sure private variable is not incorrectly saved UpperCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = Path(__a ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(__a , 'w' ) , ) UpperCAmelCase__ = AutoImageProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" with self.assertRaisesRegex( __a , 'clip-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase__ = AutoImageProcessor.from_pretrained('clip-base' ) def UpperCamelCase__ (self ) -> str: """simple docstring""" with self.assertRaisesRegex( __a , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase__ = AutoImageProcessor.from_pretrained(__a , revision='aaaaaa' ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" with self.assertRaisesRegex( __a , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase__ = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" with self.assertRaises(__a ): UpperCAmelCase__ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): UpperCAmelCase__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=__a ) UpperCAmelCase__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=__a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__a ) UpperCAmelCase__ = AutoImageProcessor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" try: AutoConfig.register('custom' , __a ) AutoImageProcessor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoImageProcessor.register(__a , __a ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = Path(__a ) / 'preprocessor_config.json' UpperCAmelCase__ = Path(__a ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(__a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(__a , 'w' ) ) UpperCAmelCase__ = CustomImageProcessor.from_pretrained(__a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__a ) UpperCAmelCase__ = AutoImageProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True try: AutoConfig.register('custom' , __a ) AutoImageProcessor.register(__a , __a ) # If remote code is not set, the default is to use local UpperCAmelCase__ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=__a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=__a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(__a , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
335
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
1
import math import unittest def _snake_case ( lowerCAmelCase : int ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(_A ): is_prime(-19 ) self.assertFalse( is_prime(0 ),"Zero doesn't have any positive factors, primes must have exactly two.",) self.assertFalse( is_prime(1 ),"One only has 1 positive factor, primes must have exactly two.",) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
18
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=5 ) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("""<mask>""" ) == 1 UpperCAmelCase : str = torch.tensor(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ).unsqueeze(0 ) # Batch size 1 UpperCAmelCase : Dict = model(_lowercase )[0] # The last hidden-state is the first element of the output tuple UpperCAmelCase : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCAmelCase : Any = logits[0, masked_index, :] UpperCAmelCase : Optional[Any] = logits.softmax(dim=0 ) UpperCAmelCase , UpperCAmelCase : Optional[int] = prob.topk(k=_lowercase , dim=0 ) UpperCAmelCase : Optional[Any] = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowercase ) )] ) UpperCAmelCase : List[str] = tokenizer.mask_token UpperCAmelCase : Tuple = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): UpperCAmelCase : str = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(_lowercase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(_lowercase ) , _lowercase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowercase , _lowercase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs a : Union[str, Any] = CamembertTokenizer.from_pretrained("""camembert-base""") a : Dict = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() a : Union[str, Any] = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
1
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str]=1_3 , SCREAMING_SNAKE_CASE_ : Optional[int]=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : List[str]=9_9 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5 , SCREAMING_SNAKE_CASE_ : Optional[Any]=4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_7 , SCREAMING_SNAKE_CASE_ : List[Any]="gelu" , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE_ : Any=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : Optional[int]=4 , SCREAMING_SNAKE_CASE_ : List[Any]=None , ): lowerCAmelCase_ : str = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : Union[str, Any] = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Union[str, Any] = use_input_mask lowerCAmelCase_ : List[str] = use_token_type_ids lowerCAmelCase_ : str = use_labels lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : List[Any] = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : int = type_vocab_size lowerCAmelCase_ : Optional[int] = type_sequence_label_size lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : int = num_labels lowerCAmelCase_ : Tuple = num_choices lowerCAmelCase_ : Tuple = scope def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Dict = None if self.use_input_mask: lowerCAmelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[str] = None if self.use_token_type_ids: lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : str = None lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Union[str, Any] = None if self.use_labels: lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : str ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : Dict = BioGptModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Any = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , ): lowerCAmelCase_ : Optional[int] = BioGptForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : Union[str, Any] = BioGptModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # create attention mask lowerCAmelCase_ : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = self.seq_length // 2 lowerCAmelCase_ : Optional[Any] = 0 # first forward pass lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids lowerCAmelCase_ : Optional[Any] = ids_tensor((1,) , SCREAMING_SNAKE_CASE_ ).item() + 1 lowerCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) lowerCAmelCase_ : List[Any] = random_other_next_tokens # append to next input_ids and attn_mask lowerCAmelCase_ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase_ : Dict = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )] , dim=1 , ) # get two different outputs lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )['last_hidden_state'] lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )['last_hidden_state'] # select random slice lowerCAmelCase_ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase_ : Dict = output_from_no_past[:, -1, random_slice_idx].detach() lowerCAmelCase_ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict , *SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase_ : Dict = BioGptModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval() lowerCAmelCase_ : str = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # first forward pass lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ ,lowerCAmelCase_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ : Dict = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase_ : Dict = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase_ : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )['last_hidden_state'] lowerCAmelCase_ : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )[ 'last_hidden_state' ] # select random slice lowerCAmelCase_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase_ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase_ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict , *SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str]=False ): lowerCAmelCase_ : Optional[Any] = BioGptForCausalLM(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() lowerCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , *SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : str = BioGptModel(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , *SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase_ : Tuple = self.num_labels lowerCAmelCase_ : List[str] = BioGptForTokenClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) , ) : List[str] = config_and_inputs lowerCAmelCase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase_, lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = (BioGptForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : str = BioGptModelTester(self ) lowerCAmelCase_ : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : str ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ : int = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*SCREAMING_SNAKE_CASE_ , gradient_checkpointing=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Dict = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) lowerCAmelCase_ : str = 'left' # Define PAD Token = EOS Token = 50256 lowerCAmelCase_ : Optional[Any] = tokenizer.eos_token lowerCAmelCase_ : Dict = model.config.eos_token_id # use different length sentences to test batching lowerCAmelCase_ : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ : int = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = inputs['input_ids'].to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = model.generate( input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'].to(SCREAMING_SNAKE_CASE_ ) , ) lowerCAmelCase_ : List[str] = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() lowerCAmelCase_ : List[str] = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ : Optional[int] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[str] = BioGptModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : str = 3 lowerCAmelCase_ : Dict = input_dict['input_ids'] lowerCAmelCase_ : List[Any] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ : List[str] = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Any = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ ,lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : str = 3 lowerCAmelCase_ : Tuple = 'multi_label_classification' lowerCAmelCase_ : int = input_dict['input_ids'] lowerCAmelCase_ : List[Any] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Any = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) lowerCAmelCase_ : Dict = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) lowerCAmelCase_ : Dict = model(SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase_ : Union[str, Any] = 4_2_3_8_4 lowerCAmelCase_ : Optional[Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : List[Any] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) lowerCAmelCase_ : Optional[int] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(SCREAMING_SNAKE_CASE_ ) torch.manual_seed(0 ) lowerCAmelCase_ : Dict = tokenizer('COVID-19 is' , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = model.generate( **SCREAMING_SNAKE_CASE_ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
