code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations def _A ( UpperCamelCase_ : list[int]) -> list[int]: '''simple docstring''' if len(UpperCamelCase_) == 0: return array __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) # Compute the variables __lowercase = _max - _min + 1 __lowercase ,__lowercase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: __lowercase = i - _min __lowercase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. __lowercase = 0 for i in range(UpperCamelCase_): while holes_repeat[i] > 0: __lowercase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _a = input('Enter numbers separated by comma:\n') _a = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
17
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
1
def A__ ( __lowerCamelCase, __lowerCamelCase ): return int((input_a, input_a).count(0 ) != 0 ) def A__ ( ): assert nand_gate(0, 0 ) == 1 assert nand_gate(0, 1 ) == 1 assert nand_gate(1, 0 ) == 1 assert nand_gate(1, 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
257
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 class UpperCamelCase__ ( nn.Module ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =(16, 32, 96, 256) UpperCAmelCase_ =jnp.floataa def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.block_out_channels ) - 1 ): SCREAMING_SNAKE_CASE_ = self.block_out_channels[i] SCREAMING_SNAKE_CASE_ = self.block_out_channels[i + 1] SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) SCREAMING_SNAKE_CASE_ = blocks SCREAMING_SNAKE_CASE_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.conv_in(_A ) SCREAMING_SNAKE_CASE_ = nn.silu(_A ) for block in self.blocks: SCREAMING_SNAKE_CASE_ = block(_A ) SCREAMING_SNAKE_CASE_ = nn.silu(_A ) SCREAMING_SNAKE_CASE_ = self.conv_out(_A ) return embedding @flax_register_to_config class UpperCamelCase__ ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =32 UpperCAmelCase_ =4 UpperCAmelCase_ =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ =False UpperCAmelCase_ =(320, 640, 1_280, 1_280) UpperCAmelCase_ =2 UpperCAmelCase_ =8 UpperCAmelCase_ =None UpperCAmelCase_ =1_280 UpperCAmelCase_ =0.0 UpperCAmelCase_ =False UpperCAmelCase_ =jnp.floataa UpperCAmelCase_ =True UpperCAmelCase_ =0 UpperCAmelCase_ ="rgb" UpperCAmelCase_ =(16, 32, 96, 256) def _UpperCamelCase ( self , _A ) -> FrozenDict: # init input tensors SCREAMING_SNAKE_CASE_ = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE_ = jnp.zeros(_A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = (1, 3, self.sample_size * 8, self.sample_size * 8) SCREAMING_SNAKE_CASE_ = jnp.zeros(_A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = jax.random.split(_A ) SCREAMING_SNAKE_CASE_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_A , _A , _A , _A , _A )["params"] def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.block_out_channels SCREAMING_SNAKE_CASE_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE_ = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE_ = FlaxTimestepEmbedding(_A , dtype=self.dtype ) SCREAMING_SNAKE_CASE_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) SCREAMING_SNAKE_CASE_ = self.only_cross_attention if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = block_out_channels[0] SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE_ = output_channel SCREAMING_SNAKE_CASE_ = block_out_channels[i] SCREAMING_SNAKE_CASE_ = i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE_ = FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE_ = FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) for _ in range(self.layers_per_block ): SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) if not is_final_block: SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) SCREAMING_SNAKE_CASE_ = down_blocks SCREAMING_SNAKE_CASE_ = controlnet_down_blocks # mid SCREAMING_SNAKE_CASE_ = block_out_channels[-1] SCREAMING_SNAKE_CASE_ = FlaxUNetMidBlockaDCrossAttn( in_channels=_A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A , _A , _A , _A , _A = 1.0 , _A = True , _A = False , ) -> Union[FlaxControlNetOutput, Tuple]: SCREAMING_SNAKE_CASE_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": SCREAMING_SNAKE_CASE_ = jnp.flip(_A , axis=1 ) # 1. time if not isinstance(_A , jnp.ndarray ): SCREAMING_SNAKE_CASE_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_ = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.expand_dims(_A , 0 ) SCREAMING_SNAKE_CASE_ = self.time_proj(_A ) SCREAMING_SNAKE_CASE_ = self.time_embedding(_A ) # 2. pre-process SCREAMING_SNAKE_CASE_ = jnp.transpose(_A , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ = self.conv_in(_A ) SCREAMING_SNAKE_CASE_ = jnp.transpose(_A , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ = self.controlnet_cond_embedding(_A ) sample += controlnet_cond # 3. down SCREAMING_SNAKE_CASE_ = (sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = down_block(_A , _A , _A , deterministic=not train ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid SCREAMING_SNAKE_CASE_ = self.mid_block(_A , _A , _A , deterministic=not train ) # 5. contronet blocks SCREAMING_SNAKE_CASE_ = () for down_block_res_sample, controlnet_block in zip(_A , self.controlnet_down_blocks ): SCREAMING_SNAKE_CASE_ = controlnet_block(_A ) controlnet_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE_ = controlnet_down_block_res_samples SCREAMING_SNAKE_CASE_ = self.controlnet_mid_block(_A ) # 6. scaling SCREAMING_SNAKE_CASE_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_A , mid_block_res_sample=_A )
257
1
"""simple docstring""" from ... import PretrainedConfig a = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Dict = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCAmelCase : str = '''nezha''' def __init__( self : str , _UpperCAmelCase : List[Any]=21_128 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : List[Any]=3_072 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : int=64 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Union[str, Any]=1E-1_2 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : Tuple=True , **_UpperCAmelCase : List[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = max_relative_position _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout _A = use_cache
315
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def _snake_case ( _snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*_snake_case ) if __name__ == "__main__": a = 4 a = 2 a = generate_all_combinations(n, k) print_all_state(total_list)
315
1
from __future__ import annotations from fractions import Fraction def snake_case_ ( snake_case , snake_case ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def snake_case_ ( snake_case ): lowercase__: str = [] lowercase__: Tuple = 11 lowercase__: Optional[int] = int('1' + '0' * digit_len ) for num in range(__a , __a ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__a , __a ): solutions.append(f'{num}/{den}' ) den += 1 num += 1 lowercase__: Any = 10 return solutions def snake_case_ ( snake_case = 2 ): lowercase__: Tuple = 1.0 for fraction in fraction_list(__a ): lowercase__: List[str] = Fraction(__a ) result *= frac.denominator / frac.numerator return int(__a ) if __name__ == "__main__": print(solution())
365
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __lowerCAmelCase = '''base_with_context''' def snake_case_ ( snake_case , snake_case ) -> int: lowercase__: Tuple = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) lowercase__: Optional[int] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__: List[str] = weights[f'layers_{lyr_num}'] lowercase__: List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowercase__: Any = ly_weight['attention'] lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case_ ( snake_case , snake_case ) -> List[str]: lowercase__: str = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) lowercase__: Dict = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__: str = weights[f'layers_{lyr_num}'] lowercase__: Optional[Any] = ly_weight['attention'] lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: Tuple = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case_ ( snake_case , snake_case ) -> Any: lowercase__: int = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) lowercase__: Dict = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowercase__: Optional[Any] = weights[f'layers_{lyr_num}'] lowercase__: Any = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) lowercase__: List[str] = ly_weight['self_attention'] lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: int = ly_weight['MultiHeadDotProductAttention_0'] lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Optional[Any] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) lowercase__: Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def snake_case_ ( snake_case ) -> Any: lowercase__: int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowercase__: Tuple = jnp.tree_util.tree_map(onp.array , snake_case ) lowercase__: List[str] = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] lowercase__: List[Any] = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) lowercase__: Optional[Any] = inference.parse_training_gin_file(snake_case , snake_case ) lowercase__: str = inference.InferenceModel(args.checkpoint_path , snake_case ) lowercase__: Dict = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) lowercase__: List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowercase__: Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowercase__: Optional[Any] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowercase__: Dict = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , snake_case ) lowercase__: int = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , snake_case ) lowercase__: Optional[int] = load_decoder(ta_checkpoint['target']['decoder'] , snake_case ) lowercase__: int = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) lowercase__: List[Any] = SpectrogramDiffusionPipeline( notes_encoder=snake_case , continuous_encoder=snake_case , decoder=snake_case , scheduler=snake_case , melgan=snake_case , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) __lowerCAmelCase = parser.parse_args() main(args)
288
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase( _a ): lowercase_ : Dict = """deformable_detr""" lowercase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=3_00, lowerCamelCase=10_24, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase="resnet50", lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=False, lowerCamelCase=3_00, lowerCamelCase=False, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, lowerCamelCase=False, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = backbone_config.get('model_type') _lowercase : str = CONFIG_MAPPING[backbone_model_type] _lowercase : Optional[int] = config_class.from_dict(lowerCamelCase) _lowercase : Tuple = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Tuple = num_channels _lowercase : Optional[Any] = num_queries _lowercase : Optional[Any] = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : int = encoder_ffn_dim _lowercase : List[Any] = encoder_layers _lowercase : str = encoder_attention_heads _lowercase : str = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : List[str] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : int = init_xavier_std _lowercase : Union[str, Any] = encoder_layerdrop _lowercase : Tuple = auxiliary_loss _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = backbone _lowercase : List[Any] = use_pretrained_backbone _lowercase : Any = dilation # deformable attributes _lowercase : Any = num_feature_levels _lowercase : Dict = encoder_n_points _lowercase : Dict = decoder_n_points _lowercase : Dict = two_stage _lowercase : Union[str, Any] = two_stage_num_proposals _lowercase : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : Tuple = class_cost _lowercase : int = bbox_cost _lowercase : Optional[int] = giou_cost # Loss coefficients _lowercase : Optional[Any] = mask_loss_coefficient _lowercase : Dict = dice_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Optional[int] = giou_loss_coefficient _lowercase : Union[str, Any] = eos_coefficient _lowercase : Union[str, Any] = focal_alpha _lowercase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: _lowercase : Union[str, Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
21
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
0
from __future__ import annotations import math __UpperCamelCase = '''2020.9.26''' __UpperCamelCase = '''xcodz-dot, cclaus, dhruvmanila''' def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> tuple[float, float]: if not all(isinstance(UpperCAmelCase , (float, int) ) for val in locals().values() ): snake_case_ = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(UpperCAmelCase ) snake_case_ = ((x * distance) / (z + distance)) * scale snake_case_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> tuple[float, float, float]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError('Axis must be a str' ) snake_case_ = locals() del input_variables["axis"] if not all(isinstance(UpperCAmelCase , (float, int) ) for val in input_variables.values() ): snake_case_ = ( 'Input values except axis must either be float or int: ' f'{list(input_variables.values() )}' ) raise TypeError(UpperCAmelCase ) snake_case_ = (angle % 360) / 450 * 180 / math.pi if axis == "z": snake_case_ = x * math.cos(UpperCAmelCase ) - y * math.sin(UpperCAmelCase ) snake_case_ = y * math.cos(UpperCAmelCase ) + x * math.sin(UpperCAmelCase ) snake_case_ = z elif axis == "x": snake_case_ = y * math.cos(UpperCAmelCase ) - z * math.sin(UpperCAmelCase ) snake_case_ = z * math.cos(UpperCAmelCase ) + y * math.sin(UpperCAmelCase ) snake_case_ = x elif axis == "y": snake_case_ = x * math.cos(UpperCAmelCase ) - z * math.sin(UpperCAmelCase ) snake_case_ = z * math.cos(UpperCAmelCase ) + x * math.sin(UpperCAmelCase ) snake_case_ = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Optional[Any] = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = ['MobileNetV2FeatureExtractor'] _lowercase : Union[str, Any] = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
239
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(snake_case_ ) UpperCAmelCase_ = 5_12 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(snake_case_ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(snake_case_ ) else: UpperCAmelCase_ = torch.load(snake_case_ , map_location=snake_case_ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ ) UpperCAmelCase_ = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') SCREAMING_SNAKE_CASE_: str =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
1
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _A : def A__ ( self , __lowerCAmelCase ): """simple docstring""" raise NotImplementedError() def A__ ( self ): """simple docstring""" raise NotImplementedError() class _A ( lowerCamelCase__ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , **__lowerCAmelCase ): """simple docstring""" lowercase = tokenizer lowercase = skip_prompt lowercase = decode_kwargs # variables used in the streaming process lowercase = [] lowercase = 0 lowercase = True def A__ ( self , __lowerCAmelCase ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowercase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowercase = text[self.print_len :] lowercase = [] lowercase = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def A__ ( self ): """simple docstring""" if len(self.token_cache ) > 0: lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowercase = text[self.print_len :] lowercase = [] lowercase = 0 else: lowercase = '''''' lowercase = True self.on_finalized_text(__A , stream_end=__A ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" print(__A , flush=__A , end="""""" if not stream_end else None ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False class _A ( lowerCamelCase__ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase ): """simple docstring""" super().__init__(__A , __A , **__A ) lowercase = Queue() lowercase = None lowercase = timeout def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" self.text_queue.put(__A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): """simple docstring""" return self def A__ ( self ): """simple docstring""" lowercase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : int = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = ['CLIPFeatureExtractor'] UpperCAmelCase__ : Optional[int] = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[Any] = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return F"""gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase_ ) for s in shape] )}.npy""" def __magic_name__ ( self : Tuple ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Tuple=(4, 4, 6_4, 6_4) , lowerCAmelCase_ : List[str]=False ): """simple docstring""" _A: List[str] = jnp.bfloataa if fpaa else jnp.floataa _A: Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return image def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[Any]="CompVis/stable-diffusion-v1-4" ): """simple docstring""" _A: Tuple = jnp.bfloataa if fpaa else jnp.floataa _A: str = '''bf16''' if fpaa else None _A , _A: Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase_ , subfolder='''unet''' , dtype=lowerCAmelCase_ , revision=lowerCAmelCase_ ) return model, params def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : str=(4, 7_7, 7_6_8) , lowerCAmelCase_ : Dict=False ): """simple docstring""" _A: Optional[int] = jnp.bfloataa if fpaa else jnp.floataa _A: Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any ): """simple docstring""" _A , _A: Optional[Any] = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=lowerCAmelCase_ ) _A: List[str] = self.get_latents(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) _A: Optional[int] = self.get_encoder_hidden_states(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) _A: List[str] = model.apply( {'''params''': params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape _A: Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _A: Tuple = jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def __magic_name__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" _A , _A: Union[str, Any] = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=lowerCAmelCase_ ) _A: Dict = self.get_latents(lowerCAmelCase_ , shape=(4, 4, 9_6, 9_6) , fpaa=lowerCAmelCase_ ) _A: Dict = self.get_encoder_hidden_states(lowerCAmelCase_ , shape=(4, 7_7, 1_0_2_4) , fpaa=lowerCAmelCase_ ) _A: Optional[int] = model.apply( {'''params''': params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape _A: List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _A: List[str] = jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 )
121
1
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = GPTSanJapaneseTokenizer lowerCamelCase_ = False lowerCamelCase_ = {'''do_clean_text''': False, '''add_prefix_space''': False} def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" super().setUp() # fmt: off _SCREAMING_SNAKE_CASE = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _SCREAMING_SNAKE_CASE = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCamelCase ) ) def lowerCAmelCase_ ( self : Dict , **__lowerCamelCase : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCAmelCase_ ( self : str , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = "こんにちは、世界。 \nこんばんは、㔺界。😀" _SCREAMING_SNAKE_CASE = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def lowerCAmelCase_ ( self : int , __lowerCamelCase : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.get_input_output_texts(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) return text, ids def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.get_tokenizer() # Testing tokenization _SCREAMING_SNAKE_CASE = "こんにちは、世界。 こんばんは、㔺界。" _SCREAMING_SNAKE_CASE = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids without special tokens _SCREAMING_SNAKE_CASE = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids with special tokens _SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] _SCREAMING_SNAKE_CASE = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.get_tokenizer() # Testing tokenization _SCREAMING_SNAKE_CASE = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _SCREAMING_SNAKE_CASE = "こんにちは、、、、世界。こんばんは、、、、世界。" _SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _SCREAMING_SNAKE_CASE = "こんにちは、世界。" _SCREAMING_SNAKE_CASE = "こんばんは、㔺界。😀" _SCREAMING_SNAKE_CASE = "こんにちは、世界。こんばんは、世界。😀" _SCREAMING_SNAKE_CASE = tokenizer.encode(prefix_text + input_text ) _SCREAMING_SNAKE_CASE = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , prefix_text=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _SCREAMING_SNAKE_CASE = "こんにちは、世界。" _SCREAMING_SNAKE_CASE = "こんばんは、㔺界。😀" _SCREAMING_SNAKE_CASE = len(tokenizer.encode(__lowerCamelCase ) ) - 2 _SCREAMING_SNAKE_CASE = len(tokenizer.encode(__lowerCamelCase ) ) - 2 _SCREAMING_SNAKE_CASE = [1] + [0] * (len_prefix + len_text + 1) _SCREAMING_SNAKE_CASE = [1] * (len_prefix + len_text + 1) + [0] _SCREAMING_SNAKE_CASE = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _SCREAMING_SNAKE_CASE = tokenizer(prefix_text + input_text ).token_type_ids _SCREAMING_SNAKE_CASE = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , prefix_text=__lowerCamelCase ).token_type_ids self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("あンいワ" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("" , prefix_text="あンいワ" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(__lowerCamelCase ) , tokenizer.decode(__lowerCamelCase ) ) self.assertEqual(tokenizer.decode(__lowerCamelCase ) , tokenizer.decode(__lowerCamelCase ) ) self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _SCREAMING_SNAKE_CASE = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.batch_encode_plus(__lowerCamelCase , padding=__lowerCamelCase ) # fmt: off _SCREAMING_SNAKE_CASE = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _SCREAMING_SNAKE_CASE = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _SCREAMING_SNAKE_CASE = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCamelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCamelCase ) self.assertListEqual(x_token.attention_mask , __lowerCamelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCamelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCamelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCamelCase ) def lowerCAmelCase_ ( self : int ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" # tokenizer has no padding token pass
111
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: if len(__A ) <= 1: return lst _SCREAMING_SNAKE_CASE = 1 while i < len(__A ): if lst[i - 1] <= lst[i]: i += 1 else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = lst[i], lst[i - 1] i -= 1 if i == 0: _SCREAMING_SNAKE_CASE = 1 return lst if __name__ == "__main__": lowerCamelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
111
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float: '''simple docstring''' lowerCamelCase_ : Tuple = x lowerCamelCase_ : Any = y for step in range(_lowercase ): # noqa: B007 lowerCamelCase_ : str = a * a - b * b + x lowerCamelCase_ : Optional[int] = 2 * a * b + y lowerCamelCase_ : Optional[int] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowercase_ ( _lowercase ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowercase_ ( _lowercase ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowercase , 1 , 1 ) ) def lowercase_ ( _lowercase = 800 , _lowercase = 600 , _lowercase = -0.6 , _lowercase = 0 , _lowercase = 3.2 , _lowercase = 50 , _lowercase = True , ) -> Image.Image: '''simple docstring''' lowerCamelCase_ : Dict = Image.new('''RGB''' , (image_width, image_height) ) lowerCamelCase_ : str = img.load() # loop through the image-coordinates for image_x in range(_lowercase ): for image_y in range(_lowercase ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase_ : Tuple = figure_width / image_width * image_height lowerCamelCase_ : Optional[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase_ : Any = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase_ : List[Any] = get_distance(_lowercase , _lowercase , _lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase_ : Dict = get_color_coded_rgb(_lowercase ) else: lowerCamelCase_ : List[str] = get_black_and_white_rgb(_lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __lowercase : Optional[int] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
318
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
1
'''simple docstring''' import numpy as np def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1e-1_2 , lowerCAmelCase_ = 100 , )-> tuple[float, np.ndarray]: '''simple docstring''' assert np.shape(lowerCAmelCase_ )[0] == np.shape(lowerCAmelCase_ )[1] # Ensure proper dimensionality. assert np.shape(lowerCAmelCase_ )[0] == np.shape(lowerCAmelCase_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCAmelCase_ ) == np.iscomplexobj(lowerCAmelCase_ ) _UpperCAmelCase : Any = np.iscomplexobj(lowerCAmelCase_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCAmelCase_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Dict = 0 _UpperCAmelCase : List[str] = 1e1_2 while not convergence: # Multiple matrix by the vector. _UpperCAmelCase : Optional[int] = np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) # Normalize the resulting output vector. _UpperCAmelCase : Dict = w / np.linalg.norm(lowerCAmelCase_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _UpperCAmelCase : Any = vector.conj().T if is_complex else vector.T _UpperCAmelCase : Optional[Any] = np.dot(lowerCAmelCase_ , np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Check convergence. _UpperCAmelCase : Optional[int] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _UpperCAmelCase : List[str] = True _UpperCAmelCase : Any = lambda_ if is_complex: _UpperCAmelCase : Optional[int] = np.real(lambda_ ) return lambda_, vector def snake_case_ ( )-> None: '''simple docstring''' _UpperCAmelCase : Optional[int] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _UpperCAmelCase : Union[str, Any] = np.array([41, 4, 20] ) _UpperCAmelCase : Tuple = real_input_matrix.astype(np.complexaaa ) _UpperCAmelCase : Optional[Any] = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _UpperCAmelCase : Optional[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _UpperCAmelCase : List[str] = real_input_matrix _UpperCAmelCase : Any = real_vector elif problem_type == "complex": _UpperCAmelCase : Dict = complex_input_matrix _UpperCAmelCase : List[str] = complex_vector # Our implementation. _UpperCAmelCase ,_UpperCAmelCase : List[Any] = power_iteration(lowerCAmelCase_ , lowerCAmelCase_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = np.linalg.eigh(lowerCAmelCase_ ) # Last eigenvalue is the maximum one. _UpperCAmelCase : List[Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _UpperCAmelCase : Any = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCAmelCase_ ) - np.abs(lowerCAmelCase_ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
349
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
from ...processing_utils import ProcessorMixin class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "WhisperFeatureExtractor" lowerCAmelCase__ : List[str] = "WhisperTokenizer" def __init__( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" super().__init__(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.feature_extractor __lowercase = False def a__ ( self : str , _UpperCAmelCase : Any=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Any]=True ) -> Optional[Any]: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=_UpperCAmelCase , language=_UpperCAmelCase , no_timestamps=_UpperCAmelCase ) def __call__( self : Optional[int] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : str ) -> str: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = kwargs.pop('audio' , _UpperCAmelCase ) __lowercase = kwargs.pop('sampling_rate' , _UpperCAmelCase ) __lowercase = kwargs.pop('text' , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: __lowercase = args[0] __lowercase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __lowercase = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None: __lowercase = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: __lowercase = encodings['input_ids'] return inputs def a__ ( self : Optional[int] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : int ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Tuple , *_UpperCAmelCase : Any , **_UpperCAmelCase : Tuple ) -> Any: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]="np" ) -> str: """simple docstring""" return self.tokenizer.get_prompt_ids(_UpperCAmelCase , return_tensors=_UpperCAmelCase )
325
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = """src/transformers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) __lowercase = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __lowercase = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules SCREAMING_SNAKE_CASE__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
325
1
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __A : Dict = direct_transformers_import(PATH_TO_TRANSFORMERS) __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING __A : Dict = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Dict = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"config.{attribute}" in modeling_source or f"getattr(config, \"{attribute}\"" in modeling_source or f"getattr(self.config, \"{attribute}\"" in modeling_source ): lowerCAmelCase : int = True # Deal with multi-line cases elif ( re.search( rf"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"", _lowercase, ) is not None ): lowerCAmelCase : Union[str, Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCAmelCase : Dict = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCAmelCase : Dict = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] lowerCAmelCase : Optional[int] = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed lowerCAmelCase : Union[str, Any] = True if not attribute_used: lowerCAmelCase : Optional[int] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCAmelCase : str = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCAmelCase : int = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCAmelCase : int = True elif attribute.endswith('_token_id' ): lowerCAmelCase : Optional[int] = True # configuration class specific cases if not case_allowed: lowerCAmelCase : int = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] ) lowerCAmelCase : int = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = dict(inspect.signature(config_class.__init__ ).parameters ) lowerCAmelCase : str = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] lowerCAmelCase : Tuple = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCAmelCase : List[str] = {} if len(config_class.attribute_map ) > 0: lowerCAmelCase : List[str] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCAmelCase : List[Any] = inspect.getsourcefile(_lowercase ) lowerCAmelCase : List[str] = os.path.dirname(_lowercase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCAmelCase : Optional[Any] = [os.path.join(_lowercase, _lowercase ) for fn in os.listdir(_lowercase ) if fn.startswith('modeling_' )] # Get the source code strings lowerCAmelCase : str = [] for path in modeling_paths: if os.path.isfile(_lowercase ): with open(_lowercase ) as fp: modeling_sources.append(fp.read() ) lowerCAmelCase : int = [] for config_param, default_value in zip(_lowercase, _lowercase ): # `attributes` here is all the variant names for `config_param` lowerCAmelCase : Optional[Any] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_lowercase, _lowercase, _lowercase, _lowercase ): unused_attributes.append(attributes[0] ) return sorted(_lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' lowerCAmelCase : int = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCAmelCase : Optional[int] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ), lambda _UpperCAmelCase : inspect.isclass(_lowercase ) and issubclass(_lowercase, _lowercase ) and inspect.getmodule(_lowercase ) == inspect.getmodule(_config_class ), ) ] for config_class in config_classes_in_module: lowerCAmelCase : Union[str, Any] = check_config_attributes_being_used(_lowercase ) if len(_lowercase ) > 0: lowerCAmelCase : str = unused_attributes if len(_lowercase ) > 0: lowerCAmelCase : Optional[int] = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f"{name}: {attributes}\n" raise ValueError(_lowercase ) if __name__ == "__main__": check_config_attributes()
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): @property def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = self.dummy_uncond_unet snake_case_ : int = PNDMScheduler() snake_case_ : Tuple = PNDMPipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pndm.to(__magic_name__ ) pndm.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : Dict = torch.manual_seed(0 ) snake_case_ : int = pndm(generator=__magic_name__ , num_inference_steps=20 , output_type='''numpy''' ).images snake_case_ : Union[str, Any] = torch.manual_seed(0 ) snake_case_ : Tuple = pndm(generator=__magic_name__ , num_inference_steps=20 , output_type='''numpy''' , return_dict=__magic_name__ )[0] snake_case_ : Any = image[0, -3:, -3:, -1] snake_case_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : Optional[int] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = '''google/ddpm-cifar10-32''' snake_case_ : Optional[int] = UNetaDModel.from_pretrained(__magic_name__ ) snake_case_ : str = PNDMScheduler() snake_case_ : List[Any] = PNDMPipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pndm.to(__magic_name__ ) pndm.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : Union[str, Any] = torch.manual_seed(0 ) snake_case_ : str = pndm(generator=__magic_name__ , output_type='''numpy''' ).images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : str = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
279
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase_ = CLIPImageProcessor() lowerCAmelCase_ = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') lowerCAmelCase_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
279
1
'''simple docstring''' class UpperCamelCase_ : def __init__( self , A ) -> List[Any]: UpperCAmelCase : Any = val UpperCAmelCase : Optional[int] = None UpperCAmelCase : int = None def _lowercase( self , A ) -> Dict: if self.val: if val < self.val: if self.left is None: UpperCAmelCase : str = Node(__SCREAMING_SNAKE_CASE ) else: self.left.insert(__SCREAMING_SNAKE_CASE ) elif val > self.val: if self.right is None: UpperCAmelCase : Any = Node(__SCREAMING_SNAKE_CASE ) else: self.right.insert(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Dict = val def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: # Recursive traversal if root: inorder(root.left , _lowercase ) res.append(root.val ) inorder(root.right , _lowercase ) def __lowerCamelCase ( _lowercase ) -> List[Any]: # Build BST if len(_lowercase ) == 0: return arr UpperCAmelCase : Any = Node(arr[0] ) for i in range(1 , len(_lowercase ) ): root.insert(arr[i] ) # Traverse BST in order. UpperCAmelCase : Dict = [] inorder(_lowercase , _lowercase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0
import flax.linen as nn import jax import jax.numpy as jnp class lowercase__( nn.Module ): """simple docstring""" a :int a :jnp.dtype = jnp.floataa def _lowercase ( self : List[Any] ) -> Union[str, Any]: lowercase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) lowercase_ = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class lowercase__( nn.Module ): """simple docstring""" a :int a :jnp.dtype = jnp.floataa def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowercase_ = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class lowercase__( nn.Module ): """simple docstring""" a :int a :int = None a :float = 0.0 a :bool = None a :jnp.dtype = jnp.floataa def _lowercase ( self : Any ) -> List[str]: lowercase_ = self.in_channels if self.out_channels is None else self.out_channels lowercase_ = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) lowercase_ = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase_ = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) lowercase_ = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) lowercase_ = nn.Dropout(self.dropout_prob ) lowercase_ = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase_ = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase_ = None if use_nin_shortcut: lowercase_ = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int]=True ) -> Tuple: lowercase_ = hidden_states lowercase_ = self.norma(SCREAMING_SNAKE_CASE_ ) lowercase_ = nn.swish(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.conva(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) lowercase_ = hidden_states + temb lowercase_ = self.norma(SCREAMING_SNAKE_CASE_ ) lowercase_ = nn.swish(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: lowercase_ = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
30
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : List[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( snake_case ): UpperCamelCase__ = 'convbert' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a=768 , _a=2 , _a=9 , _a=1 , _a=None , **_a , ): super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a , ) __magic_name__ : Tuple = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Union[str, Any] = num_hidden_layers __magic_name__ : List[Any] = num_attention_heads __magic_name__ : str = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : Tuple = max_position_embeddings __magic_name__ : str = type_vocab_size __magic_name__ : List[str] = initializer_range __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[Any] = embedding_size __magic_name__ : List[Any] = head_ratio __magic_name__ : str = conv_kernel_size __magic_name__ : Dict = num_groups __magic_name__ : str = classifier_dropout class _snake_case ( snake_case ): @property def SCREAMING_SNAKE_CASE ( self ): if self.task == "multiple-choice": __magic_name__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: __magic_name__ : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
281
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule lowercase__ = {"tokenization_tapex": ["TapexTokenizer"]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
280
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase__ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def UpperCamelCase( UpperCAmelCase_ ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase : List[Any] = list(s_dict.keys() ) for key in keys: UpperCAmelCase : Union[str, Any] = R'.*/layers_(\d+)' UpperCAmelCase : List[str] = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) UpperCAmelCase : str = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": UpperCAmelCase : Union[str, Any] = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": UpperCAmelCase : Tuple = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase : List[str] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""{key} -> {new_key}""" ) UpperCAmelCase : List[Any] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Optional[int] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Optional[int] = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase : List[str] = s_dict[key].shape[0] UpperCAmelCase : List[Any] = s_dict[key] for idx in range(UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowercase__ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : Union[str, Any] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) UpperCAmelCase : str = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase : Dict = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) UpperCAmelCase : str = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] UpperCAmelCase : Union[str, Any] = str(activation[1] ) UpperCAmelCase : Optional[int] = num_experts UpperCAmelCase : List[str] = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="./" , UpperCAmelCase_=8 ): # Initialise PyTorch model print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase : List[Any] = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: UpperCAmelCase : List[Any] = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: UpperCAmelCase : str = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : str = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) UpperCAmelCase : str = flax_params['target'] UpperCAmelCase : Union[str, Any] = flatten_dict(UpperCAmelCase_ , sep='/' ) UpperCAmelCase : Tuple = rename_keys(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
280
1
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
109
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class a_ : lowercase = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """The column name of the images in the files."""} ) lowercase = field(default=lowerCamelCase , metadata={"""help""": """A folder containing the training data."""} ) lowercase = field(default=lowerCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) lowercase = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = {} if self.train_dir is not None: UpperCamelCase = self.train_dir if self.validation_dir is not None: UpperCamelCase = self.validation_dir UpperCamelCase = data_files if data_files else None @dataclass class a_ : lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase = field(default=lowerCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowercase = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class a_ ( lowerCamelCase ): lowercase = field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowercase__ ( )-> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase ,UpperCamelCase ,UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase ,UpperCamelCase ,UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , __UpperCamelCase , __UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __UpperCamelCase ) and data_args.train_val_split > 0.0: UpperCamelCase = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase = split["""train"""] UpperCamelCase = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **__UpperCamelCase ) elif model_args.model_name_or_path: UpperCamelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: UpperCamelCase = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__UpperCamelCase ) elif model_args.model_name_or_path: UpperCamelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: UpperCamelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase = ViTMAEForPreTraining(__UpperCamelCase ) if training_args.do_train: UpperCamelCase = ds["""train"""].column_names else: UpperCamelCase = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase = data_args.image_column_name elif "image" in column_names: UpperCamelCase = """image""" elif "img" in column_names: UpperCamelCase = """img""" else: UpperCamelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase = image_processor.size["""shortest_edge"""] else: UpperCamelCase = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase = Compose( [ Lambda(lambda __UpperCamelCase : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(__UpperCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__UpperCamelCase ): UpperCamelCase = [transforms(__UpperCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__UpperCamelCase ) # Compute absolute learning rate UpperCamelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase = None if training_args.resume_from_checkpoint is not None: UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase = last_checkpoint UpperCamelCase = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase = trainer.evaluate() trainer.log_metrics("""eval""" , __UpperCamelCase ) trainer.save_metrics("""eval""" , __UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) def lowercase__ ( __UpperCamelCase )-> List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
