code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : Dict = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : List[str] = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } _lowerCAmelCase : Optional[Any] = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = RealmTokenizer def __init__( self :int , snake_case :Dict=None , snake_case :Optional[int]=None , snake_case :List[Any]=True , snake_case :str="[UNK]" , snake_case :int="[SEP]" , snake_case :Dict="[PAD]" , snake_case :Optional[Any]="[CLS]" , snake_case :int="[MASK]" , snake_case :Optional[int]=True , snake_case :str=None , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__( snake_case , tokenizer_file=snake_case , do_lower_case=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , tokenize_chinese_chars=snake_case , strip_accents=snake_case , **snake_case , ) A_ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case ) != tokenize_chinese_chars ): A_ : int = getattr(snake_case , normalizer_state.pop("type" ) ) A_ : str = do_lower_case A_ : Union[str, Any] = strip_accents A_ : Optional[Any] = tokenize_chinese_chars A_ : Dict = normalizer_class(**snake_case ) A_ : Any = do_lower_case def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , **snake_case :Optional[Any] ): '''simple docstring''' A_ : int = PaddingStrategy.MAX_LENGTH A_ : str = text A_ : Optional[Any] = kwargs.pop("text_pair" , snake_case ) A_ : Dict = kwargs.pop("return_tensors" , snake_case ) A_ : Dict = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(snake_case ): if batch_text_pair is not None: A_ : Union[str, Any] = batch_text_pair[idx] else: A_ : Optional[int] = None A_ : List[Any] = super().__call__(snake_case , snake_case , return_tensors=snake_case , **snake_case ) A_ : Dict = encoded_candidates.get("input_ids" ) A_ : List[Any] = encoded_candidates.get("attention_mask" ) A_ : List[Any] = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case ) A_ : List[str] = {key: item for key, item in output_data.items() if len(snake_case ) != 0} return BatchEncoding(snake_case , tensor_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Union[str, Any] , snake_case :List[Any]=None ): '''simple docstring''' A_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Tuple = [self.sep_token_id] A_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : Any = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case )
300
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Optional[Any] , snake_case :Tuple=13 , snake_case :Dict=7 , snake_case :List[Any]=True , snake_case :List[Any]=True , snake_case :Dict=True , snake_case :Any=True , snake_case :Optional[int]=99 , snake_case :Any=32 , snake_case :Dict=2 , snake_case :int=4 , snake_case :Optional[int]=37 , snake_case :List[str]="gelu" , snake_case :List[Any]=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Tuple=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Optional[int]=0.02 , snake_case :str=3 , snake_case :Optional[int]=4 , snake_case :List[str]=None , snake_case :Tuple=1_000 , ): '''simple docstring''' A_ : str = parent A_ : str = batch_size A_ : str = seq_length A_ : Any = is_training A_ : Any = use_input_mask A_ : str = use_token_type_ids A_ : Tuple = use_labels A_ : Optional[Any] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : Optional[Any] = scope A_ : Any = range_bbox def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : str = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Tuple = bbox[i, j, 0] A_ : int = t A_ : int = tf.convert_to_tensor(snake_case ) A_ : Any = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : List[Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :int , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[int] , snake_case :List[Any] ): '''simple docstring''' A_ : Any = TFLayoutLMModel(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : str = model(snake_case , snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Any , snake_case :List[Any] , snake_case :List[str] , snake_case :Optional[Any] , snake_case :Dict , snake_case :Any , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = TFLayoutLMForMaskedLM(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Dict , snake_case :Tuple , snake_case :Tuple , snake_case :List[str] , snake_case :Tuple , snake_case :str , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : int = TFLayoutLMForSequenceClassification(config=snake_case ) A_ : Optional[int] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict , snake_case :str , snake_case :Optional[Any] , snake_case :int , snake_case :Any , snake_case :Tuple , snake_case :List[str] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : str = TFLayoutLMForTokenClassification(config=snake_case ) A_ : Union[str, Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=snake_case ) A_ : List[Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 10 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = TFLayoutLMModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = TFLayoutLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def __snake_case ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A_ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A_ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A_ : Tuple = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the sequence output on [0, :3, :3] A_ : List[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] A_ : Optional[Any] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Dict = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : List[str] = outputs.loss A_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , snake_case ) # test the shape of the logits A_ : Tuple = outputs.logits A_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) # test the shape of the logits A_ : Dict = outputs.logits A_ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : str = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the shape of the logits A_ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case ) self.assertEqual(outputs.end_logits.shape , snake_case )
300
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ : Tuple = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
from functools import lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> set: __lowerCamelCase = 2 __lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> int: return len(unique_prime_factors(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : list ) -> bool: return len(set(__lowerCAmelCase ) ) in (0, 1) def __magic_name__ ( __lowerCAmelCase : int ) -> list: __lowerCamelCase = 2 while True: # Increment each value of a generated range __lowerCamelCase = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int: __lowerCamelCase = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
339
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } SCREAMING_SNAKE_CASE = Dataset.from_dict(_SCREAMING_SNAKE_CASE ) return dataset class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = get_dataset() SCREAMING_SNAKE_CASE = make_duplicate_clusters(lowerCamelCase__ ,0.85 ) self.assertEqual(len(duplicate_clusters[0] ) ,2 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = get_dataset() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = deduplicate_dataset(lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) ,2 ) print(lowerCamelCase__ ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] ,2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] ,lowerCamelCase__ )
296
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.dummy_uncond_unet SCREAMING_SNAKE_CASE = KarrasVeScheduler() SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=lowerCamelCase__ ,scheduler=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 ,generator=lowerCamelCase__ ,output_type="""numpy""" ).images SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 ,generator=lowerCamelCase__ ,output_type="""numpy""" ,return_dict=lowerCamelCase__ )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = """google/ncsnpp-celebahq-256""" SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = KarrasVeScheduler() SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=lowerCamelCase__ ,scheduler=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 ,generator=lowerCamelCase__ ,output_type="""numpy""" ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
296
1
'''simple docstring''' import math def __a ( UpperCAmelCase ) ->int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): A = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCAmelCase ) if number < 1: A = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: A = int(math.log(number // 3 , 2 ) ) + 2 A = [3, 5] A = 2 A = 3 for block in range(1 , UpperCAmelCase ): for _ in range(UpperCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): _lowerCamelCase : Optional[int] = 0 try: _lowerCamelCase : int = proth(number) except ValueError: print(f"ValueError: there is no {number}th Proth number") continue print(f"The {number}th Proth number: {value}")
368
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : List[str] = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : List[str] = { 'Salesforce/codegen-350M-mono': 2048, } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = CodeGenTokenizer def __init__(self : int , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Optional[int] , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) if kwargs.pop("""add_bos_token""" , _lowerCAmelCase ): A = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) A = add_prefix_space A = pre_tok_class(**_lowerCAmelCase ) A = add_prefix_space def A (self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[List[str]] = None , **_lowerCAmelCase : Tuple , ): A = super().decode( token_ids=_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , **_lowerCAmelCase , ) if truncate_before_pattern is not None and len(_lowerCAmelCase ) > 0: A = self.truncate(_lowerCAmelCase , _lowerCAmelCase ) return decoded_text def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): def find_re(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): A = pattern.search(_lowerCAmelCase , _lowerCAmelCase ) return m.start() if m else -1 A = [re.compile(_lowerCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A = list(re.finditer("""^print""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: prints[1].start()] A = list(re.finditer("""^def""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: defs[1].start()] A = 0 A = [ pos for pos in [find_re(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for terminal in terminals] if pos != -1 ] if len(_lowerCAmelCase ) > 0: return completion[: min(_lowerCAmelCase )] else: return completion