289
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_3 , SCREAMING_SNAKE_CASE_ : Dict=7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=9_9 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=3_2 , SCREAMING_SNAKE_CASE_ : Dict=5 , SCREAMING_SNAKE_CASE_ : Dict=4 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=5_1_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE_ : Optional[int]=3 , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : List[Any]="last" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : str=None , ): lowerCAmelCase_ : Tuple = parent lowerCAmelCase_ : Tuple = batch_size lowerCAmelCase_ : str = seq_length lowerCAmelCase_ : List[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_lengths lowerCAmelCase_ : Union[str, Any] = use_token_type_ids lowerCAmelCase_ : str = use_labels lowerCAmelCase_ : str = gelu_activation lowerCAmelCase_ : str = sinusoidal_embeddings lowerCAmelCase_ : List[Any] = causal lowerCAmelCase_ : Union[str, Any] = asm lowerCAmelCase_ : Union[str, Any] = n_langs lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : Any = n_special lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Dict = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : List[Any] = type_sequence_label_size lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : Dict = num_labels lowerCAmelCase_ : Union[str, Any] = num_choices lowerCAmelCase_ : Union[str, Any] = summary_type lowerCAmelCase_ : Optional[Any] = use_proj lowerCAmelCase_ : List[Any] = scope def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Dict = None if self.use_input_lengths: lowerCAmelCase_ : Any = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase_ : Any = None if self.use_token_type_ids: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = None if self.use_labels: lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , ): lowerCAmelCase_ : Union[str, Any] = FlaubertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Any = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , ): lowerCAmelCase_ : Any = FlaubertWithLMHeadModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , ): lowerCAmelCase_ : Tuple = FlaubertForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): lowerCAmelCase_ : Optional[int] = FlaubertForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = model( SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : Optional[int] = model( SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , ) ((lowerCAmelCase_) ,) : int = result_with_labels.to_tuple() lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) ((lowerCAmelCase_) ,) : Dict = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , ): lowerCAmelCase_ : Optional[int] = FlaubertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Any = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , ): lowerCAmelCase_ : List[Any] = self.num_labels lowerCAmelCase_ : Optional[Any] = FlaubertForTokenClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , ): lowerCAmelCase_ : Dict = self.num_choices lowerCAmelCase_ : Optional[Any] = FlaubertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : Optional[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) , ) : Dict = config_and_inputs lowerCAmelCase_ : List[str] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ): lowerCAmelCase_ : Any = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Tuple = FlaubertModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Any ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = FlaubertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ ,lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase_ : int = True lowerCAmelCase_ : Union[str, Any] = model_class(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , 'traced_model.pt' ) ) lowerCAmelCase_ : Optional[Any] = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , 'traced_model.pt' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['input_ids'].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['attention_mask'].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : int = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) lowerCAmelCase_ : List[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase_ : Optional[Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
289
1
"""simple docstring""" __magic_name__ = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
100
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__)
100
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) snake_case : Tuple = logging.getLogger() def __lowerCamelCase ( ): """simple docstring""" a :Optional[int] = argparse.ArgumentParser() parser.add_argument('''-f''' ) a :int = parser.parse_args() return args.f def __lowerCamelCase ( UpperCAmelCase_ : List[Any] ): """simple docstring""" a :str = {} a :Union[str, Any] = os.path.join(UpperCAmelCase_ , '''all_results.json''' ) if os.path.exists(UpperCAmelCase_ ): with open(UpperCAmelCase_ , '''r''' ) as f: a :Tuple = json.load(UpperCAmelCase_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def __lowerCamelCase ( ): """simple docstring""" a :int = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() snake_case : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _snake_case ( _snake_case ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU a :int = tempfile.mkdtemp() a :Optional[Any] = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) a :Optional[int] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.get_auto_remove_tmp_dir() a :Union[str, Any] = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) a :Optional[Any] = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.get_auto_remove_tmp_dir() a :Dict = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) a :str = get_results(_lowerCamelCase ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.get_auto_remove_tmp_dir() a :int = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) a :str = get_results(_lowerCamelCase ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE__ ( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu a :Dict = 7 if get_gpu_count() > 1 else 2 a :Any = self.get_auto_remove_tmp_dir() a :Dict = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) a :Tuple = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = self.get_auto_remove_tmp_dir() a :List[Any] = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) a :List[Any] = get_results(_lowerCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.get_auto_remove_tmp_dir() a :Union[str, Any] = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) a :List[str] = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.get_auto_remove_tmp_dir() a :Any = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) a :Tuple = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = self.get_auto_remove_tmp_dir() a :Optional[int] = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) a :Optional[Any] = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''translation_no_trainer''' ) ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(_lowerCamelCase ) a :Dict = self.get_auto_remove_tmp_dir() a :Dict = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) a :Optional[int] = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = self.get_auto_remove_tmp_dir() a :Any = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) a :Optional[int] = get_results(_lowerCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''image_classification_no_trainer''' ) ) )
281
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : Dict = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'data2vec-vision' def __init__( self , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=224 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=[3, 5, 7, 11] , _lowerCamelCase=[1, 2, 3, 6] , _lowerCamelCase=True , _lowerCamelCase=0.4 , _lowerCamelCase=256 , _lowerCamelCase=1 , _lowerCamelCase=False , _lowerCamelCase=255 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) a :Tuple = hidden_size a :Any = num_hidden_layers a :Optional[int] = num_attention_heads a :Dict = intermediate_size a :List[Any] = hidden_act a :List[str] = hidden_dropout_prob a :Union[str, Any] = attention_probs_dropout_prob a :Any = initializer_range a :Any = layer_norm_eps a :Union[str, Any] = image_size a :int = patch_size a :Optional[int] = num_channels a :Union[str, Any] = use_mask_token a :Optional[Any] = use_absolute_position_embeddings a :Tuple = use_relative_position_bias a :List[Any] = use_shared_relative_position_bias a :Dict = layer_scale_init_value a :Optional[int] = drop_path_rate a :List[str] = use_mean_pooling # decode head attributes (semantic segmentation) a :str = out_indices a :Tuple = pool_scales # auxiliary head attributes (semantic segmentation) a :List[Any] = use_auxiliary_head a :List[Any] = auxiliary_loss_weight a :Optional[int] = auxiliary_channels a :List[str] = auxiliary_num_convs a :str = auxiliary_concat_input a :Union[str, Any] = semantic_loss_ignore_index class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1e-4
281
1
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def lowerCAmelCase_ ( snake_case_ : jnp.ndarray , snake_case_ : int , snake_case_ : float = 1 , snake_case_ : float = 1 , snake_case_ : float = 1.0E4 , snake_case_ : bool = False , snake_case_ : float = 1.0 , ) -> jnp.ndarray: '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"""Embedding dimension {embedding_dim} should be even""" UpperCAmelCase_ = float(embedding_dim // 2 ) UpperCAmelCase_ = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCAmelCase_ = min_timescale * jnp.exp(jnp.arange(snake_case_ , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCAmelCase_ = jnp.expand_dims(snake_case_ , 1 ) * jnp.expand_dims(snake_case_ , 0 ) # scale embeddings UpperCAmelCase_ = scale * emb if flip_sin_to_cos: UpperCAmelCase_ = jnp.concatenate([jnp.cos(snake_case_ ), jnp.sin(snake_case_ )] , axis=1 ) else: UpperCAmelCase_ = jnp.concatenate([jnp.sin(snake_case_ ), jnp.cos(snake_case_ )] , axis=1 ) UpperCAmelCase_ = jnp.reshape(snake_case_ , [jnp.shape(snake_case_ )[0], embedding_dim] ) return signal class __A ( nn.Module ): a__ : int = 32 a__ : jnp.dtype = jnp.floataa @nn.compact def __call__(self : Dict , __a : Tuple ): UpperCAmelCase_ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(__a ) UpperCAmelCase_ = nn.silu(__a ) UpperCAmelCase_ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(__a ) return temb class __A ( nn.Module ): a__ : int = 32 a__ : bool = False a__ : float = 1 @nn.compact def __call__(self : Optional[Any] , __a : List[Any] ): return get_sinusoidal_embeddings( __a , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(snake_case_ , x % y ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(snake_case_ , snake_case_ ) return g if __name__ == "__main__": print(f"{solution() = }")
1