321
0
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __A = logging.get_logger(__name__) # General docstring __A = 'PoolFormerConfig' # Base docstring __A = 'sail/poolformer_s12' __A = [1, 512, 7, 7] # Image classification docstring __A = 'sail/poolformer_s12' __A = 'tabby, tabby cat' __A = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __A ( _lowercase , _lowercase = 0.0 , _lowercase = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input _A = 1 - drop_prob _A = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _A = keep_prob + torch.rand(_lowercase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _A = input.div(_lowercase ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self: Optional[Any] , __A: Optional[float] = None ) -> None: super().__init__() _A = drop_prob def __A ( self: Tuple , __A: torch.Tensor ) -> torch.Tensor: return drop_path(__A , self.drop_prob , self.training ) def __A ( self: Optional[Any] ) -> str: return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self: Tuple , __A: Optional[int] , __A: Union[str, Any] , __A: str , __A: Tuple , __A: Dict , __A: Any=None ) -> Tuple: super().__init__() _A = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) _A = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) _A = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) _A = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) _A = norm_layer(__A ) if norm_layer else nn.Identity() def __A ( self: Dict , __A: Optional[Any] ) -> Tuple: _A = self.projection(__A ) _A = self.norm(__A ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): """simple docstring""" def __init__( self: Union[str, Any] , __A: List[str] , **__A: str ) -> List[str]: super().__init__(1 , __A , **__A ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self: Tuple , __A: Optional[Any] ) -> str: super().__init__() _A = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def __A ( self: Optional[int] , __A: Union[str, Any] ) -> Dict: return self.pool(__A ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self: List[str] , __A: Tuple , __A: str , __A: Tuple , __A: int ) -> List[str]: super().__init__() _A = nn.Convad(__A , __A , 1 ) _A = nn.Convad(__A , __A , 1 ) _A = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): _A = ACTaFN[config.hidden_act] else: _A = config.hidden_act def __A ( self: Optional[Any] , __A: List[str] ) -> Any: _A = self.conva(__A ) _A = self.act_fn(__A ) _A = self.drop(__A ) _A = self.conva(__A ) _A = self.drop(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self: Dict , __A: Optional[Any] , __A: int , __A: Any , __A: Optional[int] , __A: Union[str, Any] , __A: Optional[Any] ) -> Optional[Any]: super().__init__() _A = PoolFormerPooling(__A ) _A = PoolFormerOutput(__A , __A , __A , __A ) _A = PoolFormerGroupNorm(__A ) _A = PoolFormerGroupNorm(__A ) # Useful for training neural nets _A = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() _A = config.use_layer_scale if config.use_layer_scale: _A = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) _A = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def __A ( self: Any , __A: Union[str, Any] ) -> Dict: if self.use_layer_scale: _A = self.pooling(self.before_norm(__A ) ) _A = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _A = hidden_states + self.drop_path(__A ) _A = () _A = self.output(self.after_norm(__A ) ) _A = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _A = hidden_states + self.drop_path(__A ) _A = (output,) + outputs return outputs else: _A = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection _A = pooling_output + hidden_states _A = () # Second residual connection inside the PoolFormerOutput block _A = self.drop_path(self.output(self.after_norm(__A ) ) ) _A = hidden_states + layer_output _A = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self: str , __A: str ) -> str: super().__init__() _A = config # stochastic depth decay rule _A = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _A = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _A = nn.ModuleList(__A ) # Transformer blocks _A = [] _A = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _A = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) _A = nn.ModuleList(__A ) def __A ( self: Tuple , __A: Any , __A: Any=False , __A: List[Any]=True ) -> Any: _A = () if output_hidden_states else None _A = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _A ,_A = layers # Get patch embeddings from hidden_states _A = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): _A = blk(__A ) _A = layer_outputs[0] if output_hidden_states: _A = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = PoolFormerConfig A_ = "poolformer" A_ = "pixel_values" A_ = True def __A ( self: Dict , __A: Any ) -> Tuple: if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def __A ( self: List[str] , __A: Dict , __A: List[Any]=False ) -> List[Any]: if isinstance(__A , __A ): _A = value __A = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __A = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: Any , __A: Tuple ) -> Union[str, Any]: super().__init__(__A ) _A = config _A = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def __A ( self: Any ) -> Optional[int]: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self: List[str] , __A: Optional[torch.FloatTensor] = None , __A: Optional[bool] = None , __A: Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) _A = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) _A = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self: Tuple , __A: Optional[Any] ) -> List[str]: super().__init__() _A = nn.Linear(config.hidden_size , config.hidden_size ) def __A ( self: str , __A: List[str] ) -> Union[str, Any]: _A = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: int , __A: int ) -> List[Any]: super().__init__(__A ) _A = config.num_labels _A = PoolFormerModel(__A ) # Final norm _A = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _A = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self: List[str] , __A: Optional[torch.FloatTensor] = None , __A: Optional[torch.LongTensor] = None , __A: Optional[bool] = None , __A: Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) _A = outputs[0] _A = self.classifier(self.norm(__A ).mean([-2, -1] ) ) _A = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A = '''single_label_classification''' else: _A = '''multi_label_classification''' if self.config.problem_type == "regression": _A = MSELoss() if self.num_labels == 1: _A = loss_fct(logits.squeeze() , labels.squeeze() ) else: _A = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": _A = CrossEntropyLoss() _A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A = BCEWithLogitsLoss() _A = loss_fct(__A , __A ) if not return_dict: _A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
75
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" @require_torch def __A ( self: Dict ) -> Optional[int]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _A = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task='''fill-mask''' , model=__A ) # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _A = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Dict ) -> Tuple: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _A = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task='''fill-mask''' , model=__A ) # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Any ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _A = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _A = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __A ( self: Optional[int] ) -> Dict: _A = ''' from transformers import pipeline ''' _A = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _A = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _A = self.get_env() _A = '''1''' _A = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def __A ( self: Optional[int] ) -> int: _A = ''' from transformers import AutoModel ''' _A = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _A = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _A = self.get_env() _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _A = '''1''' _A = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
75
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a__ ( snake_case__ ): def __init__( self , *_A , _A=None , _A=None , **_A ): """simple docstring""" super().__init__(*_A , **_A ) __lowerCAmelCase = eval_examples __lowerCAmelCase = post_process_function def __SCREAMING_SNAKE_CASE( self , _A = None , _A=None , _A = None , _A = "eval" , **_A , ): """simple docstring""" __lowerCAmelCase = gen_kwargs.copy() __lowerCAmelCase = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) __lowerCAmelCase = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) __lowerCAmelCase = gen_kwargs __lowerCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset __lowerCAmelCase = self.get_eval_dataloader(_A ) __lowerCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowerCAmelCase = self.compute_metrics __lowerCAmelCase = None __lowerCAmelCase = time.time() __lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowerCAmelCase = eval_loop( _A , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: __lowerCAmelCase = compute_metrics __lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowerCAmelCase = self.post_process_function(_A , _A , _A ) __lowerCAmelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __lowerCAmelCase = metrics.pop(_A ) metrics.update(output.metrics ) else: __lowerCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowerCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _A ) return metrics def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=None , _A = "test" , **_A ): """simple docstring""" __lowerCAmelCase = gen_kwargs.copy() __lowerCAmelCase = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. __lowerCAmelCase = self.compute_metrics __lowerCAmelCase = None __lowerCAmelCase = time.time() __lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowerCAmelCase = eval_loop( _A , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: __lowerCAmelCase = compute_metrics __lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowerCAmelCase = self.post_process_function(_A , _A , _A , "predict" ) __lowerCAmelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __lowerCAmelCase = metrics.pop(_A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_A )
92
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): if hor == 1_28: __lowerCAmelCase = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __lowerCAmelCase = (32, 1_28, 2_56) __lowerCAmelCase = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: __lowerCAmelCase = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __lowerCAmelCase = (32, 64, 1_28, 2_56) __lowerCAmelCase = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") __lowerCAmelCase = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) __lowerCAmelCase = model.state_dict() __lowerCAmelCase = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_55_36, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } __lowerCAmelCase = UNetaDModel(**SCREAMING_SNAKE_CASE_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __lowerCAmelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE_ ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( ): __lowerCAmelCase = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 1_28, 2_56), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_55_36, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } __lowerCAmelCase = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) __lowerCAmelCase = model __lowerCAmelCase = UNetaDModel(**SCREAMING_SNAKE_CASE_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __lowerCAmelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE_ ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
92
1
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Union[str, Any] = "▁" lowerCAmelCase : Dict = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase): lowerCAmelCase_ = BertGenerationTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' super().setUp() UpperCamelCase = BertGenerationTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = '<s>' UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(A_ ) , 1002 ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = BertGenerationTokenizer(A_ , keep_accents=A_ ) UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [285, 46, 10, 170, 382] , ) UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = 'Hello World!' UpperCamelCase = [18536, 2260, 101] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @require_torch @slow def UpperCAmelCase_ ( self )-> str: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCamelCase = ' '.join(A_ ) UpperCamelCase = self.big_tokenizer.encode_plus(A_ , return_tensors='pt' , return_token_type_ids=A_ ) UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=A_ ) UpperCamelCase = BertGenerationConfig() UpperCamelCase = BertGenerationEncoder(A_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**A_ ) model(**A_ ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
368
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class SCREAMING_SNAKE_CASE__ ( nn.Module): lowerCAmelCase_ = 42 lowerCAmelCase_ = jnp.floataa def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , A_ )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = hidden_states.shape UpperCamelCase = jax.image.resize( A_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) UpperCamelCase = self.conv(A_ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module): lowerCAmelCase_ = 42 lowerCAmelCase_ = jnp.floataa def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = self.conv(A_ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module): lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = 0.0 lowerCAmelCase_ = None lowerCAmelCase_ = jnp.floataa def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.in_channels if self.out_channels is None else self.out_channels UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) UpperCamelCase = nn.Conv( A_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase = nn.Dense(A_ , dtype=self.dtype ) UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) UpperCamelCase = nn.Dropout(self.dropout_prob ) UpperCamelCase = nn.Conv( A_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut UpperCamelCase = None if use_nin_shortcut: UpperCamelCase = nn.Conv( A_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , A_ , A_ , A_=True )-> str: '''simple docstring''' UpperCamelCase = hidden_states UpperCamelCase = self.norma(A_ ) UpperCamelCase = nn.swish(A_ ) UpperCamelCase = self.conva(A_ ) UpperCamelCase = self.time_emb_proj(nn.swish(A_ ) ) UpperCamelCase = jnp.expand_dims(jnp.expand_dims(A_ , 1 ) , 1 ) UpperCamelCase = hidden_states + temb UpperCamelCase = self.norma(A_ ) UpperCamelCase = nn.swish(A_ ) UpperCamelCase = self.dropout(A_ , A_ ) UpperCamelCase = self.conva(A_ ) if self.conv_shortcut is not None: UpperCamelCase = self.conv_shortcut(A_ ) return hidden_states + residual
251
0
def lowercase_ ( _lowerCamelCase : int): lowercase__ : Dict = [0] * len(_lowerCamelCase) lowercase__ : int = [] lowercase__ : List[str] = [1] * len(_lowerCamelCase) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCamelCase)): if indegree[i] == 0: queue.append(_lowerCamelCase) while queue: lowercase__ : Union[str, Any] = queue.pop(0) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ : Dict = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_lowerCamelCase) print(max(_lowerCamelCase)) # Adjacency list of Graph UpperCamelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
87
'''simple docstring''' import numpy as np def a__ ( a__ , a__ , a__ = 1E-1_2 , a__ = 1_00 , ): """simple docstring""" assert np.shape(a__ )[0] == np.shape(a__ )[1] # Ensure proper dimensionality. assert np.shape(a__ )[0] == np.shape(a__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a__ ) == np.iscomplexobj(a__ ) __SCREAMING_SNAKE_CASE = np.iscomplexobj(a__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1E1_2 while not convergence: # Multiple matrix by the vector. __SCREAMING_SNAKE_CASE = np.dot(a__ , a__ ) # Normalize the resulting output vector. __SCREAMING_SNAKE_CASE = w / np.linalg.norm(a__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __SCREAMING_SNAKE_CASE = vector.conj().T if is_complex else vector.T __SCREAMING_SNAKE_CASE = np.dot(a__ , np.dot(a__ , a__ ) ) # Check convergence. __SCREAMING_SNAKE_CASE = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = lambda_ if is_complex: __SCREAMING_SNAKE_CASE = np.real(lambda_ ) return lambda_, vector def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ) __SCREAMING_SNAKE_CASE = real_input_matrix.astype(np.complexaaa ) __SCREAMING_SNAKE_CASE = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __SCREAMING_SNAKE_CASE = real_input_matrix __SCREAMING_SNAKE_CASE = real_vector elif problem_type == "complex": __SCREAMING_SNAKE_CASE = complex_input_matrix __SCREAMING_SNAKE_CASE = complex_vector # Our implementation. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = power_iteration(a__ , a__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.linalg.eigh(a__ ) # Last eigenvalue is the maximum one. __SCREAMING_SNAKE_CASE = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __SCREAMING_SNAKE_CASE = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a__ ) - np.abs(a__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
267
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A ( __UpperCAmelCase=None , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' return field(default_factory=lambda: default , metadata=__UpperCAmelCase ) @dataclass class a_ : UpperCamelCase__ : str =field( metadata={"help": "The csv file to plot."} , ) UpperCamelCase__ : bool =field( default=__lowerCAmelCase , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) UpperCamelCase__ : bool =field( default=__lowerCAmelCase , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) UpperCamelCase__ : bool =field( default=__lowerCAmelCase , metadata={"help": "Disable logarithmic scale when plotting"} , ) UpperCamelCase__ : bool =field( default=__lowerCAmelCase , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) UpperCamelCase__ : Optional[str] =field( default=__lowerCAmelCase , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) UpperCamelCase__ : Optional[List[str]] =list_field( default=__lowerCAmelCase , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def A ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' try: int(__UpperCAmelCase ) return True except ValueError: return False def A ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' try: float(__UpperCAmelCase ) return True except ValueError: return False class a_ : def __init__( self :Any , _lowercase :Dict) -> Dict: UpperCAmelCase_ = args UpperCAmelCase_ = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}}) with open(self.args.csv_file , newline='''''') as csv_file: UpperCAmelCase_ = csv.DictReader(lowerCamelCase__) for row in reader: UpperCAmelCase_ = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''])) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''])) if can_convert_to_int(row['''result''']): # value is not None UpperCAmelCase_ = int(row['''result''']) elif can_convert_to_float(row['''result''']): # value is not None UpperCAmelCase_ = float(row['''result''']) def __a ( self :List[Any]) -> List[Any]: UpperCAmelCase_ = plt.subplots() UpperCAmelCase_ = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCAmelCase_ = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''') ax.set_yscale('''log''') for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter()) for model_name_idx, model_name in enumerate(self.result_dict.keys()): UpperCAmelCase_ = sorted(set(self.result_dict[model_name]['''bsz'''])) UpperCAmelCase_ = sorted(set(self.result_dict[model_name]['''seq_len'''])) UpperCAmelCase_ = self.result_dict[model_name]['''result'''] (UpperCAmelCase_) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase_ = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase_ = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCamelCase__ , ) else: UpperCAmelCase_ = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) (UpperCAmelCase_) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCAmelCase_ = np.asarray(lowerCamelCase__ , lowerCamelCase__)[: len(lowerCamelCase__)] plt.scatter( lowerCamelCase__ , lowerCamelCase__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}") plt.plot(lowerCamelCase__ , lowerCamelCase__ , '''--''') title_str += f" {label_model_name} vs." UpperCAmelCase_ = title_str[:-4] UpperCAmelCase_ = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(lowerCamelCase__) plt.xlabel(lowerCamelCase__) plt.ylabel(lowerCamelCase__) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file) else: plt.show() def A ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = HfArgumentParser(__UpperCAmelCase ) UpperCAmelCase_ = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ = Plot(args=__UpperCAmelCase ) plot.plot() if __name__ == "__main__": main()
357
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any]): with open(lowerCAmelCase__) as metadata_file: lowercase__ : Dict = json.load(lowerCAmelCase__) lowercase__ : Union[str, Any] = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata["model_config"]) # Load in the weights from the checkpoint_path lowercase__ : Optional[Any] = torch.load(lowerCAmelCase__ , map_location="cpu") # Load the entity vocab file lowercase__ : Dict = load_entity_vocab(lowerCAmelCase__) lowercase__ : int = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"]) # Add special tokens to the token vocabulary for downstream tasks lowercase__ : Union[str, Any] = AddedToken("<ent>" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) lowercase__ : Any = AddedToken("<ent2>" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]}) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''') tokenizer.save_pretrained(lowerCAmelCase__) with open(os.path.join(lowerCAmelCase__ , LukeTokenizer.vocab_files_names["entity_vocab_file"]) , "w") as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__) lowercase__ : Optional[Any] = LukeTokenizer.from_pretrained(lowerCAmelCase__) # Initialize the embeddings of the special tokens lowercase__ : Tuple = state_dict["embeddings.word_embeddings.weight"] lowercase__ : List[str] = word_emb[tokenizer.convert_tokens_to_ids(["@"])[0]].unsqueeze(0) lowercase__ : Dict = word_emb[tokenizer.convert_tokens_to_ids(["#"])[0]].unsqueeze(0) lowercase__ : List[Any] = torch.cat([word_emb, ent_emb, enta_emb]) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers): for matrix_name in ["query.weight", "query.bias"]: lowercase__ : Any = f'''encoder.layer.{layer_index}.attention.self.''' lowercase__ : List[str] = state_dict[prefix + matrix_name] lowercase__ : Any = state_dict[prefix + matrix_name] lowercase__ : Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase__ : List[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] lowercase__ : List[str] = entity_emb[entity_vocab["[MASK]"]] lowercase__ : Tuple = LukeModel(config=lowerCAmelCase__).eval() lowercase__ , lowercase__ : int = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__) if not (len(lowerCAmelCase__) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'''Missing keys {", ".join(lowerCAmelCase__)}. Expected only missing embeddings.position_ids''') if not (all(key.startswith("entity_predictions") or key.startswith("lm_head") for key in unexpected_keys)): raise ValueError( "Unexpected keys" f''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions") or key.startswith("lm_head"))])}''') # Check outputs lowercase__ : Any = LukeTokenizer.from_pretrained(lowerCAmelCase__ , task="entity_classification") lowercase__ : Any = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) lowercase__ : str = (39, 42) lowercase__ : Optional[Any] = tokenizer(lowerCAmelCase__ , entity_spans=[span] , add_prefix_space=lowerCAmelCase__ , return_tensors="pt") lowercase__ : Union[str, Any] = model(**lowerCAmelCase__) # Verify word hidden states if model_size == "large": lowercase__ : Any = torch.Size((1, 42, 1024)) lowercase__ : str = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]]) else: # base lowercase__ : int = torch.Size((1, 42, 768)) lowercase__ : Tuple = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]]) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''') if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4): raise ValueError # Verify entity hidden states if model_size == "large": lowercase__ : int = torch.Size((1, 1, 1024)) lowercase__ : List[str] = torch.tensor([[0.0466, -0.0106, -0.0179]]) else: # base lowercase__ : str = torch.Size((1, 1, 768)) lowercase__ : str = torch.tensor([[0.1457, 0.1044, 0.0174]]) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''') if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowerCAmelCase__)) model.save_pretrained(lowerCAmelCase__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : List[Any] = {} with open(lowerCAmelCase__ , "r" , encoding="utf-8") as f: for index, line in enumerate(lowerCAmelCase__): lowercase__ , lowercase__ : Tuple = line.rstrip().split("\t") lowercase__ : int = index return entity_vocab if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
87
'''simple docstring''' import numpy as np class a : def __init__( self ) -> List[str]: _a = (0, 0) _a = None _a = 0 _a = 0 _a = 0 def __eq__( self , __magic_name__ ) -> Optional[int]: return self.position == cell.position def __UpperCAmelCase ( self ) -> Any: print(self.position ) class a : def __init__( self , __magic_name__=(5, 5) ) -> Optional[int]: _a = np.zeros(__magic_name__ ) _a = world_size[0] _a = world_size[1] def __UpperCAmelCase ( self ) -> List[Any]: print(self.w ) def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: _a = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _a = cell.position[0] _a = cell.position[1] _a = [] for n in neughbour_cord: _a = current_x + n[0] _a = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _a = Cell() _a = (x, y) _a = cell neighbours.append(__magic_name__ ) return neighbours def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ) -> List[str]: '''simple docstring''' _a = [] _a = [] _open.append(lowerCAmelCase__ ) while _open: _a = np.argmin([n.f for n in _open] ) _a = _open[min_f] _closed.append(_open.pop(lowerCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(lowerCAmelCase__ ): for c in _closed: if c == n: continue _a = current.g + 1 _a , _a = n.position _a , _a = goal.position _a = (ya - ya) ** 2 + (xa - xa) ** 2 _a = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowerCAmelCase__ ) _a = [] while current.parent is not None: path.append(current.position ) _a = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a_ : str = Gridworld() # Start position and goal a_ : str = Cell() a_ : Dict = (0, 0) a_ : Dict = Cell() a_ : Optional[Any] = (4, 4) print(f'''path from {start.position} to {goal.position}''') a_ : Tuple = astar(world, start, goal) # Just for visual reasons. for i in s: a_ : Any = 1 print(world.w)
168
0
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __SCREAMING_SNAKE_CASE ="." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __SCREAMING_SNAKE_CASE =[ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ : int = SavedModel() lowercase_ : Union[str, Any] = [] with open(os.path.join(__SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: lowercase_ : List[str] = json.load(__SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__SCREAMING_SNAKE_CASE )] ) with open(__SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) lowercase_ : Any = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowercase_ : int = sorted(__SCREAMING_SNAKE_CASE ) lowercase_ : str = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__SCREAMING_SNAKE_CASE ) if strict and len(__SCREAMING_SNAKE_CASE ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__SCREAMING_SNAKE_CASE ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__SCREAMING_SNAKE_CASE , sep='\n' ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) __SCREAMING_SNAKE_CASE =parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
321
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A : List[Any] = logging.get_logger(__name__) A : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} A : Union[str, Any] = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } A : Tuple = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =VOCAB_FILES_NAMES __UpperCAmelCase : Any =PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Any =["""input_ids""", """attention_mask"""] __UpperCAmelCase : Optional[int] =GPTaTokenizer def __init__( self , __a=None , __a=None , __a=None , __a="<|endoftext|>" , __a="<|endoftext|>" , __a="<|endoftext|>" , __a=False , **__a , ): super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) __lowerCAmelCase = kwargs.pop("add_bos_token" , __lowerCamelCase ) __lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space: __lowerCAmelCase = getattr(__lowerCamelCase , pre_tok_state.pop("type" ) ) __lowerCAmelCase = add_prefix_space __lowerCAmelCase = pre_tok_class(**__lowerCamelCase ) __lowerCAmelCase = add_prefix_space def snake_case ( self , *__a , **__a ): __lowerCAmelCase = kwargs.get("is_split_into_words" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def snake_case ( self , *__a , **__a ): __lowerCAmelCase = kwargs.get("is_split_into_words" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def snake_case ( self , __a , __a = None ): __lowerCAmelCase = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def snake_case ( self , __a ): __lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [self.eos_token_id] ) if len(__lowerCamelCase ) > self.model_max_length: __lowerCAmelCase = input_ids[-self.model_max_length :] return input_ids
57
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case :str = logging.get_logger(__name__) __snake_case :Optional[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case :Optional[int] = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } __snake_case :Optional[int] = { '''gpt-neox-20b''': 2048, } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : int="<|endoftext|>" , __SCREAMING_SNAKE_CASE : Optional[int]="<|endoftext|>" , __SCREAMING_SNAKE_CASE : Dict="<|endoftext|>" , __SCREAMING_SNAKE_CASE : Optional[int]=False , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE) != add_prefix_space: __a = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''')) __a = add_prefix_space __a = pre_tok_class(**__SCREAMING_SNAKE_CASE) __a = add_prefix_space def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' __a = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE) return tuple(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Conversation"): '''simple docstring''' __a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE) + [self.eos_token_id]) if len(__SCREAMING_SNAKE_CASE) > self.model_max_length: __a = input_ids[-self.model_max_length :] return input_ids
357
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 2, 1] , __SCREAMING_SNAKE_CASE : Optional[int]=[2, 2, 4] , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Tuple=2.0 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[int]=10 , __SCREAMING_SNAKE_CASE : int=8 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = depths __a = num_heads __a = window_size __a = mlp_ratio __a = qkv_bias __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = drop_path_rate __a = hidden_act __a = use_absolute_embeddings __a = patch_norm __a = layer_norm_eps __a = initializer_range __a = is_training __a = scope __a = use_labels __a = type_sequence_label_size __a = encoder_stride def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : List[Any]): '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = SwinvaModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE) __a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __a = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = SwinvaForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __a = 1 __a = SwinvaForMaskedImageModeling(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = self.type_sequence_label_size __a = SwinvaForImageClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Dict = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase__ : Optional[int] = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ : int = False UpperCamelCase__ : Tuple = False UpperCamelCase__ : Optional[Any] = False UpperCamelCase__ : Optional[Any] = False def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = SwinvaModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , embed_dim=37) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''') def _lowerCamelCase ( self : List[Any]): '''simple docstring''' pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''') def _lowerCamelCase ( self : List[str]): '''simple docstring''' pass def _lowerCamelCase ( self : Any): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear)) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__SCREAMING_SNAKE_CASE) __a = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True for model_class in self.all_model_classes: __a = True __a = False __a = True __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) __a = outputs.attentions __a = len(self.model_tester.depths) self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a = True __a = config.window_size**2 __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) __a = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __a = len(__SCREAMING_SNAKE_CASE) # Check attention is always last and order is fine __a = True __a = True __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) if hasattr(self.model_tester , '''num_hidden_states_types'''): __a = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __a = 2 self.assertEqual(out_len + added_hidden_states , len(__SCREAMING_SNAKE_CASE)) __a = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) __a = outputs.hidden_states __a = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1) self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # Swinv2 has a different seq_length __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) __a = outputs.reshaped_hidden_states self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) __a , __a , __a , __a = reshaped_hidden_states[0].shape __a = ( reshaped_hidden_states[0].view(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __a = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __a = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width)) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = SwinvaModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = _config_zero_init(__SCREAMING_SNAKE_CASE) for model_class in self.all_model_classes: __a = model_class(config=__SCREAMING_SNAKE_CASE) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''') if is_vision_available() else None ) @slow def _lowerCamelCase ( self : str): '''simple docstring''' __a = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''').to( __SCREAMING_SNAKE_CASE) __a = self.default_image_processor __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''').to(__SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits __a = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE) __a = torch.tensor([-0.39_47, -0.43_06, 0.00_26]).to(__SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4))
131
0
def _a ( UpperCamelCase_ : Dict ) -> Any: """simple docstring""" lowerCAmelCase__ = len(UpperCamelCase_ ) while cur > 1: # Find the maximum number in arr lowerCAmelCase__ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase__ = arr[mi::-1] + arr[mi + 1 : len(UpperCamelCase_ )] # Reverse whole list lowerCAmelCase__ = arr[cur - 1 :: -1] + arr[cur : len(UpperCamelCase_ )] cur -= 1 return arr if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
340
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
0
'''simple docstring''' import numpy as np def __A ( lowerCAmelCase_ ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
170
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ ): super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__(self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 5_0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , lowerCAmelCase__ ): _UpperCAmelCase : str = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _UpperCAmelCase : int = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _UpperCAmelCase : Optional[Any] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase : str = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : List[str] = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , eta=lowerCAmelCase__ , use_clipped_model_output=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample _UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
170
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
177
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
177
1
import baseaa def snake_case( __magic_name__ ) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode('''utf-8''' ) ) def snake_case( __magic_name__ ) -> str: '''simple docstring''' return baseaa.baadecode(__magic_name__ ).decode('''utf-8''' ) if __name__ == "__main__": lowerCAmelCase_ = 'Hello World!' lowerCAmelCase_ = baseaa_encode(test) print(encoded) lowerCAmelCase_ = baseaa_decode(encoded) print(decoded)
116
def snake_case( __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' lowercase : List[Any] = len(__magic_name__ ) lowercase : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowercase : List[str] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowercase : str = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowercase : Optional[Any] = subset[i - 1][j] if arr[i - 1] <= j: lowercase : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
116
1
from collections.abc import Callable import numpy as np def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCAmelCase = np.zeros((n + 1,) ) _UpperCAmelCase = ya _UpperCAmelCase = xa for k in range(lowercase__ ): _UpperCAmelCase = y[k] + step_size * ode_func(lowercase__ , y[k] ) _UpperCAmelCase = y[k] + ( (step_size / 2) * (ode_func(lowercase__ , y[k] ) + ode_func(x + step_size , lowercase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
133
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A ( enum.Enum ): UpperCamelCase_ : Optional[int] =0 UpperCamelCase_ : Tuple =1 UpperCamelCase_ : Optional[int] =2 @add_end_docstrings(A_ ) class A ( A_ ): UpperCamelCase_ : Union[str, Any] =''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__(self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowercase= None if self.model.config.prefix is not None: __lowercase= self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowercase= self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowercase, __lowercase, __lowercase= self._sanitize_parameters(prefix=lowerCAmelCase , **self._forward_params ) __lowercase= {**self._preprocess_params, **preprocess_params} __lowercase= {**self._forward_params, **forward_params} def _A (self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ): __lowercase= {} if prefix is not None: __lowercase= prefix if prefix: __lowercase= self.tokenizer( lowerCAmelCase , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework ) __lowercase= prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' ' [None, \'hole\']' ) __lowercase= handle_long_generation preprocess_params.update(lowerCAmelCase ) __lowercase= generate_kwargs __lowercase= {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) __lowercase= ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) __lowercase= ReturnType.TENSORS if return_type is not None: __lowercase= return_type if clean_up_tokenization_spaces is not None: __lowercase= clean_up_tokenization_spaces if stop_sequence is not None: __lowercase= self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) if len(lowerCAmelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __lowercase= stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _A (self , *lowerCAmelCase , **lowerCAmelCase ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase , **lowerCAmelCase ) def __call__(self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase="" , lowerCAmelCase=None , **lowerCAmelCase ): __lowercase= self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework ) __lowercase= prompt_text if handle_long_generation == "hole": __lowercase= inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: __lowercase= generate_kwargs['max_new_tokens'] else: __lowercase= generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __lowercase= self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) __lowercase= inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: __lowercase= inputs['attention_mask'][:, -keep_length:] return inputs def _A (self , lowerCAmelCase , **lowerCAmelCase ): __lowercase= model_inputs['input_ids'] __lowercase= model_inputs.get('attention_mask' , lowerCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: __lowercase= None __lowercase= None __lowercase= 1 else: __lowercase= input_ids.shape[0] __lowercase= model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowercase= generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: __lowercase= 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: __lowercase= generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowercase= 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowercase= self.model.generate(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , **lowerCAmelCase ) __lowercase= generated_sequence.shape[0] if self.framework == "pt": __lowercase= generated_sequence.reshape(lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __lowercase= tf.reshape(lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _A (self , lowerCAmelCase , lowerCAmelCase=ReturnType.FULL_TEXT , lowerCAmelCase=True ): __lowercase= model_outputs['generated_sequence'][0] __lowercase= model_outputs['input_ids'] __lowercase= model_outputs['prompt_text'] __lowercase= generated_sequence.numpy().tolist() __lowercase= [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowercase= {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowercase= self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowercase= 0 else: __lowercase= len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) ) if return_type == ReturnType.FULL_TEXT: __lowercase= prompt_text + text[prompt_length:] else: __lowercase= text[prompt_length:] __lowercase= {'generated_text': all_text} records.append(lowerCAmelCase ) return records