337
0
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _UpperCamelCase : List[Any] = logging.get_logger(__name__) _UpperCamelCase : str = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED _UpperCamelCase : Optional[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } _UpperCamelCase : Optional[int] = { "allenai/led-base-16384": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def a_ ( ): '''simple docstring''' lowercase__ : int = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowercase__ : Union[str, Any] = bs[:] lowercase__ : str = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCAmelCase ) cs.append(2**8 + n ) n += 1 lowercase__ : str = [chr(_lowerCAmelCase ) for n in cs] return dict(zip(_lowerCAmelCase , _lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Dict = set() lowercase__ : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Optional[Any] = char return pairs class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , a , a , a="replace" , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a=False , **a , ) -> Any: lowercase__ : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token lowercase__ : List[str] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token lowercase__ : List[str] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token lowercase__ : Dict = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token lowercase__ : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token lowercase__ : Tuple = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Optional[int] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding='utf-8' ) as vocab_handle: lowercase__ : Tuple = json.load(a ) lowercase__ : Dict = {v: k for k, v in self.encoder.items()} lowercase__ : str = errors # how to handle errors in decoding lowercase__ : Optional[Any] = bytes_to_unicode() lowercase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding='utf-8' ) as merges_handle: lowercase__ : Optional[Any] = merges_handle.read().split('\n' )[1:-1] lowercase__ : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ : Union[str, Any] = dict(zip(a , range(len(a ) ) ) ) lowercase__ : Tuple = {} lowercase__ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ : List[Any] = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _UpperCAmelCase ( self ) -> List[Any]: return len(self.encoder ) def _UpperCAmelCase ( self ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCAmelCase ( self , a ) -> List[str]: if token in self.cache: return self.cache[token] lowercase__ : Optional[Any] = tuple(a ) lowercase__ : int = get_pairs(a ) if not pairs: return token while True: lowercase__ : List[str] = min(a , key=lambda a : self.bpe_ranks.get(a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : List[str] = bigram lowercase__ : Union[str, Any] = [] lowercase__ : List[Any] = 0 while i < len(a ): try: lowercase__ : str = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : Optional[int] = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : int = tuple(a ) lowercase__ : Dict = new_word if len(a ) == 1: break else: lowercase__ : Any = get_pairs(a ) lowercase__ : List[str] = ' '.join(a ) lowercase__ : Optional[Any] = word return word def _UpperCAmelCase ( self , a ) -> Union[str, Any]: lowercase__ : Tuple = [] for token in re.findall(self.pat , a ): lowercase__ : Union[str, Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a ).split(' ' ) ) return bpe_tokens def _UpperCAmelCase ( self , a ) -> Optional[Any]: return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def _UpperCAmelCase ( self , a ) -> Optional[int]: return self.decoder.get(a ) def _UpperCAmelCase ( self , a ) -> str: lowercase__ : Any = ''.join(a ) lowercase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def _UpperCAmelCase ( self , a , a = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__ : str = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + '\n' ) lowercase__ : List[Any] = 0 with open(a , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowercase__ : Union[str, Any] = token_index writer.write(' '.join(a ) + '\n' ) index += 1 return vocab_file, merge_file def _UpperCAmelCase ( self , a , a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : Union[str, Any] = [self.cls_token_id] lowercase__ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self , a , a = None , a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def _UpperCAmelCase ( self , a , a = None ) -> List[int]: lowercase__ : Dict = [self.sep_token_id] lowercase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self , a , a=False , **a ) -> Optional[int]: lowercase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a ) > 0 and not text[0].isspace()): lowercase__ : List[str] = ' ' + text return (text, kwargs) def _UpperCAmelCase ( self , a , a = None , a = PaddingStrategy.DO_NOT_PAD , a = None , a = None , ) -> dict: lowercase__ : Dict = super()._pad( encoded_inputs=a , max_length=a , padding_strategy=a , pad_to_multiple_of=a , return_attention_mask=a , ) # Load from model defaults if return_attention_mask is None: lowercase__ : Union[str, Any] = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase__ : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase__ : Tuple = len(encoded_inputs['global_attention_mask'] ) != len(a ) if needs_to_be_padded: lowercase__ : str = len(a ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase__ : Union[str, Any] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": lowercase__ : List[str] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
77
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
59
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase_ : def __init__( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Dict=1_0 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Tuple=3_2 * 8 , UpperCAmelCase__ : Tuple=3_2 * 8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=6_4 , ) -> Optional[Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = is_training lowerCAmelCase = use_auxiliary_loss lowerCAmelCase = num_queries lowerCAmelCase = num_channels lowerCAmelCase = min_size lowerCAmelCase = max_size lowerCAmelCase = num_labels lowerCAmelCase = hidden_dim lowerCAmelCase = hidden_dim def __UpperCAmelCase ( self : Tuple ) -> Dict: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase__ ) lowerCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase__ ) lowerCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase__ ) > 0.5 ).float() lowerCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase__ ) > 0.5).long() lowerCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __UpperCAmelCase ( self : Union[str, Any] ) -> str: lowerCAmelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase = self.num_queries lowerCAmelCase = self.num_labels lowerCAmelCase = [1, 1, 1, 1] lowerCAmelCase = self.num_channels lowerCAmelCase = 6_4 lowerCAmelCase = 1_2_8 lowerCAmelCase = self.hidden_dim lowerCAmelCase = self.hidden_dim lowerCAmelCase = self.hidden_dim return config def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __UpperCAmelCase ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] ) -> List[Any]: lowerCAmelCase = output.encoder_hidden_states lowerCAmelCase = output.pixel_decoder_hidden_states lowerCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase__ ) , config.decoder_layers ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple=False ) -> Dict: with torch.no_grad(): lowerCAmelCase = MaskaFormerModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple ) -> Optional[int]: lowerCAmelCase = MaskaFormerForUniversalSegmentation(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() def comm_check_on_output(UpperCAmelCase__ : Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase = model(pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ ) comm_check_on_output(UpperCAmelCase__ ) lowerCAmelCase = model( pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__ ) comm_check_on_output(UpperCAmelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase : List[str] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : List[Any] = False lowerCamelCase : str = False lowerCamelCase : int = False def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: lowerCAmelCase = MaskaFormerModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCAmelCase__ , **UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*UpperCAmelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def __UpperCAmelCase ( self : Tuple ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def __UpperCAmelCase ( self : List[Any] ) -> List[str]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __UpperCAmelCase ( self : int ) -> Optional[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: pass def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(UpperCAmelCase__ ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase = MaskaFormerModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = (self.model_tester.min_size,) * 2 lowerCAmelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=UpperCAmelCase__ ), 'mask_labels': torch.randn((2, 1_0, *size) , device=UpperCAmelCase__ ), 'class_labels': torch.zeros(2 , 1_0 , device=UpperCAmelCase__ ).long(), } lowerCAmelCase = self.model_tester.get_config() lowerCAmelCase = MaskaFormerForUniversalSegmentation(UpperCAmelCase__ ).to(UpperCAmelCase__ ) lowerCAmelCase = model(**UpperCAmelCase__ ) self.assertTrue(outputs.loss is not None ) def __UpperCAmelCase ( self : Optional[int] ) -> int: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCAmelCase__ , **UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) lowerCAmelCase = model(**UpperCAmelCase__ , output_attentions=UpperCAmelCase__ ) self.assertTrue(outputs.attentions is not None ) def __UpperCAmelCase ( self : int ) -> str: if not self.model_tester.is_training: return lowerCAmelCase = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() lowerCAmelCase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() lowerCAmelCase = model(UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__ ).loss loss.backward() def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) model.train() lowerCAmelCase = model(UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__ ) lowerCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __snake_case =1e-4 def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : Optional[int] ) -> str: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __UpperCAmelCase ( self : Any ) -> Tuple: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: lowerCAmelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(UpperCAmelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(UpperCAmelCase__ , return_tensors='pt' ).to(UpperCAmelCase__ ) lowerCAmelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): lowerCAmelCase = model(**UpperCAmelCase__ ) lowerCAmelCase = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(UpperCAmelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) lowerCAmelCase = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(UpperCAmelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) lowerCAmelCase = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(UpperCAmelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : str ) -> Any: lowerCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCAmelCase__ ).eval() lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(UpperCAmelCase__ , return_tensors='pt' ).to(UpperCAmelCase__ ) lowerCAmelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): lowerCAmelCase = model(**UpperCAmelCase__ ) # masks_queries_logits lowerCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] lowerCAmelCase = torch.tensor(UpperCAmelCase__ ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) # class_queries_logits lowerCAmelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCAmelCase__ ).eval() lowerCAmelCase = self.default_image_processor lowerCAmelCase = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='pt' , ) lowerCAmelCase = inputs['pixel_values'].to(UpperCAmelCase__ ) lowerCAmelCase = [el.to(UpperCAmelCase__ ) for el in inputs['mask_labels']] lowerCAmelCase = [el.to(UpperCAmelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): lowerCAmelCase = model(**UpperCAmelCase__ ) self.assertTrue(outputs.loss is not None )
55
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=lowerCamelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=lowerCamelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=lowerCamelCase ) return parser.parse_args() def a_ ( ): lowerCAmelCase = parse_args() # Import training_script as a module. lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase = script_fpath.stem lowerCAmelCase = importlib.import_module(lowerCamelCase ) # Patch sys.argv lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
55
1
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = set_counts UpperCamelCase__ :Optional[int] = max(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = len(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = [1] * num_sets UpperCamelCase__ :List[Any] = list(range(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.get_parent(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCamelCase__ :Tuple = 0 UpperCamelCase__ :Dict = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCamelCase__ :Optional[int] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCamelCase__ :Tuple = 0 UpperCamelCase__ :str = src_parent UpperCamelCase__ :Optional[Any] = self.set_counts[src_parent] UpperCamelCase__ :Tuple = max(self.max_set , UpperCamelCase_ ) return True def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set UpperCamelCase__ :Dict = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
97
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } UpperCamelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } UpperCamelCase__ = '</w>' UpperCamelCase__ = '@@ ' def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char return pairs # Speech2Text2 has no max input length UpperCamelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['input_ids', 'attention_mask'] def __init__(self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict="<s>" , __UpperCAmelCase : Tuple="<pad>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : int="<unk>" , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : str=None , **__UpperCAmelCase : Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__( unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = do_lower_case with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: UpperCAmelCase__ = json.load(__UpperCAmelCase ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) UpperCAmelCase__ = None UpperCAmelCase__ = None else: with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ = [tuple(merge.split()[:2] ) for merge in merges] UpperCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) UpperCAmelCase__ = {} @property def lowercase_ (self : List[str] ) -> int: """simple docstring""" return len(self.decoder ) def lowercase_ (self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ (self : Dict , __UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] UpperCAmelCase__ = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: UpperCAmelCase__ = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(__UpperCAmelCase ): try: UpperCAmelCase__ = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(__UpperCAmelCase ) UpperCAmelCase__ = new_word if len(__UpperCAmelCase ) == 1: break else: UpperCAmelCase__ = get_pairs(__UpperCAmelCase ) UpperCAmelCase__ = " ".join(__UpperCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: UpperCAmelCase__ = "\n" + BPE_TOKEN_MERGES if word.endswith(__UpperCAmelCase ): UpperCAmelCase__ = word.replace(__UpperCAmelCase , "" ) UpperCAmelCase__ = word.replace(" " , __UpperCAmelCase ) UpperCAmelCase__ = word return word def lowercase_ (self : Tuple , __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: UpperCAmelCase__ = text.lower() UpperCAmelCase__ = text.split() UpperCAmelCase__ = [] for token in text: if token: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(" " ) ) ) return split_tokens def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> int: """simple docstring""" return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowercase_ (self : Any , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = self.decoder.get(__UpperCAmelCase , self.unk_token ) return result def lowercase_ (self : Dict , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = " ".join(__UpperCAmelCase ) # make sure @@ tokens are concatenated UpperCAmelCase__ = "".join(string.split(__UpperCAmelCase ) ) return string def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) UpperCAmelCase__ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase__ = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return (vocab_file, merges_file)
65
0
"""simple docstring""" def __lowerCamelCase ( a_ : int , a_ : int ) -> int: while second != 0: __SCREAMING_SNAKE_CASE :Union[str, Any] = first & second first ^= second __SCREAMING_SNAKE_CASE :Optional[int] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = int(input("Enter the first number: ").strip()) lowerCamelCase_ = int(input("Enter the second number: ").strip()) print(f'{add(first, second) = }')
362
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[Any] = '''levit''' def __init__( self ,SCREAMING_SNAKE_CASE__=2_24 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=[1_28, 2_56, 3_84] ,SCREAMING_SNAKE_CASE__=[4, 8, 12] ,SCREAMING_SNAKE_CASE__=[4, 4, 4] ,SCREAMING_SNAKE_CASE__=[16, 16, 16] ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=[2, 2, 2] ,SCREAMING_SNAKE_CASE__=[2, 2, 2] ,SCREAMING_SNAKE_CASE__=0.0_2 ,**SCREAMING_SNAKE_CASE__ ,) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = image_size __SCREAMING_SNAKE_CASE :Dict = num_channels __SCREAMING_SNAKE_CASE :Optional[int] = kernel_size __SCREAMING_SNAKE_CASE :Union[str, Any] = stride __SCREAMING_SNAKE_CASE :List[Any] = padding __SCREAMING_SNAKE_CASE :Tuple = hidden_sizes __SCREAMING_SNAKE_CASE :List[str] = num_attention_heads __SCREAMING_SNAKE_CASE :Optional[int] = depths __SCREAMING_SNAKE_CASE :Optional[Any] = key_dim __SCREAMING_SNAKE_CASE :Optional[Any] = drop_path_rate __SCREAMING_SNAKE_CASE :Tuple = patch_size __SCREAMING_SNAKE_CASE :int = attention_ratio __SCREAMING_SNAKE_CASE :List[Any] = mlp_ratio __SCREAMING_SNAKE_CASE :str = initializer_range __SCREAMING_SNAKE_CASE :Optional[Any] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : int = version.parse('''1.11''' ) @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCamelCase ( self ) -> float: """simple docstring""" return 1E-4
239
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _a ( UpperCamelCase__ ): def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase_ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(UpperCamelCase_ , '''depth_multiplier''' ) ) class _a : def __init__( self: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any]=13 , UpperCamelCase_: str=3 , UpperCamelCase_: Dict=32 , UpperCamelCase_: Optional[int]=0.25 , UpperCamelCase_: List[Any]=8 , UpperCamelCase_: List[str]=8 , UpperCamelCase_: str=6 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: int="relu6" , UpperCamelCase_: str=1_280 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: Tuple=0.02 , UpperCamelCase_: Dict=True , UpperCamelCase_: int=True , UpperCamelCase_: Union[str, Any]=10 , UpperCamelCase_: Optional[Any]=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = depth_multiplier lowercase__ = depth_divisible_by lowercase__ = min_depth lowercase__ = expand_ratio lowercase__ = tf_padding lowercase__ = output_stride lowercase__ = first_layer_is_expansion lowercase__ = finegrained_output lowercase__ = hidden_act lowercase__ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowercase__ = classifier_dropout_prob lowercase__ = use_labels lowercase__ = is_training lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = scope def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] ) -> Any: """simple docstring""" lowercase__ = MobileNetVaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = MobileNetVaForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = MobileNetVaForSemanticSegmentation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase__ = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : str = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _lowercase : Any = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase : Dict = False _lowercase : Any = False _lowercase : List[str] = False _lowercase : int = False def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = MobileNetVaModelTester(self ) lowercase__ = MobileNetVaConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> Any: """simple docstring""" pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def lowerCamelCase_ ( self: Any ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def lowerCamelCase_ ( self: str ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase_ ( self: Any ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str] ): lowercase__ = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = outputs.hidden_states lowercase__ = 16 self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = MobileNetVaModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" lowercase__ = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(UpperCamelCase_ ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowercase__ = model(**UpperCamelCase_ ) # verify the logits lowercase__ = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = torch.tensor([0.2445, -1.1993, 0.1905] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) lowercase__ = model.to(UpperCamelCase_ ) lowercase__ = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowercase__ = model(**UpperCamelCase_ ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , UpperCamelCase_ ) lowercase__ = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=UpperCamelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