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : List[str] = """vit_mae""" def __init__( self : Dict , UpperCamelCase__ : str=7_6_8 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : Optional[int]=1_2 , UpperCamelCase__ : str=3_0_7_2 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Union[str, Any]=1e-12 , UpperCamelCase__ : Dict=2_2_4 , UpperCamelCase__ : Optional[Any]=1_6 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[int]=1_6 , UpperCamelCase__ : List[Any]=5_1_2 , UpperCamelCase__ : str=8 , UpperCamelCase__ : str=2_0_4_8 , UpperCamelCase__ : int=0.75 , UpperCamelCase__ : Tuple=False , **UpperCamelCase__ : List[str] , )-> int: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: int = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: str = num_attention_heads __lowerCAmelCase: Optional[int] = intermediate_size __lowerCAmelCase: Any = hidden_act __lowerCAmelCase: Union[str, Any] = hidden_dropout_prob __lowerCAmelCase: Optional[int] = attention_probs_dropout_prob __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[Any] = layer_norm_eps __lowerCAmelCase: List[str] = image_size __lowerCAmelCase: List[str] = patch_size __lowerCAmelCase: Union[str, Any] = num_channels __lowerCAmelCase: Dict = qkv_bias __lowerCAmelCase: List[Any] = decoder_num_attention_heads __lowerCAmelCase: str = decoder_hidden_size __lowerCAmelCase: Any = decoder_num_hidden_layers __lowerCAmelCase: List[Any] = decoder_intermediate_size __lowerCAmelCase: Tuple = mask_ratio __lowerCAmelCase: List[str] = norm_pix_loss
108
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __A = datasets.logging.get_logger(__name__) __A = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" __A = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" __A = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" __A = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): def lowercase_ ( self : Optional[int])-> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def lowercase_ ( self : int , UpperCamelCase__ : Dict)-> List[str]: '''simple docstring''' if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').") __lowerCAmelCase: List[str] = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: __lowerCAmelCase: Optional[int] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __lowerCAmelCase: Tuple = self.config_name.upper() else: raise KeyError( f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}") # download the model checkpoint specified by self.config_name and set up the scorer __lowerCAmelCase: Union[str, Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) __lowerCAmelCase: Dict = score.BleurtScorer(os.path.join(UpperCamelCase__ , UpperCamelCase__)) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int)-> str: '''simple docstring''' __lowerCAmelCase: str = self.scorer.score(references=UpperCamelCase__ , candidates=UpperCamelCase__) return {"scores": scores}
108
1
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = 0 @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): snake_case : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type snake_case : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCamelCase_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(SCREAMING_SNAKE_CASE , "vocab.txt" ) ) snake_case : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="bert" , use_fast=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(SCREAMING_SNAKE_CASE , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(SCREAMING_SNAKE_CASE , "merges.txt" ) ) snake_case : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="gpt2" , use_fast=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @require_tokenizers def lowerCamelCase_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(SCREAMING_SNAKE_CASE , "vocab.txt" ) ) snake_case : Optional[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="bert" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(SCREAMING_SNAKE_CASE , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(SCREAMING_SNAKE_CASE , "merges.txt" ) ) snake_case : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="gpt2" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" ) @require_tokenizers def lowerCamelCase_ ( self ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: snake_case : Tuple = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case , SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowerCamelCase_ ( self ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): snake_case : List[str] = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = TOKENIZER_MAPPING.values() snake_case : List[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(SCREAMING_SNAKE_CASE ) @require_tokenizers def lowerCamelCase_ ( self ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , SCREAMING_SNAKE_CASE ) @require_tokenizers def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=SCREAMING_SNAKE_CASE ) snake_case : int = "Hello, world. How are you?" snake_case : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertEqual("[UNK]" , tokens[0] ) snake_case : List[str] = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=SCREAMING_SNAKE_CASE ) snake_case : Tuple = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertEqual("[UNK]" , tokens[0] ) @require_tokenizers def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , "[UNK]" ) self.assertEqual(tokenizer.padding_side , "right" ) self.assertEqual(tokenizer.truncation_side , "right" ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) snake_case : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = get_tokenizer_config("bert-base-cased" ) snake_case : str = config.pop("_commit_hash" , SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(SCREAMING_SNAKE_CASE , {"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. snake_case : str = get_tokenizer_config(SCREAMING_SNAKE_CASE ) self.assertDictEqual(SCREAMING_SNAKE_CASE , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. snake_case : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) snake_case : Tuple = get_tokenizer_config(SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer" ) def lowerCamelCase_ ( self ): """simple docstring""" try: AutoConfig.register("custom" , SCREAMING_SNAKE_CASE ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE ): AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) snake_case : List[Any] = CustomTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) snake_case : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase_ ( self ): """simple docstring""" try: AutoConfig.register("custom" , SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE ): AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: snake_case : str = BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self ): """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE ): snake_case : Optional[int] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE ): snake_case : Union[str, Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=SCREAMING_SNAKE_CASE ) snake_case : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version snake_case : Dict = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) snake_case : List[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) @require_tokenizers def lowerCamelCase_ ( self ): """simple docstring""" class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Any = False class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Optional[int] = NewTokenizer a__ : Optional[int] = False try: AutoConfig.register("custom" , SCREAMING_SNAKE_CASE ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local snake_case : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) snake_case : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. snake_case : Optional[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) snake_case : Dict = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub snake_case : Any = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) snake_case : Optional[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version snake_case : List[str] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def lowerCamelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , "bert-base is not a local folder and is not a valid model identifier" ): snake_case : List[Any] = AutoTokenizer.from_pretrained("bert-base" ) def lowerCamelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): snake_case : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , revision="aaaaaa" ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: snake_case : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
148
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : str = seq_length snake_case : Optional[int] = is_training snake_case : Optional[int] = use_attention_mask snake_case : str = use_token_type_ids snake_case : int = use_labels snake_case : Any = vocab_size snake_case : Any = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : List[str] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : Any = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = num_choices def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = None if self.use_attention_mask: snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None if self.use_token_type_ids: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : str = config_and_inputs snake_case : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase ): a__ : Optional[Any] = True a__ : List[str] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: snake_case : List[Any] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=SCREAMING_SNAKE_CASE ) snake_case : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) snake_case : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE )[0] snake_case : List[Any] = 50_000 snake_case : List[str] = (1, 6, vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
1
"""simple docstring""" from __future__ import annotations class __A : """simple docstring""" def __init__( self , __A = 0 ) -> Dict: a =key def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> list[str]: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> list[str]: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE ( self , __A , __A = 0 ) -> str: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a ='''''' for ch in content: ans += chr(ord(__A ) ^ key ) return ans def SCREAMING_SNAKE_CASE ( self , __A , __A = 0 ) -> str: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a ='''''' for ch in content: ans += chr(ord(__A ) ^ key ) return ans def SCREAMING_SNAKE_CASE ( self , __A , __A = 0 ) -> bool: assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__A , __A ) ) except OSError: return False return True def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> bool: assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__A , __A ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
215
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : Union[str, Any] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
1