295
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers SCREAMING_SNAKE_CASE__ = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def lowercase__ ( )-> Optional[int]: UpperCamelCase = os.path.dirname(os.path.realpath(__UpperCamelCase ) ) UpperCamelCase = os.path.join(__UpperCamelCase , """words.txt""" ) UpperCamelCase = """""" with open(__UpperCamelCase ) as f: UpperCamelCase = f.readline() UpperCamelCase = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] UpperCamelCase = [ word for word in [sum(ord(__UpperCamelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__UpperCamelCase ) if __name__ == "__main__": print(solution())
183
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowercase__ ( )-> Tuple: # Get the sagemaker specific mp parameters from smp_options variable. UpperCamelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCamelCase = json.loads(__UpperCamelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCamelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCamelCase = json.loads(__UpperCamelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , __UpperCamelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a_ ( lowerCamelCase ): lowercase = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def A__ ( self ) -> Tuple: """simple docstring""" super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , _SCREAMING_SNAKE_CASE , ) @cached_property def A__ ( self ) -> "torch.device": """simple docstring""" logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: UpperCamelCase = torch.device("""cpu""" ) UpperCamelCase = 0 elif is_sagemaker_model_parallel_available(): UpperCamelCase = smp.local_rank() UpperCamelCase = torch.device("""cuda""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) UpperCamelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) UpperCamelCase = torch.device("""cuda""" , self.local_rank ) UpperCamelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCamelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCamelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) UpperCamelCase = torch.device("""cuda""" , self.local_rank ) UpperCamelCase = 1 if device.type == "cuda": torch.cuda.set_device(_SCREAMING_SNAKE_CASE ) return device @property def A__ ( self ) -> Tuple: """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[Any]: """simple docstring""" return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> str: """simple docstring""" return False
183
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class A__ ( A__ ): A__ = 'audio-spectrogram-transformer' def __init__( self : Union[str, Any] , _a : Tuple=768 , _a : List[str]=12 , _a : Any=12 , _a : Optional[Any]=3072 , _a : List[str]="gelu" , _a : Optional[Any]=0.0 , _a : Dict=0.0 , _a : Optional[Any]=0.02 , _a : int=1e-12 , _a : int=16 , _a : Optional[Any]=True , _a : Optional[int]=10 , _a : Optional[Any]=10 , _a : Optional[int]=1024 , _a : List[str]=128 , **_a : Optional[int] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_a ) _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =qkv_bias _SCREAMING_SNAKE_CASE =frequency_stride _SCREAMING_SNAKE_CASE =time_stride _SCREAMING_SNAKE_CASE =max_length _SCREAMING_SNAKE_CASE =num_mel_bins
47
'''simple docstring''' lowerCamelCase : Any = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase : int = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
47
1
import math import tensorflow as tf from packaging import version def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) A_ : Tuple = tf.cast(math.pi , x.dtype ) A_ : str = tf.cast(0.0_4_4_7_1_5 , x.dtype ) A_ : List[Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(SCREAMING_SNAKE_CASE , 3 )) )) return x * cdf def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) return x * tf.tanh(tf.math.softplus(SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) A_ : str = tf.cast(0.0_4_4_7_1_5 , x.dtype ) A_ : Optional[int] = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : str = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) A_ : List[str] = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return tf.clip_by_value(_gelu(SCREAMING_SNAKE_CASE ) , -10 , 10 ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ): A_ : Any = tf.split(SCREAMING_SNAKE_CASE , 2 , axis=SCREAMING_SNAKE_CASE ) return a * tf.math.sigmoid(SCREAMING_SNAKE_CASE ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return tf.keras.activations.gelu(SCREAMING_SNAKE_CASE , approximate=SCREAMING_SNAKE_CASE ) UpperCamelCase = tf.keras.activations.gelu UpperCamelCase = approximate_gelu_wrap else: UpperCamelCase = _gelu UpperCamelCase = _gelu_new UpperCamelCase = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
358
from manim import * class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) A_ : Any = [mem.copy() for i in range(6 )] A_ : Tuple = [mem.copy() for i in range(6 )] A_ : str = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Optional[Any] = Text('''CPU''' , font_size=24 ) A_ : Union[str, Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = [mem.copy() for i in range(1 )] A_ : Any = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Dict = Text('''GPU''' , font_size=24 ) A_ : List[str] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.align_to(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = Text('''Model''' , font_size=24 ) A_ : List[Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , ) A_ : int = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) A_ : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ : Any = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=2.5 ) , Write(_SCREAMING_SNAKE_CASE ) , Write(_SCREAMING_SNAKE_CASE ) ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Dict = [] A_ : int = [] A_ : Optional[Any] = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.7 ) cpu_target.move_to(_SCREAMING_SNAKE_CASE ) cpu_target.generate_target() A_ : Union[str, Any] = 0.4_6 / 4 A_ : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) cpu_targs.append(_SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*_SCREAMING_SNAKE_CASE ) self.play(*_SCREAMING_SNAKE_CASE ) self.wait()
65
0
import warnings from .generation import TFGenerationMixin class __UpperCAmelCase ( lowerCamelCase__ ): # warning at import time warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , lowerCamelCase__ , )
336
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMTokenizer UpperCamelCase = LayoutLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Any ): super().setUp() UpperCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any], **__A : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A ) def __magic_name__ ( self : Optional[int], __A : int ): UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : Optional[int] = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] ) def __magic_name__ ( self : Optional[int] ): pass
336
1
def _UpperCamelCase ( UpperCamelCase_ : str ) -> str: """simple docstring""" return "".join(chr(ord(UpperCamelCase_ ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
122
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Union[str, Any] = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
122
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Dict = AltDiffusionPipeline A__ : str = TEXT_TO_IMAGE_PARAMS A__ : Any = TEXT_TO_IMAGE_BATCH_PARAMS A__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS A__ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) UpperCamelCase_ = CLIPTextModel(__UpperCamelCase ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) UpperCamelCase_ = 7_7 UpperCamelCase_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase_ ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowerCamelCase_ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(__UpperCamelCase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**__UpperCamelCase ) UpperCamelCase_ = alt_pipe.to(__UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ = """A photo of an astronaut""" UpperCamelCase_ = alt_pipe(**__UpperCamelCase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase_ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(__UpperCamelCase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**__UpperCamelCase ) UpperCamelCase_ = alt_pipe.to(__UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ = alt_pipe(**__UpperCamelCase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase_ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__UpperCamelCase ) UpperCamelCase_ = alt_pipe.to(__UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = """A painting of a squirrel eating a burger""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=__UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type="""np""" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase ) UpperCamelCase_ = alt_pipe.to(__UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = """A painting of a squirrel eating a burger""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
122
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Any = DanceDiffusionPipeline A__ : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS A__ : List[Any] = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } A__ : Dict = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS A__ : str = False A__ : Any = False def lowerCamelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase_ = IPNDMScheduler() UpperCamelCase_ = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = DanceDiffusionPipeline(**__UpperCamelCase ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ = pipe(**__UpperCamelCase ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase_ = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def lowerCamelCase_ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
122
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __snake_case = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
78
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCamelCase__ = logging.get_logger(__name__) # General docstring UpperCamelCase__ = 'ResNetConfig' # Base docstring UpperCamelCase__ = 'microsoft/resnet-50' UpperCamelCase__ = [1, 2_0_4_8, 7, 7] # Image classification docstring UpperCamelCase__ = 'microsoft/resnet-50' UpperCamelCase__ = 'tiger cat' UpperCamelCase__ = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class A ( nn.Module ): def __init__(self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : str = "relu" ) -> int: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Convad( __UpperCAmelCase , __UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=kernel_size // 2 , bias=__UpperCAmelCase ) UpperCAmelCase__ = nn.BatchNormad(__UpperCAmelCase ) UpperCAmelCase__ = ACTaFN[activation] if activation is not None else nn.Identity() def lowercase_ (self : List[Any] , __UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" UpperCAmelCase__ = self.convolution(__UpperCAmelCase ) UpperCAmelCase__ = self.normalization(__UpperCAmelCase ) UpperCAmelCase__ = self.activation(__UpperCAmelCase ) return hidden_state class A ( nn.Module ): def __init__(self : str , __UpperCAmelCase : ResNetConfig ) -> Any: """simple docstring""" super().__init__() UpperCAmelCase__ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) UpperCAmelCase__ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) UpperCAmelCase__ = config.num_channels def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" UpperCAmelCase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) UpperCAmelCase__ = self.embedder(__UpperCAmelCase ) UpperCAmelCase__ = self.pooler(__UpperCAmelCase ) return embedding class A ( nn.Module ): def __init__(self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 2 ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , stride=__UpperCAmelCase , bias=__UpperCAmelCase ) UpperCAmelCase__ = nn.BatchNormad(__UpperCAmelCase ) def lowercase_ (self : List[str] , __UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" UpperCAmelCase__ = self.convolution(__UpperCAmelCase ) UpperCAmelCase__ = self.normalization(__UpperCAmelCase ) return hidden_state class A ( nn.Module ): def __init__(self : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 1 , __UpperCAmelCase : str = "relu" ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = in_channels != out_channels or stride != 1 UpperCAmelCase__ = ( ResNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase__ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase ) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , activation=__UpperCAmelCase ) , ) UpperCAmelCase__ = ACTaFN[activation] def lowercase_ (self : List[Any] , __UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase__ = hidden_state UpperCAmelCase__ = self.layer(__UpperCAmelCase ) UpperCAmelCase__ = self.shortcut(__UpperCAmelCase ) hidden_state += residual UpperCAmelCase__ = self.activation(__UpperCAmelCase ) return hidden_state class A ( nn.Module ): def __init__(self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 1 , __UpperCAmelCase : str = "relu" , __UpperCAmelCase : int = 4 ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase__ = in_channels != out_channels or stride != 1 UpperCAmelCase__ = out_channels // reduction UpperCAmelCase__ = ( ResNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase__ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 ) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase ) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=__UpperCAmelCase ) , ) UpperCAmelCase__ = ACTaFN[activation] def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase__ = hidden_state UpperCAmelCase__ = self.layer(__UpperCAmelCase ) UpperCAmelCase__ = self.shortcut(__UpperCAmelCase ) hidden_state += residual UpperCAmelCase__ = self.activation(__UpperCAmelCase ) return hidden_state class A ( nn.Module ): def __init__(self : Tuple , __UpperCAmelCase : ResNetConfig , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer UpperCAmelCase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , activation=config.hidden_act ) , *[layer(__UpperCAmelCase , __UpperCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowercase_ (self : int , __UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" UpperCAmelCase__ = input for layer in self.layers: UpperCAmelCase__ = layer(__UpperCAmelCase ) return hidden_state class A ( nn.Module ): def __init__(self : Optional[int] , __UpperCAmelCase : ResNetConfig ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCAmelCase , config.depths[1:] ): self.stages.append(ResNetStage(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , depth=__UpperCAmelCase ) ) def lowercase_ (self : Any , __UpperCAmelCase : Tensor , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" UpperCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase__ = hidden_states + (hidden_state,) UpperCAmelCase__ = stage_module(__UpperCAmelCase ) if output_hidden_states: UpperCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase , ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : int = ResNetConfig __UpperCAmelCase : List[Any] = 'resnet' __UpperCAmelCase : List[str] = 'pixel_values' __UpperCAmelCase : int = True def lowercase_ (self : Optional[int] , __UpperCAmelCase : int ) -> Any: """simple docstring""" if isinstance(__UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowercase_ (self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=False ) -> Optional[int]: """simple docstring""" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = value UpperCamelCase__ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase__ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , UpperCAmelCase_ , ) class A ( UpperCAmelCase_ ): def __init__(self : str , __UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" super().__init__(__UpperCAmelCase ) UpperCAmelCase__ = config UpperCAmelCase__ = ResNetEmbeddings(__UpperCAmelCase ) UpperCAmelCase__ = ResNetEncoder(__UpperCAmelCase ) UpperCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase_ (self : Any , __UpperCAmelCase : Tensor , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" UpperCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ = self.embedder(__UpperCAmelCase ) UpperCAmelCase__ = self.encoder( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase ) UpperCAmelCase__ = encoder_outputs[0] UpperCAmelCase__ = self.pooler(__UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase , pooler_output=__UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCAmelCase_ , ) class A ( UpperCAmelCase_ ): def __init__(self : Union[str, Any] , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" super().__init__(__UpperCAmelCase ) UpperCAmelCase__ = config.num_labels UpperCAmelCase__ = ResNetModel(__UpperCAmelCase ) # classification head UpperCAmelCase__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase_ (self : List[str] , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[torch.LongTensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ = self.resnet(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase ) UpperCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase__ = self.classifier(__UpperCAmelCase ) UpperCAmelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase__ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase__ = "single_label_classification" else: UpperCAmelCase__ = "multi_label_classification" if self.config.problem_type == "regression": UpperCAmelCase__ = MSELoss() if self.num_labels == 1: UpperCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase__ = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase__ = CrossEntropyLoss() UpperCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase__ = BCEWithLogitsLoss() UpperCAmelCase__ = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) if not return_dict: UpperCAmelCase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , UpperCAmelCase_ , ) class A ( UpperCAmelCase_ , UpperCAmelCase_ ): def __init__(self : Optional[Any] , __UpperCAmelCase : Any ) -> str: """simple docstring""" super().__init__(__UpperCAmelCase ) super()._init_backbone(__UpperCAmelCase ) UpperCAmelCase__ = [config.embedding_size] + config.hidden_sizes UpperCAmelCase__ = ResNetEmbeddings(__UpperCAmelCase ) UpperCAmelCase__ = ResNetEncoder(__UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @replace_return_docstrings(output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def lowercase_ (self : List[Any] , __UpperCAmelCase : Tensor , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None ) -> BackboneOutput: """simple docstring""" UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ = self.embedder(__UpperCAmelCase ) UpperCAmelCase__ = self.encoder(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: UpperCAmelCase__ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=__UpperCAmelCase , )
65
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = os.path.join(args.tf_model_dir, """parameters.json""" ) snake_case_ :Any = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(""".pt""" ): snake_case_ :Optional[int] = args.output + """.pt""" snake_case_ :List[str] = OrderedDict() with tf.device("""/CPU:0""" ): snake_case_ :Dict = tf.train.load_checkpoint(args.tf_model_dir ) snake_case_ :str = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case_ :List[Any] = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): snake_case_ :Any = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): snake_case_ :Optional[int] = 8 snake_case_ :List[str] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case_ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :List[str] = torch.tensor(_lowercase ) elif key_name.startswith("""model/moe""" ): snake_case_ :Tuple = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player snake_case_ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/softmlp/kernel""" ): snake_case_ :List[Any] = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player snake_case_ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): snake_case_ :Dict = key_name[-9:-7] for i in range(16 ): snake_case_ :str = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) snake_case_ :Tuple = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/mlp""" ): snake_case_ :Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p1/bias""" ): snake_case_ :List[Any] = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player snake_case_ :str = vnp.copy() # same because it is one dimensional snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/bias""" ): snake_case_ :Dict = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player snake_case_ :Any = vnp.copy() # same because it is one dimensional snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/ln""" ): snake_case_ :Union[str, Any] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ :str = """model.blocks.%d.feed_forward.norm.bias""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :int = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): snake_case_ :Dict = """model.blocks.%d.feed_forward.norm.weight""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.startswith("""model/att""" ): snake_case_ :List[str] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): snake_case_ :Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case_ :Dict = state[:, 0, :, :] snake_case_ :int = state[:, 1, :, :] snake_case_ :List[str] = state[:, 2, :, :] snake_case_ :str = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Any = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[int] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :int = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player snake_case_ :int = torch.tensor(_lowercase ) snake_case_ :Optional[Any] = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player snake_case_ :Dict = torch.tensor(_lowercase ) snake_case_ :Dict = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/o/kernel""" ): snake_case_ :str = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player snake_case_ :str = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Any = torch.tensor(_lowercase ) elif key_name.startswith("""model/an""" ): snake_case_ :Optional[int] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ :Any = """model.blocks.%d.self_attn.norm.bias""" % player snake_case_ :Optional[int] = vnp.copy() # same because it is one dimensional snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.self_attn.norm.weight""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): snake_case_ :List[Any] = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] snake_case_ :Optional[Any] = """model.%s.weight""" % nlayer snake_case_ :Any = vnp.copy() # same in embedded snake_case_ :List[Any] = torch.tensor(_lowercase ) if key_name.startswith("""model/wte""" ): snake_case_ :Tuple = """lm_head.weight""" snake_case_ :List[str] = vnp.copy() # same in embedded snake_case_ :List[Any] = torch.tensor(_lowercase ) elif key_name.startswith("""model/wob""" ): snake_case_ :str = """final_logits_bias""" snake_case_ :Any = vnp.copy() # same in embedded snake_case_ :List[Any] = state.reshape((1, -1) ) snake_case_ :Union[str, Any] = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": snake_case_ :str = """model.last_project.weight""" snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :int = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": snake_case_ :Optional[int] = """model.last_project.bias""" snake_case_ :Tuple = vnp.copy() # same because it is one dimensional snake_case_ :Any = torch.tensor(_lowercase ) torch.save(_lowercase, args.output ) if __name__ == "__main__": __a = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __a = parser.parse_args() convert_tf_gptsan_to_pt(args)
66
0
from math import log from scipy.constants import Boltzmann, physical_constants __lowerCAmelCase = 3_00 # TEMPERATURE (unit = K) def snake_case_ ( snake_case , snake_case , snake_case , ) -> Tuple: if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
364
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __lowercase : Tuple = ['input_values', 'attention_mask'] def __init__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 16_000 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = False , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 16 , lowerCAmelCase__ = 64 , lowerCAmelCase__ = "hann_window" , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 7_600 , lowerCAmelCase__ = 1E-10 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Dict = do_normalize lowercase__: Optional[Any] = return_attention_mask lowercase__: str = num_mel_bins lowercase__: Dict = hop_length lowercase__: Dict = win_length lowercase__: Optional[int] = win_function lowercase__: Any = frame_signal_scale lowercase__: Tuple = fmin lowercase__: Tuple = fmax lowercase__: Dict = mel_floor lowercase__: int = reduction_factor lowercase__: List[Any] = win_length * sampling_rate // 1_000 lowercase__: Optional[Any] = hop_length * sampling_rate // 1_000 lowercase__: Optional[int] = optimal_fft_length(self.sample_size ) lowercase__: Optional[Any] = (self.n_fft // 2) + 1 lowercase__: str = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase__ ) lowercase__: Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , lowerCAmelCase__ , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , lowerCAmelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowercase__: List[str] = np.array(lowerCAmelCase__ , np.intaa ) lowercase__: Tuple = [] for vector, length in zip(lowerCAmelCase__ , attention_mask.sum(-1 ) ): lowercase__: int = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase__: Tuple = padding_value normed_input_values.append(lowerCAmelCase__ ) else: lowercase__: Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , ) -> np.ndarray: '''simple docstring''' lowercase__: List[str] = spectrogram( lowerCAmelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: lowercase__: Dict = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) else: lowercase__: str = None if audio_target is not None: lowercase__: List[str] = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) if inputs is None: return inputs_target else: lowercase__: int = inputs_target['input_values'] lowercase__: List[str] = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: lowercase__: Optional[int] = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' lowercase__: int = isinstance(lowerCAmelCase__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowercase__: Tuple = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__: Dict = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): lowercase__: Optional[Any] = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowercase__: Optional[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__: Optional[int] = [speech] # needed to make pad() work on spectrogram inputs lowercase__: str = self.feature_size # convert into correct format for padding if is_target: lowercase__: int = [self._extract_mel_features(lowerCAmelCase__ ) for waveform in speech] lowercase__: Dict = BatchFeature({'input_values': features} ) lowercase__: Union[str, Any] = self.num_mel_bins else: lowercase__: Union[str, Any] = BatchFeature({'input_values': speech} ) lowercase__: Dict = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: List[str] = feature_size_hack # convert input values to correct format lowercase__: Union[str, Any] = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): lowercase__: List[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowerCAmelCase__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowercase__: Dict = [array.astype(np.floataa ) for array in input_values] elif isinstance(lowerCAmelCase__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowercase__: Tuple = input_values.astype(np.floataa ) # convert attention_mask to correct format lowercase__: Tuple = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowercase__: str = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowercase__: Tuple = ( attention_mask if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__: str = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=lowerCAmelCase__ , padding_value=self.padding_value ) if return_tensors is not None: lowercase__: Union[str, Any] = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Dict[str, Any]: '''simple docstring''' lowercase__: int = super().to_dict() # Don't serialize these as they are derived from the other properties. lowercase__: str = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
288
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Tuple = len(A_ ) while cur > 1: # Find the maximum number in arr lowerCAmelCase__ : Union[str, Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase__ : List[str] = arr[mi::-1] + arr[mi + 1 : len(A_ )] # Reverse whole list lowerCAmelCase__ : Dict = arr[cur - 1 :: -1] + arr[cur : len(A_ )] cur -= 1 return arr if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase : Dict = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
106
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowercase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Optional[Any] ,lowercase_ : int ,lowercase_ : str ): lowerCAmelCase__ : Optional[int] = hf_hub_download( repo_id='''nateraw/video-demo''' ,filename='''archery.mp4''' ,repo_type='''dataset''' ) lowerCAmelCase__ : Tuple = VideoClassificationPipeline(model=lowercase_ ,image_processor=lowercase_ ,top_k=2 ) lowerCAmelCase__ : Optional[int] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def __lowerCAmelCase ( self : str ,lowercase_ : int ,lowercase_ : Dict ): for example in examples: lowerCAmelCase__ : Dict = video_classifier(lowercase_ ) self.assertEqual( lowercase_ ,[ {'''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ )}, {'''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ )}, ] ,) @require_torch def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : Optional[int] = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' lowerCAmelCase__ : List[str] = VideoMAEFeatureExtractor( size={'''shortest_edge''': 1_0} ,crop_size={'''height''': 1_0, '''width''': 1_0} ) lowerCAmelCase__ : Optional[Any] = pipeline( '''video-classification''' ,model=lowercase_ ,feature_extractor=lowercase_ ,frame_sampling_rate=4 ) lowerCAmelCase__ : Optional[int] = hf_hub_download(repo_id='''nateraw/video-demo''' ,filename='''archery.mp4''' ,repo_type='''dataset''' ) lowerCAmelCase__ : Optional[int] = video_classifier(lowercase_ ,top_k=2 ) self.assertEqual( nested_simplify(lowercase_ ,decimals=4 ) ,[{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] ,) lowerCAmelCase__ : Dict = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(lowercase_ ,decimals=4 ) ,[ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] ,) @require_tf def __lowerCAmelCase ( self : int ): pass
106
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase ( unittest.TestCase ): A__ : Dict = MODEL_FOR_MASKED_LM_MAPPING A__ : List[Any] = TF_MODEL_FOR_MASKED_LM_MAPPING def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _SCREAMING_SNAKE_CASE (self : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) snake_case : Dict = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-05, "token": 3_80_15, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-05, "token": 2_55_06, "token_str": " accuser"}, ] , ) snake_case : Optional[int] = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-05, "token": 3_80_15, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-05, "token": 2_55_06, "token_str": " accuser", }, ] , ) snake_case : List[Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-05, "token": 1_36_06, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-05, "token": 34_99, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-05, "token": 29_41, "token_str": " Te"}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE (self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) snake_case : Union[str, Any] = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-05, "token": 3_56_76, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-05, "token": 1_64_16, "token_str": "ELS"}, ] , ) snake_case : int = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-05, "token": 3_56_76, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 1_64_16, "token_str": "ELS"}, ] , ) snake_case : Any = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 34_99, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-05, "token": 29_41, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-05, "token": 1_36_06, "token_str": " Clara"}, ] , ) snake_case : Tuple = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ [ { "score": 2.2e-05, "token": 3_56_76, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-05, "token": 1_64_16, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-05, "token": 3_56_76, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-05, "token": 1_64_16, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' snake_case : Any = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() snake_case : List[str] = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(snake_case__ , snake_case__ ) @slow @require_torch def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Tuple: '''simple docstring''' snake_case : Any = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(snake_case__ ) @slow @require_tf def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(snake_case__ ) , [ {"sequence": "My name is John", "score": 0.008, "token": 6_10, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 15_73, "token_str": " Chris"}, ] , ) snake_case : Any = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(snake_case__ ) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 22_01, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 1_27_90, "token_str": " Lyon", }, ] , ) snake_case : List[Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ ) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 34_99, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 1_36_06, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 29_41, "token_str": " Te"}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Any: '''simple docstring''' snake_case : str = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) snake_case : str = None snake_case : Optional[int] = None self.run_pipeline_test(snake_case__ , [] ) @require_tf def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) snake_case : Tuple = None snake_case : Tuple = None self.run_pipeline_test(snake_case__ , [] ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Optional[Any] ) -> int: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) snake_case : int = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) snake_case : Dict = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] , snake_case__ : Dict ) -> str: '''simple docstring''' snake_case : List[str] = fill_masker.tokenizer snake_case : Union[str, Any] = fill_masker.model snake_case : List[str] = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) snake_case : Dict = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) snake_case : List[Any] = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( snake_case__ , [ [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ] , ) with self.assertRaises(snake_case__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(snake_case__ ): fill_masker("This is" ) self.run_test_top_k(snake_case__ , snake_case__ ) self.run_test_targets(snake_case__ , snake_case__ ) self.run_test_top_k_targets(snake_case__ , snake_case__ ) self.fill_mask_with_duplicate_targets_and_top_k(snake_case__ , snake_case__ ) self.fill_mask_with_multiple_masks(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : int ) -> Tuple: '''simple docstring''' snake_case : Dict = tokenizer.get_vocab() snake_case : List[str] = sorted(vocab.keys() )[:2] # Pipeline argument snake_case : List[str] = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ , targets=snake_case__ ) snake_case : Union[str, Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) snake_case : Optional[int] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , snake_case__ ) snake_case : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(snake_case__ ) ) # Call argument snake_case : List[Any] = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) snake_case : List[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case__ ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) snake_case : List[str] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , snake_case__ ) snake_case : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(snake_case__ ) ) # Score equivalence snake_case : Dict = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case__ ) snake_case : int = [top_mask["token_str"] for top_mask in outputs] snake_case : List[str] = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case__ ) == set(snake_case__ ): snake_case : Any = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case__ ) snake_case : Optional[int] = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) # Raises with invalid with self.assertRaises(snake_case__ ): snake_case : Optional[int] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(snake_case__ ): snake_case : Dict = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[""] ) with self.assertRaises(snake_case__ ): snake_case : int = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets="" ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> int: '''simple docstring''' snake_case : Any = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ , top_k=2 ) snake_case : List[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) snake_case : str = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) snake_case : List[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Union[str, Any] , snake_case__ : int ) -> int: '''simple docstring''' snake_case : int = tokenizer.get_vocab() snake_case : int = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) # top_k=2, ntargets=3 snake_case : str = sorted(vocab.keys() )[:3] snake_case : int = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=snake_case__ ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case : Any = [el["token_str"] for el in sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case__ ).issubset(snake_case__ ): snake_case : List[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=snake_case__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ) -> int: '''simple docstring''' snake_case : str = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) snake_case : int = tokenizer.get_vocab() # String duplicates + id duplicates snake_case : Optional[int] = sorted(vocab.keys() )[:3] snake_case : str = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case : List[Any] = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=snake_case__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(snake_case__ ) , 3 ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple , snake_case__ : str ) -> List[Any]: '''simple docstring''' snake_case : Dict = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) snake_case : Dict = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( snake_case__ , [ [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ] , )
10
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class UpperCamelCase__ : """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any]=14 , lowerCamelCase_ : Tuple=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Dict=True , lowerCamelCase_ : int=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[int]=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : Tuple=37 , lowerCamelCase_ : Dict="gelu" , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : Optional[Any]=5_12 , lowerCamelCase_ : Optional[int]=16 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Tuple=0.02 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : str=4 , lowerCamelCase_ : Dict=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : str = use_token_type_ids SCREAMING_SNAKE_CASE : List[Any] = use_input_mask SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = use_mc_token_ids SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : int = num_choices SCREAMING_SNAKE_CASE : Union[str, Any] = scope SCREAMING_SNAKE_CASE : Optional[int] = self.vocab_size - 1 def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Any = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = self.get_config() SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase_ ( self : int ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , *lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = CTRLModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ ) model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , *lowerCamelCase_ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = CTRLLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : str , *lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = CTRLForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = (CTRLLMHeadModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = CTRLModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=lowerCamelCase_ , n_embd=37 ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase_ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[str] = CTRLModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : int ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[1_18_59, 0, 16_11, 8]] , dtype=torch.long , device=lowerCamelCase_ ) # Legal the president is SCREAMING_SNAKE_CASE : Tuple = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE : List[Any] = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCamelCase_ )
323
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCamelCase_ ) return config def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0] SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1] SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = 1 scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = scheduler.timesteps SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCamelCase_ ): # 1. scale model input SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Dict = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0] with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