110
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(SCREAMING_SNAKE_CASE , exponent // 2 , SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(SCREAMING_SNAKE_CASE , exponent - 1 , SCREAMING_SNAKE_CASE )) % modulo_value def _a ( SCREAMING_SNAKE_CASE = 17_77 , SCREAMING_SNAKE_CASE = 18_55 , SCREAMING_SNAKE_CASE = 8 ): """simple docstring""" lowercase__ = base for _ in range(1 , SCREAMING_SNAKE_CASE ): lowercase__ = _modexpt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
110
1
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : str = logging.get_logger(__name__) def a__ ( snake_case__ , snake_case__ ) -> int: lowerCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def a__ ( snake_case__ , snake_case__ ) -> Union[str, Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowerCamelCase = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowerCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] lowerCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowerCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: lowerCamelCase = dct.pop(snake_case__ ) lowerCamelCase = val def a__ ( snake_case__ ) -> Dict: if "handwritten" in checkpoint_url: lowerCamelCase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCamelCase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowerCamelCase = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = ViTConfig(image_size=3_84 , qkv_bias=snake_case__ ) lowerCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowerCamelCase = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder lowerCamelCase = 10_24 lowerCamelCase = 40_96 lowerCamelCase = 24 lowerCamelCase = 16 lowerCamelCase = 10_24 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCamelCase = False lowerCamelCase = """relu""" lowerCamelCase = 10_24 lowerCamelCase = True lowerCamelCase = False lowerCamelCase = False # load HuggingFace model lowerCamelCase = ViTModel(snake_case__ , add_pooling_layer=snake_case__ ) lowerCamelCase = TrOCRForCausalLM(snake_case__ ) lowerCamelCase = VisionEncoderDecoderModel(encoder=snake_case__ , decoder=snake_case__ ) model.eval() # load state_dict of original model, rename some keys lowerCamelCase = torch.hub.load_state_dict_from_url(snake_case__ , map_location="""cpu""" , check_hash=snake_case__ )["""model"""] lowerCamelCase = create_rename_keys(snake_case__ , snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowerCamelCase = state_dict.pop(snake_case__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowerCamelCase = val else: lowerCamelCase = val # load state dict model.load_state_dict(snake_case__ ) # Check outputs on an image lowerCamelCase = ViTImageProcessor(size=encoder_config.image_size ) lowerCamelCase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowerCamelCase = TrOCRProcessor(snake_case__ , snake_case__ ) lowerCamelCase = processor(images=prepare_img(snake_case__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowerCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowerCamelCase = model(pixel_values=snake_case__ , decoder_input_ids=snake_case__ ) lowerCamelCase = outputs.logits lowerCamelCase = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: lowerCamelCase = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: lowerCamelCase = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: lowerCamelCase = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: lowerCamelCase = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , snake_case__ , atol=1E-3 ), "First elements of logits not as expected" Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case__ ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
168
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase : Dict = 16 lowerCAmelCase : int = 32 def a__ ( snake_case__ ) -> Optional[Any]: return int(x / 2**20 ) class __magic_name__ : '''simple docstring''' def __enter__( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCamelCase = torch.cuda.memory_allocated() return self def __exit__( self , *_a ): """simple docstring""" gc.collect() torch.cuda.empty_cache() lowerCamelCase = torch.cuda.memory_allocated() lowerCamelCase = torch.cuda.max_memory_allocated() lowerCamelCase = bamb(self.end - self.begin ) lowerCamelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a__ ( snake_case__ , snake_case__ = 16 , snake_case__ = "bert-base-cased" , snake_case__ = 3_20 , snake_case__ = 1_60 , ) -> List[str]: lowerCamelCase = AutoTokenizer.from_pretrained(snake_case__ ) lowerCamelCase = load_dataset( """glue""" , """mrpc""" , split={"""train""": F'train[:{n_train}]', """validation""": F'validation[:{n_val}]'} ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader def a__ ( snake_case__ , snake_case__ ) -> Any: # Initialize accelerator lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase = config["""lr"""] lowerCamelCase = int(config["""num_epochs"""] ) lowerCamelCase = int(config["""seed"""] ) lowerCamelCase = int(config["""batch_size"""] ) lowerCamelCase = args.model_name_or_path set_seed(snake_case__ ) lowerCamelCase , lowerCamelCase = get_dataloaders(snake_case__ , snake_case__ , snake_case__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__ ) # Instantiate optimizer lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase = optimizer_cls(params=model.parameters() , lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCamelCase = 1 lowerCamelCase = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: lowerCamelCase = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase = 0 # Now we train the model lowerCamelCase = {} for epoch in range(snake_case__ , snake_case__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case__ ): lowerCamelCase = model(**snake_case__ ) lowerCamelCase = outputs.loss lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) def a__ ( ) -> str: lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=snake_case__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case__ , ) parser.add_argument( """--output_dir""" , type=snake_case__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=snake_case__ , default=snake_case__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=snake_case__ , default=3_20 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=snake_case__ , default=1_60 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case__ , default=1 , help="""Number of train epochs.""" , ) lowerCamelCase = parser.parse_args() lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
168
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ShapEPipeline snake_case_ = ['''prompt'''] snake_case_ = ['''prompt'''] snake_case_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def lowercase_ ( self ) -> Dict: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self ) -> str: '''simple docstring''' return 8 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowerCamelCase__ ) @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __lowerCamelCase = PriorTransformer(**lowerCamelCase__ ) return model @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCamelCase__ , clip_sample=lowerCamelCase__ , clip_sample_range=1.0 , ) __lowerCamelCase = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = torch_device == 'cpu' __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCamelCase__ , relax_max_difference=lowerCamelCase__ , ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __lowerCamelCase = ShapEPipeline.from_pretrained('openai/shap-e' ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( 'a shark' , generator=lowerCamelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
90
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __A = { "E": 1_2.7_0, "T": 9.0_6, "A": 8.1_7, "O": 7.5_1, "I": 6.9_7, "N": 6.7_5, "S": 6.3_3, "H": 6.0_9, "R": 5.9_9, "D": 4.2_5, "L": 4.0_3, "C": 2.7_8, "U": 2.7_6, "M": 2.4_1, "W": 2.3_6, "F": 2.2_3, "G": 2.0_2, "Y": 1.9_7, "P": 1.9_3, "B": 1.2_9, "V": 0.9_8, "K": 0.7_7, "J": 0.1_5, "X": 0.1_5, "Q": 0.1_0, "Z": 0.0_7, } __A = "ETAOINSHRDLCUMWFGYPBVKJXQZ" __A = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> dict[str, int]: """simple docstring""" __lowerCamelCase = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCamelCase_ ( UpperCamelCase__ : tuple ) -> str: """simple docstring""" return x[0] def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = get_letter_count(UpperCamelCase__ ) __lowerCamelCase = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(UpperCamelCase__ ) __lowerCamelCase = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=UpperCamelCase__ ) __lowerCamelCase = ''.join(freq_to_letter[freq] ) __lowerCamelCase = list(freq_to_letter_str.items() ) freq_pairs.sort(key=UpperCamelCase__ , reverse=UpperCamelCase__ ) __lowerCamelCase = [freq_pair[1] for freq_pair in freq_pairs] return "".join(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> int: """simple docstring""" __lowerCamelCase = get_frequency_order(UpperCamelCase__ ) __lowerCamelCase = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