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : Tuple = OpenAIGPTTokenizer __lowerCamelCase : Optional[Any] = OpenAIGPTTokenizerFast __lowerCamelCase : List[str] = True __lowerCamelCase : List[Any] = False def _snake_case ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowerCAmelCase = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(_lowerCAmelCase ) ) def _snake_case ( self , _lowerCAmelCase ) -> Dict: return "lower newer", "lower newer" def _snake_case ( self ) -> Any: _lowerCAmelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase = "lower" _lowerCAmelCase = ["low", "er</w>"] _lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = tokens + ["<unk>"] _lowerCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase=15 ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) # Simple input _lowerCAmelCase = "This is a simple input" _lowerCAmelCase = ["This is a simple input 1", "This is a simple input 2"] _lowerCAmelCase = ("This is a simple input", "This is a pair") _lowerCAmelCase = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" , ) def _snake_case ( self ) -> Dict: pass @require_ftfy @require_spacy @require_tokenizers class lowerCAmelCase_ ( __magic_name__ ): pass
158
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _SCREAMING_SNAKE_CASE = datasets.utils.logging.get_logger(__name__) class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase : bool = None __lowerCamelCase : bool = None class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilder ): __lowerCamelCase : Tuple = datasets.Audio() __lowerCamelCase : List[str] = "audio" __lowerCamelCase : Optional[int] = AudioFolderConfig __lowerCamelCase : List[str] # definition at the bottom of the script __lowerCamelCase : Optional[int] = AudioClassification(audio_column="audio" ,label_column="label" ) _SCREAMING_SNAKE_CASE = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] _SCREAMING_SNAKE_CASE = AUDIO_EXTENSIONS
158
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __SCREAMING_SNAKE_CASE :List[str] = logging.get_logger('''transformers.models.speecht5''') __SCREAMING_SNAKE_CASE :List[Any] = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __SCREAMING_SNAKE_CASE :Optional[Any] = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __SCREAMING_SNAKE_CASE :Optional[Any] = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __SCREAMING_SNAKE_CASE :Any = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __SCREAMING_SNAKE_CASE :Optional[int] = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __SCREAMING_SNAKE_CASE :Union[str, Any] = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __SCREAMING_SNAKE_CASE :str = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __SCREAMING_SNAKE_CASE :Dict = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __SCREAMING_SNAKE_CASE :List[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __SCREAMING_SNAKE_CASE :Optional[Any] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __SCREAMING_SNAKE_CASE :Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :Dict = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __SCREAMING_SNAKE_CASE :List[str] = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __SCREAMING_SNAKE_CASE :int = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __SCREAMING_SNAKE_CASE :Union[str, Any] = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def UpperCAmelCase_ ( __lowercase : Any , __lowercase : List[str] , __lowercase : Union[str, Any] , __lowercase : int , __lowercase : List[str] ) -> Optional[Any]: '''simple docstring''' for attribute in key.split("." ): _UpperCAmelCase = getattr(__lowercase , __lowercase ) if weight_type is not None: _UpperCAmelCase = getattr(__lowercase , __lowercase ).shape else: _UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value elif weight_type == "running_mean": _UpperCAmelCase = value elif weight_type == "running_var": _UpperCAmelCase = value elif weight_type == "num_batches_tracked": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : Optional[int] ) -> Tuple: '''simple docstring''' for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _UpperCAmelCase , _UpperCAmelCase = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> int: '''simple docstring''' _UpperCAmelCase = [] if task == "s2t": _UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase = MAPPING_S2T _UpperCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": _UpperCAmelCase = None _UpperCAmelCase = MAPPING_T2S _UpperCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": _UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase = MAPPING_S2S _UpperCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(f'{name} was ignored' ) continue _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowercase , __lowercase , __lowercase , __lowercase , hf_model.config.feat_extract_norm == "group" , ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _UpperCAmelCase , _UpperCAmelCase = key.split(".*." ) if prefix in name and suffix in name: _UpperCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(__lowercase )[0].split("." )[-2] _UpperCAmelCase = mapped_key.replace("*" , __lowercase ) if "weight_g" in name: _UpperCAmelCase = "weight_g" elif "weight_v" in name: _UpperCAmelCase = "weight_v" elif "bias" in name: _UpperCAmelCase = "bias" elif "weight" in name: _UpperCAmelCase = "weight" elif "running_mean" in name: _UpperCAmelCase = "running_mean" elif "running_var" in name: _UpperCAmelCase = "running_var" elif "num_batches_tracked" in name: _UpperCAmelCase = "num_batches_tracked" else: _UpperCAmelCase = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Optional[Any] , __lowercase : str , __lowercase : List[str] , __lowercase : int ) -> int: '''simple docstring''' _UpperCAmelCase = full_name.split("conv_layers." )[-1] _UpperCAmelCase = name.split("." ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowercase ) @torch.no_grad() def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : List[Any]=None , __lowercase : Union[str, Any]=None , __lowercase : int=None , ) -> Dict: '''simple docstring''' if config_path is not None: _UpperCAmelCase = SpeechTaConfig.from_pretrained(__lowercase ) else: _UpperCAmelCase = SpeechTaConfig() if task == "s2t": _UpperCAmelCase = config.max_text_positions _UpperCAmelCase = SpeechTaForSpeechToText(__lowercase ) elif task == "t2s": _UpperCAmelCase = 1876 _UpperCAmelCase = 600 _UpperCAmelCase = config.max_speech_positions _UpperCAmelCase = SpeechTaForTextToSpeech(__lowercase ) elif task == "s2s": _UpperCAmelCase = 1876 _UpperCAmelCase = config.max_speech_positions _UpperCAmelCase = SpeechTaForSpeechToSpeech(__lowercase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _UpperCAmelCase = SpeechTaTokenizer(__lowercase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken("<mask>" , lstrip=__lowercase , rstrip=__lowercase ) _UpperCAmelCase = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) _UpperCAmelCase = SpeechTaFeatureExtractor() _UpperCAmelCase = SpeechTaProcessor(tokenizer=__lowercase , feature_extractor=__lowercase ) processor.save_pretrained(__lowercase ) _UpperCAmelCase = torch.load(__lowercase ) recursively_load_weights(fairseq_checkpoint["model"] , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :str = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
156
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :List[Any] = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } __SCREAMING_SNAKE_CASE :str = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } __SCREAMING_SNAKE_CASE :int = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Dict = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = BertTokenizer def __init__( self : Union[str, Any] , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : Optional[int]=True , snake_case_ : Optional[Any]="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : List[Any]="[PAD]" , snake_case_ : int="[CLS]" , snake_case_ : Dict="[MASK]" , snake_case_ : Any=True , snake_case_ : int=None , **snake_case_ : Optional[int] , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case_ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case_ ) != tokenize_chinese_chars ): _UpperCAmelCase = getattr(snake_case_ , normalizer_state.pop("type" ) ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = tokenize_chinese_chars _UpperCAmelCase = normalizer_class(**snake_case_ ) _UpperCAmelCase = do_lower_case def lowercase ( self : str , snake_case_ : str , snake_case_ : Any=None ): _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Optional[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Any , snake_case_ : str , snake_case_ : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
156
1
import logging import os from .state import PartialState class __SCREAMING_SNAKE_CASE ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) lowercase : List[str] = kwargs.pop('''main_process_only''' , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = kwargs.pop('''in_order''' , SCREAMING_SNAKE_CASE__ ) if self.isEnabledFor(SCREAMING_SNAKE_CASE__ ): if self._should_log(SCREAMING_SNAKE_CASE__ ): lowercase , lowercase : str = self.process(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.logger.log(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) elif in_order: lowercase : List[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: lowercase , lowercase : Union[str, Any] = self.process(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.logger.log(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) state.wait_for_everyone() def __lowercase ( _UpperCamelCase, _UpperCamelCase = None ) ->List[Any]: """simple docstring""" if log_level is None: lowercase : str = os.environ.get('''ACCELERATE_LOG_LEVEL''', _UpperCamelCase ) lowercase : str = logging.getLogger(_UpperCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_UpperCamelCase, {} )
337