323
1
"""simple docstring""" def A ( snake_case :bytes ) -> str: return "".join([hex(snake_case )[2:].zfill(2 ).upper() for byte in list(snake_case )] ) def A ( snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(snake_case ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
263
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } UpperCamelCase : List[Any] = { "Salesforce/codegen-350M-mono": 2_0_4_8, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = CodeGenTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) if kwargs.pop('add_bos_token' , __UpperCAmelCase ): __UpperCamelCase = kwargs.pop('name_or_path' , '' ) raise ValueError( 'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.' 'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n' F'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' F'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' 'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.' ' so that the fast tokenizer works correctly.' ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = super().decode( token_ids=__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , **__UpperCAmelCase , ) if truncate_before_pattern is not None and len(__UpperCAmelCase ) > 0: __UpperCamelCase = self.truncate(__UpperCAmelCase , __UpperCAmelCase ) return decoded_text def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' def find_re(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = pattern.search(__UpperCAmelCase , __UpperCAmelCase ) return m.start() if m else -1 __UpperCamelCase = [re.compile(__UpperCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCamelCase = list(re.finditer('^print' , __UpperCAmelCase , re.MULTILINE ) ) if len(__UpperCAmelCase ) > 1: __UpperCamelCase = completion[: prints[1].start()] __UpperCamelCase = list(re.finditer('^def' , __UpperCAmelCase , re.MULTILINE ) ) if len(__UpperCAmelCase ) > 1: __UpperCamelCase = completion[: defs[1].start()] __UpperCamelCase = 0 __UpperCamelCase = [ pos for pos in [find_re(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for terminal in terminals] if pos != -1 ] if len(__UpperCAmelCase ) > 0: return completion[: min(__UpperCAmelCase )] else: return completion
263
1
import random from typing import Any def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list[Any]: for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : List[Any] = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) lowercase : Any = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) lowercase , lowercase : int = data[b], data[a] return data if __name__ == "__main__": lowercase : str = [0, 1, 2, 3, 4, 5, 6, 7] lowercase : List[str] = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ : Optional[Any] = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ['''MobileViTFeatureExtractor'''] lowerCAmelCase__ : Optional[int] = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCAmelCase__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
0
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
334
'''simple docstring''' import os from distutils.util import strtobool def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[Any]: for e in env_keys: A: Dict = int(os.environ.get(__lowercase , -1 ) ) if val >= 0: return val return default def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False ) -> List[str]: A: str = os.environ.get(__lowercase , str(__lowercase ) ) return strtobool(__lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def SCREAMING_SNAKE_CASE( __lowercase , __lowercase="no" ) -> str: A: Optional[int] = os.environ.get(__lowercase , str(__lowercase ) ) return value
334
1
'''simple docstring''' from __future__ import annotations a_ : Tuple = list[list[int]] # assigning initial values to the grid a_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a_ ( __snake_case : Matrix , __snake_case : int , __snake_case : int , __snake_case : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a_ ( __snake_case : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a_ ( __snake_case : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__snake_case ): lowerCamelCase_, lowerCamelCase_ =location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__snake_case , __snake_case , __snake_case , __snake_case ): lowerCamelCase_ =digit if sudoku(__snake_case ) is not None: return grid lowerCamelCase_ =0 return None def a_ ( __snake_case : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__snake_case , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") a_ : Tuple = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
75
"""simple docstring""" from __future__ import annotations def lowercase_ ( __UpperCAmelCase ) -> int: if not nums: return 0 lowerCAmelCase__ : List[Any] = nums[0] lowerCAmelCase__ : List[str] = 0 for num in nums[1:]: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = ( max_excluding + num, max(__UpperCAmelCase , __UpperCAmelCase ), ) return max(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
242
0
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class a_ ( unittest.TestCase ): def lowercase__ ( self : int ): """simple docstring""" lowercase_ :Optional[int] = [10, 20, 30, 40, 50, 60] lowercase_ :Dict = [2, 4, 6, 8, 10, 12] lowercase_ :Tuple = 100 self.assertEqual(kp.calc_profit(A__ , A__ , A__ ) , 210 ) def lowercase__ ( self : Dict ): """simple docstring""" self.assertRaisesRegex(A__ , "max_weight must greater than zero." ) def lowercase__ ( self : Dict ): """simple docstring""" self.assertRaisesRegex(A__ , "Weight can not be negative." ) def lowercase__ ( self : int ): """simple docstring""" self.assertRaisesRegex(A__ , "Profit can not be negative." ) def lowercase__ ( self : Optional[int] ): """simple docstring""" self.assertRaisesRegex(A__ , "max_weight must greater than zero." ) def lowercase__ ( self : Optional[int] ): """simple docstring""" self.assertRaisesRegex( A__ , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase : int ={ '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str =['''CLIPFeatureExtractor'''] lowerCAmelCase : Optional[int] =['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =[ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =[ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =[ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
147
0
'''simple docstring''' def _lowercase ( __A ): '''simple docstring''' if num <= 0: raise ValueError("""Input must be a positive integer""" ) __UpperCamelCase = [True] * (num + 1) __UpperCamelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,__A ): __UpperCamelCase = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() a__ : Dict = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
349
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( __A ,__A=False ): '''simple docstring''' try: __UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCamelCase = default else: # KEY is set, convert it to True or False. try: __UpperCamelCase = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True) a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio a__ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam a__ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility a__ : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows a__ : Tuple = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowercase ( __A ): '''simple docstring''' try: import faiss # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires faiss""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import regex # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires regex""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TORCH_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TF_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.JAX_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires JAX""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.PIL_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("""test requires spacy""" )(__A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A ) else: return test_case return _require_spacy_model def _lowercase ( __A ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __UpperCamelCase = unittest.skip("""test is slow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __UpperCamelCase = unittest.skip("""test is local""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCamelCase = unittest.skip("""test is packaged""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __UpperCamelCase = unittest.skip("""test requires remote""" )(__A ) return test_case def _lowercase ( *__A ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("""test""" ): for decorator in decorators: __UpperCamelCase = decorator(__A ) setattr(cls ,__A ,__A ) return cls return decorate class UpperCAmelCase__ ( UpperCAmelCase_): pass class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 @contextmanager def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ): '''simple docstring''' __UpperCamelCase = requests.Session().request def timeout_request(__A ,__A ,__A ,**__A ): # Change the url to an invalid url so that the connection hangs __UpperCamelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __UpperCamelCase = timeout try: return online_request(__A ,__A ,**__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCamelCase = url __UpperCamelCase = e.args[0] __UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),) __UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__A ,__A ,**__A ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,__A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,__A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _lowercase ( *__A ,**__A ): '''simple docstring''' __UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( __A ,__A ): '''simple docstring''' return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist() def _lowercase ( __A ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A ,*__A ,**__A ): try: return func(*__A ,**__A ) except HTTPError as err: if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper ,__A ) class UpperCAmelCase__ : def __init__( self , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = returncode __UpperCamelCase = stdout __UpperCamelCase = stderr async def _lowercase ( __A ,__A ): '''simple docstring''' while True: __UpperCamelCase = await stream.readline() if line: callback(__A ) else: break async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ): '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(__A ) ) __UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCamelCase = [] __UpperCamelCase = [] def tee(__A ,__A ,__A ,__A="" ): __UpperCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A ,__A ,file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=__A ,) return _RunOutput(await p.wait() ,__A ,__A ) def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ): '''simple docstring''' __UpperCamelCase = asyncio.get_event_loop() __UpperCamelCase = loop.run_until_complete( _stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) ) __UpperCamelCase = """ """.join(__A ) if result.returncode > 0: __UpperCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def _lowercase ( ): '''simple docstring''' __UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) __UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M ) return int(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 29_500 __UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
349
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Any: lowercase__ : List[Any] = tempfile.mkdtemp() lowercase__ : Optional[Any] = SamImageProcessor() lowercase__ : Dict = SamProcessor(lowercase_ ) processor.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Dict , **lowercase_ : List[Any] ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def __UpperCamelCase ( self : Any ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Tuple ) -> Dict: lowercase__ : str = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowercase__ : List[str] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : int ) -> Optional[Any]: lowercase__ : Union[str, Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : List[str] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowercase__ : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : Optional[int] = self.get_image_processor() lowercase__ : Any = SamProcessor(image_processor=lowercase_ ) lowercase__ : int = self.prepare_image_inputs() lowercase__ : Tuple = image_processor(lowercase_ , return_tensors="np" ) lowercase__ : List[str] = processor(images=lowercase_ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: lowercase__ : Union[str, Any] = self.get_image_processor() lowercase__ : Optional[int] = SamProcessor(image_processor=lowercase_ ) lowercase__ : Union[str, Any] = [torch.ones((1, 3, 5, 5) )] lowercase__ : Optional[int] = [[17_64, 26_46]] lowercase__ : str = [[6_83, 10_24]] lowercase__ : List[Any] = processor.post_process_masks(lowercase_ , lowercase_ , lowercase_ ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) lowercase__ : Optional[Any] = processor.post_process_masks( lowercase_ , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np lowercase__ : Any = [np.ones((1, 3, 5, 5) )] lowercase__ : Optional[int] = processor.post_process_masks(lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) lowercase__ : Optional[Any] = [[1, 0], [0, 1]] with self.assertRaises(lowercase_ ): lowercase__ : Union[str, Any] = processor.post_process_masks(lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) ) @require_vision @require_tf class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ) -> Dict: lowercase__ : int = tempfile.mkdtemp() lowercase__ : Dict = SamImageProcessor() lowercase__ : Optional[int] = SamProcessor(lowercase_ ) processor.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] , **lowercase_ : Optional[Any] ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def __UpperCamelCase ( self : str ) -> Dict: shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : int ) -> Any: lowercase__ : int = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowercase__ : int = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Optional[Any] ) -> Dict: lowercase__ : Optional[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Optional[int] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowercase__ : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def __UpperCamelCase ( self : Any ) -> List[Any]: lowercase__ : List[str] = self.get_image_processor() lowercase__ : Tuple = SamProcessor(image_processor=lowercase_ ) lowercase__ : int = self.prepare_image_inputs() lowercase__ : Optional[int] = image_processor(lowercase_ , return_tensors="np" ) lowercase__ : str = processor(images=lowercase_ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def __UpperCamelCase ( self : int ) -> Dict: lowercase__ : List[str] = self.get_image_processor() lowercase__ : str = SamProcessor(image_processor=lowercase_ ) lowercase__ : Dict = [tf.ones((1, 3, 5, 5) )] lowercase__ : Optional[Any] = [[17_64, 26_46]] lowercase__ : Any = [[6_83, 10_24]] lowercase__ : List[Any] = processor.post_process_masks(lowercase_ , lowercase_ , lowercase_ , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) lowercase__ : Any = processor.post_process_masks( lowercase_ , tf.convert_to_tensor(lowercase_ ) , tf.convert_to_tensor(lowercase_ ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np lowercase__ : Tuple = [np.ones((1, 3, 5, 5) )] lowercase__ : Union[str, Any] = processor.post_process_masks( lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) lowercase__ : Tuple = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): lowercase__ : str = processor.post_process_masks( lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) , return_tensors="tf" ) @require_vision @require_torchvision class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: lowercase__ : str = tempfile.mkdtemp() lowercase__ : Tuple = SamImageProcessor() lowercase__ : Dict = SamProcessor(lowercase_ ) processor.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] , **lowercase_ : Any ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def __UpperCamelCase ( self : Any ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: lowercase__ : Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowercase__ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase__ : int = self.get_image_processor() lowercase__ : Optional[int] = SamProcessor(image_processor=lowercase_ ) lowercase__ : int = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) lowercase__ : List[str] = [tf.convert_to_tensor(lowercase_ )] lowercase__ : Dict = [torch.tensor(lowercase_ )] lowercase__ : int = [[17_64, 26_46]] lowercase__ : Dict = [[6_83, 10_24]] lowercase__ : str = processor.post_process_masks( lowercase_ , lowercase_ , lowercase_ , return_tensors="tf" ) lowercase__ : Tuple = processor.post_process_masks( lowercase_ , lowercase_ , lowercase_ , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: lowercase__ : List[str] = self.get_image_processor() lowercase__ : Any = SamProcessor(image_processor=lowercase_ ) lowercase__ : Optional[int] = self.prepare_image_inputs() lowercase__ : Any = image_processor(lowercase_ , return_tensors="pt" )["pixel_values"].numpy() lowercase__ : str = processor(images=lowercase_ , return_tensors="pt" )["pixel_values"].numpy() lowercase__ : Optional[int] = image_processor(lowercase_ , return_tensors="tf" )["pixel_values"].numpy() lowercase__ : Any = processor(images=lowercase_ , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertTrue(np.allclose(lowercase_ , lowercase_ ) )
333
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
1
"""simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], UpperCAmelCase__ : str = "", UpperCAmelCase__ : bool = False ): # Mapping from the first character of the prefix of the node __lowercase = {} # A node will be a leaf if the tree contains its word __lowercase = is_leaf __lowercase = prefix def _lowercase ( self : Tuple, UpperCAmelCase__ : str ): __lowercase = 0 for q, w in zip(self.prefix, UpperCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _lowercase ( self : Any, UpperCAmelCase__ : list[str] ): for word in words: self.insert(UpperCAmelCase__ ) def _lowercase ( self : int, UpperCAmelCase__ : str ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: __lowercase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __lowercase = RadixNode(prefix=UpperCAmelCase__, is_leaf=UpperCAmelCase__ ) else: __lowercase = self.nodes[word[0]] __lowercase ,__lowercase ,__lowercase = incoming_node.match( UpperCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __lowercase = remaining_prefix __lowercase = self.nodes[matching_string[0]] __lowercase = RadixNode(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = aux_node if remaining_word == "": __lowercase = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase__ ) def _lowercase ( self : Any, UpperCAmelCase__ : str ): __lowercase = self.nodes.get(word[0], UpperCAmelCase__ ) if not incoming_node: return False else: __lowercase ,__lowercase ,__lowercase = incoming_node.match( UpperCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : str ): __lowercase = self.nodes.get(word[0], UpperCAmelCase__ ) if not incoming_node: return False else: __lowercase ,__lowercase ,__lowercase = incoming_node.match( UpperCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __lowercase = list(self.nodes.values() )[0] __lowercase = merging_node.is_leaf self.prefix += merging_node.prefix __lowercase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __lowercase = False # If there is 1 edge, we merge it with its child else: __lowercase = list(incoming_node.nodes.values() )[0] __lowercase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __lowercase = merging_node.nodes return True def _lowercase ( self : Tuple, UpperCAmelCase__ : int = 0 ): if self.prefix != "": print("-" * height, self.prefix, " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _A ( ) -> bool: '''simple docstring''' __lowercase = "banana bananas bandana band apple all beast".split() __lowercase = RadixNode() root.insert_many(UpperCamelCase_) assert all(root.find(UpperCamelCase_) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def _A ( ) -> None: '''simple docstring''' assert test_trie() def _A ( ) -> None: '''simple docstring''' __lowercase = RadixNode() __lowercase = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(UpperCamelCase_) print("Words:", UpperCamelCase_) print("Tree:") root.print_tree() if __name__ == "__main__": main()
17
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '''T5Config''' def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> jnp.ndarray: '''simple docstring''' __lowercase= jnp.zeros_like(a__ ) __lowercase= shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __lowercase= shifted_input_ids.at[:, 0].set(a__ ) __lowercase= jnp.where(shifted_input_ids == -1_0_0 , a__ , a__ ) return shifted_input_ids class A ( _lowercase ): UpperCamelCase_ : int ='''mt5''' UpperCamelCase_ : Optional[Any] =MTaConfig class A ( _lowercase ): UpperCamelCase_ : List[str] ='''mt5''' UpperCamelCase_ : Any =MTaConfig class A ( _lowercase ): UpperCamelCase_ : str ='''mt5''' UpperCamelCase_ : Tuple =MTaConfig
360
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): UpperCamelCase_ : Dict =1 @register_to_config def __init__(self , lowerCAmelCase = 2_0_0_0 , lowerCAmelCase = 0.15 , lowerCAmelCase = 0.01 , lowerCAmelCase = 13_48.0 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 1 , ): # standard deviation of the initial noise distribution __lowercase= sigma_max # setable values __lowercase= None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase= torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sigma_min if sigma_min is not None else self.config.sigma_min __lowercase= sigma_max if sigma_max is not None else self.config.sigma_max __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase ) __lowercase= sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase= torch.exp(torch.linspace(math.log(lowerCAmelCase ) , math.log(lowerCAmelCase ) , lowerCAmelCase ) ) __lowercase= torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __lowercase= timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase= (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase= timesteps.to(self.discrete_sigmas.device ) __lowercase= self.discrete_sigmas[timesteps].to(sample.device ) __lowercase= self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase ).to(sample.device ) __lowercase= torch.zeros_like(lowerCAmelCase ) __lowercase= (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase= diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase= diffusion.unsqueeze(-1 ) __lowercase= drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase= randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype ) __lowercase= sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase= prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase= randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase= torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase= step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase= step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase= step_size.unsqueeze(-1 ) __lowercase= sample + step_size * model_output __lowercase= prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= timesteps.to(original_samples.device ) __lowercase= self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase= ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) __lowercase= noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
304
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) _snake_case = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _snake_case = model(lowerCAmelCase_ )['last_hidden_state'] _snake_case = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase_ ) # compare the actual values for a slice. _snake_case = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
42
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCamelCase : Any =logging.get_logger(__name__) class __a ( A__ ): _lowerCAmelCase : List[str] = ['''pixel_values'''] def __init__( self : List[str] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 2_55 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : bool = True , **SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = size if size is not None else {"shortest_edge": 2_24} UpperCamelCase__ : Any = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} UpperCamelCase__ : int = get_size_dict(SCREAMING_SNAKE_CASE , param_name="crop_size" ) UpperCamelCase__ : Dict = do_resize UpperCamelCase__ : List[str] = size UpperCamelCase__ : int = resample UpperCamelCase__ : Optional[int] = do_rescale UpperCamelCase__ : List[Any] = rescale_factor UpperCamelCase__ : Union[str, Any] = do_center_crop UpperCamelCase__ : int = crop_size UpperCamelCase__ : Optional[int] = do_flip_channel_order def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Dict[str, int] , SCREAMING_SNAKE_CASE : PILImageResampling = PIL.Image.BILINEAR , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCamelCase__ : Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size["shortest_edge"] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Dict[str, int] , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' UpperCamelCase__ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Union[int, float] , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : ImageInput , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : PILImageResampling = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : float = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' UpperCamelCase__ : List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : List[str] = resample if resample is not None else self.resample UpperCamelCase__ : Any = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ : Any = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase__ : Optional[int] = size if size is not None else self.size UpperCamelCase__ : List[str] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE , param_name="crop_size" ) UpperCamelCase__ : int = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. UpperCamelCase__ : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase__ : Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCamelCase__ : Any = [self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase__ : Any = [self.flip_channel_order(image=SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Tuple] = None ): '''simple docstring''' UpperCamelCase__ : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[Any] = target_sizes.numpy() UpperCamelCase__ : Any = [] for idx in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : List[str] = logits.argmax(dim=1 ) UpperCamelCase__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
189
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCamelCase : Union[str, Any] = get_logger(__name__) class A__ : def __init__( self : Any , _a : Optional[str] = None ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =( os.path.join(_a , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _SCREAMING_SNAKE_CASE =Extractor def A ( self : List[Any] , _a : str ) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _SCREAMING_SNAKE_CASE =os.path.abspath(_a ) return os.path.join(self.extract_dir , hash_url_to_filename(_a ) ) def A ( self : str , _a : str , _a : bool ) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(_a ) and not (os.path.isdir(_a ) and os.listdir(_a )) ) def A ( self : List[str] , _a : str , _a : bool = False ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.extractor.infer_extractor_format(_a ) if not extractor_format: return input_path _SCREAMING_SNAKE_CASE =self._get_output_path(_a ) if self._do_extract(_a , _a ): self.extractor.extract(_a , _a , _a ) return output_path class A__ ( A__ ): @classmethod @abstractmethod def A ( cls : Any , _a : Union[Path, str] , **_a : Tuple ) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def A ( _a : Union[Path, str] , _a : Union[Path, str] ) -> None: '''simple docstring''' ... class A__ ( A__ , A__ ): A__ = [] @staticmethod def A ( _a : Union[Path, str] , _a : int ) -> Dict: '''simple docstring''' with open(_a , 'rb' ) as f: return f.read(_a ) @classmethod def A ( cls : Any , _a : Union[Path, str] , _a : bytes = b"" ) -> bool: '''simple docstring''' if not magic_number: _SCREAMING_SNAKE_CASE =max(len(_a ) for cls_magic_number in cls.magic_numbers ) try: _SCREAMING_SNAKE_CASE =cls.read_magic_number(_a , _a ) except OSError: return False return any(magic_number.startswith(_a ) for cls_magic_number in cls.magic_numbers ) class A__ ( A__ ): @classmethod def A ( cls : Optional[Any] , _a : Union[Path, str] , **_a : int ) -> bool: '''simple docstring''' return tarfile.is_tarfile(_a ) @staticmethod def A ( _a : str , _a : int ) -> Any: '''simple docstring''' def resolved(_a : str ) -> str: return os.path.realpath(os.path.abspath(_a ) ) def badpath(_a : str , _a : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_a , _a ) ).startswith(_a ) def badlink(_a : Tuple , _a : str ) -> bool: # Links are interpreted relative to the directory containing the link _SCREAMING_SNAKE_CASE =resolved(os.path.join(_a , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_a ) _SCREAMING_SNAKE_CASE =resolved(_a ) for finfo in members: if badpath(finfo.name , _a ): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(_a , _a ): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(_a , _a ): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def A ( _a : Union[Path, str] , _a : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =tarfile.open(_a ) tar_file.extractall(_a , members=TarExtractor.safemembers(_a , _a ) ) tar_file.close() class A__ ( A__ ): A__ = [b'\x1F\x8B'] @staticmethod def A ( _a : Union[Path, str] , _a : Union[Path, str] ) -> None: '''simple docstring''' with gzip.open(_a , 'rb' ) as gzip_file: with open(_a , 'wb' ) as extracted_file: shutil.copyfileobj(_a , _a ) class A__ ( A__ ): A__ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def A ( cls : str , _a : Union[Path, str] , _a : bytes = b"" ) -> bool: '''simple docstring''' if super().is_extractable(_a , magic_number=_a ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_a , 'rb' ) as fp: _SCREAMING_SNAKE_CASE =_EndRecData(_a ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _SCREAMING_SNAKE_CASE =fp.read(_a ) # CD is where we expect it to be if len(_a ) == sizeCentralDir: _SCREAMING_SNAKE_CASE =struct.unpack(_a , _a ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def A ( _a : Union[Path, str] , _a : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(_a , exist_ok=_a ) with zipfile.ZipFile(_a , 'r' ) as zip_file: zip_file.extractall(_a ) zip_file.close() class A__ ( A__ ): A__ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def A ( _a : Union[Path, str] , _a : Union[Path, str] ) -> None: '''simple docstring''' with lzma.open(_a ) as compressed_file: with open(_a , 'wb' ) as extracted_file: shutil.copyfileobj(_a , _a ) class A__ ( A__ ): A__ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def A ( _a : Union[Path, str] , _a : Union[Path, str] ) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =rarfile.RarFile(_a ) rf.extractall(_a ) rf.close() class A__ ( A__ ): A__ = [b'\x28\xb5\x2F\xFD'] @staticmethod def A ( _a : Union[Path, str] , _a : Union[Path, str] ) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd _SCREAMING_SNAKE_CASE =zstd.ZstdDecompressor() with open(_a , 'rb' ) as ifh, open(_a , 'wb' ) as ofh: dctx.copy_stream(_a , _a ) class A__ ( A__ ): A__ = [b'\x42\x5A\x68'] @staticmethod def A ( _a : Union[Path, str] , _a : Union[Path, str] ) -> None: '''simple docstring''' with bza.open(_a , 'rb' ) as compressed_file: with open(_a , 'wb' ) as extracted_file: shutil.copyfileobj(_a , _a ) class A__ ( A__ ): A__ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def A ( _a : Union[Path, str] , _a : Union[Path, str] ) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(_a , exist_ok=_a ) with pyazr.SevenZipFile(_a , 'r' ) as archive: archive.extractall(_a ) class A__ ( A__ ): A__ = [b'\x04\x22\x4D\x18'] @staticmethod def A ( _a : Union[Path, str] , _a : Union[Path, str] ) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(_a , 'rb' ) as compressed_file: with open(_a , 'wb' ) as extracted_file: shutil.copyfileobj(_a , _a ) class A__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) A__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def A ( cls : List[Any] ) -> Dict: '''simple docstring''' return max( len(_a ) for extractor in cls.extractors.values() if issubclass(_a , _a ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def A ( _a : Union[Path, str] , _a : int ) -> Any: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(_a , magic_number_length=_a ) except OSError: return b"" @classmethod def A ( cls : List[Any] , _a : Union[Path, str] , _a : bool = False ) -> bool: '''simple docstring''' warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=_a , ) _SCREAMING_SNAKE_CASE =cls.infer_extractor_format(_a ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def A ( cls : Tuple , _a : Union[Path, str] ) -> str: # <Added version="2.4.0"/> '''simple docstring''' _SCREAMING_SNAKE_CASE =cls._get_magic_number_max_length() _SCREAMING_SNAKE_CASE =cls._read_magic_number(_a , _a ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_a , magic_number=_a ): return extractor_format @classmethod def A ( cls : int , _a : Union[Path, str] , _a : Union[Path, str] , _a : Optional[str] = None , _a : Optional[BaseExtractor] = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(_a ) , exist_ok=_a ) # Prevent parallel extractions _SCREAMING_SNAKE_CASE =str(Path(_a ).with_suffix('.lock' ) ) with FileLock(_a ): shutil.rmtree(_a , ignore_errors=_a ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_a , _a ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=_a , ) _SCREAMING_SNAKE_CASE =extractor if extractor != 'deprecated' else extractor_format else: _SCREAMING_SNAKE_CASE =cls.extractors[extractor_format] return extractor.extract(_a , _a ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=_a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_a ): return extractor.extract(_a , _a )
114
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE =int(number**0.5 ) return number == sq * sq def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> tuple[int, int]: """simple docstring""" _SCREAMING_SNAKE_CASE =x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _SCREAMING_SNAKE_CASE =x_den * y_den * z_den _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) top //= hcf bottom //= hcf return top, bottom def _lowerCAmelCase ( _UpperCamelCase : int = 35 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =set() _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =Fraction(0 ) _SCREAMING_SNAKE_CASE =42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _SCREAMING_SNAKE_CASE =x_num * y_den + x_den * y_num _SCREAMING_SNAKE_CASE =x_den * y_den _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=2 _SCREAMING_SNAKE_CASE =( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _SCREAMING_SNAKE_CASE =x_den * x_den * y_den * y_den if is_sq(_UpperCamelCase ) and is_sq(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=-1 _SCREAMING_SNAKE_CASE =x_num * y_num _SCREAMING_SNAKE_CASE =x_den * y_num + x_num * y_den _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=2 _SCREAMING_SNAKE_CASE =x_num * x_num * y_num * y_num _SCREAMING_SNAKE_CASE =( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCamelCase ) and is_sq(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =int(sqrt(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =gcd(_UpperCamelCase , _UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE =add_three( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) unique_s.add(_UpperCamelCase ) for num, den in unique_s: total += Fraction(_UpperCamelCase , _UpperCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
114
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = '''trajectory_transformer''' __UpperCamelCase : str = ['''past_key_values'''] __UpperCamelCase : Optional[Any] = { '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=2_49 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=17 , SCREAMING_SNAKE_CASE__=25 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=1_28 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0006 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5_02_56 , SCREAMING_SNAKE_CASE__=5_02_56 , **SCREAMING_SNAKE_CASE__ , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = action_weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = reward_weight SCREAMING_SNAKE_CASE__ : List[Any] = value_weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = block_size SCREAMING_SNAKE_CASE__ : Tuple = action_dim SCREAMING_SNAKE_CASE__ : List[str] = observation_dim SCREAMING_SNAKE_CASE__ : Union[str, Any] = transition_dim SCREAMING_SNAKE_CASE__ : List[str] = learning_rate SCREAMING_SNAKE_CASE__ : Dict = n_layer SCREAMING_SNAKE_CASE__ : Dict = n_head SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_embd SCREAMING_SNAKE_CASE__ : str = embd_pdrop SCREAMING_SNAKE_CASE__ : int = attn_pdrop SCREAMING_SNAKE_CASE__ : Any = resid_pdrop SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : str = layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[int] = kaiming_initializer_range SCREAMING_SNAKE_CASE__ : int = use_cache super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
25
import random def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : List[Any] )->tuple: A__ , A__ , A__ = [], [], [] for element in data: if element < pivot: less.append(UpperCamelCase__ ) elif element > pivot: greater.append(UpperCamelCase__ ) else: equal.append(UpperCamelCase__ ) return less, equal, greater def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : int )->Optional[int]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(UpperCamelCase__ ) or index < 0: return None A__ = items[random.randint(0 , len(UpperCamelCase__ ) - 1 )] A__ = 0 A__ , A__ , A__ = _partition(UpperCamelCase__ , UpperCamelCase__ ) A__ = len(UpperCamelCase__ ) A__ = len(UpperCamelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCamelCase__ , UpperCamelCase__ ) # must be in larger else: return quick_select(UpperCamelCase__ , index - (m + count) )
193
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( _lowerCamelCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = (DPMSolverSinglestepScheduler,) _SCREAMING_SNAKE_CASE = (("""num_inference_steps""", 25),) def SCREAMING_SNAKE_CASE__ ( self : Dict , **SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : Dict = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): lowerCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : str = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = self.dummy_sample lowerCAmelCase_ : Optional[Any] = 0.1 * sample lowerCAmelCase_ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Tuple = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals lowerCAmelCase_ : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals lowerCAmelCase_ : Any = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase_ ,lowerCAmelCase_ : Dict = sample, sample for t in range(SCREAMING_SNAKE_CASE_ , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase_ : Union[str, Any] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample lowerCAmelCase_ : Tuple = new_scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : str ): pass def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Optional[int]=0 , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Dict = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = self.dummy_sample lowerCAmelCase_ : List[str] = 0.1 * sample lowerCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : List[Any] = self.get_scheduler_config() lowerCAmelCase_ : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase_ : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase_ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase_ : Dict = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample lowerCAmelCase_ : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , **SCREAMING_SNAKE_CASE_ : int ): if scheduler is None: lowerCAmelCase_ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ : Any = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = scheduler_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = self.scheduler_classes[0] lowerCAmelCase_ : Tuple = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = scheduler_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = 1_0 lowerCAmelCase_ : int = self.dummy_model() lowerCAmelCase_ : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Tuple = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCAmelCase_ : Any = 5_0 lowerCAmelCase_ : int = self.dummy_model() lowerCAmelCase_ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowerCAmelCase_ : Tuple = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample lowerCAmelCase_ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_mean.item() - 0.25_74 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : str = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCAmelCase_ : int = self.full_loop(scheduler=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 lowerCAmelCase_ : Dict = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : List[str] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , algorithm_type='dpmsolver++' , solver_order=SCREAMING_SNAKE_CASE_ , solver_type=SCREAMING_SNAKE_CASE_ , ) def SCREAMING_SNAKE_CASE__ ( self : Any ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE_ , solver_type=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , algorithm_type=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : List[str] = self.full_loop( solver_order=SCREAMING_SNAKE_CASE_ , solver_type=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , algorithm_type=SCREAMING_SNAKE_CASE_ , ) assert not torch.isnan(SCREAMING_SNAKE_CASE_ ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE_ ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_ ) self.check_over_configs(variance_type='learned_range' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE_ , time_step=0 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Any = self.full_loop() lowerCAmelCase_ : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = self.full_loop(use_karras_sigmas=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_mean.item() - 0.22_48 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Dict = self.full_loop(prediction_type='v_prediction' ) lowerCAmelCase_ : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_mean.item() - 0.14_53 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_mean.item() - 0.06_49 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ : Any = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE_ , dynamic_thresholding_ratio=0 ) lowerCAmelCase_ : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = 1_0 lowerCAmelCase_ : List[str] = self.dummy_model() lowerCAmelCase_ : Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample assert sample.dtype == torch.floataa