90
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str]=False ) -> int: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: snake_case = os.path.abspath(__lowerCAmelCase ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) snake_case = convert_pytorch_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files snake_case = convert_pytorch_sharded_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) return flax_state_dict def __lowerCamelCase ( __lowerCAmelCase : Tuple[str] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, jnp.ndarray] , __lowerCAmelCase : str , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCAmelCase : Tuple[str] ) -> bool: return len(set(__lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm snake_case = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean snake_case = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var snake_case = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding snake_case = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer snake_case = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): snake_case = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 snake_case = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): snake_case = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): snake_case = pt_tuple_key[-2] + """_v""" if name is not None: snake_case = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Dict ) -> List[Any]: # convert pytorch tensor to numpy snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: snake_case = flax_model.params["""params"""] else: snake_case = flax_model.params snake_case = flatten_dict(__lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(__lowerCAmelCase ) snake_case = {} snake_case = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) snake_case = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary snake_case = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case = pt_tuple_key[1:] # Correctly rename weight parameters snake_case , snake_case = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary snake_case = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: snake_case = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict ) -> str: import torch # Load the index snake_case = {} for shard_file in shard_filenames: # load using msgpack utils snake_case = torch.load(__lowerCAmelCase ) snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case = flax_model.params["""params"""] snake_case = flatten_dict(__lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: snake_case = flax_model.params snake_case = flatten_dict(__lowerCAmelCase ) snake_case = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) snake_case = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary snake_case = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case = pt_tuple_key[1:] # Correctly rename weight parameters snake_case , snake_case = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary snake_case = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: snake_case = jnp.asarray(__lowerCAmelCase ) continue if "var" in flax_key[-1]: snake_case = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : str ) -> str: snake_case = os.path.abspath(__lowerCAmelCase ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class snake_case = getattr(__lowerCAmelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(__lowerCAmelCase , """rb""" ) as state_f: try: snake_case = from_bytes(__lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> int: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights snake_case = flatten_dict(jax.tree_util.tree_map(lambda __lowerCAmelCase : x.dtype == jnp.bfloataa , __lowerCAmelCase ) ).values() if any(__lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) snake_case = jax.tree_util.tree_map( lambda __lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCAmelCase ) snake_case = flatten_dict(__lowerCAmelCase ) snake_case = pt_model.state_dict() snake_case = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) snake_case = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys snake_case = [] snake_case = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case = flax_key_tuple[0] == pt_model.base_model_prefix snake_case = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: snake_case = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: snake_case = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCAmelCase ) not in pt_model_dict: # conv layer snake_case = flax_key_tuple[:-1] + ("""weight""",) snake_case = jnp.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ) not in pt_model_dict: # linear layer snake_case = flax_key_tuple[:-1] + ("""weight""",) snake_case = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: snake_case = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: snake_case = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: snake_case = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: snake_case = """.""".join(__lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. snake_case = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: snake_case = key.split(""".""" ) snake_case = None if key_components[-3::2] == ["parametrizations", "original0"]: snake_case = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: snake_case = key_components[-2] + """_v""" if name is not None: snake_case = key_components[:-3] + [name] snake_case = """.""".join(__lowerCAmelCase ) snake_case = key if flax_key in special_pt_names: snake_case = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict snake_case = np.asarray(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , np.ndarray ) else flax_tensor snake_case = torch.from_numpy(__lowerCAmelCase ) # remove from missing keys missing_keys.remove(__lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCAmelCase ) pt_model.load_state_dict(__lowerCAmelCase ) # re-transform missing_keys to list snake_case = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(__lowerCAmelCase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' """If your task is similar to the task the model of the checkpoint was trained on, """ F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: """simple docstring""" if attention_mask is None: lowerCAmelCase__ :Tuple = tf.cast(tf.math.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _lowerCAmelCase : """simple docstring""" __magic_name__ :Tuple = OPTConfig __magic_name__ :Tuple = {} __magic_name__ :Union[str, Any] = """gelu""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=9_9 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=2_0 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=1_6 , __UpperCAmelCase=1_6 , ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = parent lowerCAmelCase__ :Optional[int] = batch_size lowerCAmelCase__ :Tuple = seq_length lowerCAmelCase__ :Any = is_training lowerCAmelCase__ :List[str] = use_labels lowerCAmelCase__ :Optional[int] = vocab_size lowerCAmelCase__ :str = hidden_size lowerCAmelCase__ :int = num_hidden_layers lowerCAmelCase__ :int = num_attention_heads lowerCAmelCase__ :Optional[Any] = intermediate_size lowerCAmelCase__ :Optional[Any] = hidden_act lowerCAmelCase__ :Optional[int] = hidden_dropout_prob lowerCAmelCase__ :Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase__ :List[str] = max_position_embeddings lowerCAmelCase__ :Optional[int] = eos_token_id lowerCAmelCase__ :Any = pad_token_id lowerCAmelCase__ :List[str] = bos_token_id lowerCAmelCase__ :Any = embed_dim lowerCAmelCase__ :List[Any] = word_embed_proj_dim lowerCAmelCase__ :str = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase__ :int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase__ :List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase__ :Dict = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__UpperCAmelCase , **self.config_updates , ) lowerCAmelCase__ :Dict = prepare_opt_inputs_dict(__UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = TFOPTModel(config=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = inputs_dict['input_ids'] lowerCAmelCase__ :List[Any] = input_ids[:1, :] lowerCAmelCase__ :Tuple = inputs_dict['attention_mask'][:1, :] lowerCAmelCase__ :Optional[Any] = 1 # first forward pass lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ :Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ :List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase__ :Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase__ :Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase__ :str = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase__ :int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase__ :List[Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ :str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) @require_tf class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __magic_name__ :List[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __magic_name__ :Dict = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) __magic_name__ :List[str] = False __magic_name__ :Optional[int] = False __magic_name__ :Optional[Any] = False __magic_name__ :Union[str, Any] = 10 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = TFOPTModelTester(self ) lowerCAmelCase__ :Tuple = ConfigTester(self , config_class=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__UpperCAmelCase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase__ :Optional[Any] = model_class(config=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = _get_word_embedding_weight(__UpperCAmelCase , model.get_input_embeddings() ) lowerCAmelCase__ :List[Any] = _get_word_embedding_weight(__UpperCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = _get_word_embedding_weight(__UpperCAmelCase , model.get_input_embeddings() ) lowerCAmelCase__ :Any = _get_word_embedding_weight(__UpperCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase__ :Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __UpperCAmelCase ) # check that weights remain the same after resizing lowerCAmelCase__ :int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase__ :str = False self.assertTrue(__UpperCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase__ :List[Any] = False self.assertTrue(__UpperCAmelCase ) def __A (_SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" return