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __a = logging.get_logger(__name__) __a = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = 'perceiver' def __init__( self , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=1280 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=26 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="kv" , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=262 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=56 , SCREAMING_SNAKE_CASE__=[368, 496] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=1920 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=[1, 16, 224, 224] , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : Any = num_latents lowercase : Union[str, Any] = d_latents lowercase : str = d_model lowercase : int = num_blocks lowercase : str = num_self_attends_per_block lowercase : List[str] = num_self_attention_heads lowercase : List[str] = num_cross_attention_heads lowercase : int = qk_channels lowercase : List[Any] = v_channels lowercase : int = cross_attention_shape_for_attention lowercase : Tuple = self_attention_widening_factor lowercase : Dict = cross_attention_widening_factor lowercase : Any = hidden_act lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : Any = layer_norm_eps lowercase : Any = use_query_residual # masked language modeling attributes lowercase : List[str] = vocab_size lowercase : Dict = max_position_embeddings # image classification attributes lowercase : int = image_size # flow attributes lowercase : List[Any] = train_size # multimodal autoencoding attributes lowercase : List[Any] = num_frames lowercase : Union[str, Any] = audio_samples_per_frame lowercase : int = samples_per_patch lowercase : Optional[int] = output_shape class __SCREAMING_SNAKE_CASE ( A__ ): @property def __lowerCamelCase ( self ): if self.task == "multiple-choice": lowercase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def __lowerCamelCase ( self ): return 1E-4 def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 40 , SCREAMING_SNAKE_CASE__ = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : str = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase : Union[str, Any] = preprocessor.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence lowercase : Optional[Any] = [''' '''.join(['''a'''] ) * seq_length] * batch_size lowercase : Any = dict(preprocessor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) lowercase : Union[str, Any] = inputs.pop('''input_ids''' ) return inputs elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : List[str] = compute_effective_axis_dimension(SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase : List[str] = self._generate_dummy_images(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = dict(preprocessor(images=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) lowercase : Union[str, Any] = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
337
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" if isinstance(UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCAmelCase : '''simple docstring''' def A (self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ): pass def A (self : List[str] ): pass def A (self : Union[str, Any] ): pass def A (self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ): A = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = {"""vision_model""": vision_model, """text_model""": text_model} A = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = after_output[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def A (self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ): A = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def A (self : List[str] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def A (self : Optional[int] ): A = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def A (self : List[Any] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def A (self : Tuple ): A , A = self.get_pretrained_model_and_inputs() A = model_a(**_lowerCAmelCase ) A = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model_a(**_lowerCAmelCase ) A = after_outputs[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : int ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): A = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Union[str, Any] ): A = TFViTModelTester(self ) A = TFBertModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : str ): A = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : str ): A = TFDeiTModelTester(self ) A = TFRobertaModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Dict ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Optional[Any] ): A = TFCLIPVisionModelTester(self ) A = TFBertModelTester(self ) A = clip_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) A = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) A = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
337
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''perceiver''' def __init__(self : Dict , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : Any=1280 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=26 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]="kv" , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=262 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : int=56 , _lowerCAmelCase : List[Any]=[368, 496] , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=1920 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=[1, 16, 224, 224] , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = num_latents A = d_latents A = d_model A = num_blocks A = num_self_attends_per_block A = num_self_attention_heads A = num_cross_attention_heads A = qk_channels A = v_channels A = cross_attention_shape_for_attention A = self_attention_widening_factor A = cross_attention_widening_factor A = hidden_act A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = use_query_residual # masked language modeling attributes A = vocab_size A = max_position_embeddings # image classification attributes A = image_size # flow attributes A = train_size # multimodal autoencoding attributes A = num_frames A = audio_samples_per_frame A = samples_per_patch A = output_shape class __UpperCAmelCase ( A__ ): '''simple docstring''' @property def A (self : List[str] ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def A (self : Dict ): return 1e-4 def A (self : List[Any] , _lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 40 , _lowerCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = preprocessor.num_special_tokens_to_add(_lowerCAmelCase ) A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A = [""" """.join(["""a"""] ) * seq_length] * batch_size A = dict(preprocessor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension(_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
337
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = LongformerTokenizer __lowercase : Union[str, Any] = True __lowercase : Any = LongformerTokenizerFast __lowercase : int = True def UpperCAmelCase_ ( self ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase__ : Tuple = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase__ : Union[str, Any] = {"""unk_token""": """<unk>"""} lowerCAmelCase__ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Union[str, Any] = """lower newer""" lowerCAmelCase__ : Union[str, Any] = """lower newer""" return input_text, output_text def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Optional[Any] = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase__ : Optional[Any] = """lower newer""" lowerCAmelCase__ : List[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowerCAmelCase__ : Any = tokenizer.tokenize(__UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : List[str] = tokens + [tokenizer.unk_token] lowerCAmelCase__ : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" ,add_special_tokens=__UpperCAmelCase ) ,[0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" ,add_special_tokens=__UpperCAmelCase ) ,[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] ,) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) lowerCAmelCase__ : List[str] = tokenizer.encode("""sequence builders""" ,add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : Any = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : int = tokenizer.encode( """sequence builders""" ,add_special_tokens=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer.encode( """sequence builders""" ,"""multi-sequence build""" ,add_special_tokens=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ,__UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase__ : List[str] = """Encode this sequence.""" lowerCAmelCase__ : Tuple = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments lowerCAmelCase__ : str = tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) lowerCAmelCase__ : int = tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCAmelCase ,__UpperCAmelCase ) # Testing spaces after special tokens lowerCAmelCase__ : Optional[int] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase )} ) # mask token has a left space lowerCAmelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = """Encode <mask> sequence""" lowerCAmelCase__ : int = """Encode <mask>sequence""" lowerCAmelCase__ : str = tokenizer.encode(__UpperCAmelCase ) lowerCAmelCase__ : int = encoded.index(__UpperCAmelCase ) lowerCAmelCase__ : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = tokenizer.encode(__UpperCAmelCase ) lowerCAmelCase__ : str = encoded.index(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: pass def UpperCAmelCase_ ( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : Dict = self.tokenizer_class.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = """A, <mask> AllenNLP sentence.""" lowerCAmelCase__ : int = tokenizer_r.encode_plus(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = tokenizer_p.encode_plus(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) lowerCAmelCase__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowerCAmelCase__ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __UpperCAmelCase ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __UpperCAmelCase ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def UpperCAmelCase_ ( self ) -> int: for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): lowerCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) lowerCAmelCase__ : int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCAmelCase__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] ,__UpperCAmelCase ) self.assertEqual(post_processor_state["""add_prefix_space"""] ,__UpperCAmelCase ) self.assertEqual(post_processor_state["""trim_offsets"""] ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : Dict = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase__ : Any = F"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) lowerCAmelCase__ : List[str] = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) lowerCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) lowerCAmelCase__ : Any = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) lowerCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) lowerCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) lowerCAmelCase__ : int = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) lowerCAmelCase__ : Any = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) lowerCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) lowerCAmelCase__ : str = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) lowerCAmelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,)
37