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : List[str] = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """open-llama""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple=1_0_0_0_0_0 , SCREAMING_SNAKE_CASE_ : Optional[int]=4_0_9_6 , SCREAMING_SNAKE_CASE_ : List[Any]=1_1_0_0_8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE_ : str="silu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_0_4_8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-6 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : Dict=1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ): lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : List[str] = rms_norm_eps lowerCAmelCase_ : List[Any] = use_cache lowerCAmelCase_ : Optional[int] = kwargs.pop( 'use_memorry_efficient_attention' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_dropout_prob lowerCAmelCase_ : Tuple = use_stable_embedding lowerCAmelCase_ : Optional[Any] = shared_input_output_embedding lowerCAmelCase_ : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}" ) lowerCAmelCase_ : int = self.rope_scaling.get('type' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = self.rope_scaling.get('factor' , SCREAMING_SNAKE_CASE_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
289
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _UpperCamelCase: Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : List[str], lowerCAmelCase : AutoencoderKL, lowerCAmelCase : CLIPTextModel, lowerCAmelCase : CLIPTokenizer, lowerCAmelCase : UNetaDConditionModel, lowerCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCAmelCase : StableDiffusionSafetyChecker, lowerCAmelCase : CLIPImageProcessor, ) -> List[Any]: super().__init__() self.register_modules( vae=lowerCAmelCase, text_encoder=lowerCAmelCase, tokenizer=lowerCAmelCase, unet=lowerCAmelCase, scheduler=lowerCAmelCase, safety_checker=lowerCAmelCase, feature_extractor=lowerCAmelCase, ) def lowercase ( self : Any, lowerCAmelCase : Optional[Union[str, int]] = "auto" ) -> Dict: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase ) def lowercase ( self : Optional[Any] ) -> Union[str, Any]: self.enable_attention_slicing(lowerCAmelCase ) @torch.no_grad() def __call__( self : str, lowerCAmelCase : Union[str, List[str]], lowerCAmelCase : int = 512, lowerCAmelCase : int = 512, lowerCAmelCase : int = 50, lowerCAmelCase : float = 7.5, lowerCAmelCase : Optional[Union[str, List[str]]] = None, lowerCAmelCase : Optional[int] = 1, lowerCAmelCase : float = 0.0, lowerCAmelCase : Optional[torch.Generator] = None, lowerCAmelCase : Optional[torch.FloatTensor] = None, lowerCAmelCase : Optional[str] = "pil", lowerCAmelCase : bool = True, lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCAmelCase : int = 1, lowerCAmelCase : Optional[torch.FloatTensor] = None, **lowerCAmelCase : str, ) -> Any: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowercase : List[str] = 1 elif isinstance(lowerCAmelCase, lowerCAmelCase ): lowercase : Union[str, Any] = len(lowerCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase, lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(lowerCAmelCase )}.''' ) # get prompt text embeddings lowercase : List[str] = self.tokenizer( lowerCAmelCase, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt', ) lowercase : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase : Dict = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase , lowercase , lowercase : List[str] = text_embeddings.shape lowercase : Any = text_embeddings.repeat(1, lowerCAmelCase, 1 ) lowercase : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt, lowerCAmelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase : List[str] if negative_prompt is None: lowercase : Optional[int] = [''] elif type(lowerCAmelCase ) is not type(lowerCAmelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase )} !=''' f''' {type(lowerCAmelCase )}.''' ) elif isinstance(lowerCAmelCase, lowerCAmelCase ): lowercase : str = [negative_prompt] elif batch_size != len(lowerCAmelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowercase : int = negative_prompt lowercase : Union[str, Any] = text_input_ids.shape[-1] lowercase : List[str] = self.tokenizer( lowerCAmelCase, padding='max_length', max_length=lowerCAmelCase, truncation=lowerCAmelCase, return_tensors='pt', ) lowercase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase : str = uncond_embeddings.shape[1] lowercase : List[str] = uncond_embeddings.repeat(lowerCAmelCase, lowerCAmelCase, 1 ) lowercase : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCAmelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase : Tuple = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase : Dict = torch.randn( lowerCAmelCase, generator=lowerCAmelCase, device='cpu', dtype=lowerCAmelCase ).to(self.device ) lowercase : Tuple = torch.randn(lowerCAmelCase, generator=lowerCAmelCase, device='cpu', dtype=lowerCAmelCase ).to( self.device ) else: lowercase : Tuple = torch.randn( lowerCAmelCase, generator=lowerCAmelCase, device=self.device, dtype=lowerCAmelCase ) lowercase : int = torch.randn(lowerCAmelCase, generator=lowerCAmelCase, device=self.device, dtype=lowerCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase : Optional[Any] = latents_reference.to(self.device ) lowercase : List[str] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase : int = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase : Tuple = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase : int = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase : str = 0 if dx < 0 else dx lowercase : List[str] = 0 if dy < 0 else dy lowercase : str = max(-dx, 0 ) lowercase : Optional[int] = max(-dy, 0 ) # import pdb # pdb.set_trace() lowercase : Optional[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase : Optional[int] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase : str = {} if accepts_eta: lowercase : List[str] = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase : str = self.scheduler.scale_model_input(lowerCAmelCase, lowerCAmelCase ) # predict the noise residual lowercase : Dict = self.unet(lowerCAmelCase, lowerCAmelCase, encoder_hidden_states=lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase , lowercase : Tuple = noise_pred.chunk(2 ) lowercase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase : Optional[Any] = self.scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowercase : Any = 1 / 0.1_8215 * latents lowercase : Tuple = self.vae.decode(lowerCAmelCase ).sample lowercase : List[Any] = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase : Tuple = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if self.safety_checker is not None: lowercase : str = self.feature_extractor(self.numpy_to_pil(lowerCAmelCase ), return_tensors='pt' ).to( self.device ) lowercase , lowercase : List[Any] = self.safety_checker( images=lowerCAmelCase, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase : Any = None if output_type == "pil": lowercase : Optional[Any] = self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCAmelCase, nsfw_content_detected=lowerCAmelCase )
255
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 42 class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): @register_to_config def __init__( self : Optional[int], lowerCAmelCase : int = 32, lowerCAmelCase : int = 64, lowerCAmelCase : int = 20, lowerCAmelCase : int = 768, lowerCAmelCase : Optional[Any]=77, lowerCAmelCase : Tuple=4, lowerCAmelCase : float = 0.0, lowerCAmelCase : str = "silu", lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[str] = "linear", lowerCAmelCase : Optional[str] = "prd", lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[int] = None, ) -> List[Any]: super().__init__() lowercase : List[Any] = num_attention_heads lowercase : int = attention_head_dim lowercase : List[Any] = num_attention_heads * attention_head_dim lowercase : Tuple = additional_embeddings lowercase : Dict = time_embed_dim or inner_dim lowercase : Optional[Any] = embedding_proj_dim or embedding_dim lowercase : int = clip_embed_dim or embedding_dim lowercase : List[str] = Timesteps(lowerCAmelCase, lowerCAmelCase, 0 ) lowercase : List[str] = TimestepEmbedding(lowerCAmelCase, lowerCAmelCase, out_dim=lowerCAmelCase, act_fn=lowerCAmelCase ) lowercase : List[str] = nn.Linear(lowerCAmelCase, lowerCAmelCase ) if embedding_proj_norm_type is None: lowercase : str = None elif embedding_proj_norm_type == "layer": lowercase : Tuple = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) lowercase : List[str] = nn.Linear(lowerCAmelCase, lowerCAmelCase ) if encoder_hid_proj_type is None: lowercase : Optional[int] = None elif encoder_hid_proj_type == "linear": lowercase : Dict = nn.Linear(lowerCAmelCase, lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) lowercase : Dict = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, lowerCAmelCase ) ) if added_emb_type == "prd": lowercase : Union[str, Any] = nn.Parameter(torch.zeros(1, 1, lowerCAmelCase ) ) elif added_emb_type is None: lowercase : str = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) lowercase : Dict = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, dropout=lowerCAmelCase, activation_fn='gelu', attention_bias=lowerCAmelCase, ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": lowercase : str = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: lowercase : Optional[int] = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) lowercase : int = nn.LayerNorm(lowerCAmelCase ) lowercase : str = nn.Linear(lowerCAmelCase, lowerCAmelCase ) lowercase : Optional[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -1_0000.0 ) causal_attention_mask.triu_(1 ) lowercase : List[str] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask', lowerCAmelCase, persistent=lowerCAmelCase ) lowercase : Any = nn.Parameter(torch.zeros(1, lowerCAmelCase ) ) lowercase : Any = nn.Parameter(torch.zeros(1, lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase ( self : Tuple ) -> Dict[str, AttentionProcessor]: lowercase : Any = {} def fn_recursive_add_processors(lowerCAmelCase : str, lowerCAmelCase : torch.nn.Module, lowerCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(lowerCAmelCase, 'set_processor' ): lowercase : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''', lowerCAmelCase, lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) return processors def lowercase ( self : Union[str, Any], lowerCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Tuple: lowercase : str = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase, lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase : str, lowerCAmelCase : torch.nn.Module, lowerCAmelCase : Union[str, Any] ): if hasattr(lowerCAmelCase, 'set_processor' ): if not isinstance(lowerCAmelCase, lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''', lowerCAmelCase, lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: self.set_attn_processor(AttnProcessor() ) def lowercase ( self : Any, lowerCAmelCase : int, lowerCAmelCase : Union[torch.Tensor, float, int], lowerCAmelCase : torch.FloatTensor, lowerCAmelCase : Optional[torch.FloatTensor] = None, lowerCAmelCase : Optional[torch.BoolTensor] = None, lowerCAmelCase : bool = True, ) -> List[Any]: lowercase : Optional[Any] = hidden_states.shape[0] lowercase : Union[str, Any] = timestep if not torch.is_tensor(lowerCAmelCase ): lowercase : List[str] = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: lowercase : List[str] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase : Optional[int] = timesteps * torch.ones(lowerCAmelCase, dtype=timesteps.dtype, device=timesteps.device ) lowercase : Dict = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowercase : Optional[int] = timesteps_projected.to(dtype=self.dtype ) lowercase : Any = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: lowercase : Any = self.embedding_proj_norm(lowerCAmelCase ) lowercase : List[str] = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowercase : str = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowercase : Optional[Any] = self.proj_in(lowerCAmelCase ) lowercase : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) lowercase : Dict = [] lowercase : Optional[int] = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowercase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowercase : Union[str, Any] = hidden_states[:, None, :] lowercase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowercase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase, -1, -1 ) additional_embeds.append(lowerCAmelCase ) lowercase : Union[str, Any] = torch.cat( lowerCAmelCase, dim=1, ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowercase : Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowercase : List[Any] = F.pad( lowerCAmelCase, ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ), value=0.0, ) lowercase : str = hidden_states + positional_embeddings if attention_mask is not None: lowercase : Tuple = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 lowercase : List[Any] = F.pad(lowerCAmelCase, (0, self.additional_embeddings), value=0.0 ) lowercase : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowercase : Union[str, Any] = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0 ) if self.norm_in is not None: lowercase : List[Any] = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: lowercase : Tuple = block(lowerCAmelCase, attention_mask=lowerCAmelCase ) lowercase : Optional[Any] = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: lowercase : Optional[Any] = hidden_states[:, -1] else: lowercase : Any = hidden_states[:, additional_embeddings_len:] lowercase : Optional[int] = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def lowercase ( self : Any, lowerCAmelCase : Dict ) -> Dict: lowercase : int = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
255
1
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a =logging.get_logger(__name__) a ={ """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a ={ """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a ={ """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: __lowerCamelCase : List[str] = set() __lowerCamelCase : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase : Tuple = char __lowerCamelCase : Optional[Any] = set(_lowerCamelCase ) return pairs class A_ ( __lowercase ): _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any]="<s>" ,SCREAMING_SNAKE_CASE__ : Dict="</s>" ,SCREAMING_SNAKE_CASE__ : Any="</s>" ,SCREAMING_SNAKE_CASE__ : Dict="<s>" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="<unk>" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="<pad>" ,SCREAMING_SNAKE_CASE__ : List[str]="<mask>" ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): super().__init__( bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : List[str] = vocab_file __lowerCamelCase : Any = merges_file __lowerCamelCase : List[Any] = {} __lowerCamelCase : int = 0 __lowerCamelCase : Optional[int] = 1 __lowerCamelCase : int = 2 __lowerCamelCase : Any = 3 self.add_from_file(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ ,encoding='utf-8') as merges_handle: __lowerCamelCase : Any = merges_handle.read().split('\n')[:-1] __lowerCamelCase : Tuple = [tuple(merge.split()[:-1]) for merge in merges] __lowerCamelCase : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ ,range(len(SCREAMING_SNAKE_CASE__)))) __lowerCamelCase : str = {} def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : Any = [self.cls_token_id] __lowerCamelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ,SCREAMING_SNAKE_CASE__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ ,token_ids_a=SCREAMING_SNAKE_CASE__ ,already_has_special_tokens=SCREAMING_SNAKE_CASE__) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : List[Any] = [self.sep_token_id] __lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def lowerCAmelCase ( self : List[Any]): return len(self.encoder) def lowerCAmelCase ( self : Tuple): return dict(self.encoder ,**self.added_tokens_encoder) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : List[Any]): if token in self.cache: return self.cache[token] __lowerCamelCase : Optional[Any] = tuple(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = tuple(list(word[:-1]) + [word[-1] + '</w>']) __lowerCamelCase : str = get_pairs(SCREAMING_SNAKE_CASE__) if not pairs: return token while True: __lowerCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ,key=lambda SCREAMING_SNAKE_CASE__: self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ ,float('inf'))) if bigram not in self.bpe_ranks: break __lowerCamelCase : Tuple = bigram __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Dict = 0 while i < len(SCREAMING_SNAKE_CASE__): try: __lowerCamelCase : int = word.index(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __lowerCamelCase : Union[str, Any] = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __lowerCamelCase : Union[str, Any] = tuple(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = new_word if len(SCREAMING_SNAKE_CASE__) == 1: break else: __lowerCamelCase : Tuple = get_pairs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = """@@ """.join(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = word[:-4] __lowerCamelCase : int = word return word def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Dict = [] __lowerCamelCase : int = re.findall(R'\S+\n?' ,SCREAMING_SNAKE_CASE__) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__).split(' '))) return split_tokens def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Optional[int]): return self.encoder.get(SCREAMING_SNAKE_CASE__ ,self.encoder.get(self.unk_token)) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[Any]): return self.decoder.get(SCREAMING_SNAKE_CASE__ ,self.unk_token) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Optional[Any]): __lowerCamelCase : str = """ """.join(SCREAMING_SNAKE_CASE__).replace('@@ ' ,'').strip() return out_string def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __lowerCamelCase : str = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) __lowerCamelCase : List[str] = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE__): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__) if os.path.abspath(self.merges_file) != os.path.abspath(SCREAMING_SNAKE_CASE__): copyfile(self.merges_file ,SCREAMING_SNAKE_CASE__) return out_vocab_file, out_merge_file def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Optional[int]): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): try: with open(SCREAMING_SNAKE_CASE__ ,'r' ,encoding='utf-8') as fd: self.add_from_file(SCREAMING_SNAKE_CASE__) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"Incorrect encoding detected in {f}, please rebuild the dataset") return __lowerCamelCase : int = f.readlines() for lineTmp in lines: __lowerCamelCase : Any = lineTmp.strip() __lowerCamelCase : int = line.rfind(' ') if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'') __lowerCamelCase : Tuple = line[:idx] __lowerCamelCase : Dict = len(self.encoder)
363
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class A_ ( unittest.TestCase ): @property def lowerCAmelCase ( self : Union[str, Any]): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[int] = ort.SessionOptions() __lowerCamelCase : Tuple = False return options def lowerCAmelCase ( self : Any): __lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png') __lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png') __lowerCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy') # using the PNDM scheduler by default __lowerCamelCase : Dict = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = 'A red cat sitting on a park bench' __lowerCamelCase : Any = np.random.RandomState(0) __lowerCamelCase : List[Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ ,image=SCREAMING_SNAKE_CASE__ ,mask_image=SCREAMING_SNAKE_CASE__ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=1_5 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np' ,) __lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 1E-2
113
0
'''simple docstring''' class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = arr.split(""",""" ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [int(self.array[0] )] * len(self.array ) SCREAMING_SNAKE_CASE : Optional[int] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): SCREAMING_SNAKE_CASE : Dict = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __UpperCAmelCase = input("""please input some numbers:""") __UpperCAmelCase = SubArray(whole_array) __UpperCAmelCase = array.solve_sub_array() print(("""the results is:""", re))
323
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : List[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[int]=True , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block SCREAMING_SNAKE_CASE : int = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Any = output_channel SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i] SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(lowerCamelCase_ ) - 1 SCREAMING_SNAKE_CASE : Optional[Any] = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_ ) # mid SCREAMING_SNAKE_CASE : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out SCREAMING_SNAKE_CASE : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 ) SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU() SCREAMING_SNAKE_CASE : Dict = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Tuple = False def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = x SCREAMING_SNAKE_CASE : int = self.conv_in(lowerCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[Any] ): def custom_forward(*lowerCamelCase_ : List[str] ): return module(*lowerCamelCase_ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : Tuple = down_block(lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(lowerCamelCase_ ) # post-process SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.conv_act(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_out(lowerCamelCase_ ) return sample class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : str=("UpDecoderBlock2D",) , lowerCamelCase_ : Union[str, Any]=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Dict="silu" , lowerCamelCase_ : Any="group" , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : int = layers_per_block SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] ) SCREAMING_SNAKE_CASE : str = in_channels if norm_type == """spatial""" else None # mid SCREAMING_SNAKE_CASE : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up SCREAMING_SNAKE_CASE : Union[str, Any] = list(reversed(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : List[str] = i == len(lowerCamelCase_ ) - 1 SCREAMING_SNAKE_CASE : List[Any] = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE : List[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 ) SCREAMING_SNAKE_CASE : Dict = nn.SiLU() SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Dict = False def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = z SCREAMING_SNAKE_CASE : Optional[int] = self.conv_in(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[str] ): def custom_forward(*lowerCamelCase_ : str ): return module(*lowerCamelCase_ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: # middle SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) else: # middle SCREAMING_SNAKE_CASE : Any = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Any = up_block(lowerCamelCase_ , lowerCamelCase_ ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.conv_out(lowerCamelCase_ ) return sample class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="random" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Tuple = n_e SCREAMING_SNAKE_CASE : int = vq_embed_dim SCREAMING_SNAKE_CASE : Tuple = beta SCREAMING_SNAKE_CASE : Union[str, Any] = legacy SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE : Optional[Any] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE : Tuple = self.used.shape[0] SCREAMING_SNAKE_CASE : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed SCREAMING_SNAKE_CASE : Any = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: SCREAMING_SNAKE_CASE : Optional[int] = n_e SCREAMING_SNAKE_CASE : Any = sane_index_shape def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = inds.shape assert len(lowerCamelCase_ ) > 1 SCREAMING_SNAKE_CASE : Tuple = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 ) SCREAMING_SNAKE_CASE : Tuple = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE : Any = self.unknown_index return new.reshape(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape assert len(lowerCamelCase_ ) > 1 SCREAMING_SNAKE_CASE : str = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE : List[Any] = 0 # simply set to zero SCREAMING_SNAKE_CASE : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ ) return back.reshape(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = self.embedding(lowerCamelCase_ ).view(z.shape ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : List[str] = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE : Tuple = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): '''simple docstring''' if self.remap is not None: SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.unmap_to_all(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE : str = self.embedding(lowerCamelCase_ ) if shape is not None: SCREAMING_SNAKE_CASE : List[str] = z_q.view(lowerCamelCase_ ) # reshape back to match original input shape SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parameters SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = torch.chunk(lowerCamelCase_ , 2 , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE : Dict = deterministic SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Generator] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample return x def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE : List[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return self.mean
323
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
178
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase_ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __A( unittest.TestCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = size if size is not None else {"""height""": 20, """width""": 20} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = size UpperCamelCase__ = do_normalize UpperCamelCase__ = do_convert_rgb UpperCamelCase__ = [5_12, 10_24, 20_48, 40_96] UpperCamelCase__ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def UpperCAmelCase_ (self ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase_ (self ): UpperCamelCase__ = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase_ (self ): UpperCamelCase__ = PixaStructImageProcessingTester(self ) @property def UpperCAmelCase_ (self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_convert_rgb""" ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processor_tester.prepare_dummy_image() UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase__ = 20_48 UpperCamelCase__ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def UpperCAmelCase_ (self ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input UpperCamelCase__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ = image_processor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase_ (self ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input UpperCamelCase__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 UpperCamelCase__ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ ).flattened_patches UpperCamelCase__ = """Hello""" UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ , header_text=SCREAMING_SNAKE_CASE_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ = image_processor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ , header_text=SCREAMING_SNAKE_CASE_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase_ (self ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) UpperCamelCase__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ = image_processor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase_ (self ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input UpperCamelCase__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ = image_processor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase_ (self ): UpperCamelCase__ = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCamelCase__ = 3 @property def UpperCAmelCase_ (self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_convert_rgb""" ) ) def UpperCAmelCase_ (self ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input UpperCamelCase__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ = image_processor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , max_patches=SCREAMING_SNAKE_CASE_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
178
1
'''simple docstring''' import os from distutils.util import strtobool def lowerCamelCase__ ( _A , _A ): for e in env_keys: a : Optional[int] = int(os.environ.get(_A , -1 ) ) if val >= 0: return val return default def lowerCamelCase__ ( _A , _A=False ): a : int = os.environ.get(_A , str(_A ) ) return strtobool(_A ) == 1 # As its name indicates `strtobool` actually returns an int... def lowerCamelCase__ ( _A , _A="no" ): a : List[str] = os.environ.get(_A , str(_A ) ) return value
297
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( _A , _A ): assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase__ ( _A , _A , _A ): a : str = tmp_path / 'cache' a : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a : List[Any] = JsonDatasetReader(_A , cache_dir=_A , keep_in_memory=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase__ ( _A , _A , _A ): a : str = tmp_path / 'cache' a : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : Dict = features.copy() if features else default_expected_features a : Union[str, Any] = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : Any = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def lowerCamelCase__ ( _A , _A , _A ): a : Tuple = tmp_path / 'cache' a : Optional[Any] = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} a : Optional[int] = features.copy() if features else default_expected_features a : Dict = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : Optional[int] = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCamelCase__ ( _A , _A ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} a : Dict = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} a : int = features.copy() a : List[Any] = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : Dict = tmp_path / 'cache' a : Any = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase__ ( _A , _A , _A ): a : Dict = tmp_path / 'cache' a : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : List[Any] = JsonDatasetReader(_A , cache_dir=_A , split=_A ).read() _check_json_dataset(_A , _A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCamelCase__ ( _A , _A , _A ): if issubclass(_A , _A ): a : Optional[int] = jsonl_path elif issubclass(_A , _A ): a : Optional[int] = [jsonl_path] a : List[str] = tmp_path / 'cache' a : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : Tuple = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) def lowerCamelCase__ ( _A , _A , _A=("train",) ): assert isinstance(_A , _A ) for split in splits: a : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase__ ( _A , _A , _A ): a : Dict = tmp_path / 'cache' a : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a : int = JsonDatasetReader({'train': jsonl_path} , cache_dir=_A , keep_in_memory=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase__ ( _A , _A , _A ): a : Dict = tmp_path / 'cache' a : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : List[Any] = features.copy() if features else default_expected_features a : Any = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : List[str] = JsonDatasetReader({'train': jsonl_path} , features=_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase__ ( _A , _A , _A ): if split: a : Any = {split: jsonl_path} else: a : List[Any] = 'train' a : List[str] = {'train': jsonl_path, 'test': jsonl_path} a : List[Any] = tmp_path / 'cache' a : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : Tuple = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( _A ): return json.load(_A ) def lowerCamelCase__ ( _A ): return [json.loads(_A ) for line in buffer] class a__: @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def lowercase_ ( self : Tuple , __snake_case : int , __snake_case : Optional[int] , __snake_case : Any ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) a : List[str] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowercase_ ( self : Tuple , __snake_case : Tuple , __snake_case : Any , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) a : int = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def lowercase_ ( self : List[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) a : List[Any] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowercase_ ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : int , __snake_case : List[Any] , __snake_case : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) a : int = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def lowercase_ ( self : List[str] , __snake_case : str ): with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def lowercase_ ( self : Tuple , __snake_case : Dict , __snake_case : List[Any] , __snake_case : int , __snake_case : List[str] , __snake_case : Optional[int] ): a : Tuple = tmp_path_factory.mktemp('data' ) / F"""test.json.{extension}""" a : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , 'rb' , compression='infer' ) as f: a : Union[str, Any] = f.read() with fsspec.open(__snake_case , 'rb' , compression='infer' ) as f: a : Union[str, Any] = f.read() assert exported_content == original_content
297
1
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase ( A_ )-> Dict: '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' for char in word: a : List[Any] = ord(A_ ) if not _is_chinese_char(A_ ): return 0 return 1 def lowercase ( A_ )-> Union[str, Any]: '''simple docstring''' a : List[str] = set() for token in tokens: a : Union[str, Any] = len(A_ ) > 1 and is_chinese(A_ ) if chinese_word: word_set.add(A_ ) a : List[Any] = list(A_ ) return word_list def lowercase ( A_ , A_ )-> Tuple: '''simple docstring''' if not chinese_word_set: return bert_tokens a : Any = max([len(A_ ) for w in chinese_word_set] ) a : Dict = bert_tokens a , a : int = 0, len(A_ ) while start < end: a : Optional[Any] = True if is_chinese(bert_word[start] ): a : List[Any] = min(end - start , A_ ) for i in range(A_ , 1 , -1 ): a : Any = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a : Dict = "##" + bert_word[j] a : Any = start + i a : Optional[Any] = False break if single_word: start += 1 return bert_word def lowercase ( A_ , A_ , A_ )-> str: '''simple docstring''' a : Any = [] for i in range(0 , len(A_ ) , 100 ): a : List[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] a : Union[str, Any] = [get_chinese_word(A_ ) for r in res] ltp_res.extend(A_ ) assert len(A_ ) == len(A_ ) a : int = [] for i in range(0 , len(A_ ) , 100 ): a : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=A_ , truncation=A_ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(A_ ) == len(A_ ) a : Optional[Any] = [] for input_ids, chinese_word in zip(A_ , A_ ): a : Any = [] for id in input_ids: a : List[str] = bert_tokenizer._convert_id_to_token(A_ ) input_tokens.append(A_ ) a : int = add_sub_symbol(A_ , A_ ) a : List[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(A_ ): if token[:2] == "##": a : List[Any] = token[2:] # save chinese tokens' pos if len(A_ ) == 1 and _is_chinese_char(ord(A_ ) ): ref_id.append(A_ ) ref_ids.append(A_ ) assert len(A_ ) == len(A_ ) return ref_ids def lowercase ( A_ )-> str: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: a : Optional[int] = f.readlines() a : Optional[Any] = [line.strip() for line in data if len(A_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a : Tuple = LTP(args.ltp ) # faster in GPU device a : int = BertTokenizer.from_pretrained(args.bert ) a : Optional[Any] = prepare_ref(A_ , A_ , A_ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: a : List[str] = [json.dumps(A_ ) + "\n" for ref in ref_ids] f.writelines(A_ ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") __lowercase = parser.parse_args() main(args)
226
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
226
1
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __snake_case = 299792458 # Symbols __snake_case , __snake_case , __snake_case , __snake_case = symbols('''ct x y z''') def a ( __a ) -> float: '''simple docstring''' if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def a ( __a ) -> float: '''simple docstring''' return 1 / sqrt(1 - beta(__a ) ** 2 ) def a ( __a ) -> np.ndarray: '''simple docstring''' return np.array( [ [gamma(__a ), -gamma(__a ) * beta(__a ), 0, 0], [-gamma(__a ) * beta(__a ), gamma(__a ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a ( __a , __a = None ) -> np.ndarray: '''simple docstring''' if event is None: UpperCamelCase__ :Any = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__a ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __snake_case = transform(29979245) print('''Example of four vector: ''') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __snake_case = {ct: c, x: 1, y: 1, z: 1} __snake_case = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
97
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a ( __a , __a ) -> Optional[int]: '''simple docstring''' assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a ( __a , __a , __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ :Tuple = JsonDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_json_dataset(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def a ( __a , __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Optional[Any] = features.copy() if features else default_expected_features UpperCamelCase__ :Tuple = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :int = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_json_dataset(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def a ( __a , __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :int = tmp_path / '''cache''' UpperCamelCase__ :str = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCamelCase__ :Any = features.copy() if features else default_expected_features UpperCamelCase__ :Union[str, Any] = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Any = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() assert isinstance(__a , __a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def a ( __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Any = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCamelCase__ :int = features.copy() UpperCamelCase__ :List[Any] = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Optional[int] = tmp_path / '''cache''' UpperCamelCase__ :Dict = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() assert isinstance(__a , __a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a ( __a , __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :List[Any] = JsonDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_json_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def a ( __a , __a , __a ) -> Any: '''simple docstring''' if issubclass(__a , __a ): UpperCamelCase__ :Union[str, Any] = jsonl_path elif issubclass(__a , __a ): UpperCamelCase__ :int = [jsonl_path] UpperCamelCase__ :Dict = tmp_path / '''cache''' UpperCamelCase__ :Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :List[str] = JsonDatasetReader(__a , cache_dir=__a ).read() _check_json_dataset(__a , __a ) def a ( __a , __a , __a=("train",) ) -> Optional[Any]: '''simple docstring''' assert isinstance(__a , __a ) for split in splits: UpperCamelCase__ :Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a ( __a , __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[str] = tmp_path / '''cache''' UpperCamelCase__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ :str = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_json_datasetdict(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def a ( __a , __a , __a ) -> int: '''simple docstring''' UpperCamelCase__ :Tuple = tmp_path / '''cache''' UpperCamelCase__ :Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Optional[int] = features.copy() if features else default_expected_features UpperCamelCase__ :str = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Dict = JsonDatasetReader({'''train''': jsonl_path} , features=__a , cache_dir=__a ).read() _check_json_datasetdict(__a , __a ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a ( __a , __a , __a ) -> str: '''simple docstring''' if split: UpperCamelCase__ :List[str] = {split: jsonl_path} else: UpperCamelCase__ :int = '''train''' UpperCamelCase__ :int = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCamelCase__ :Any = tmp_path / '''cache''' UpperCamelCase__ :Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Any = JsonDatasetReader(__a , cache_dir=__a ).read() _check_json_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a ( __a ) -> Union[str, Any]: '''simple docstring''' return json.load(__a ) def a ( __a ) -> int: '''simple docstring''' return [json.loads(__a ) for line in buffer] class lowercase : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ ).write() buffer.seek(0 ) UpperCamelCase__ :List[Any] = load_json_function(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(exported_content[0] , UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , orient=UpperCamelCase_ ).write() buffer.seek(0 ) UpperCamelCase__ :Optional[int] = load_json(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ :Union[str, Any] = load_json_function(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(exported_content[0] , UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , orient=UpperCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ :int = load_json(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase_ ) == 10 def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' with pytest.raises(UpperCamelCase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' UpperCamelCase__ :Union[str, Any] = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , compression=UpperCamelCase_ ).write() with fsspec.open(UpperCamelCase_ , '''rb''' , compression='''infer''' ) as f: UpperCamelCase__ :Dict = f.read() with fsspec.open(UpperCamelCase_ , '''rb''' , compression='''infer''' ) as f: UpperCamelCase__ :int = f.read() assert exported_content == original_content