tf.constant(_SCREAMING_SNAKE_CASE , dtype=tf.intaa ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __magic_name__ :str = 99 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase__ :Optional[Any] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase__ :int = input_ids.shape[0] lowerCAmelCase__ :Optional[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase__ :Dict = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase__ :int = tf.not_equal(__UpperCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase__ :int = model(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase ).last_hidden_state lowerCAmelCase__ :Dict = (1, 1_1, 5_1_2) self.assertEqual(output.shape , __UpperCAmelCase ) lowerCAmelCase__ :Dict = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=4E-3 ) ) lowerCAmelCase__ :List[Any] = tf.function(__UpperCAmelCase , jit_compile=__UpperCAmelCase ) lowerCAmelCase__ :int = xla_generate(__UpperCAmelCase , __UpperCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=4E-2 ) ) @require_tf @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().setUp() lowerCAmelCase__ :List[str] = 'facebook/opt-350m' def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase__ :List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase__ :int = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase__ :List[str] = tokenizer(__UpperCAmelCase , return_tensors='tf' , padding=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase__ :Tuple = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-4 ) ) lowerCAmelCase__ :List[Any] = tf.function(__UpperCAmelCase , jit_compile=__UpperCAmelCase ) lowerCAmelCase__ :Dict = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-4 ) ) @require_tf @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def snake_case ( self ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = 'facebook/opt-125m' lowerCAmelCase__ :List[str] = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase__ :Any = [] lowerCAmelCase__ :int = GPTaTokenizer.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = TFOPTForCausalLM.from_pretrained(__UpperCAmelCase ) for prompt in self.prompts: lowerCAmelCase__ :List[Any] = tokenizer(__UpperCAmelCase , return_tensors='tf' ).input_ids lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , max_length=1_0 ) lowerCAmelCase__ :Dict = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = 'facebook/opt-350m' lowerCAmelCase__ :List[Any] = GPTaTokenizer.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = TFOPTForCausalLM.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = 'left' # use different length sentences to test batching lowerCAmelCase__ :Any = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase__ :Dict = tokenizer(__UpperCAmelCase , return_tensors='tf' , padding=__UpperCAmelCase ) lowerCAmelCase__ :str = inputs['input_ids'] lowerCAmelCase__ :Optional[int] = model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs['attention_mask'] ) lowerCAmelCase__ :str = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase__ :List[str] = model.generate(input_ids=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase__ :Dict = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase__ :List[str] = model.generate(input_ids=__UpperCAmelCase , max_length=model.config.max_length - num_paddings ) lowerCAmelCase__ :List[Any] = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :int = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = 'facebook/opt-350m' lowerCAmelCase__ :Optional[int] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase__ :Optional[int] = [] lowerCAmelCase__ :List[Any] = GPTaTokenizer.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = TFOPTForCausalLM.from_pretrained(__UpperCAmelCase ) for prompt in self.prompts: lowerCAmelCase__ :int = tokenizer(__UpperCAmelCase , return_tensors='tf' ).input_ids lowerCAmelCase__ :str = model.generate(__UpperCAmelCase , max_length=1_0 ) lowerCAmelCase__ :int = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
293
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __A = TypeVar("""KEY""") __A = TypeVar("""VAL""") @dataclass(frozen=a , slots=a ) class _lowerCAmelCase ( Generic[KEY, VAL] ): """simple docstring""" __magic_name__ :KEY __magic_name__ :VAL class _lowerCAmelCase ( _Item ): """simple docstring""" def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False __A = _DeletedItem() class _lowerCAmelCase ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.75 ): '''simple docstring''' lowerCAmelCase__ :List[str] = initial_block_size lowerCAmelCase__ :list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCAmelCase__ :Tuple = capacity_factor lowerCAmelCase__ :str = 0 def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = self._buckets[ind] if not stored: lowerCAmelCase__ :Dict = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: lowerCAmelCase__ :Optional[Any] = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCAmelCase__ :Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self._buckets lowerCAmelCase__ :Tuple = [None] * new_size lowerCAmelCase__ :List[Any] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def snake_case ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def snake_case ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind lowerCAmelCase__ :Tuple = self._get_next_ind(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): lowerCAmelCase__ :int = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: lowerCAmelCase__ :List[str] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): lowerCAmelCase__ :str = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = ' ,'.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
293
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( __magic_name__ ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'OwlViTImageProcessor' lowercase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , A=None , A=None , **A ) -> List[Any]: UpperCAmelCase : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) UpperCAmelCase : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) def __call__( self , A=None , A=None , A=None , A="max_length" , A="np" , **A ) -> Tuple: if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(A , A ) or (isinstance(A , A ) and not isinstance(text[0] , A )): UpperCAmelCase : Dict = [self.tokenizer(A , padding=A , return_tensors=A , **A )] elif isinstance(A , A ) and isinstance(text[0] , A ): UpperCAmelCase : Union[str, Any] = [] # Maximum number of queries across batch UpperCAmelCase : int = max([len(A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A ) != max_num_queries: UpperCAmelCase : Union[str, Any] = t + [""" """] * (max_num_queries - len(A )) UpperCAmelCase : Optional[int] = self.tokenizer(A , padding=A , return_tensors=A , **A ) encodings.append(A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCAmelCase : Tuple = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase : Optional[Any] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase : Tuple = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCAmelCase : Tuple = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase : Dict = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase : Any = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCAmelCase : List[str] = BatchEncoding() UpperCAmelCase : Tuple = input_ids UpperCAmelCase : List[Any] = attention_mask if query_images is not None: UpperCAmelCase : str = BatchEncoding() UpperCAmelCase : List[str] = self.image_processor( A , return_tensors=A , **A ).pixel_values UpperCAmelCase : List[Any] = query_pixel_values if images is not None: UpperCAmelCase : Union[str, Any] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: UpperCAmelCase : int = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase : Optional[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def _lowercase( self , *A , **A ) -> str: return self.image_processor.post_process(*A , **A ) def _lowercase( self , *A , **A ) -> Union[str, Any]: return self.image_processor.post_process_object_detection(*A , **A ) def _lowercase( self , *A , **A ) -> List[Any]: return self.image_processor.post_process_image_guided_detection(*A , **A ) def _lowercase( self , *A , **A ) -> Optional[Any]: return self.tokenizer.batch_decode(*A , **A ) def _lowercase( self , *A , **A ) -> str: return self.tokenizer.decode(*A , **A ) @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def _lowercase( self ) -> str: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :int ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__( self :List[Any] ) -> Tuple: a__ = 1 a__ = 3 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(__snake_case ) return image @property def lowerCamelCase__( self :Optional[int] ) -> List[Any]: torch.manual_seed(0 ) a__ = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) return model @property def lowerCamelCase__( self :int ) -> str: torch.manual_seed(0 ) a__ = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) return model @property def lowerCamelCase__( self :Optional[int] ) -> Dict: torch.manual_seed(0 ) a__ = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=50_06 ,) return RobertaSeriesModelWithTransformation(__snake_case ) @property def lowerCamelCase__( self :Optional[int] ) -> int: def extract(*__snake_case :Any ,**__snake_case :str ): class snake_case_ : def __init__( self :Any ) -> int: a__ = torch.ones([0] ) def lowerCamelCase__( self :Any ,__snake_case :Tuple ) -> Optional[int]: self.pixel_values.to(__snake_case ) return self return Out() return extract def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: a__ = 'cpu' # ensure determinism for the device-dependent torch.Generator a__ = self.dummy_cond_unet a__ = PNDMScheduler(skip_prk_steps=__snake_case ) a__ = self.dummy_vae a__ = self.dummy_text_encoder a__ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) a__ = 77 a__ = self.dummy_image.to(__snake_case ) a__ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk a__ = AltDiffusionImgaImgPipeline( unet=__snake_case ,scheduler=__snake_case ,vae=__snake_case ,text_encoder=__snake_case ,tokenizer=__snake_case ,safety_checker=__snake_case ,feature_extractor=self.dummy_extractor ,) a__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=__snake_case ) a__ = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) a__ = 'A painting of a squirrel eating a burger' a__ = torch.Generator(device=__snake_case ).manual_seed(0 ) a__ = alt_pipe( [prompt] ,generator=__snake_case ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='np' ,image=__snake_case ,) a__ = output.images a__ = torch.Generator(device=__snake_case ).manual_seed(0 ) a__ = alt_pipe( [prompt] ,generator=__snake_case ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='np' ,image=__snake_case ,return_dict=__snake_case ,)[0] a__ = image[0, -3:, -3:, -1] a__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a__ = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' ,'This test requires a GPU' ) def lowerCamelCase__( self :str ) -> Tuple: a__ = self.dummy_cond_unet a__ = PNDMScheduler(skip_prk_steps=__snake_case ) a__ = self.dummy_vae a__ = self.dummy_text_encoder a__ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) a__ = 77 a__ = self.dummy_image.to(__snake_case ) # put models in fp16 a__ = unet.half() a__ = vae.half() a__ = bert.half() # make sure here that pndm scheduler skips prk a__ = AltDiffusionImgaImgPipeline( unet=__snake_case ,scheduler=__snake_case ,vae=__snake_case ,text_encoder=__snake_case ,tokenizer=__snake_case ,safety_checker=__snake_case ,feature_extractor=self.dummy_extractor ,) a__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=__snake_case ) a__ = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) a__ = 'A painting of a squirrel eating a burger' a__ = torch.manual_seed(0 ) a__ = alt_pipe( [prompt] ,generator=__snake_case ,num_inference_steps=2 ,output_type='np' ,image=__snake_case ,).