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : int = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class lowercase__ ( lowercase ): lowercase__ = """xlm-prophetnet""" lowercase__ = ["""past_key_values"""] lowercase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : Optional[int] ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[Union[str, Callable]] = "gelu" ,lowerCamelCase__ : Optional[int] = 30522 ,lowerCamelCase__ : Optional[int] = 1024 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[int] = 512 ,lowerCamelCase__ : Optional[float] = 0.0_2 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 2 ,lowerCamelCase__ : Optional[int] = 32 ,lowerCamelCase__ : Optional[int] = 128 ,lowerCamelCase__ : Optional[bool] = False ,lowerCamelCase__ : Optional[float] = 0.0 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 1 ,lowerCamelCase__ : Optional[int] = 2 ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : str = encoder_ffn_dim _UpperCamelCase : List[Any] = num_encoder_layers _UpperCamelCase : Tuple = num_encoder_attention_heads _UpperCamelCase : Optional[int] = decoder_ffn_dim _UpperCamelCase : List[Any] = num_decoder_layers _UpperCamelCase : List[Any] = num_decoder_attention_heads _UpperCamelCase : Optional[Any] = max_position_embeddings _UpperCamelCase : str = init_std # Normal(0, this parameter) _UpperCamelCase : List[str] = activation_function # parameters for xlmprophetnet _UpperCamelCase : Tuple = ngram _UpperCamelCase : Optional[Any] = num_buckets _UpperCamelCase : Tuple = relative_max_distance _UpperCamelCase : str = disable_ngram_loss _UpperCamelCase : str = eps # 3 Types of Dropout _UpperCamelCase : Union[str, Any] = attention_dropout _UpperCamelCase : str = activation_dropout _UpperCamelCase : List[str] = dropout _UpperCamelCase : Tuple = use_cache super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,add_cross_attention=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
83
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowercase__ : def A_ ( self : str ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def A_ ( self : List[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = inputs['prompt'] SCREAMING_SNAKE_CASE__ = inputs['generator'] SCREAMING_SNAKE_CASE__ = inputs['num_inference_steps'] SCREAMING_SNAKE_CASE__ = inputs['output_type'] if "image" in inputs: SCREAMING_SNAKE_CASE__ = inputs['image'] else: SCREAMING_SNAKE_CASE__ = None if "mask_image" in inputs: SCREAMING_SNAKE_CASE__ = inputs['mask_image'] else: SCREAMING_SNAKE_CASE__ = None if "original_image" in inputs: SCREAMING_SNAKE_CASE__ = inputs['original_image'] else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pipe.encode_prompt(UpperCAmelCase_ ) # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE__ = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: SCREAMING_SNAKE_CASE__ = image if mask_image is not None: SCREAMING_SNAKE_CASE__ = mask_image if original_image is not None: SCREAMING_SNAKE_CASE__ = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = pipe(**UpperCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.pipeline_class.from_pretrained(UpperCAmelCase_ ) pipe_loaded.to(UpperCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_ ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = inputs['generator'] SCREAMING_SNAKE_CASE__ = inputs['num_inference_steps'] SCREAMING_SNAKE_CASE__ = inputs['output_type'] # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE__ = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: SCREAMING_SNAKE_CASE__ = image if mask_image is not None: SCREAMING_SNAKE_CASE__ = mask_image if original_image is not None: SCREAMING_SNAKE_CASE__ = original_image SCREAMING_SNAKE_CASE__ = pipe_loaded(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE__ = np.abs(to_np(UpperCAmelCase_ ) - to_np(UpperCAmelCase_ ) ).max() self.assertLess(UpperCAmelCase_ , 1e-4 ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = pipe(**UpperCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.pipeline_class.from_pretrained(UpperCAmelCase_ ) pipe_loaded.to(UpperCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = pipe_loaded(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE__ = np.abs(to_np(UpperCAmelCase_ ) - to_np(UpperCAmelCase_ ) ).max() self.assertLess(UpperCAmelCase_ , 1e-4 )
169
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __snake_case = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __snake_case = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __snake_case = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) __snake_case = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) __snake_case = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions __snake_case = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) __snake_case = tf.keras.preprocessing.image.img_to_array(test_image) __snake_case = np.expand_dims(test_image, axis=0) __snake_case = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __snake_case = """Normal""" if result[0][0] == 1: __snake_case = """Abnormality detected"""
169
1
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" return f"""gaussian_noise_s={seed}_shape={"_".join([str(UpperCAmelCase__ ) for s in shape] )}.npy""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() def lowercase__ ( self , snake_case__=0 , snake_case__=(4, 4, 64, 64) , snake_case__=False ): """simple docstring""" lowerCAmelCase : int = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase : Tuple = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase__ , UpperCAmelCase__ ) ) , dtype=UpperCAmelCase__ ) return image def lowercase__ ( self , snake_case__=False , snake_case__="CompVis/stable-diffusion-v1-4" ): """simple docstring""" lowerCAmelCase : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase : Dict = """bf16""" if fpaa else None lowerCAmelCase : List[str] = FlaxUNetaDConditionModel.from_pretrained( UpperCAmelCase__ , subfolder="unet" , dtype=UpperCAmelCase__ , revision=UpperCAmelCase__ ) return model, params def lowercase__ ( self , snake_case__=0 , snake_case__=(4, 77, 768) , snake_case__=False ): """simple docstring""" lowerCAmelCase : str = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase__ , UpperCAmelCase__ ) ) , dtype=UpperCAmelCase__ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=UpperCAmelCase__ ) lowerCAmelCase : Optional[int] = self.get_latents(UpperCAmelCase__ , fpaa=UpperCAmelCase__ ) lowerCAmelCase : Dict = self.get_encoder_hidden_states(UpperCAmelCase__ , fpaa=UpperCAmelCase__ ) lowerCAmelCase : List[str] = model.apply( {"params": params} , UpperCAmelCase__ , jnp.array(UpperCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase__ , ).sample assert sample.shape == latents.shape lowerCAmelCase : Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase : str = jnp.array(UpperCAmelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=UpperCAmelCase__ ) lowerCAmelCase : List[str] = self.get_latents(UpperCAmelCase__ , shape=(4, 4, 96, 96) , fpaa=UpperCAmelCase__ ) lowerCAmelCase : Optional[Any] = self.get_encoder_hidden_states(UpperCAmelCase__ , shape=(4, 77, 1_024) , fpaa=UpperCAmelCase__ ) lowerCAmelCase : str = model.apply( {"params": params} , UpperCAmelCase__ , jnp.array(UpperCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase__ , ).sample assert sample.shape == latents.shape lowerCAmelCase : str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase : Dict = jnp.array(UpperCAmelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-2 )
108
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : int ="""openai/whisper-base""" UpperCAmelCase__ : Dict =( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase__ : List[str] ="""transcriber""" UpperCAmelCase__ : Union[str, Any] =WhisperProcessor UpperCAmelCase__ : Union[str, Any] =WhisperForConditionalGeneration UpperCAmelCase__ : Tuple =["""audio"""] UpperCAmelCase__ : List[Any] =["""text"""] def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[str] ) ->Union[str, Any]: """simple docstring""" return self.pre_processor(UpperCAmelCase__ , return_tensors="""pt""" ).input_features def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[int] ) ->Dict: """simple docstring""" return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict , UpperCAmelCase__ : Optional[int] ) ->Optional[Any]: """simple docstring""" return self.pre_processor.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )[0]
245
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A( _a , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MvpTokenizer UpperCamelCase = MvpTokenizerFast UpperCamelCase = True UpperCamelCase = filter_roberta_detectors def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" super().setUp() lowerCamelCase_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCamelCase_ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) lowerCamelCase_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCamelCase_ = {"""unk_token""": """<unk>"""} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case_ ) ) def a__ ( self : Optional[Any] , **A_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def a__ ( self : List[str] , **A_ : List[str] ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def a__ ( self : List[Any] , A_ : List[str] ) -> Dict: """simple docstring""" return "lower newer", "lower newer" @cached_property def a__ ( self : int ) -> Tuple: """simple docstring""" return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def a__ ( self : Tuple ) -> Tuple: """simple docstring""" return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCamelCase_ = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , return_tensors='pt' ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) # Test that special tokens are reset @require_torch def a__ ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(snake_case_ , padding=snake_case_ , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , snake_case_ ) self.assertIn('attention_mask' , snake_case_ ) self.assertNotIn('labels' , snake_case_ ) self.assertNotIn('decoder_attention_mask' , snake_case_ ) @require_torch def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(text_target=snake_case_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=snake_case_ , truncation=snake_case_ , return_tensors='pt' ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = ["""A long paragraph for summarization."""] lowerCamelCase_ = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(snake_case_ , text_target=snake_case_ , return_tensors='pt' ) lowerCamelCase_ = inputs["""input_ids"""] lowerCamelCase_ = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def a__ ( self : int ) -> List[Any]: """simple docstring""" pass def a__ ( self : str ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) lowerCamelCase_ = """A, <mask> AllenNLP sentence.""" lowerCamelCase_ = tokenizer_r.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) lowerCamelCase_ = tokenizer_p.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( snake_case_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
371