97
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } UpperCamelCase__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> int: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) if weight_type is not None: a = getattr(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ).shape else: a = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.feature_extractor a = hf_model.adapter for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, hf_model.config.feat_extract_norm == '''group''', ) a = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: a = True if "*" in mapped_key: a = name.split(__SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', __SCREAMING_SNAKE_CASE ) if "weight_g" in name: a = """weight_g""" elif "weight_v" in name: a = """weight_v""" elif "bias" in name: a = """bias""" elif "weight" in name: a = """weight""" else: a = None set_recursively(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(__SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> int: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Any: """simple docstring""" a = full_name.split('''adaptor.''' )[-1] a = name.split('''.''' ) if items[1].isdigit(): a = int(items[1] ) else: a = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" a = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" a = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" a = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" a = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" a = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" a = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" a = emb.weight.shape a = nn.Linear(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, bias=__SCREAMING_SNAKE_CASE ) a = emb.weight.data return lin_layer @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, ) -> Union[str, Any]: """simple docstring""" a = WavaVecaConfig.from_pretrained( __SCREAMING_SNAKE_CASE, add_adapter=__SCREAMING_SNAKE_CASE, adapter_stride=__SCREAMING_SNAKE_CASE, adapter_kernel_size=__SCREAMING_SNAKE_CASE, use_auth_token=__SCREAMING_SNAKE_CASE, output_hidden_size=__SCREAMING_SNAKE_CASE, ) a = MBartConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) # load model a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) a = model[0].eval() # load feature extractor a = WavaVecaFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE, use_auth_token=__SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder a = WavaVecaModel(__SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder, __SCREAMING_SNAKE_CASE ) # load decoder weights a = MBartForCausalLM(__SCREAMING_SNAKE_CASE ) a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__SCREAMING_SNAKE_CASE ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) a = SpeechEncoderDecoderModel(encoder=__SCREAMING_SNAKE_CASE, decoder=__SCREAMING_SNAKE_CASE ) a = False a = MBartaaTokenizer(__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) a = hf_wavavec.config.to_dict() a = tokenizer.pad_token_id a = tokenizer.bos_token_id a = tokenizer.eos_token_id a = """mbart50""" a = """wav2vec2""" a = tokenizer.eos_token_id a = 2_5_0_0_0_4 a = tokenizer.eos_token_id a = SpeechEncoderDecoderConfig.from_dict(__SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(__SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1_024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250_004, type=int, help="""`decoder_start_token_id` of model config""") UpperCamelCase__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
370
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} ) SCREAMING_SNAKE_CASE_ = Features({} ) SCREAMING_SNAKE_CASE_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return {self.text_column: "text"}
330
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A : Dict = logging.get_logger(__name__) _A : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _A : str = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } _A : Optional[int] = {'facebook/blenderbot-3B': 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _a ( ) -> List[str]: """simple docstring""" lowerCamelCase__ : Tuple = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCamelCase__ : str = bs[:] lowerCamelCase__ : int = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase__ : Tuple = [chr(UpperCAmelCase ) for n in cs] return dict(zip(UpperCAmelCase , UpperCAmelCase ) ) def _a ( UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : int = char return pairs class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Dict = VOCAB_FILES_NAMES _UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int , A : List[str] , A : int , A : Optional[int]="replace" , A : Tuple="<s>" , A : List[Any]="</s>" , A : str="</s>" , A : str="<s>" , A : int="<unk>" , A : Optional[int]="<pad>" , A : Union[str, Any]="<mask>" , A : List[str]=False , **A : int , ) ->Union[str, Any]: lowerCamelCase__ : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token lowerCamelCase__ : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token lowerCamelCase__ : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token lowerCamelCase__ : Optional[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token lowerCamelCase__ : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token lowerCamelCase__ : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding='''utf-8''' ) as vocab_handle: lowerCamelCase__ : Tuple = json.load(A ) lowerCamelCase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} lowerCamelCase__ : Tuple = errors # how to handle errors in decoding lowerCamelCase__ : List[str] = bytes_to_unicode() lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding='''utf-8''' ) as merges_handle: lowerCamelCase__ : Tuple = merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase__ : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase__ : List[str] = dict(zip(A , range(len(A ) ) ) ) lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase__ : Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCamelCase ( self : str ) ->Dict: return len(self.encoder ) def __lowerCamelCase ( self : Optional[int] ) ->List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self : str , A : Union[str, Any] ) ->str: if token in self.cache: return self.cache[token] lowerCamelCase__ : List[Any] = tuple(A ) lowerCamelCase__ : Dict = get_pairs(A ) if not pairs: return token while True: lowerCamelCase__ : List[Any] = min(A , key=lambda A : self.bpe_ranks.get(A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : int = bigram lowerCamelCase__ : Dict = [] lowerCamelCase__ : Tuple = 0 while i < len(A ): try: lowerCamelCase__ : Union[str, Any] = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : Union[str, Any] = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : List[str] = tuple(A ) lowerCamelCase__ : Tuple = new_word if len(A ) == 1: break else: lowerCamelCase__ : int = get_pairs(A ) lowerCamelCase__ : Optional[Any] = ''' '''.join(A ) lowerCamelCase__ : Any = word return word def __lowerCamelCase ( self : Any , A : Union[str, Any] ) ->List[Any]: lowerCamelCase__ : List[Any] = [] for token in re.findall(self.pat , A ): lowerCamelCase__ : Optional[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(''' ''' ) ) return bpe_tokens def __lowerCamelCase ( self : Tuple , A : List[Any] ) ->int: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self : Optional[Any] , A : Any ) ->Optional[int]: return self.decoder.get(A ) def __lowerCamelCase ( self : int , A : Optional[Any] ) ->Optional[Any]: lowerCamelCase__ : int = ''''''.join(A ) lowerCamelCase__ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __lowerCamelCase ( self : List[Any] , A : str , A : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : Optional[Any] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase__ : str = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + '''\n''' ) lowerCamelCase__ : Union[str, Any] = 0 with open(A , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase__ : Any = token_index writer.write(''' '''.join(A ) + '''\n''' ) index += 1 return vocab_file, merge_file def __lowerCamelCase ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None , A : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def __lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None ) ->List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCamelCase ( self : Any , A : Union[str, Any] , A : Any=False , **A : List[Any] ) ->Optional[Any]: lowerCamelCase__ : List[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): lowerCamelCase__ : Union[str, Any] = ''' ''' + text return (text, kwargs) def __lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None ) ->Dict: return token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self : Any , A : "Conversation" ) ->List[int]: lowerCamelCase__ : List[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(A ) lowerCamelCase__ : Union[str, Any] = ''' '''.join(A ) lowerCamelCase__ : List[str] = self.encode(A ) if len(A ) > self.model_max_length: lowerCamelCase__ : List[str] = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
142
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict = logging.get_logger(__name__) _A : Union[str, Any] = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Any = "vit_msn" def __init__( self : Optional[Any] , A : Dict=7_6_8 , A : Union[str, Any]=1_2 , A : Optional[Any]=1_2 , A : List[Any]=3_0_7_2 , A : List[str]="gelu" , A : Optional[int]=0.0 , A : int=0.0 , A : int=0.02 , A : Tuple=1e-06 , A : int=2_2_4 , A : Union[str, Any]=1_6 , A : Dict=3 , A : Optional[Any]=True , **A : Optional[Any] , ) ->Dict: super().__init__(**A ) lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Dict = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : Optional[int] = layer_norm_eps lowerCamelCase__ : Any = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : Tuple = qkv_bias
142
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> str: if attention_mask is None: _a : Dict = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _a : List[str] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _a : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _a : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _a : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __magic_name__ : def __init__( self : Union[str, Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[str]=13 ,_UpperCAmelCase : int=7 ,_UpperCAmelCase : Any=True ,_UpperCAmelCase : int=False ,_UpperCAmelCase : List[Any]=99 ,_UpperCAmelCase : Optional[int]=16 ,_UpperCAmelCase : Union[str, Any]=2 ,_UpperCAmelCase : Dict=4 ,_UpperCAmelCase : Dict=4 ,_UpperCAmelCase : Union[str, Any]="gelu" ,_UpperCAmelCase : Dict=0.1 ,_UpperCAmelCase : List[str]=0.1 ,_UpperCAmelCase : Dict=32 ,_UpperCAmelCase : int=2 ,_UpperCAmelCase : str=1 ,_UpperCAmelCase : List[Any]=0 ,_UpperCAmelCase : List[str]=0.02 ,): _a : Tuple = parent _a : Tuple = batch_size _a : List[Any] = seq_length _a : Any = is_training _a : str = use_labels _a : int = vocab_size _a : Tuple = hidden_size _a : Tuple = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Optional[Any] = intermediate_size _a : List[str] = hidden_act _a : Dict = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[Any] = max_position_embeddings _a : Tuple = eos_token_id _a : Tuple = pad_token_id _a : Optional[int] = bos_token_id _a : Optional[int] = initializer_range def __lowercase ( self : List[str] ): _a : List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) ,3 ,self.vocab_size ) _a : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) ,dtype=np.intaa )) ,-1 ) _a : Optional[int] = shift_tokens_right(_UpperCAmelCase ,1 ,2 ) _a : Optional[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,initializer_range=self.initializer_range ,use_cache=_UpperCAmelCase ,) _a : str = prepare_blenderbot_inputs_dict(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) return config, inputs_dict def __lowercase ( self : int ): _a , _a : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def __lowercase ( self : Optional[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : str ): _a : List[Any] = 20 _a : List[Any] = model_class_name(_UpperCAmelCase ) _a : Any = model.encode(inputs_dict['input_ids'] ) _a , _a : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _a : Optional[int] = model.init_cache(decoder_input_ids.shape[0] ,_UpperCAmelCase ,_UpperCAmelCase ) _a : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype='i4' ) _a : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) _a : Optional[Any] = model.decode( decoder_input_ids[:, :-1] ,_UpperCAmelCase ,decoder_attention_mask=_UpperCAmelCase ,past_key_values=_UpperCAmelCase ,decoder_position_ids=_UpperCAmelCase ,) _a : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype='i4' ) _a : Optional[int] = model.decode( decoder_input_ids[:, -1:] ,_UpperCAmelCase ,decoder_attention_mask=_UpperCAmelCase ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=_UpperCAmelCase ,) _a : Tuple = model.decode(_UpperCAmelCase ,_UpperCAmelCase ) _a : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 ,msg=F"""Max diff is {diff}""" ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ): _a : Optional[int] = 20 _a : Dict = model_class_name(_UpperCAmelCase ) _a : str = model.encode(inputs_dict['input_ids'] ) _a , _a : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _a : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) _a : Dict = model.init_cache(decoder_input_ids.shape[0] ,_UpperCAmelCase ,_UpperCAmelCase ) _a : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) _a : Any = model.decode( decoder_input_ids[:, :-1] ,_UpperCAmelCase ,decoder_attention_mask=_UpperCAmelCase ,past_key_values=_UpperCAmelCase ,decoder_position_ids=_UpperCAmelCase ,) _a : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype='i4' ) _a : Optional[int] = model.decode( decoder_input_ids[:, -1:] ,_UpperCAmelCase ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=_UpperCAmelCase ,decoder_position_ids=_UpperCAmelCase ,) _a : Union[str, Any] = model.decode(_UpperCAmelCase ,_UpperCAmelCase ,decoder_attention_mask=_UpperCAmelCase ) _a : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 ,msg=F"""Max diff is {diff}""" ) @require_flax class __magic_name__ ( unittest.TestCase ): lowerCAmelCase : Union[str, Any] = 9_9 def __lowercase ( self : Tuple ): _a : Tuple = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] ,dtype=np.intaa ,) _a : List[str] = input_ids.shape[0] _a : str = BlenderbotSmallConfig( vocab_size=self.vocab_size ,d_model=24 ,encoder_layers=2 ,decoder_layers=2 ,encoder_attention_heads=2 ,decoder_attention_heads=2 ,encoder_ffn_dim=32 ,decoder_ffn_dim=32 ,max_position_embeddings=48 ,eos_token_id=2 ,pad_token_id=1 ,bos_token_id=0 ,) return config, input_ids, batch_size def __lowercase ( self : Optional[Any] ): _a , _a , _a : Optional[Any] = self._get_config_and_data() _a : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_UpperCAmelCase ) _a : str = lm_model(input_ids=_UpperCAmelCase ) _a : Any = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape ,_UpperCAmelCase ) def __lowercase ( self : Union[str, Any] ): _a : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size ,d_model=14 ,encoder_layers=2 ,decoder_layers=2 ,encoder_attention_heads=2 ,decoder_attention_heads=2 ,encoder_ffn_dim=8 ,decoder_ffn_dim=8 ,max_position_embeddings=48 ,) _a : Dict = FlaxBlenderbotSmallForConditionalGeneration(_UpperCAmelCase ) _a : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] ,dtype=np.intaa ) _a : List[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] ,dtype=np.intaa ) _a : int = lm_model(input_ids=_UpperCAmelCase ,decoder_input_ids=_UpperCAmelCase ) _a : List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape ,_UpperCAmelCase ) def __lowercase ( self : Tuple ): _a : str = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] ,dtype=np.intaa ) _a : Tuple = shift_tokens_right(_UpperCAmelCase ,1 ,2 ) _a : Union[str, Any] = np.equal(_UpperCAmelCase ,1 ).astype(np.floataa ).sum() _a : str = np.equal(_UpperCAmelCase ,1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape ,input_ids.shape ) self.assertEqual(_UpperCAmelCase ,n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] ,2 ).all() ) @require_flax class __magic_name__ ( _UpperCamelCase , unittest.TestCase , _UpperCamelCase ): lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Union[str, Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase : List[str] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __lowercase ( self : int ): _a : List[Any] = FlaxBlenderbotSmallModelTester(self ) def __lowercase ( self : Optional[int] ): _a , _a : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : Dict ): _a , _a : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : Dict ): _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a : Optional[int] = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ) _a : Union[str, Any] = model_class(_UpperCAmelCase ) @jax.jit def encode_jitted(_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str]=None ,**_UpperCAmelCase : str ): return model.encode(input_ids=_UpperCAmelCase ,attention_mask=_UpperCAmelCase ) with self.subTest('JIT Enabled' ): _a : str = encode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _a : Tuple = encode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) ,len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase ,_UpperCAmelCase ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowercase ( self : List[Any] ): _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a : Union[str, Any] = model_class(_UpperCAmelCase ) _a : List[Any] = model.encode(inputs_dict['input_ids'] ,inputs_dict['attention_mask'] ) _a : Union[str, Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_UpperCAmelCase : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : Tuple ): return model.decode( decoder_input_ids=_UpperCAmelCase ,decoder_attention_mask=_UpperCAmelCase ,encoder_outputs=_UpperCAmelCase ,) with self.subTest('JIT Enabled' ): _a : Union[str, Any] = decode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _a : Dict = decode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) ,len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase ,_UpperCAmelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowercase ( self : Tuple ): for model_class_name in self.all_model_classes: _a : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _a : Any = np.ones((1, 1) ) * model.config.eos_token_id _a : List[str] = model(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
107
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> list: if any(not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(lowerCAmelCase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCAmelCase_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
107
1
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase = 2_5_6 class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Dict = ['''melgan'''] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" super().__init__() # From MELGAN lowerCAmelCase = math.log(1E-5) # Matches MelGAN training. lowerCAmelCase = 4.0 # Largest value for most examples lowerCAmelCase = 128 self.register_modules( notes_encoder=__lowerCAmelCase , continuous_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase , scheduler=__lowerCAmelCase , melgan=__lowerCAmelCase , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=(-1.0, 1.0) , __lowerCAmelCase=False): """simple docstring""" lowerCAmelCase , lowerCAmelCase = output_range if clip: lowerCAmelCase = torch.clip(__lowerCAmelCase , self.min_value , self.max_value) # Scale to [0, 1]. lowerCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=(-1.0, 1.0) , __lowerCAmelCase=False): """simple docstring""" lowerCAmelCase , lowerCAmelCase = input_range lowerCAmelCase = torch.clip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) if clip else outputs # Scale to [0, 1]. lowerCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = input_tokens > 0 lowerCAmelCase , lowerCAmelCase = self.notes_encoder( encoder_input_tokens=__lowerCAmelCase , encoder_inputs_mask=__lowerCAmelCase) lowerCAmelCase , lowerCAmelCase = self.continuous_encoder( encoder_inputs=__lowerCAmelCase , encoder_inputs_mask=__lowerCAmelCase) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = noise_time if not torch.is_tensor(__lowerCAmelCase): lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device) elif torch.is_tensor(__lowerCAmelCase) and len(timesteps.shape) == 0: lowerCAmelCase = timesteps[None].to(input_tokens.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCAmelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device) lowerCAmelCase = self.decoder( encodings_and_masks=__lowerCAmelCase , decoder_input_tokens=__lowerCAmelCase , decoder_noise_time=__lowerCAmelCase) return logits @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = 100 , __lowerCAmelCase = True , __lowerCAmelCase = "numpy" , __lowerCAmelCase = None , __lowerCAmelCase = 1 , ): """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__lowerCAmelCase)}.") lowerCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa) lowerCAmelCase = np.zeros([1, 0, self.n_dims] , np.floataa) lowerCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowerCAmelCase , device=self.device) for i, encoder_input_tokens in enumerate(__lowerCAmelCase): if i == 0: lowerCAmelCase = torch.from_numpy(pred_mel[:1].copy()).to( device=self.device , dtype=self.decoder.dtype) # The first chunk has no previous context. lowerCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowerCAmelCase , device=self.device) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowerCAmelCase = ones lowerCAmelCase = self.scale_features( __lowerCAmelCase , output_range=[-1.0, 1.0] , clip=__lowerCAmelCase) lowerCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device) , continuous_inputs=__lowerCAmelCase , continuous_mask=__lowerCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowerCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__lowerCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): lowerCAmelCase = self.decode( encodings_and_masks=__lowerCAmelCase , input_tokens=__lowerCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowerCAmelCase = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase).prev_sample lowerCAmelCase = self.scale_to_features(__lowerCAmelCase , input_range=[-1.0, 1.0]) lowerCAmelCase = mel[:1] lowerCAmelCase = mel.cpu().float().numpy() lowerCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase) logger.info("""Generated segment""" , __lowerCAmelCase) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""") elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""") if output_type == "numpy": lowerCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa)) else: lowerCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowerCAmelCase)
272
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class a__( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Dict = ViTImageProcessor if is_vision_available() else None @property def a_ ( self): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self): """simple docstring""" lowerCAmelCase = (3, 32, 128) lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase)))) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(__lowerCAmelCase) + """\n""") lowerCAmelCase = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } lowerCAmelCase = os.path.join(self.tmpdirname , __lowerCAmelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) lowerCAmelCase = Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1)) return image_input def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) processor.save_pretrained(self.tmpdirname) lowerCAmelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , __lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) processor.save_pretrained(self.tmpdirname) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") lowerCAmelCase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0) lowerCAmelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , __lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""np""") lowerCAmelCase = processor(images=__lowerCAmelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """test""" lowerCAmelCase = processor(text=__lowerCAmelCase) lowerCAmelCase = tokenizer(__lowerCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """test""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase): processor() def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.char_decode(__lowerCAmelCase) lowerCAmelCase = tokenizer.batch_decode(__lowerCAmelCase) lowerCAmelCase = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = None lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = torch.randn(1 , 27 , 38) lowerCAmelCase = torch.randn(1 , 27 , 50257) lowerCAmelCase = torch.randn(1 , 27 , 30522) lowerCAmelCase = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
272
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''PerceiverFeatureExtractor'''] UpperCamelCase_ = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
303
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "ZinengTang/tvlt-base" SCREAMING_SNAKE_CASE : str = tempfile.mkdtemp() def __UpperCamelCase ( self : Dict , **a : List[Any] ) -> List[Any]: """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint , **a ) def __UpperCamelCase ( self : List[Any] , **a : List[Any] ) -> List[Any]: """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint , **a ) def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[int] = self.get_feature_extractor() SCREAMING_SNAKE_CASE : Dict = TvltProcessor(image_processor=a , feature_extractor=a ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : Optional[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , a ) self.assertIsInstance(processor.image_processor , a ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[int] = self.get_feature_extractor() SCREAMING_SNAKE_CASE : Dict = TvltProcessor(image_processor=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([1_2000] ) SCREAMING_SNAKE_CASE : Any = feature_extractor(a , return_tensors="np" ) SCREAMING_SNAKE_CASE : Tuple = processor(audio=a , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE : str = self.get_feature_extractor() SCREAMING_SNAKE_CASE : Union[str, Any] = TvltProcessor(image_processor=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([3, 224, 224] ) SCREAMING_SNAKE_CASE : Optional[int] = image_processor(a , return_tensors="np" ) SCREAMING_SNAKE_CASE : str = processor(images=a , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE : List[Any] = self.get_feature_extractor() SCREAMING_SNAKE_CASE : Dict = TvltProcessor(image_processor=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([1_2000] ) SCREAMING_SNAKE_CASE : str = np.ones([3, 224, 224] ) SCREAMING_SNAKE_CASE : Union[str, Any] = processor(audio=a , images=a ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(a ): processor() def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[int] = self.get_feature_extractor() SCREAMING_SNAKE_CASE : Union[str, Any] = TvltProcessor(image_processor=a , feature_extractor=a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
76
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class A_ : def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='''gelu''' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = inputs['''prompt'''] UpperCAmelCase = inputs['''generator'''] UpperCAmelCase = inputs['''num_inference_steps'''] UpperCAmelCase = inputs['''output_type'''] if "image" in inputs: UpperCAmelCase = inputs['''image'''] else: UpperCAmelCase = None if "mask_image" in inputs: UpperCAmelCase = inputs['''mask_image'''] else: UpperCAmelCase = None if "original_image" in inputs: UpperCAmelCase = inputs['''original_image'''] else: UpperCAmelCase = None UpperCAmelCase , UpperCAmelCase = pipe.encode_prompt(_A ) # inputs with prompt converted to embeddings UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_A , _A , _A ) UpperCAmelCase = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = inputs['''generator'''] UpperCAmelCase = inputs['''num_inference_steps'''] UpperCAmelCase = inputs['''output_type'''] # inputs with prompt converted to embeddings UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image UpperCAmelCase = pipe_loaded(**_A )[0] UpperCAmelCase = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1E-4 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = pipe_loaded(**_A )[0] UpperCAmelCase = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1E-4 )
273
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger('''transformers.models.speecht5''') def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' hf_model.apply_weight_norm() __lowercase= checkpoint['input_conv.weight_g'] __lowercase= checkpoint['input_conv.weight_v'] __lowercase= checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): __lowercase= checkpoint[F'upsamples.{i}.1.weight_g'] __lowercase= checkpoint[F'upsamples.{i}.1.weight_v'] __lowercase= checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __lowercase= checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] __lowercase= checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] __lowercase= checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] __lowercase= checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] __lowercase= checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] __lowercase= checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] __lowercase= checkpoint['output_conv.1.weight_g'] __lowercase= checkpoint['output_conv.1.weight_v'] __lowercase= checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , ) -> int: '''simple docstring''' if config_path is not None: __lowercase= SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: __lowercase= SpeechTaHifiGanConfig() __lowercase= SpeechTaHifiGan(lowercase__ ) __lowercase= torch.load(lowercase__ ) load_weights(orig_checkpoint['model']['generator'] , lowercase__ , lowercase__ ) __lowercase= np.load(lowercase__ ) __lowercase= stats[0].reshape(-1 ) __lowercase= stats[1].reshape(-1 ) __lowercase= torch.from_numpy(lowercase__ ).float() __lowercase= torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
304
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''blenderbot-small''' UpperCamelCase_ : Optional[Any] =['''past_key_values'''] UpperCamelCase_ : Optional[int] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=5_1_2 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=5_1_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= max_position_embeddings __lowercase= d_model __lowercase= encoder_ffn_dim __lowercase= encoder_layers __lowercase= encoder_attention_heads __lowercase= decoder_ffn_dim __lowercase= decoder_layers __lowercase= decoder_attention_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= activation_function __lowercase= init_std __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= use_cache __lowercase= encoder_layers __lowercase= scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class A ( A_ ): @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase= {0: 'batch'} __lowercase= {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase= {0: 'batch', 1: 'decoder_sequence'} __lowercase= {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super().outputs else: __lowercase= super(lowerCAmelCase , self ).outputs if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs __lowercase= seq_length if not self.use_past else 1 __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowercase= dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape __lowercase= common_inputs['decoder_input_ids'].shape[1] __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= decoder_seq_length + 3 __lowercase= ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase= torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) __lowercase= [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase, __lowercase= self.num_layers __lowercase= min(lowerCAmelCase , lowerCAmelCase ) __lowercase= max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers __lowercase= 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. __lowercase= encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase= seqlen + 2 __lowercase, __lowercase= self.num_layers __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= common_inputs['attention_mask'].dtype __lowercase= torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) __lowercase= [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase= tokenizer.num_special_tokens_to_add(lowerCAmelCase ) __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase= [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase= dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __lowercase= self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": __lowercase= self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: __lowercase= super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
304
1
import datasets _lowerCamelCase : Optional[int] = '''\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n''' _lowerCamelCase : Optional[Any] = '''\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n''' _lowerCamelCase : str = '''\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n''' def a_ ( __lowercase : Optional[int] , __lowercase : Optional[int] ) -> Dict: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[str] , lowercase : List[Any] , lowercase : str ): '''simple docstring''' return {"accuracy": simple_accuracy(__UpperCAmelCase , __UpperCAmelCase )}
282
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCamelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCamelCase = "main" # Default branch name __lowerCamelCase = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __lowerCamelCase = "aaaaaaa" # This commit does not exist, so we should 404. __lowerCamelCase = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCamelCase = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Bonjour!' ) yield print('Au revoir!' ) class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class UpperCamelCase__( unittest.TestCase ): @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Any: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def snake_case__ ( self ) -> Union[str, Any]: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_tf def snake_case__ ( self ) -> str: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_flax def snake_case__ ( self ) -> List[Any]: # Flax models don't have labels self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,[] )
221
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase ): UpperCamelCase_ : Tuple = '''timm_backbone''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = backbone SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = features_only SCREAMING_SNAKE_CASE : int = use_pretrained_backbone SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Dict = out_indices if out_indices is not None else (-1,)
363
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case = ["""small""", """medium""", """large"""] snake_case = """lm_head.decoder.weight""" snake_case = """lm_head.weight""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase ) SCREAMING_SNAKE_CASE : Any = d.pop(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") snake_case = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
319
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Optional[str] =field( default=lowercase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] =field( default=lowercase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowercase )} , ) a : Optional[str] =field( default=lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] =field( default=lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] =field( default=lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Optional[str] =field( default=lowercase , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] =field( default=lowercase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] =field( default=lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] =field( default=lowercase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] =field( default=lowercase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool =field( default=lowercase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool =field( default=lowercase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool =field(default=lowercase , metadata={"help": "Whether ot not to use whole word mask."} ) a : float =field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float =field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int =field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int =field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool =field( default=lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def a__ ( SCREAMING_SNAKE_CASE : DataTrainingArguments , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[str] = None , ): '''simple docstring''' def _dataset(SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size , ref_path=SCREAMING_SNAKE_CASE , ) return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size ) else: return TextDataset( tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=SCREAMING_SNAKE_CASE , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def a__ ( ): '''simple docstring''' lowerCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCAmelCase : int = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowerCAmelCase : Optional[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: lowerCAmelCase : Any = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: lowerCAmelCase : Dict = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) lowerCAmelCase : int = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: lowerCAmelCase : Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCAmelCase : Optional[int] = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowerCAmelCase : List[Any] = ( get_dataset(SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCAmelCase : Union[str, Any] = ( get_dataset(SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , evaluate=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCAmelCase : int = DataCollatorForPermutationLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowerCAmelCase : Any = DataCollatorForWholeWordMask( tokenizer=SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability ) else: lowerCAmelCase : List[str] = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase : Any = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , prediction_loss_only=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowerCAmelCase : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=SCREAMING_SNAKE_CASE ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : str = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase : List[str] = trainer.evaluate() lowerCAmelCase : Union[str, Any] = math.exp(eval_output["eval_loss"] ) lowerCAmelCase : Tuple = {"perplexity": perplexity} lowerCAmelCase : int = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(SCREAMING_SNAKE_CASE ) return results def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
108
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="dpr" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__="absolute" , snake_case__ = 0 , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = projection_dim lowerCAmelCase : Dict = position_embedding_type
108
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {} class __snake_case( lowerCamelCase__ ): '''simple docstring''' UpperCAmelCase : List[str] = """llama""" UpperCAmelCase : int = ["""past_key_values"""] def __init__( self , A_=3_2000 , A_=4096 , A_=1_1008 , A_=32 , A_=32 , A_=None , A_="silu" , A_=2048 , A_=0.0_2 , A_=1e-6 , A_=True , A_=0 , A_=1 , A_=2 , A_=1 , A_=False , A_=None , **A_ , ) -> List[str]: lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = intermediate_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase = num_attention_heads lowerCAmelCase = num_key_value_heads lowerCAmelCase = hidden_act lowerCAmelCase = initializer_range lowerCAmelCase = rms_norm_eps lowerCAmelCase = pretraining_tp lowerCAmelCase = use_cache lowerCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def __snake_case ( self ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'got {self.rope_scaling}' ) lowerCAmelCase = self.rope_scaling.get("""type""" , snake_case__ ) lowerCAmelCase = self.rope_scaling.get("""factor""" , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
362
'''simple docstring''' class __snake_case( _lowerCAmelCase ): '''simple docstring''' pass class __snake_case( _lowerCAmelCase ): '''simple docstring''' pass class __snake_case: '''simple docstring''' def __init__( self ) -> int: lowerCAmelCase = [ [], [], [], ] def __snake_case ( self , A_ , A_ ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(A_ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __snake_case ( self ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ) -> str: return "\n".join(f'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class __snake_case: '''simple docstring''' def __init__( self ) -> Dict: lowerCAmelCase = [] def __snake_case ( self , A_ ) -> None: if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(A_ ) def __snake_case ( self ) -> int: if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: lowerCAmelCase = min(self.queue ) self.queue.remove(A_ ) return data def __str__( self ) -> str: return str(self.queue ) def _snake_case ( ) -> Tuple: """simple docstring""" lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _snake_case ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
187