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' ,'This test requires a GPU' ) def lowerCamelCase__( self :str ) -> Optional[int]: a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 a__ = init_image.resize((7_60, 5_04) ) a__ = 'BAAI/AltDiffusion' a__ = AltDiffusionImgaImgPipeline.from_pretrained( __snake_case ,safety_checker=__snake_case ,) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a__ = 'A fantasy landscape, trending on artstation' a__ = torch.manual_seed(0 ) a__ = pipe( prompt=__snake_case ,image=__snake_case ,strength=0.75 ,guidance_scale=7.5 ,generator=__snake_case ,output_type='np' ,) a__ = output.images[0] a__ = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) a__ = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :List[Any] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> Optional[int]: a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) a__ = init_image.resize((7_68, 5_12) ) a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) a__ = 'BAAI/AltDiffusion' a__ = AltDiffusionImgaImgPipeline.from_pretrained( __snake_case ,safety_checker=__snake_case ,) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a__ = 'A fantasy landscape, trending on artstation' a__ = torch.manual_seed(0 ) a__ = pipe( prompt=__snake_case ,image=__snake_case ,strength=0.75 ,guidance_scale=7.5 ,generator=__snake_case ,output_type='np' ,) a__ = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
240
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer snake_case : Dict = logging.get_logger(__name__) snake_case : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case : List[Any] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } snake_case : int = { '''distilbert-base-uncased''': 5_12, '''distilbert-base-uncased-distilled-squad''': 5_12, '''distilbert-base-cased''': 5_12, '''distilbert-base-cased-distilled-squad''': 5_12, '''distilbert-base-german-cased''': 5_12, '''distilbert-base-multilingual-cased''': 5_12, } snake_case : Union[str, Any] = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : Optional[int] = DistilBertTokenizer def __init__( self :Dict ,__snake_case :Dict=None ,__snake_case :Optional[Any]=None ,__snake_case :Optional[Any]=True ,__snake_case :List[Any]="[UNK]" ,__snake_case :str="[SEP]" ,__snake_case :List[Any]="[PAD]" ,__snake_case :Tuple="[CLS]" ,__snake_case :Optional[int]="[MASK]" ,__snake_case :Dict=True ,__snake_case :Dict=None ,**__snake_case :List[Any] ,) -> Optional[int]: super().__init__( __snake_case ,tokenizer_file=__snake_case ,do_lower_case=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,pad_token=__snake_case ,cls_token=__snake_case ,mask_token=__snake_case ,tokenize_chinese_chars=__snake_case ,strip_accents=__snake_case ,**__snake_case ,) a__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,__snake_case ) != do_lower_case or normalizer_state.get('strip_accents' ,__snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,__snake_case ) != tokenize_chinese_chars ): a__ = getattr(__snake_case ,normalizer_state.pop('type' ) ) a__ = do_lower_case a__ = strip_accents a__ = tokenize_chinese_chars a__ = normalizer_class(**__snake_case ) a__ = do_lower_case def lowerCamelCase__( self :Any ,__snake_case :List[str] ,__snake_case :int=None ) -> Dict: a__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__( self :List[str] ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: a__ = self._tokenizer.model.save(__snake_case ,name=__snake_case ) return tuple(__snake_case )
240
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _lowerCAmelCase : Dict = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Dict = in_proj_weight[ : encoder_config.hidden_size, : ] _lowerCAmelCase : Any = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _lowerCAmelCase : str = in_proj_weight[ -encoder_config.hidden_size :, : ] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = dct.pop(_lowerCamelCase ) _lowerCAmelCase : List[Any] = val def A ( _lowerCamelCase ): '''simple docstring''' if "handwritten" in checkpoint_url: _lowerCAmelCase : List[str] = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCAmelCase : Union[str, Any] = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" _lowerCAmelCase : str = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCamelCase ) _lowerCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _lowerCAmelCase : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder _lowerCAmelCase : Dict = 1_024 _lowerCAmelCase : Optional[int] = 4_096 _lowerCAmelCase : Union[str, Any] = 24 _lowerCAmelCase : int = 16 _lowerCAmelCase : int = 1_024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Any = "relu" _lowerCAmelCase : int = 1_024 _lowerCAmelCase : Any = True _lowerCAmelCase : Dict = False _lowerCAmelCase : List[Any] = False # load HuggingFace model _lowerCAmelCase : List[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ) _lowerCAmelCase : str = TrOCRForCausalLM(_lowerCamelCase ) _lowerCAmelCase : Any = VisionEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase ) model.eval() # load state_dict of original model, rename some keys _lowerCAmelCase : Dict = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" , check_hash=_lowerCamelCase )["model"] _lowerCAmelCase : Any = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("decoder" ) and "output_projection" not in key: _lowerCAmelCase : str = val else: _lowerCAmelCase : Optional[int] = val # load state dict model.load_state_dict(_lowerCamelCase ) # Check outputs on an image _lowerCAmelCase : List[str] = ViTImageProcessor(size=encoder_config.image_size ) _lowerCAmelCase : List[str] = RobertaTokenizer.from_pretrained("roberta-large" ) _lowerCAmelCase : int = TrOCRProcessor(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : str = processor(images=prepare_img(_lowerCamelCase ) , return_tensors="pt" ).pixel_values # verify logits _lowerCAmelCase : Any = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _lowerCAmelCase : Optional[int] = model(pixel_values=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ) _lowerCAmelCase : List[Any] = outputs.logits _lowerCAmelCase : Tuple = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: _lowerCAmelCase : Optional[Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: _lowerCAmelCase : int = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: _lowerCAmelCase : List[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: _lowerCAmelCase : str = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCamelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _snake_case = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
1
'''simple docstring''' from __future__ import annotations import math def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(__UpperCAmelCase ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), ) return min( minimax(depth + 1, node_index * 2, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), ) def __magic_name__ ( ) -> None: '''simple docstring''' snake_case_ = [90, 23, 6, 33, 21, 65, 123, 3_4423] snake_case_ = math.log(len(__UpperCAmelCase ), 2 ) print('''Optimal value : ''', end='''''' ) print(minimax(0, 0, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
56
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ = SqlDatasetReader( '''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase, keep_in_memory=__UpperCAmelCase ).read() _check_sql_dataset(__UpperCAmelCase, __UpperCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, features=__UpperCAmelCase, cache_dir=__UpperCAmelCase ).read() _check_sql_dataset(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' with contextlib.closing(sqlitea.connect(__UpperCAmelCase ) ) as con: snake_case_ = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[Any]: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = os.path.join(__UpperCAmelCase, '''tmp.sql''' ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase ).read() SqlDatasetWriter(__UpperCAmelCase, '''dataset''', '''sqlite:///''' + output_sqlite_path, num_proc=1 ).write() snake_case_ = iter_sql_file(__UpperCAmelCase ) snake_case_ = iter_sql_file(__UpperCAmelCase ) for rowa, rowa in zip(__UpperCAmelCase, __UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = os.path.join(__UpperCAmelCase, '''tmp.sql''' ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase ).read() SqlDatasetWriter(__UpperCAmelCase, '''dataset''', '''sqlite:///''' + output_sqlite_path, num_proc=2 ).write() snake_case_ = iter_sql_file(__UpperCAmelCase ) snake_case_ = iter_sql_file(__UpperCAmelCase ) for rowa, rowa in zip(__UpperCAmelCase, __UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = os.path.join(__UpperCAmelCase, '''tmp.sql''' ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase ).read() with pytest.raises(__UpperCAmelCase ): SqlDatasetWriter(__UpperCAmelCase, '''dataset''', '''sqlite:///''' + output_sqlite_path, num_proc=0 ).write()