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = "Hello world! cécé herlolip" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str , lowercase : bool ): '''simple docstring''' lowerCamelCase_ = FairseqRobertaModel.from_pretrained(lowercase ) roberta.eval() # disable dropout lowerCamelCase_ = roberta.model.encoder.sentence_encoder lowerCamelCase_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , lowercase ) lowerCamelCase_ = XLMRobertaXLForSequenceClassification(lowercase ) if classification_head else XLMRobertaXLForMaskedLM(lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ = roberta_sent_encoder.embed_tokens.weight lowerCamelCase_ = roberta_sent_encoder.embed_positions.weight lowerCamelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCamelCase_ = roberta_sent_encoder.layer_norm.weight lowerCamelCase_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ = model.roberta.encoder.layer[i] lowerCamelCase_ = roberta_sent_encoder.layers[i] lowerCamelCase_ = layer.attention lowerCamelCase_ = roberta_layer.self_attn_layer_norm.weight lowerCamelCase_ = roberta_layer.self_attn_layer_norm.bias # self attention lowerCamelCase_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCamelCase_ = roberta_layer.self_attn.q_proj.weight lowerCamelCase_ = roberta_layer.self_attn.q_proj.bias lowerCamelCase_ = roberta_layer.self_attn.k_proj.weight lowerCamelCase_ = roberta_layer.self_attn.k_proj.bias lowerCamelCase_ = roberta_layer.self_attn.v_proj.weight lowerCamelCase_ = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCamelCase_ = roberta_layer.self_attn.out_proj.weight lowerCamelCase_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCamelCase_ = roberta_layer.final_layer_norm.weight lowerCamelCase_ = roberta_layer.final_layer_norm.bias # intermediate lowerCamelCase_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase_ = roberta_layer.fca.weight lowerCamelCase_ = roberta_layer.fca.bias # output lowerCamelCase_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase_ = roberta_layer.fca.weight lowerCamelCase_ = roberta_layer.fca.bias # end of layer if classification_head: lowerCamelCase_ = roberta.model.classification_heads['mnli'].dense.weight lowerCamelCase_ = roberta.model.classification_heads['mnli'].dense.bias lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.weight lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowerCamelCase_ = roberta.model.encoder.lm_head.dense.weight lowerCamelCase_ = roberta.model.encoder.lm_head.dense.bias lowerCamelCase_ = roberta.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ = roberta.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ = roberta.model.encoder.lm_head.weight lowerCamelCase_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ = roberta.encode(lowercase ).unsqueeze(0 ) # batch of size 1 lowerCamelCase_ = model(lowercase )[0] if classification_head: lowerCamelCase_ = roberta.model.classification_heads['mnli'](roberta.extract_features(lowercase ) ) else: lowerCamelCase_ = roberta.model(lowercase )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ = torch.allclose(lowercase , lowercase , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(lowercase ).mkdir(parents=lowercase , exist_ok=lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) lowerCamelCase : List[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
208
0
"""simple docstring""" from math import ceil def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): _UpperCAmelCase : Tuple = list(range(0 , UpperCamelCase__ ) ) _UpperCAmelCase : Any = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _UpperCAmelCase : str = [] for i in device_map_blocks: if device_map_blocks.count(UpperCamelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(UpperCamelCase__ ) # Missing blocks _UpperCAmelCase : Union[str, Any] = [i for i in blocks if i not in device_map_blocks] _UpperCAmelCase : Optional[Any] = [i for i in device_map_blocks if i not in blocks] if len(UpperCamelCase__ ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(UpperCamelCase__ ) ) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): _UpperCAmelCase : Tuple = list(range(UpperCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = int(ceil(n_layers / len(UpperCamelCase__ ) ) ) _UpperCAmelCase : Optional[Any] = [layers[i : i + n_blocks] for i in range(0 , UpperCamelCase__ , UpperCamelCase__ )] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) )
263
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase : List[str] = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" _UpperCAmelCase : str = str(bin(UpperCamelCase__ ) )[2:] _UpperCAmelCase : List[str] = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
263
1
from collections.abc import Sequence def lowerCamelCase ( SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) __UpperCamelCase :Optional[int] = nums[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): __UpperCamelCase :Any = nums[i] __UpperCamelCase :Optional[Any] = max(SCREAMING_SNAKE_CASE , ans + num , SCREAMING_SNAKE_CASE ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __lowercase = int(input('''Enter number of elements : ''').strip()) __lowercase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
371
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[str] = torch.nn.Linear(2 , 4 ) __UpperCamelCase :Any = torch.optim.AdamW(model.parameters() , lr=1.0 ) __UpperCamelCase :List[Any] = torch.optim.lr_scheduler.OneCycleLR(SCREAMING_SNAKE_CASE , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __UpperCamelCase :List[Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __UpperCamelCase :Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(SCREAMING_SNAKE_CASE ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @require_cuda def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Dict = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__lowercase): __UpperCamelCase :Any = Accelerator(cpu=__lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[Any] = Accelerator() __UpperCamelCase :List[Any] = GradientState() assert state.num_steps == 1 __UpperCamelCase :Any = 4 assert state.num_steps == 4 assert state.sync_gradients is True __UpperCamelCase :int = False assert state.sync_gradients is False GradientState._reset_state() def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Tuple = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = create_components() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :int = accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :str = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = create_components() accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def UpperCamelCase__ ( self) -> Union[str, Any]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__lowercase , **__lowercase): pass with patch('''torch.cuda.set_device''' , __lowercase), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64'''): __UpperCamelCase :Optional[Any] = Accelerator() self.assertEqual(str(accelerator.state.device) , '''cuda:64''') def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[Any] = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = create_components() accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase) __UpperCamelCase :Tuple = get_signature(__lowercase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase) # make sure random weights don't match load_random_weights(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) > 1E-3) # make sure loaded weights match accelerator.load_state(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) < 1E-3) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[Any] = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = create_components() accelerator.prepare(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase) __UpperCamelCase :Any = get_signature(__lowercase) # saving hook def save_config(__lowercase , __lowercase , __lowercase): __UpperCamelCase :Union[str, Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(__lowercase , '''data.json''') , '''w''') as f: json.dump(__lowercase , __lowercase) # loading hook def load_config(__lowercase , __lowercase): with open(os.path.join(__lowercase , '''data.json''') , '''r''') as f: __UpperCamelCase :Dict = json.load(__lowercase) __UpperCamelCase :Dict = config['''class_name'''] __UpperCamelCase :Union[str, Any] = accelerator.register_save_state_pre_hook(__lowercase) __UpperCamelCase :Any = accelerator.register_load_state_pre_hook(__lowercase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase) # make sure random weights don't match with hooks load_random_weights(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) > 1E-3) # random class name to verify correct one is loaded __UpperCamelCase :int = '''random''' # make sure loaded weights match with hooks accelerator.load_state(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) < 1E-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase) # make sure random weights don't match with hooks removed load_random_weights(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) > 1E-3) # random class name to verify correct one is loaded __UpperCamelCase :Dict = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(__lowercase) self.assertTrue(abs(model_signature - get_signature(__lowercase)) < 1E-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Optional[Any] = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Union[str, Any] = create_components() __UpperCamelCase :Optional[Any] = None # This should work __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) self.assertTrue(dummy_obj is None) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :List[str] = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = create_components() __UpperCamelCase :Dict = [1, 2, 3] # This should work __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Tuple = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__lowercase , '''_is_accelerate_prepared''' , __lowercase) , __lowercase , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def UpperCamelCase__ ( self) -> int: from transformers import AutoModelForCausalLM __UpperCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__lowercase , device_map={'''''': 0} , ) __UpperCamelCase :Optional[Any] = Accelerator() # This should work __UpperCamelCase :int = accelerator.prepare(__lowercase) @slow @require_bnb def UpperCamelCase__ ( self) -> List[str]: from transformers import AutoModelForCausalLM __UpperCamelCase :str = Accelerator() with init_empty_weights(): __UpperCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __UpperCamelCase :List[str] = infer_auto_device_map(__lowercase) __UpperCamelCase :str = '''cpu''' __UpperCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=__lowercase , load_in_abit=__lowercase , llm_inta_enable_fpaa_cpu_offload=__lowercase) # This should not work and get value error with self.assertRaises(__lowercase): __UpperCamelCase :Union[str, Any] = accelerator.prepare(__lowercase) @slow @require_bnb @require_multi_gpu def UpperCamelCase__ ( self) -> Union[str, Any]: from transformers import AutoModelForCausalLM __UpperCamelCase :int = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __UpperCamelCase :Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __UpperCamelCase :int = infer_auto_device_map(__lowercase) __UpperCamelCase :List[Any] = 1 __UpperCamelCase :int = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__lowercase , device_map=__lowercase , ) __UpperCamelCase :Dict = Accelerator() # This should not work and get value error with self.assertRaises(__lowercase): __UpperCamelCase :Any = accelerator.prepare(__lowercase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCamelCase__ ( self) -> Dict: from transformers import AutoModelForCausalLM with init_empty_weights(): __UpperCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __UpperCamelCase :List[str] = infer_auto_device_map(__lowercase) __UpperCamelCase :Optional[int] = 1 __UpperCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__lowercase , device_map=__lowercase , ) __UpperCamelCase :int = Accelerator() # This should work __UpperCamelCase :int = accelerator.prepare(__lowercase) @require_cuda def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Tuple = torch.nn.Linear(10 , 10) __UpperCamelCase :Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.01) __UpperCamelCase :Any = Accelerator(cpu=__lowercase) __UpperCamelCase :Tuple = accelerator.prepare(__lowercase)