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCAmelCase__ = NewType("""DataClass""", Any) lowerCAmelCase__ = NewType("""DataClassType""", Any) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[str]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list ) -> Callable[[str], Any]: '''simple docstring''' A__ = {str(SCREAMING_SNAKE_CASE_ ): choice for choice in choices} return lambda SCREAMING_SNAKE_CASE_ : str_to_choice.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( *, SCREAMING_SNAKE_CASE_: Union[str, List[str]] = None , SCREAMING_SNAKE_CASE_: str = None , SCREAMING_SNAKE_CASE_: Any = dataclasses.MISSING , SCREAMING_SNAKE_CASE_: Callable[[], Any] = dataclasses.MISSING , SCREAMING_SNAKE_CASE_: dict = None , **SCREAMING_SNAKE_CASE_: str , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A__ = {} if aliases is not None: A__ = aliases if help is not None: A__ = help return dataclasses.field(metadata=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , default_factory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 42 def __init__( self , lowercase , **lowercase ) -> Tuple: '''simple docstring''' if "formatter_class" not in kwargs: A__ = ArgumentDefaultsHelpFormatter super().__init__(**lowercase ) if dataclasses.is_dataclass(lowercase ): A__ = [dataclass_types] A__ = list(lowercase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowercase ) @staticmethod def UpperCamelCase ( lowercase , lowercase ) -> Tuple: '''simple docstring''' A__ = F'--{field.name}' A__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowercase ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) A__ = kwargs.pop("aliases" , [] ) if isinstance(lowercase , lowercase ): A__ = [aliases] A__ = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(lowercase , "UnionType" ) and isinstance(lowercase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowercase ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F' Problem encountered in field \'{field.name}\'.' ) if type(lowercase ) not in field.type.__args__: # filter `str` in Union A__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A__ = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A__ = ( field.type.__args__[0] if isinstance(lowercase , field.type.__args__[1] ) else field.type.__args__[1] ) A__ = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A__ = {} if origin_type is Literal or (isinstance(field.type , lowercase ) and issubclass(field.type , lowercase )): if origin_type is Literal: A__ = field.type.__args__ else: A__ = [x.value for x in field.type] A__ = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: A__ = field.default else: A__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A__ = copy(lowercase ) # Hack because type=bool in argparse does not behave as we want. A__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A__ = default # This tells argparse we accept 0 or 1 value after --field_name A__ = "?" # This is the value that will get picked if we do --field_name (without value) A__ = True elif isclass(lowercase ) and issubclass(lowercase , lowercase ): A__ = field.type.__args__[0] A__ = "+" if field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() elif field.default is dataclasses.MISSING: A__ = True else: A__ = field.type if field.default is not dataclasses.MISSING: A__ = field.default elif field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() else: A__ = True parser.add_argument(lowercase , *lowercase , **lowercase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A__ = False parser.add_argument(F'--no_{field.name}' , action="store_false" , dest=field.name , **lowercase ) def UpperCamelCase ( self , lowercase ) -> Any: '''simple docstring''' if hasattr(lowercase , "_argument_group_name" ): A__ = self.add_argument_group(dtype._argument_group_name ) else: A__ = self try: A__ = get_type_hints(lowercase ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowercase ): A__ = ".".join(map(lowercase , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(lowercase ): if not field.init: continue A__ = type_hints[field.name] self._parse_dataclass_field(lowercase , lowercase ) def UpperCamelCase ( self , lowercase=None , lowercase=False , lowercase=True , lowercase=None , lowercase=None , ) -> Tuple[DataClass, ...]: '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A__ = [] if args_filename: args_files.append(Path(lowercase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A__ = ArgumentParser() args_file_parser.add_argument(lowercase , type=lowercase , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) A__ , A__ = args_file_parser.parse_known_args(args=lowercase ) A__ = vars(lowercase ).get(args_file_flag.lstrip("-" ) , lowercase ) if cmd_args_file_paths: args_files.extend([Path(lowercase ) for p in cmd_args_file_paths] ) A__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A__ = file_args + args if args is not None else file_args + sys.argv[1:] A__ , A__ = self.parse_known_args(args=lowercase ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(lowercase ) if f.init} A__ = {k: v for k, v in vars(lowercase ).items() if k in keys} for k in keys: delattr(lowercase , lowercase ) A__ = dtype(**lowercase ) outputs.append(lowercase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowercase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def UpperCamelCase ( self , lowercase , lowercase = False ) -> Tuple[DataClass, ...]: '''simple docstring''' A__ = set(args.keys() ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(lowercase ) if f.init} A__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A__ = dtype(**lowercase ) outputs.append(lowercase ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(lowercase )}' ) return tuple(lowercase ) def UpperCamelCase ( self , lowercase , lowercase = False ) -> Tuple[DataClass, ...]: '''simple docstring''' with open(Path(lowercase ) , encoding="utf-8" ) as open_json_file: A__ = json.loads(open_json_file.read() ) A__ = self.parse_dict(lowercase , allow_extra_keys=lowercase ) return tuple(lowercase ) def UpperCamelCase ( self , lowercase , lowercase = False ) -> Tuple[DataClass, ...]: '''simple docstring''' A__ = self.parse_dict(yaml.safe_load(Path(lowercase ).read_text() ) , allow_extra_keys=lowercase ) return tuple(lowercase )
68
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : int = IFInpaintingSuperResolutionPipeline __UpperCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __UpperCamelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {'latents'} def _snake_case (self ): return self._get_superresolution_dummy_components() def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case (self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case (self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _snake_case (self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case (self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case (self ): self._test_save_load_local() def _snake_case (self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
174
0
def __UpperCamelCase ( _A ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') _A = int(input('''Enter number: ''').strip()) print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
167
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class A ( unittest.TestCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__=7, UpperCamelCase__=3, UpperCamelCase__=30, UpperCamelCase__=400, UpperCamelCase__=True, UpperCamelCase__=None, UpperCamelCase__=True, UpperCamelCase__=[0.5, 0.5, 0.5], UpperCamelCase__=[0.5, 0.5, 0.5], UpperCamelCase__=True, UpperCamelCase__=1 / 255, UpperCamelCase__=True, ): """simple docstring""" lowerCAmelCase_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_pad def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=False ): """simple docstring""" if not batched: lowerCAmelCase_ = image_inputs[0] if isinstance(UpperCamelCase__, Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ = image.size else: lowerCAmelCase_ , lowerCAmelCase_ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase_ = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = self.size['''shortest_edge'''] else: lowerCAmelCase_ = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ = max(UpperCamelCase__, key=lambda UpperCamelCase__ : item[0] )[0] lowerCAmelCase_ = max(UpperCamelCase__, key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = DeformableDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__, '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_rescale''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_pad''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''size''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad, UpperCamelCase__ ) lowerCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''', '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''image_id''': 3_9769, '''annotations''': target} # encode them lowerCAmelCase_ = DeformableDetrImageProcessor() lowerCAmelCase_ = image_processing(images=UpperCamelCase__, annotations=UpperCamelCase__, return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCamelCase__, atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCamelCase__ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCamelCase__, atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCamelCase__ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCamelCase__ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCamelCase__ ) ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCamelCase__ ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCamelCase__ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''', '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} lowerCAmelCase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase_ = DeformableDetrImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase_ = image_processing(images=UpperCamelCase__, annotations=UpperCamelCase__, masks_path=UpperCamelCase__, return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCamelCase__, atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCamelCase__ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCamelCase__, atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCamelCase__ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCamelCase__ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCamelCase__ ) ) # verify masks lowerCAmelCase_ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item(), UpperCamelCase__ ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCamelCase__ ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCamelCase__ ) )
167
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : list[str] | None = None ): lowercase_ :Any = word_bank or [] # create a table lowercase_ :int = len(__lowerCamelCase ) + 1 lowercase_ :list[list[list[str]]] = [] for _ in range(__lowerCamelCase ): table.append([] ) # seed value lowercase_ :List[str] = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCamelCase )] == word: lowercase_ :list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCamelCase )]: combination.reverse() return table[len(__lowerCamelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
223
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : List[str] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase : Optional[int] ={ '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowerCAmelCase : List[Any] ={ '''RUCAIBox/mvp''': 1_024, } class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["input_ids", "attention_mask"] __A = MvpTokenizer def __init__( self : Optional[Any] , lowercase : Any=None , lowercase : List[Any]=None , lowercase : Dict=None , lowercase : int="replace" , lowercase : int="<s>" , lowercase : List[str]="</s>" , lowercase : Optional[Any]="</s>" , lowercase : List[str]="<s>" , lowercase : List[str]="<unk>" , lowercase : List[str]="<pad>" , lowercase : Tuple="<mask>" , lowercase : Tuple=False , lowercase : Dict=True , **lowercase : List[str] , ): """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) lowercase_ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :List[str] = getattr(lowercase , pre_tok_state.pop("type" ) ) lowercase_ :int = add_prefix_space lowercase_ :Optional[int] = pre_tok_class(**lowercase ) lowercase_ :Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ :List[Any] = "post_processor" lowercase_ :str = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: lowercase_ :Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ :int = tuple(state["sep"] ) if "cls" in state: lowercase_ :Any = tuple(state["cls"] ) lowercase_ :int = False if state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :Union[str, Any] = add_prefix_space lowercase_ :int = True if state.get("trim_offsets" , lowercase ) != trim_offsets: lowercase_ :Any = trim_offsets lowercase_ :int = True if changes_to_apply: lowercase_ :Tuple = getattr(lowercase , state.pop("type" ) ) lowercase_ :Any = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def lowercase__ ( self : Optional[int] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : int , lowercase : Dict ): """simple docstring""" lowercase_ :List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value lowercase_ :Union[str, Any] = value def lowercase__ ( self : Optional[Any] , *lowercase : List[Any] , **lowercase : Any ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Optional[Any] , *lowercase : Optional[int] , **lowercase : int ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Dict , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" lowercase_ :str = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def lowercase__ ( self : Tuple , lowercase : Dict , lowercase : int=None ): """simple docstring""" lowercase_ :List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : int , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" lowercase_ :Union[str, Any] = [self.sep_token_id] lowercase_ :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
223
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self : Any , snake_case : Any , snake_case : Optional[int]=13 , snake_case : List[str]=7 , snake_case : List[str]=True , snake_case : List[Any]=True , snake_case : int=True , snake_case : Tuple=True , snake_case : int=99 , snake_case : Any=16 , snake_case : Dict=36 , snake_case : Any=6 , snake_case : Dict=6 , snake_case : Dict=6 , snake_case : int=37 , snake_case : int="gelu" , snake_case : str=0.1 , snake_case : Any=0.1 , snake_case : Dict=512 , snake_case : List[Any]=16 , snake_case : Any=2 , snake_case : Any=0.02 , snake_case : Optional[int]=3 , snake_case : List[Any]=4 , snake_case : List[str]=None , ) -> Union[str, Any]: __UpperCAmelCase : str = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : int = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Optional[int] = embedding_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_hidden_groups __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : Union[str, Any] = scope def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : int = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Dict = None if self.use_token_type_ids: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : int = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase__ ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : int ) -> Optional[int]: __UpperCAmelCase : List[Any] = AlbertModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Tuple = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) __UpperCAmelCase : List[str] = model(snake_case , token_type_ids=snake_case ) __UpperCAmelCase : str = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : List[str] , snake_case : str , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : Optional[int] ) -> Optional[int]: __UpperCAmelCase : str = AlbertForPreTraining(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , sentence_order_label=snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase__ ( self : Dict , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Any , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Any , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Dict = AlbertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , snake_case : Tuple , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple ) -> int: __UpperCAmelCase : Optional[Any] = AlbertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Optional[Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Tuple , snake_case : List[str] , snake_case : Dict , snake_case : Optional[int] , snake_case : Dict , snake_case : int , snake_case : Optional[int] , snake_case : Optional[Any] ) -> Any: __UpperCAmelCase : Optional[int] = self.num_labels __UpperCAmelCase : Any = AlbertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : str , snake_case : Dict , snake_case : Union[str, Any] , snake_case : List[str] ) -> int: __UpperCAmelCase : Optional[int] = self.num_labels __UpperCAmelCase : Optional[int] = AlbertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , snake_case : Tuple , snake_case : List[Any] , snake_case : Dict , snake_case : int , snake_case : List[Any] , snake_case : List[Any] , snake_case : Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[int] = self.num_choices __UpperCAmelCase : List[Any] = AlbertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Any = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Any = True def lowerCamelCase__ ( self : Optional[int] , snake_case : Any , snake_case : Dict , snake_case : Tuple=False ) -> Optional[Any]: __UpperCAmelCase : Any = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): __UpperCAmelCase : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case ) __UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def lowerCamelCase__ ( self : Dict ) -> int: __UpperCAmelCase : List[Any] = AlbertModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Any ) -> Any: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> str: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def lowerCamelCase__ ( self : List[str] ) -> Tuple: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def lowerCamelCase__ ( self : str ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Tuple = type self.model_tester.create_and_check_model(*snake_case ) @slow def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = AlbertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = AlbertModel.from_pretrained('''albert-base-v2''' ) __UpperCAmelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCAmelCase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(snake_case , attention_mask=snake_case )[0] __UpperCAmelCase : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case ) __UpperCAmelCase : int = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1E-4 ) )
240
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class a ( _a ): """simple docstring""" def __init__( self : Optional[Any] ) -> int: # test for the above condition self.test() def lowerCamelCase__ ( self : Dict ) -> List[str]: __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Any = False while not completed: if counter == 1: self.reset() __UpperCAmelCase : Optional[int] = self.advance() if not self.does_advance(snake_case ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = self.update(snake_case ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__ ( self : Optional[int] , snake_case : int ) -> Optional[int]: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__ ( self : List[Any] , snake_case : int ) -> int: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__ ( self : int ) -> Optional[int]: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__ ( self : int ) -> Tuple: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__ ( self : Union[str, Any] , snake_case : List[Any]=False ) -> Any: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class a ( _a ): """simple docstring""" def __init__( self : int , snake_case : List[int] ) -> Tuple: super(snake_case , self ).__init__() if not isinstance(snake_case , snake_case ) or len(snake_case ) == 0: raise ValueError(f'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(snake_case , snake_case ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) __UpperCAmelCase : Dict = token_ids __UpperCAmelCase : Tuple = len(self.token_ids ) __UpperCAmelCase : List[str] = -1 # the index of the currently fulfilled step __UpperCAmelCase : int = False def lowerCamelCase__ ( self : List[str] ) -> str: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self : Any , snake_case : int ) -> Optional[int]: if not isinstance(snake_case , snake_case ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(snake_case )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self : Union[str, Any] , snake_case : int ) -> Optional[int]: if not isinstance(snake_case , snake_case ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(snake_case )}' ) __UpperCAmelCase : Any = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : Tuple = False if self.does_advance(snake_case ): self.fulfilled_idx += 1 __UpperCAmelCase : Union[str, Any] = True if self.fulfilled_idx == (self.seqlen - 1): __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Union[str, Any] = completed else: # failed to make progress. __UpperCAmelCase : List[str] = True self.reset() return stepped, completed, reset def lowerCamelCase__ ( self : int ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Union[str, Any] = 0 def lowerCamelCase__ ( self : str ) -> Optional[int]: return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase__ ( self : int , snake_case : Dict=False ) -> List[str]: __UpperCAmelCase : List[str] = PhrasalConstraint(self.token_ids ) if stateful: __UpperCAmelCase : int = self.seqlen __UpperCAmelCase : Optional[Any] = self.fulfilled_idx __UpperCAmelCase : List[Any] = self.completed return new_constraint class a : """simple docstring""" def __init__( self : List[str] , snake_case : List[List[int]] , snake_case : Dict=True ) -> Any: __UpperCAmelCase : List[Any] = max([len(snake_case ) for one in nested_token_ids] ) __UpperCAmelCase : Union[str, Any] = {} for token_ids in nested_token_ids: __UpperCAmelCase : List[str] = root for tidx, token_id in enumerate(snake_case ): if token_id not in level: __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = level[token_id] if no_subsets and self.has_subsets(snake_case , snake_case ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f' {nested_token_ids}.' ) __UpperCAmelCase : Tuple = root def lowerCamelCase__ ( self : Dict , snake_case : List[str] ) -> List[Any]: __UpperCAmelCase : Dict = self.trie for current_token in current_seq: __UpperCAmelCase : List[str] = start[current_token] __UpperCAmelCase : str = list(start.keys() ) return next_tokens def lowerCamelCase__ ( self : Optional[Any] , snake_case : List[str] ) -> Any: __UpperCAmelCase : Optional[Any] = self.next_tokens(snake_case ) return len(snake_case ) == 0 def lowerCamelCase__ ( self : Union[str, Any] , snake_case : int ) -> Optional[int]: __UpperCAmelCase : str = list(root.values() ) if len(snake_case ) == 0: return 1 else: return sum([self.count_leaves(snake_case ) for nn in next_nodes] ) def lowerCamelCase__ ( self : Optional[int] , snake_case : int , snake_case : Dict ) -> str: __UpperCAmelCase : Dict = self.count_leaves(snake_case ) return len(snake_case ) != leaf_count class a ( _a ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case : List[List[int]] ) -> str: super(snake_case , self ).__init__() if not isinstance(snake_case , snake_case ) or len(snake_case ) == 0: raise ValueError(f'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(snake_case , snake_case ) for token_ids in nested_token_ids ): raise ValueError(f'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(snake_case , snake_case ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) __UpperCAmelCase : Optional[int] = DisjunctiveTrie(snake_case ) __UpperCAmelCase : Tuple = nested_token_ids __UpperCAmelCase : List[Any] = self.trie.max_height __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Union[str, Any] = False def lowerCamelCase__ ( self : int ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.trie.next_tokens(self.current_seq ) if len(snake_case ) == 0: return None else: return token_list def lowerCamelCase__ ( self : Tuple , snake_case : int ) -> Dict: if not isinstance(snake_case , snake_case ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(snake_case )}' ) __UpperCAmelCase : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase__ ( self : Any , snake_case : int ) -> Tuple: if not isinstance(snake_case , snake_case ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(snake_case )}' ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : str = False if self.does_advance(snake_case ): self.current_seq.append(snake_case ) __UpperCAmelCase : int = True else: __UpperCAmelCase : Optional[Any] = True self.reset() __UpperCAmelCase : Optional[Any] = self.trie.reached_leaf(self.current_seq ) __UpperCAmelCase : Tuple = completed return stepped, completed, reset def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = [] def lowerCamelCase__ ( self : Tuple ) -> Any: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase__ ( self : Any , snake_case : Optional[int]=False ) -> Tuple: __UpperCAmelCase : str = DisjunctiveConstraint(self.token_ids ) if stateful: __UpperCAmelCase : Tuple = self.seqlen __UpperCAmelCase : Dict = self.current_seq __UpperCAmelCase : str = self.completed return new_constraint class a : """simple docstring""" def __init__( self : Union[str, Any] , snake_case : List[Constraint] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = constraints # max # of steps required to fulfill a given constraint __UpperCAmelCase : int = max([c.seqlen for c in constraints] ) __UpperCAmelCase : int = len(snake_case ) __UpperCAmelCase : Optional[int] = False self.init_state() def lowerCamelCase__ ( self : List[str] ) -> List[str]: __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[str] = None __UpperCAmelCase : str = [constraint.copy(stateful=snake_case ) for constraint in self.constraints] def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase : Dict = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase__ ( self : Tuple ) -> int: __UpperCAmelCase : int = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __UpperCAmelCase : Optional[int] = constraint.advance() if isinstance(snake_case , snake_case ): token_list.append(snake_case ) elif isinstance(snake_case , snake_case ): token_list.extend(snake_case ) else: __UpperCAmelCase : Optional[Any] = self.inprogress_constraint.advance() if isinstance(snake_case , snake_case ): token_list.append(snake_case ) elif isinstance(snake_case , snake_case ): token_list.extend(snake_case ) if len(snake_case ) == 0: return None else: return token_list def lowerCamelCase__ ( self : List[str] , snake_case : Optional[List[int]] ) -> Optional[int]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __UpperCAmelCase , __UpperCAmelCase : Dict = self.add(snake_case ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase__ ( self : List[str] , snake_case : int ) -> List[str]: if not isinstance(snake_case , snake_case ): raise ValueError(f'`token_id` should be an `int`, but is `{token_id}`.' ) __UpperCAmelCase , __UpperCAmelCase : str = False, False if self.completed: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : str = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = self.inprogress_constraint.update(snake_case ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=snake_case ) ) __UpperCAmelCase : Optional[Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __UpperCAmelCase : str = None if len(self.pending_constraints ) == 0: # we're done! __UpperCAmelCase : Optional[int] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(snake_case ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = pending_constraint.update(snake_case ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(snake_case ) __UpperCAmelCase : Tuple = None if not complete and stepped: __UpperCAmelCase : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __UpperCAmelCase : Optional[int] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __UpperCAmelCase : Any = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase__ ( self : int , snake_case : Optional[int]=True ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __UpperCAmelCase : str = [ constraint.copy(stateful=snake_case ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __UpperCAmelCase : Union[str, Any] = self.inprogress_constraint.copy(stateful=snake_case ) __UpperCAmelCase : Tuple = [constraint.copy() for constraint in self.pending_constraints] return new_state
240
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=7_68 ) -> Any: super().__init__(__lowerCamelCase ) a = proj_size a = CLIPVisionModel(__lowerCamelCase ) a = PaintByExampleMapper(__lowerCamelCase ) a = nn.LayerNorm(config.hidden_size ) a = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling a = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=False ) -> Tuple: a = self.model(pixel_values=__lowerCamelCase ) a = clip_output.pooler_output a = self.mapper(latent_states[:, None] ) a = self.final_layer_norm(__lowerCamelCase ) a = self.proj_out(__lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class snake_case__ (nn.Module ): """simple docstring""" def __init__( self : Dict , __lowerCamelCase : List[Any] ) -> Any: super().__init__() a = (config.num_hidden_layers + 1) // 5 a = config.hidden_size a = 1 a = nn.ModuleList( [ BasicTransformerBlock(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , activation_fn="gelu" , attention_bias=__lowerCamelCase ) for _ in range(__lowerCamelCase ) ] ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : int ) -> Any: for block in self.blocks: a = block(__lowerCamelCase ) return hidden_states
107
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Dict = {'vocab_file': 'spiece.model'} __lowerCAmelCase : Optional[int] = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } __lowerCAmelCase : Dict = {'bert_for_seq_generation': 512} class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str="<s>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<::::>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[str] , ) -> None: a = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def __UpperCAmelCase ( self : Dict ) -> Dict: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: a = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Optional[Any]: a = self.__dict__.copy() a = None return state def __setstate__( self : Optional[Any] , __lowerCamelCase : Dict ) -> Optional[Any]: a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] ) -> int: return self.sp_model.piece_to_id(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ) -> Any: a = self.sp_model.IdToPiece(__lowerCamelCase ) return token def __UpperCAmelCase ( self : Any , __lowerCamelCase : Dict ) -> Any: a = [] a = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token a = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __UpperCAmelCase ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
107
1
from __future__ import annotations import math def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> int: if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, snake_case_, snake_case_, snake_case_ ), minimax(depth + 1, node_index * 2 + 1, snake_case_, snake_case_, snake_case_ ), ) if is_max else min( minimax(depth + 1, node_index * 2, snake_case_, snake_case_, snake_case_ ), minimax(depth + 1, node_index * 2 + 1, snake_case_, snake_case_, snake_case_ ), ) ) def _UpperCamelCase ( ) -> None: __UpperCAmelCase : int = [90, 23, 6, 33, 21, 65, 123, 3_4423] __UpperCAmelCase : Any = math.log(len(snake_case_ ), 2 ) print(f'''Optimal value : {minimax(0, 0, snake_case_, snake_case_, snake_case_ )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
368
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __snake_case : def __init__( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=1_3 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=9_9 , __lowerCAmelCase : Dict=[1, 1, 2] , __lowerCAmelCase : Union[str, Any]=1 , __lowerCAmelCase : Dict=3_2 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : List[str]=8 , __lowerCAmelCase : Tuple=3_7 , __lowerCAmelCase : List[Any]="gelu_new" , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : List[Any]=5_1_2 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : int=3 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Optional[int]=False , ): """simple docstring""" _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Dict = seq_length _lowerCamelCase : int = is_training _lowerCamelCase : Dict = use_input_mask _lowerCamelCase : Dict = use_token_type_ids _lowerCamelCase : Tuple = use_labels _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Optional[Any] = block_sizes _lowerCamelCase : List[Any] = num_decoder_layers _lowerCamelCase : List[Any] = d_model _lowerCamelCase : Any = n_head _lowerCamelCase : List[str] = d_head _lowerCamelCase : Optional[int] = d_inner _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : List[str] = hidden_dropout _lowerCamelCase : Any = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : Dict = type_vocab_size _lowerCamelCase : Tuple = 2 _lowerCamelCase : Dict = num_labels _lowerCamelCase : Tuple = num_choices _lowerCamelCase : int = scope _lowerCamelCase : Optional[int] = initializer_std # Used in the tests to check the size of the first attention layer _lowerCamelCase : Optional[Any] = n_head # Used in the tests to check the size of the first hidden state _lowerCamelCase : Optional[Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions _lowerCamelCase : Any = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: _lowerCamelCase : List[str] = self.num_hidden_layers + 2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : str = None if self.use_input_mask: _lowerCamelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = None if self.use_token_type_ids: _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = None _lowerCamelCase : Optional[Any] = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Any = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , ): """simple docstring""" _lowerCamelCase : int = TFFunnelModel(config=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : List[Any] = [input_ids, input_mask] _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : str = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = TFFunnelModel(config=__lowerCAmelCase ) _lowerCamelCase : int = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _lowerCamelCase : Tuple = False _lowerCamelCase : Tuple = TFFunnelModel(config=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , ): """simple docstring""" _lowerCamelCase : Tuple = TFFunnelBaseModel(config=__lowerCAmelCase ) _lowerCamelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Any = [input_ids, input_mask] _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) _lowerCamelCase : Any = False _lowerCamelCase : Optional[Any] = TFFunnelBaseModel(config=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) _lowerCamelCase : Any = False _lowerCamelCase : List[str] = TFFunnelBaseModel(config=__lowerCAmelCase ) _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , ): """simple docstring""" _lowerCamelCase : Tuple = TFFunnelForPreTraining(config=__lowerCAmelCase ) _lowerCamelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , ): """simple docstring""" _lowerCamelCase : str = TFFunnelForMaskedLM(config=__lowerCAmelCase ) _lowerCamelCase : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , ): """simple docstring""" _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : Optional[Any] = TFFunnelForSequenceClassification(config=__lowerCAmelCase ) _lowerCamelCase : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : Any = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , ): """simple docstring""" _lowerCamelCase : str = self.num_choices _lowerCamelCase : Any = TFFunnelForMultipleChoice(config=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase : str = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase : Tuple = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase : List[Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _lowerCamelCase : Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.num_labels _lowerCamelCase : Optional[int] = TFFunnelForTokenClassification(config=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , ): """simple docstring""" _lowerCamelCase : Dict = TFFunnelForQuestionAnswering(config=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : str = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Dict = config_and_inputs _lowerCamelCase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Dict = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case__ : str = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case__ : Union[str, Any] = False snake_case__ : Any = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = TFFunnelModelTester(self ) _lowerCamelCase : Dict = ConfigTester(self , config_class=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) @require_tf class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Optional[int] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case__ : Union[str, Any] = False snake_case__ : int = False def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = TFFunnelModelTester(self , base=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase )
72
"""simple docstring""" lowerCAmelCase__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def snake_case_ ( A_ : dict, A_ : int, A_ : int ): '''simple docstring''' _lowerCamelCase : List[str] = set() # keep track of all the paths to be checked _lowerCamelCase : str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCamelCase : str = queue.pop(0 ) # get the last node from the path _lowerCamelCase : List[Any] = path[-1] if node not in explored: _lowerCamelCase : Union[str, Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCamelCase : Union[str, Any] = list(A_ ) new_path.append(A_ ) queue.append(A_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A_ ) # in case there's no path between the 2 nodes return [] def snake_case_ ( A_ : dict, A_ : int, A_ : Dict ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCamelCase : Optional[int] = [start] _lowerCamelCase : int = set(A_ ) # Keep tab on distances from `start` node. _lowerCamelCase : int = {start: 0, target: -1} while queue: _lowerCamelCase : Optional[Any] = queue.pop(0 ) if node == target: _lowerCamelCase : Any = ( dist[node] if dist[target] == -1 else min(dist[target], dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A_ ) queue.append(A_ ) _lowerCamelCase : Any = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
72
1
from __future__ import annotations snake_case_ = '''#''' class SCREAMING_SNAKE_CASE__ : def __init__( self): lowercase__ : dict = {} def snake_case_ ( self , a): lowercase__ : List[str] = self._trie for char in text: if char not in trie: lowercase__ : Dict = {} lowercase__ : Optional[int] = trie[char] lowercase__ : Optional[Any] = True def snake_case_ ( self , a): lowercase__ : Union[str, Any] = self._trie for char in prefix: if char in trie: lowercase__ : Any = trie[char] else: return [] return self._elements(a) def snake_case_ ( self , a): lowercase__ : Any = [] for c, v in d.items(): lowercase__ : List[Any] = [' '] if c == END else [(c + s) for s in self._elements(a)] result.extend(a) return tuple(a) snake_case_ = Trie() snake_case_ = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : Any = trie.find_word(SCREAMING_SNAKE_CASE_ ) return tuple(string + word for word in suffixes ) def snake_case__ ( ): '''simple docstring''' print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
216
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case__ ( SCREAMING_SNAKE_CASE_ : BertModel , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : Tuple = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') lowercase__ : Dict = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE_ : str ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return f"""bert/{name}""" def create_tf_var(SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : tf.Session ): lowercase__ : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ : List[str] = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ : Tuple = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ : str = torch_tensor.T lowercase__ : Any = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[int] = session.run(SCREAMING_SNAKE_CASE_ ) print(f"""Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) lowercase__ : Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory in which to save tensorflow model' ) lowercase__ : List[str] = parser.parse_args(SCREAMING_SNAKE_CASE_ ) lowercase__ : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
216
1
from scipy.stats import spearmanr import datasets _lowerCAmelCase : Optional[int] = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _lowerCAmelCase : Union[str, Any] = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _lowerCAmelCase : Tuple = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Tuple , snake_case :int=False ): '''simple docstring''' A_ : List[Any] = spearmanr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
300
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : List[str] = {"""tokenizer_file""": """tokenizer.json"""} lowercase__ : List[str] = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] _SCREAMING_SNAKE_CASE = None def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Any=False , **SCREAMING_SNAKE_CASE_ : Any , ): super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: lowerCAmelCase_ : str = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) lowerCAmelCase_ : str = add_prefix_space lowerCAmelCase_ : str = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = add_prefix_space def SCREAMING_SNAKE_CASE__ ( self : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : List[Any] = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ' pretokenized inputs.' ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Any , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : List[Any] = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ' pretokenized inputs.' ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): lowerCAmelCase_ : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : "Conversation" ): lowerCAmelCase_ : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: lowerCAmelCase_ : Any = input_ids[-self.model_max_length :] return input_ids
224
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE__ = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } SCREAMING_SNAKE_CASE__ = { "facebook/bart-base": 1_0_2_4, "facebook/bart-large": 1_0_2_4, "facebook/bart-large-mnli": 1_0_2_4, "facebook/bart-large-cnn": 1_0_2_4, "facebook/bart-large-xsum": 1_0_2_4, "yjernite/bart_eli5": 1_0_2_4, } @lru_cache() def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowercase_ = bs[:] lowercase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 lowercase_ = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' lowercase_ = set() lowercase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ = char return pairs class __lowerCamelCase ( snake_case__ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else bos_token lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else eos_token lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else sep_token lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else cls_token lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else unk_token lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: lowercase_ = json.load(UpperCAmelCase_ ) lowercase_ = {v: k for k, v in self.encoder.items()} lowercase_ = errors # how to handle errors in decoding lowercase_ = bytes_to_unicode() lowercase_ = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding="utf-8" ) as merges_handle: lowercase_ = merges_handle.read().split("\n" )[1:-1] lowercase_ = [tuple(merge.split() ) for merge in bpe_merges] lowercase_ = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowercase_ = {} lowercase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase_ = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.encoder ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase_ = tuple(UpperCAmelCase_ ) lowercase_ = get_pairs(UpperCAmelCase_ ) if not pairs: return token while True: lowercase_ = min(UpperCAmelCase_ , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase_ = bigram lowercase_ = [] lowercase_ = 0 while i < len(UpperCAmelCase_ ): try: lowercase_ = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ = j if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ = tuple(UpperCAmelCase_ ) lowercase_ = new_word if len(UpperCAmelCase_ ) == 1: break else: lowercase_ = get_pairs(UpperCAmelCase_ ) lowercase_ = " ".join(UpperCAmelCase_ ) lowercase_ = word return word def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for token in re.findall(self.pat , UpperCAmelCase_ ): lowercase_ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_ ).split(" " ) ) return bpe_tokens def A__ ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.decoder.get(UpperCAmelCase_ ) def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = "".join(UpperCAmelCase_ ) lowercase_ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Dict: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase_ = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + "\n" ) lowercase_ = 0 with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) lowercase_ = token_index writer.write(" ".join(UpperCAmelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[str]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ = [self.cls_token_id] lowercase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[Any]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self , UpperCAmelCase , UpperCAmelCase=False , **UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_ ) > 0 and not text[0].isspace()): lowercase_ = " " + text return (text, kwargs)
365
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[int]: try: __lowerCamelCase : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase : List[Any] = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase : Any = strtobool(lowerCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value a =parse_flag_from_env("""RUN_SLOW""", default=False) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: return unittest.skip('Test was skipped' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: return unittest.skipUnless(_run_slow_tests , 'test is slow' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]: return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]: return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]: return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=None , lowerCamelCase__=None ) -> Any: if test_case is None: return partial(lowerCamelCase__ , version=lowerCamelCase__ ) return unittest.skipUnless(is_torch_version('>=' , lowerCamelCase__ ) , F"test requires torch version >= {version}" )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(lowerCamelCase__ ) a =( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(lowerCamelCase__ ) class A_ ( unittest.TestCase ): _UpperCAmelCase : Union[str, Any] = True @classmethod def lowerCAmelCase ( cls : int): __lowerCamelCase : List[Any] = tempfile.mkdtemp() @classmethod def lowerCAmelCase ( cls : int): if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def lowerCAmelCase ( self : Any): if self.clear_on_setup: for path in Path(self.tmpdir).glob('**/*'): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(SCREAMING_SNAKE_CASE__) class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[Any]): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Union[mock.Mock, List[mock.Mock]]): __lowerCamelCase : Tuple = mocks if isinstance(SCREAMING_SNAKE_CASE__ ,(tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: __lowerCamelCase : int = AcceleratorState() __lowerCamelCase : Optional[int] = tensor[None].clone().to(state.device ) __lowerCamelCase : Dict = gather(lowerCamelCase__ ).cpu() __lowerCamelCase : Union[str, Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCamelCase__ ): return False return True class A_ : def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : Union[str, Any] = returncode __lowerCamelCase : List[str] = stdout __lowerCamelCase : Tuple = stderr async def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: while True: __lowerCamelCase : str = await stream.readline() if line: callback(lowerCamelCase__ ) else: break async def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False ) -> _RunOutput: if echo: print('\nRunning: ' , ' '.join(lowerCamelCase__ ) ) __lowerCamelCase : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase : int = [] __lowerCamelCase : str = [] def tee(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="" ): __lowerCamelCase : Any = line.decode('utf-8' ).rstrip() sink.append(lowerCamelCase__ ) if not quiet: print(lowerCamelCase__ , lowerCamelCase__ , file=lowerCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stderr , label='stderr:' ) ) ), ] , timeout=lowerCamelCase__ , ) return _RunOutput(await p.wait() , lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=1_8_0 , lowerCamelCase__=False , lowerCamelCase__=True ) -> _RunOutput: __lowerCamelCase : Union[str, Any] = asyncio.get_event_loop() __lowerCamelCase : str = loop.run_until_complete( _stream_subprocess(lowerCamelCase__ , env=lowerCamelCase__ , stdin=lowerCamelCase__ , timeout=lowerCamelCase__ , quiet=lowerCamelCase__ , echo=lowerCamelCase__ ) ) __lowerCamelCase : Union[str, Any] = ' '.join(lowerCamelCase__ ) if result.returncode > 0: __lowerCamelCase : Optional[int] = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class A_ ( SCREAMING_SNAKE_CASE ): pass def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=False ) -> int: try: __lowerCamelCase : List[str] = subprocess.check_output(lowerCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCamelCase__ , 'decode' ): __lowerCamelCase : str = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(lowerCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}" ) from e
73
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(self , **_lowerCamelCase ) a :Union[str, Any] = repo_info a :int = token a :int = None def SCREAMING_SNAKE_CASE__ ( self ): if self.dir_cache is None: a :Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a :List[Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_lowerCamelCase ): {'''name''': str(_lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , **_lowerCamelCase , ): if not isinstance(self.repo_info , _lowerCamelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) a :Optional[int] = hf_hub_url(self.repo_info.id , _lowerCamelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCamelCase , mode=_lowerCamelCase , headers=get_authentication_headers_for_url(_lowerCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , **_lowerCamelCase ): self._get_dirs() a :Union[str, Any] = self._strip_protocol(_lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ): self._get_dirs() a :str = PurePosixPath(path.strip('''/''' ) ) a :Tuple = {} for p, f in self.dir_cache.items(): a :Optional[int] = PurePosixPath(p.strip('''/''' ) ) a :str = p.parent if root == path: a :List[str] = f a :Any = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
94
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Dict = None __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Dict = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Any = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Union[str, Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ["""input_ids""", """attention_mask"""] UpperCamelCase_ = TaTokenizer UpperCamelCase_ = [] def __init__( self : int , UpperCamelCase__ : str=None , UpperCamelCase__ : int=None , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : Union[str, Any]="<pad>" , UpperCamelCase__ : Dict=100 , UpperCamelCase__ : Tuple=None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE : Union[str, Any] = [f"""<extra_id_{i}>""" for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens SCREAMING_SNAKE_CASE : List[Any] = len(set(filter(lambda UpperCamelCase__ : bool('''extra_id_''' in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : List[Any] = vocab_file SCREAMING_SNAKE_CASE : Any = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : int = extra_ids @staticmethod def __A ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: SCREAMING_SNAKE_CASE : Optional[Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase__ , ) return max_model_length def __A ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : str = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def __A ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: SCREAMING_SNAKE_CASE : str = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self : List[str] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Any ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(r'''<extra_id_\d+>''' , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self : List[str] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
258
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __UpperCamelCase : Optional[int] = parser.parse_args() if args.model_type == "bert": __UpperCamelCase : Optional[int] = BertForMaskedLM.from_pretrained(args.model_name) __UpperCamelCase : Optional[int] = 'bert' else: raise ValueError('args.model_type should be "bert".') __UpperCamelCase : List[Any] = model.state_dict() __UpperCamelCase : Union[str, Any] = {} for w in ["word_embeddings", "position_embeddings"]: __UpperCamelCase : List[Any] = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __UpperCamelCase : Optional[int] = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] __UpperCamelCase : Any = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __UpperCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __UpperCamelCase : Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __UpperCamelCase : Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __UpperCamelCase : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __UpperCamelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __UpperCamelCase : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __UpperCamelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __UpperCamelCase : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __UpperCamelCase : List[str] = state_dict['cls.predictions.decoder.weight'] __UpperCamelCase : int = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: __UpperCamelCase : List[str] = state_dict[f"""cls.predictions.transform.dense.{w}"""] __UpperCamelCase : List[Any] = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
258
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __A : str = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __UpperCamelCase ( _A : Tuple ) ->Dict: """simple docstring""" if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): lowerCamelCase_ =[image] lowerCamelCase_ =[trans(img.convert("""RGB""" ) ) for img in image] lowerCamelCase_ =torch.stack(lowerCAmelCase__ ) return image class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[Any]: super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase_ =DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Tuple: if strength < 0 or strength > 1: raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}' ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int: # get the original timestep using init_timestep lowerCamelCase_ =min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =max(num_inference_steps - init_timestep , 0 ) lowerCamelCase_ =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None )-> Tuple: if not isinstance(SCREAMING_SNAKE_CASE_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(SCREAMING_SNAKE_CASE_ )}' ) lowerCamelCase_ =image.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) lowerCamelCase_ =init_latents.shape lowerCamelCase_ =randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) # get latents print("""add noise to latents at timestep""" , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =init_latents return latents @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.8 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , )-> Union[ImagePipelineOutput, Tuple]: self.check_inputs(SCREAMING_SNAKE_CASE_ ) # 2. Preprocess image lowerCamelCase_ =preprocess(SCREAMING_SNAKE_CASE_ ) # 3. set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=self.device ) lowerCamelCase_ =self.get_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device ) lowerCamelCase_ =timesteps[:1].repeat(SCREAMING_SNAKE_CASE_ ) # 4. Prepare latent variables lowerCamelCase_ =self.prepare_latents(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.unet.dtype , self.device , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =latents # 5. Denoising loop for t in self.progress_bar(SCREAMING_SNAKE_CASE_ ): # 1. predict noise model_output lowerCamelCase_ =self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase_ =self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , use_clipped_model_output=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ).prev_sample lowerCamelCase_ =(image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ =self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
154
from torch import nn def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'Unsupported activation function: {act_fn}' )
147
0
import mpmath # for roots of unity import numpy as np class __magic_name__ : def __init__( self , _lowercase=None , _lowercase=None )-> Optional[int]: # Input as list UpperCamelCase_ = list(poly_a or [0] )[:] UpperCamelCase_ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCamelCase_ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCamelCase_ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCamelCase_ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCamelCase_ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCamelCase_ = self.__multiply() def UpperCAmelCase_ ( self , _lowercase )-> str: UpperCamelCase_ = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(_lowercase ) <= 1: return dft[0] # UpperCamelCase_ = self.c_max_length // 2 while next_ncol > 0: UpperCamelCase_ = [[] for i in range(_lowercase )] UpperCamelCase_ = self.root**next_ncol # First half of next step UpperCamelCase_ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowercase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCamelCase_ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowercase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCamelCase_ = new_dft UpperCamelCase_ = next_ncol // 2 return dft[0] def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = self.__dft("A" ) UpperCamelCase_ = self.__dft("B" ) UpperCamelCase_ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCamelCase_ = 2 while next_ncol <= self.c_max_length: UpperCamelCase_ = [[] for i in range(_lowercase )] UpperCamelCase_ = self.root ** (next_ncol // 2) UpperCamelCase_ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCamelCase_ = new_inverse_c next_ncol *= 2 # Unpack UpperCamelCase_ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self )-> List[str]: UpperCamelCase_ = "A = " + " + ".join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCamelCase_ = "B = " + " + ".join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCamelCase_ = "A*B = " + " + ".join( F"{coef}*x^{i}" for coef, i in enumerate(self.product ) ) return F"{a}\n{b}\n{c}" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
60
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __magic_name__ : def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=4 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.1 , _lowercase=True , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , )-> str: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_multiple_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = weight_tying UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self )-> int: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ = GPTNeoXJapaneseModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase ) UpperCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Dict: UpperCamelCase_ = True UpperCamelCase_ = GPTNeoXJapaneseModel(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase )-> List[str]: UpperCamelCase_ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Dict: UpperCamelCase_ = True UpperCamelCase_ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , output_hidden_states=_lowercase ) UpperCamelCase_ = output_from_no_past["hidden_states"][0] UpperCamelCase_ = model( _lowercase , attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCamelCase_ :str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCamelCase_ :int = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCamelCase_ :int = False UpperCamelCase_ :Dict = False UpperCamelCase_ :List[str] = False UpperCamelCase_ :int = False def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = GPTNeoXJapaneseModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Any: # This regression test was failing with PyTorch < 1.3 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase_ = None self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowercase ) @slow def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = "abeja/gpt-neox-japanese-2.7b" UpperCamelCase_ = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] UpperCamelCase_ = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] UpperCamelCase_ = GPTNeoXJapaneseTokenizer.from_pretrained(_lowercase ) UpperCamelCase_ = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowercase ) UpperCamelCase_ = [] for prompt in prompts: UpperCamelCase_ = tokenizer(_lowercase , return_tensors="pt" ).input_ids UpperCamelCase_ = model.generate(_lowercase , max_length=50 ) UpperCamelCase_ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) predicted_outputs += generated_string self.assertListEqual(_lowercase , _lowercase )
60
1
import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase__ = open # noqa: we just need to have a builtin inside this module to test it properly
68
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
0
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> List[str]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(__a ) def snake_case_ (self ) -> Any: UpperCamelCase = self._create_example_records() UpperCamelCase = Dataset.from_list(__a ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(__a ): self.assertDictEqual(__a , example_records[i] ) def snake_case_ (self ) -> Tuple: UpperCamelCase = self._create_example_records() UpperCamelCase = Dataset.from_list(__a ) UpperCamelCase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def snake_case_ (self ) -> str: # checks what happens with missing columns UpperCamelCase = [{"col_1": 1}, {"col_2": "x"}] UpperCamelCase = Dataset.from_list(__a ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def snake_case_ (self ) -> Union[str, Any]: # checks if the type can be inferred from the second record UpperCamelCase = [{"col_1": []}, {"col_1": [1, 2]}] UpperCamelCase = Dataset.from_list(__a ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def snake_case_ (self ) -> List[str]: UpperCamelCase = Dataset.from_list([] ) self.assertEqual(len(__a ) , 0 ) self.assertListEqual(dset.column_names , [] )
244
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = "visual_bert" def __init__(self , __a=3_05_22 , __a=7_68 , __a=5_12 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=2 , __a=0.02 , __a=1e-1_2 , __a=False , __a=True , __a=1 , __a=0 , __a=2 , **__a , ) -> int: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = visual_embedding_dim UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = bypass_transformer UpperCamelCase = special_visual_initialize
244
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger() @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =field(default_factory=__snake_case ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : str = len(list(m.modules() ) ) == 1 or isinstance(a_ , nn.Convad ) or isinstance(a_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__(self , a_ ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =1 lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =True def __call__(self , a_ ): '''simple docstring''' __snake_case : int = Tracker(self.dest )(a_ ).parametrized __snake_case : Optional[int] = Tracker(self.src )(a_ ).parametrized __snake_case : Union[str, Any] = list(filter(lambda a_ : type(a_ ) not in self.src_skip , a_ ) ) __snake_case : Dict = list(filter(lambda a_ : type(a_ ) not in self.dest_skip , a_ ) ) if len(a_ ) != len(a_ ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(a_ )} operations while""" f""" destination module has {len(a_ )}.""" ) for dest_m, src_m in zip(a_ , a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' super().__init__() __snake_case : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f"""Unexpected layer name {k}""" __snake_case : Optional[int] = len(a_ ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) __snake_case : List[Any] = nn.ModuleDict(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return get_trunk_forward_outputs( a_ , out_feat_keys=a_ , feature_blocks=self._feature_blocks , ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__(self , a_ ): '''simple docstring''' if x not in self: __snake_case : Tuple = self.convert_name_to_timm(a_ ) __snake_case : str = partial(lambda: (timm.create_model(a_ , pretrained=a_ ).eval(), None) ) else: __snake_case : Optional[int] = super().__getitem__(a_ ) return val class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __getitem__(self , a_ ): '''simple docstring''' if "seer" in x and "in1k" not in x: __snake_case : List[Any] = RegNetModel else: __snake_case : List[str] = RegNetForImageClassification return val def lowercase ( _snake_case : Dict , _snake_case : List[str] , _snake_case : List[Tuple[str, str]] ) ->Optional[Any]: """simple docstring""" for from_key, to_key in keys: __snake_case : Union[str, Any] = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def lowercase ( _snake_case : str , _snake_case : Callable[[], nn.Module] , _snake_case : Callable[[], nn.Module] , _snake_case : RegNetConfig , _snake_case : Path , _snake_case : bool = True , ) ->Dict: """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): __snake_case , __snake_case : Optional[int] = from_model_func() __snake_case : Tuple = our_model_func(_snake_case ).eval() __snake_case : List[Any] = ModuleTransfer(src=_snake_case , dest=_snake_case , raise_if_mismatch=_snake_case ) __snake_case : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(_snake_case ) if from_state_dict is not None: __snake_case : int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __snake_case : Tuple = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] __snake_case : Union[str, Any] = manually_copy_vissl_head(_snake_case , our_model.state_dict() , _snake_case ) our_model.load_state_dict(_snake_case ) __snake_case : List[Any] = our_model(_snake_case , output_hidden_states=_snake_case ) __snake_case : Union[str, Any] = ( our_outputs.logits if isinstance(_snake_case , _snake_case ) else our_outputs.last_hidden_state ) __snake_case : Optional[Any] = from_model(_snake_case ) __snake_case : Optional[Any] = from_output[-1] if type(_snake_case ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __snake_case : str = our_outputs.hidden_states[-1] assert torch.allclose(_snake_case , _snake_case ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_snake_case , ) __snake_case : Any = 224 if '''seer''' not in name else 384 # we can use the convnext one __snake_case : Dict = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_snake_case ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) print(f"""Pushed {name}""" ) def lowercase ( _snake_case : Path , _snake_case : str = None , _snake_case : bool = True ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = '''imagenet-1k-id2label.json''' __snake_case : Optional[Any] = 1_000 __snake_case : int = (1, num_labels) __snake_case : Optional[Any] = '''huggingface/label-files''' __snake_case : Optional[int] = num_labels __snake_case : str = json.load(open(cached_download(hf_hub_url(_snake_case , _snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) __snake_case : str = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Union[str, Any] = idalabel __snake_case : int = {v: k for k, v in idalabel.items()} __snake_case : int = partial(_snake_case , num_labels=_snake_case , idalabel=_snake_case , labelaid=_snake_case ) __snake_case : int = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } __snake_case : int = NameToOurModelFuncMap() __snake_case : List[str] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_snake_case : str , _snake_case : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __snake_case : Tuple = torch.hub.load_state_dict_from_url(_snake_case , model_dir=str(_snake_case ) , map_location='''cpu''' ) __snake_case : Dict = model_func() # check if we have a head, if yes add it __snake_case : Any = files['''classy_state_dict''']['''base_model''']['''model'''] __snake_case : Tuple = model_state_dict['''trunk'''] model.load_state_dict(_snake_case ) return model.eval(), model_state_dict["heads"] # pretrained __snake_case : List[Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : str = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : int = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : Optional[Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __snake_case : Union[str, Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : List[str] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : Optional[int] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : Optional[int] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _snake_case , _snake_case , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _snake_case , _snake_case , _snake_case , ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
102
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
0
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _lowercase : int = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _a = CLIPConfig _a = ['CLIPEncoderLayer'] def __init__( self : int, lowerCamelCase : CLIPConfig )-> List[Any]: super().__init__(lowerCamelCase ) lowerCamelCase__ : Dict =CLIPVisionModelWithProjection(config.vision_config ) lowerCamelCase__ : Dict =nn.Linear(config.vision_config.projection_dim, 1 ) lowerCamelCase__ : Union[str, Any] =nn.Linear(config.vision_config.projection_dim, 1 ) @torch.no_grad() def snake_case ( self : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : List[Any]=0.5, lowerCamelCase : Optional[Any]=0.5 )-> Optional[int]: lowerCamelCase__ : Dict =self.vision_model(lowerCamelCase )[0] lowerCamelCase__ : List[Any] =self.p_head(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =nsfw_detected.flatten() lowerCamelCase__ : Any =nsfw_detected > p_threshold lowerCamelCase__ : Optional[Any] =nsfw_detected.tolist() if any(lowerCamelCase ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(lowerCamelCase ): if nsfw_detected_: lowerCamelCase__ : Tuple =np.zeros(images[idx].shape ) lowerCamelCase__ : str =self.w_head(lowerCamelCase ) lowerCamelCase__ : List[str] =watermark_detected.flatten() lowerCamelCase__ : Optional[Any] =watermark_detected > w_threshold lowerCamelCase__ : int =watermark_detected.tolist() if any(lowerCamelCase ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(lowerCamelCase ): if watermark_detected_: lowerCamelCase__ : Optional[int] =np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
352
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =[0] * len(__lowerCamelCase ) lowerCamelCase__ : List[Any] =[] lowerCamelCase__ : List[Any] =[1] * len(__lowerCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCamelCase ) ): if indegree[i] == 0: queue.append(__lowerCamelCase ) while queue: lowerCamelCase__ : Tuple =queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCamelCase__ : Optional[Any] =long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowerCamelCase ) print(max(__lowerCamelCase ) ) # Adjacency list of Graph _lowercase : Optional[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
272
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> Optional[int]: snake_case_ = data snake_case_ = None class UpperCamelCase : def __init__( self) -> Dict: snake_case_ = None snake_case_ = None def __iter__( self) -> Iterator[Any]: snake_case_ = self.head while self.head: yield node.data snake_case_ = node.next if node == self.head: break def __len__( self) -> int: return sum(1 for _ in self) def __repr__( self) -> str: return "->".join(str(lowerCAmelCase__) for item in iter(self)) def a_ ( self, lowerCAmelCase__) -> None: self.insert_nth(len(self), lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> None: self.insert_nth(0, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> None: if index < 0 or index > len(self): raise IndexError('list index out of range.') snake_case_ = Node(lowerCAmelCase__) if self.head is None: snake_case_ = new_node # first node points itself snake_case_ = snake_case_ = new_node elif index == 0: # insert at head snake_case_ = self.head snake_case_ = snake_case_ = new_node else: snake_case_ = self.head for _ in range(index - 1): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = new_node if index == len(self) - 1: # insert at tail snake_case_ = new_node def a_ ( self) -> str: return self.delete_nth(0) def a_ ( self) -> Any: return self.delete_nth(len(self) - 1) def a_ ( self, lowerCAmelCase__ = 0) -> Any: if not 0 <= index < len(self): raise IndexError('list index out of range.') snake_case_ = self.head if self.head == self.tail: # just one node snake_case_ = snake_case_ = None elif index == 0: # delete head node snake_case_ = self.tail.next.next snake_case_ = self.head.next else: snake_case_ = self.head for _ in range(index - 1): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = temp.next.next if index == len(self) - 1: # delete at tail snake_case_ = temp return delete_node.data def a_ ( self) -> bool: return len(self) == 0 def UpperCAmelCase ( ) -> None: snake_case_ = CircularLinkedList() assert len(UpperCAmelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCAmelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCAmelCase ) == i circular_linked_list.insert_nth(UpperCAmelCase , i + 1 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
69
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : List[str] = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> int: if not isinstance(__snake_case , __snake_case ): __A : List[Any] = f'Input value of [number={number}] must be an integer' raise TypeError(__snake_case ) if number < 1: __A : Union[str, Any] = f'Input value of [number={number}] must be > 0' raise ValueError(__snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: __A : Optional[Any] = int(math.log(number // 3 , 2 ) ) + 2 __A : Union[str, Any] = [3, 5] __A : List[Any] = 2 __A : Optional[Any] = 3 for block in range(1 , __snake_case ): for _ in range(__snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowercase__ : str = 0 try: lowercase__ : List[str] = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
190
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 4_2 _A = 4_2 class lowerCamelCase__ ( __lowercase , __lowercase): '''simple docstring''' _A = 1 @register_to_config def __init__( self :Any , a :Optional[int] = 2_0_0_0 , a :Union[str, Any] = 0.15 , a :int = 0.01 , a :Any = 1_3_4_8.0 , a :Optional[int] = 1E-5 , a :Optional[Any] = 1 , ) -> Optional[Any]: # standard deviation of the initial noise distribution __UpperCamelCase : Any = sigma_max # setable values __UpperCamelCase : Tuple = None self.set_sigmas(a , a , a , a ) def _lowerCamelCase ( self :Optional[int] , a :int , a :Tuple = None ) -> torch.FloatTensor: return sample def _lowerCamelCase ( self :Union[str, Any] , a :Any , a :Dict = None , a :List[Any] = None ) -> Optional[Any]: __UpperCamelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps __UpperCamelCase : List[Any] = torch.linspace(1 , a , a , device=a ) def _lowerCamelCase ( self :Tuple , a :int , a :Union[str, Any] = None , a :str = None , a :Union[str, Any] = None ) -> Dict: __UpperCamelCase : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min __UpperCamelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max __UpperCamelCase : Optional[int] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(a , a ) __UpperCamelCase : Dict = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __UpperCamelCase : Any = torch.exp(torch.linspace(math.log(a ) , math.log(a ) , a ) ) __UpperCamelCase : Any = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _lowerCamelCase ( self :Dict , a :Any , a :Any ) -> List[str]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _lowerCamelCase ( self :Optional[int] , a :List[str] , a :int , a :Optional[int] , a :List[Any] = None , a :Any = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) __UpperCamelCase : str = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __UpperCamelCase : Optional[int] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __UpperCamelCase : List[str] = timesteps.to(self.discrete_sigmas.device ) __UpperCamelCase : Union[str, Any] = self.discrete_sigmas[timesteps].to(sample.device ) __UpperCamelCase : Optional[int] = self.get_adjacent_sigma(a , a ).to(sample.device ) __UpperCamelCase : Tuple = torch.zeros_like(a ) __UpperCamelCase : Dict = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __UpperCamelCase : Optional[Any] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __UpperCamelCase : Optional[int] = diffusion.unsqueeze(-1 ) __UpperCamelCase : Union[str, Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __UpperCamelCase : Optional[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=a , device=sample.device , dtype=sample.dtype ) __UpperCamelCase : Any = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __UpperCamelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=a , prev_sample_mean=a ) def _lowerCamelCase ( self :List[Any] , a :List[str] , a :Any , a :Union[str, Any] = None , a :List[str] = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __UpperCamelCase : Any = randn_tensor(sample.shape , layout=sample.layout , generator=a ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __UpperCamelCase : str = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __UpperCamelCase : str = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __UpperCamelCase : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __UpperCamelCase : int = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __UpperCamelCase : Union[str, Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __UpperCamelCase : List[str] = step_size.unsqueeze(-1 ) __UpperCamelCase : Optional[Any] = sample + step_size * model_output __UpperCamelCase : str = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self :Union[str, Any] , a :Optional[int] , a :Any , a :Tuple , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __UpperCamelCase : int = timesteps.to(original_samples.device ) __UpperCamelCase : Any = self.discrete_sigmas.to(original_samples.device )[timesteps] __UpperCamelCase : Union[str, Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(a ) * sigmas[:, None, None, None] ) __UpperCamelCase : Dict = noise + original_samples return noisy_samples def __len__( self :Dict ) -> Optional[int]: return self.config.num_train_timesteps
232
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : Any = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AlbertTokenizer lowercase = AlbertTokenizerFast lowercase = True lowercase = True lowercase = True def _lowercase( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[int] = AlbertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self , A ) -> int: UpperCAmelCase : Optional[int] = """this is a test""" UpperCAmelCase : Dict = """this is a test""" return input_text, output_text def _lowercase( self ) -> int: UpperCAmelCase : Tuple = """<pad>""" UpperCAmelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Any: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(A ) , 30000 ) def _lowercase( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _lowercase( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : List[str] = self.get_rust_tokenizer() UpperCAmelCase : Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase : str = tokenizer.tokenize(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Any = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = AlbertTokenizer(A , keep_accents=A ) UpperCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [48, 25, 21, 1289] ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = AlbertTokenizer(A ) UpperCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" ) UpperCAmelCase : Any = tokenizer.encode("""multi-sequence build""" ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowercase( self ) -> Dict: # fmt: off UpperCAmelCase : Tuple = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
265
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if dataset.ndim != value_array.ndim: __SCREAMING_SNAKE_CASE = ( "Wrong input data's dimensions... " f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(lowerCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: __SCREAMING_SNAKE_CASE = ( "Wrong input data's shape... " f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(lowerCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: __SCREAMING_SNAKE_CASE = ( "Input data have different datatype... " f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for value in value_array: __SCREAMING_SNAKE_CASE = euclidean(lowerCAmelCase_ , dataset[0] ) __SCREAMING_SNAKE_CASE = dataset[0].tolist() for dataset_value in dataset[1:]: __SCREAMING_SNAKE_CASE = euclidean(lowerCAmelCase_ , lowerCAmelCase_ ) if dist > temp_dist: __SCREAMING_SNAKE_CASE = temp_dist __SCREAMING_SNAKE_CASE = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) / (norm(lowerCAmelCase_ ) * norm(lowerCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
195
0
'''simple docstring''' import math import unittest def A_ ( snake_case ): assert isinstance(snake_case , snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[int] ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __UpperCamelCase ( self : Optional[int] ): with self.assertRaises(lowerCamelCase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) ,"Zero doesn't have any positive factors, primes must have exactly two." ,) self.assertFalse( is_prime(1 ) ,"One only has 1 positive factor, primes must have exactly two." ,) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
139
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase: Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = XLMProphetNetTokenizer __A = False __A = True def UpperCamelCase_ (self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ (self ): """simple docstring""" a = "[PAD]" a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase_ ) , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) a = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCamelCase_ (self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = "Hello World!" a = [35389, 6672, 49, 2] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
227
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase_ ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : List[str] ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def lowerCAmelCase_ ( self : Any ): torch.manual_seed(0 ) _A = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def lowerCAmelCase_ ( self : int ): torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _A = self.dummy_uncond_unet _A = DDIMScheduler() _A = self.dummy_vq_model _A = LDMPipeline(unet=_UpperCAmelCase , vqvae=_UpperCAmelCase , scheduler=_UpperCAmelCase ) ldm.to(_UpperCAmelCase ) ldm.set_progress_bar_config(disable=_UpperCAmelCase ) _A = torch.manual_seed(0 ) _A = ldm(generator=_UpperCAmelCase , num_inference_steps=2 , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = ldm(generator=_UpperCAmelCase , num_inference_steps=2 , output_type='numpy' , return_dict=_UpperCAmelCase )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) _A = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(_UpperCAmelCase ) ldm.set_progress_bar_config(disable=_UpperCAmelCase ) _A = torch.manual_seed(0 ) _A = ldm(generator=_UpperCAmelCase , num_inference_steps=5 , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) _A = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
271
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : str = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) UpperCAmelCase : List[Any] = ['''accelerate''', '''launch'''] UpperCAmelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' UpperCAmelCase : Union[str, Any] = '''default_config.yaml''' UpperCAmelCase : Union[str, Any] = config_folder / config_file UpperCAmelCase : Union[str, Any] = config_folder / '''_default_config.yaml''' UpperCAmelCase : List[Any] = Path('''tests/test_configs''' ) @classmethod def lowerCAmelCase_ ( cls : List[Any] ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCAmelCase_ ( cls : Tuple ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCAmelCase_ ( self : List[Any] ): _A = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase_ ( self : Optional[int] ): for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase_ ( self : Any ): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Dict = '''test-tpu''' UpperCAmelCase : Optional[int] = '''us-central1-a''' UpperCAmelCase : List[str] = '''ls''' UpperCAmelCase : str = ['''accelerate''', '''tpu-config'''] UpperCAmelCase : Optional[Any] = '''cd /usr/share''' UpperCAmelCase : Optional[Any] = '''tests/test_samples/test_command_file.sh''' UpperCAmelCase : str = '''Running gcloud compute tpus tpu-vm ssh''' def lowerCAmelCase_ ( self : Any ): _A = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Dict ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[int] ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_UpperCAmelCase ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : str ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[str] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : str ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[Any] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : int ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[int] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
271
1