105
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : Tuple = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _UpperCAmelCase : Optional[int] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above _UpperCAmelCase : Optional[Any] = tf_top_k_top_p_filtering(A , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) _UpperCAmelCase : Tuple = output[output != -float('''inf''' )] _UpperCAmelCase : Union[str, Any] = tf.cast( tf.where(tf.not_equal(A , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(A , A , rtol=1E-12 ) tf.debugging.assert_equal(A , A ) @require_tf class _UpperCAmelCase ( unittest.TestCase ,a ): '''simple docstring''' if is_tf_available(): a__ ={ '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: # TF-only test: tf.saved_model export _UpperCAmelCase : List[Any] = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : int = 2 _UpperCAmelCase : int = 2 class _UpperCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self , A ) -> Optional[Any]: super(A , self ).__init__() _UpperCAmelCase : int = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=A , ) def __lowerCAmelCase ( self , A , A ) -> Dict: _UpperCAmelCase : List[Any] = self.model.generate( input_ids=A , attention_mask=A , max_new_tokens=A , return_dict_in_generate=A , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase : List[Any] = [[2, 0], [1_0_2, 1_0_3]] _UpperCAmelCase : int = [[1, 0], [1, 1]] _UpperCAmelCase : Any = DummyModel(model=A ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(A , A , signatures={'''serving_default''': dummy_model.serving} ) _UpperCAmelCase : Any = tf.saved_model.load(A ).signatures['''serving_default'''] for batch_size in range(1 , len(A ) + 1 ): _UpperCAmelCase : str = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } _UpperCAmelCase : int = serving_func(**A )['''sequences'''] _UpperCAmelCase : int = test_model.generate(**A , max_new_tokens=A ) tf.debugging.assert_equal(A , A ) @slow def __lowerCAmelCase ( self ) -> Any: # TF-only test: tf.saved_model export _UpperCAmelCase : List[Any] = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : str = 1 _UpperCAmelCase : List[Any] = 2 class _UpperCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self , A ) -> int: super(A , self ).__init__() _UpperCAmelCase : Dict = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=A , ) def __lowerCAmelCase ( self , A , A ) -> Dict: _UpperCAmelCase : Tuple = self.model.generate( input_ids=A , attention_mask=A , max_new_tokens=A , return_dict_in_generate=A , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase : List[Any] = [[2], [1_0_2, 1_0_3]] _UpperCAmelCase : Union[str, Any] = [[1], [1, 1]] _UpperCAmelCase : str = DummyModel(model=A ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(A , A , signatures={'''serving_default''': dummy_model.serving} ) _UpperCAmelCase : Tuple = tf.saved_model.load(A ).signatures['''serving_default'''] for input_row in range(len(A ) ): _UpperCAmelCase : str = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } _UpperCAmelCase : int = serving_func(**A )['''sequences'''] _UpperCAmelCase : Any = test_model.generate(**A , max_new_tokens=A ) tf.debugging.assert_equal(A , A ) @slow @require_tensorflow_text def __lowerCAmelCase ( self ) -> Any: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=A ) class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self ) -> List[str]: super().__init__() _UpperCAmelCase : Dict = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(A , '''spiece.model''' ) , '''rb''' ).read() ) _UpperCAmelCase : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def __lowerCAmelCase ( self , A , *A , **A ) -> Any: _UpperCAmelCase : Any = self.tokenizer.tokenize(A ) _UpperCAmelCase , _UpperCAmelCase : List[str] = text.pad_model_inputs( A , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) _UpperCAmelCase : List[str] = self.model.generate(input_ids=A , attention_mask=A ) return self.tokenizer.detokenize(A ) _UpperCAmelCase : List[str] = CompleteSentenceTransformer() _UpperCAmelCase : List[Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) _UpperCAmelCase : str = complete_model(A ) _UpperCAmelCase : int = tf.keras.Model(A , A ) keras_model.save(A ) def __lowerCAmelCase ( self ) -> Tuple: # Has PT equivalent: this test relies on random sampling _UpperCAmelCase : Tuple = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } _UpperCAmelCase : Optional[Any] = 1_4 _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : Optional[int] = '''Hello, my dog is cute and''' _UpperCAmelCase : str = tokenizer(A , return_tensors='''tf''' ) _UpperCAmelCase : int = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : Optional[Any] = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) _UpperCAmelCase : List[Any] = model.generate(**A , eos_token_id=A , **A ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _UpperCAmelCase : List[str] = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) _UpperCAmelCase : Union[str, Any] = model.generate(**A , eos_token_id=A , **A ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __lowerCAmelCase ( self ) -> str: # Has PT equivalent: ample use of framework-specific code _UpperCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) _UpperCAmelCase : Union[str, Any] = '''Hugging Face is a technology company based in New York and Paris.''' _UpperCAmelCase : List[str] = bart_tokenizer(A , return_tensors='''tf''' ).input_ids _UpperCAmelCase : List[Any] = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) _UpperCAmelCase : str = bart_model.generate(A ).numpy() class _UpperCAmelCase ( a ): '''simple docstring''' def __lowerCAmelCase ( self , A , A=None , **A ) -> Optional[int]: return super().call(A , **A ) _UpperCAmelCase : List[str] = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) _UpperCAmelCase : Union[str, Any] = bart_model.generate(A , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(A , A ) ) class _UpperCAmelCase ( bart_model.model.encoder.__class__ ): '''simple docstring''' def __lowerCAmelCase ( self , A , **A ) -> List[Any]: return super().call(A , **A ) _UpperCAmelCase : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) _UpperCAmelCase : Optional[int] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _UpperCAmelCase : int = bart_model.generate(A ).numpy() with self.assertRaises(A ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(A , foo='''bar''' )
263
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCAmelCase ( a ,a ,unittest.TestCase ): '''simple docstring''' a__ =IFImgaImgSuperResolutionPipeline a__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} a__ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) a__ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __lowerCAmelCase ( self ) -> List[str]: return self._get_superresolution_dummy_components() def __lowerCAmelCase ( self , A , A=0 ) -> Union[str, Any]: if str(A ).startswith('''mps''' ): _UpperCAmelCase : Any = torch.manual_seed(A ) else: _UpperCAmelCase : int = torch.Generator(device=A ).manual_seed(A ) _UpperCAmelCase : str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A ) ).to(A ) _UpperCAmelCase : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(A ) ).to(A ) _UpperCAmelCase : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self ) -> List[str]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
263
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case : Optional[int] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) snake_case : List[str] = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" snake_case : Dict = model(snake_case__ )["last_hidden_state"] snake_case : int = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. snake_case : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
367
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,*A_ : Union[str, Any] ,**A_ : Optional[int] ) -> None: warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' ,A_ ,) super().__init__(*A_ ,**A_ )
74
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,*A_ : List[str] ,**A_ : int ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' ,A_ ,) super().__init__(*A_ ,**A_ )
74
1
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __magic_name__ ( ) -> Optional[int]: raise RuntimeError('CUDA out of memory.' ) class lowerCamelCase ( nn.Module ): def __init__( self ) -> Optional[int]: super().__init__() snake_case = nn.Linear(3, 4 ) snake_case = nn.BatchNormad(4 ) snake_case = nn.Linear(4, 5 ) def _lowerCamelCase ( self, lowercase_ ) -> str: return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Tuple: snake_case = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowercase_, [128, 64, 32, 16, 8] ) def _lowerCamelCase ( self ) -> Tuple: snake_case = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_, lowercase_ ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga snake_case , snake_case = mock_training_loop_function('hello' ) self.assertListEqual(lowercase_, [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga], [8, 'hello'] ) def _lowerCamelCase ( self ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowercase_ ): pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.', cm.exception.args[0] ) def _lowerCamelCase ( self ) -> Tuple: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.', cm.exception.args[0] ) def _lowerCamelCase ( self ) -> Any: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_, lowercase_, lowercase_ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function(128, 'hello', 'world' ) self.assertIn('Batch size was passed into `f`', cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')', cm.exception.args[0] ) def _lowerCamelCase ( self ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!', cm.exception.args[0] ) @require_cuda def _lowerCamelCase ( self ) -> int: snake_case = torch.cuda.memory_allocated() snake_case = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated(), lowercase_ ) snake_case = release_memory(lowercase_ ) self.assertEqual(torch.cuda.memory_allocated(), lowercase_ )
332
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
1