56
1
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _lowerCamelCase : str = logging.get_logger(__name__) class lowercase ( a ): def __snake_case( self : List[str] , _UpperCamelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Dict ) -> List[str]: '''simple docstring''' if len(_UpperCamelCase ) == 0 or len(_UpperCamelCase ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(_UpperCamelCase ) ) if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = [sequences] SCREAMING_SNAKE_CASE = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_UpperCamelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(a ) class lowercase ( a ): def __init__( self : Union[str, Any] , _UpperCamelCase : List[str]=ZeroShotClassificationArgumentHandler() , *_UpperCamelCase : str , **_UpperCamelCase : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = args_parser super().__init__(*_UpperCamelCase , **_UpperCamelCase ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def __snake_case( self : Union[str, Any] ) -> List[str]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def __snake_case( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=TruncationStrategy.ONLY_FIRST , **_UpperCamelCase : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) SCREAMING_SNAKE_CASE = self.tokenizer.eos_token try: SCREAMING_SNAKE_CASE = self.tokenizer( _UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , ) except Exception as e: if "too short" in str(_UpperCamelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. SCREAMING_SNAKE_CASE = self.tokenizer( _UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , padding=_UpperCamelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def __snake_case( self : str , **_UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' if kwargs.get("multi_class" , _UpperCamelCase ) is not None: SCREAMING_SNAKE_CASE = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE = kwargs["hypothesis_template"] SCREAMING_SNAKE_CASE = {} if "multi_label" in kwargs: SCREAMING_SNAKE_CASE = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _UpperCamelCase : Union[str, List[str]] , *_UpperCamelCase : List[str] , **_UpperCamelCase : int , ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: pass elif len(_UpperCamelCase ) == 1 and "candidate_labels" not in kwargs: SCREAMING_SNAKE_CASE = args[0] else: raise ValueError(F"Unable to understand extra arguments {args}" ) return super().__call__(_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : Any , _UpperCamelCase : List[str]=None , _UpperCamelCase : str="This example is {}." ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._args_parser(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): SCREAMING_SNAKE_CASE = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_UpperCamelCase ) - 1, **model_input, } def __snake_case( self : List[Any] , _UpperCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = inputs["candidate_label"] SCREAMING_SNAKE_CASE = inputs["sequence"] SCREAMING_SNAKE_CASE = {k: inputs[k] for k in self.tokenizer.model_input_names} SCREAMING_SNAKE_CASE = self.model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def __snake_case( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Any=False ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [outputs["candidate_label"] for outputs in model_outputs] SCREAMING_SNAKE_CASE = [outputs["sequence"] for outputs in model_outputs] SCREAMING_SNAKE_CASE = np.concatenate([output["logits"].numpy() for output in model_outputs] ) SCREAMING_SNAKE_CASE = logits.shape[0] SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = N // n SCREAMING_SNAKE_CASE = logits.reshape((num_sequences, n, -1) ) if multi_label or len(_UpperCamelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently SCREAMING_SNAKE_CASE = self.entailment_id SCREAMING_SNAKE_CASE = -1 if entailment_id == 0 else 0 SCREAMING_SNAKE_CASE = reshaped_outputs[..., [contradiction_id, entailment_id]] SCREAMING_SNAKE_CASE = np.exp(_UpperCamelCase ) / np.exp(_UpperCamelCase ).sum(-1 , keepdims=_UpperCamelCase ) SCREAMING_SNAKE_CASE = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels SCREAMING_SNAKE_CASE = reshaped_outputs[..., self.entailment_id] SCREAMING_SNAKE_CASE = np.exp(_UpperCamelCase ) / np.exp(_UpperCamelCase ).sum(-1 , keepdims=_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
358
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ): try: with open(UpperCAmelCase__ , "rb" ) as flax_state_f: SCREAMING_SNAKE_CASE = from_bytes(UpperCAmelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCAmelCase__ ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE = flatten_dict(jax.tree_util.tree_map(lambda UpperCAmelCase__ : x.dtype == jnp.bfloataa , UpperCAmelCase__ ) ).values() if any(UpperCAmelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) SCREAMING_SNAKE_CASE = jax.tree_util.tree_map( lambda UpperCAmelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = flatten_dict(UpperCAmelCase__ , sep="." ) SCREAMING_SNAKE_CASE = pt_model.state_dict() # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: SCREAMING_SNAKE_CASE = flax_key_tuple_array[:-1] + ["weight"] SCREAMING_SNAKE_CASE = jnp.transpose(UpperCAmelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": SCREAMING_SNAKE_CASE = flax_key_tuple_array[:-1] + ["weight"] SCREAMING_SNAKE_CASE = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": SCREAMING_SNAKE_CASE = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) SCREAMING_SNAKE_CASE = ".".join(UpperCAmelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE = np.asarray(UpperCAmelCase__ ) if not isinstance(UpperCAmelCase__ , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCAmelCase__ ) # remove from missing keys missing_keys.remove(UpperCAmelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCAmelCase__ ) pt_model.load_state_dict(UpperCAmelCase__ ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE = list(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(UpperCAmelCase__ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) return pt_model
206
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) a_ : Union[str, Any] = logging.getLogger() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = '\n'.join(_UpperCAmelCase) Path(_UpperCAmelCase).open('w').writelines(_UpperCAmelCase) a_ : List[Any] = 'patrickvonplaten/t5-tiny-random' a_ : Union[str, Any] = 'sshleifer/bart-tiny-random' a_ : Union[str, Any] = 'sshleifer/tiny-mbart' a_ : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self , a) -> Tuple: SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir()) / 'utest_input.source' SCREAMING_SNAKE_CASE = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() SCREAMING_SNAKE_CASE = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(a , a) SCREAMING_SNAKE_CASE = str(Path(self.get_auto_remove_tmp_dir()) / 'scores.json') SCREAMING_SNAKE_CASE = 'translation_en_to_de' if model == T5_TINY else 'summarization' SCREAMING_SNAKE_CASE = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(a , 'argv' , a): run_generate() assert Path(a).exists() # os.remove(Path(output_file_name)) def SCREAMING_SNAKE_CASE__ ( self) -> str: self.run_eval_tester(a) @parameterized.expand([BART_TINY, MBART_TINY]) @slow def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]: self.run_eval_tester(a) @parameterized.expand([T5_TINY, MBART_TINY]) @slow def SCREAMING_SNAKE_CASE__ ( self , a) -> Any: SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir()) / 'utest_input.source' SCREAMING_SNAKE_CASE = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() SCREAMING_SNAKE_CASE = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir()) SCREAMING_SNAKE_CASE = str(tmp_dir / 'scores.json') SCREAMING_SNAKE_CASE = str(tmp_dir / 'val.target') _dump_articles(a , text['en']) _dump_articles(a , text['de']) SCREAMING_SNAKE_CASE = 'translation_en_to_de' if model == T5_TINY else 'summarization' SCREAMING_SNAKE_CASE = f''' run_eval_search.py {model} {str(a)} {str(a)} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0']) with patch.object(a , 'argv' , a): with CaptureStdout() as cs: run_search() SCREAMING_SNAKE_CASE = [' num_beams | length_penalty', model, 'Best score args'] SCREAMING_SNAKE_CASE = ['Info'] if "translation" in task: expected_strings.append('bleu') else: expected_strings.extend(a) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(a).exists() os.remove(Path(a))
137
import os from datetime import datetime as dt from github import Github a_ : Tuple = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = Github(os.environ['GITHUB_TOKEN']) SCREAMING_SNAKE_CASE = g.get_repo('huggingface/diffusers') SCREAMING_SNAKE_CASE = repo.get_issues(state='open') for issue in open_issues: SCREAMING_SNAKE_CASE = sorted(issue.get_comments() , key=lambda _UpperCAmelCase: i.created_at , reverse=_UpperCAmelCase) SCREAMING_SNAKE_CASE = comments[0] if len(_UpperCAmelCase) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed') elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open') issue.remove_from_labels('stale') elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.') issue.add_to_labels('stale') if __name__ == "__main__": main()
137
1
__A ='''Alexander Joslin''' import operator as op from .stack import Stack def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase__ ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase__ ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowerCamelCase__ , lowerCamelCase__ ) operand_stack.push(lowerCamelCase__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A ='''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
363
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') __A =logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Train language if it is different from the evaluation language.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase_ = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = train_dataset.features["label"].names if training_args.do_eval: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = eval_dataset.features["label"].names if training_args.do_predict: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = predict_dataset.features["label"].names # Labels lowerCamelCase_ = len(lowerCamelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , idalabel={str(lowerCamelCase__ ): label for i, label in enumerate(lowerCamelCase__ )} , labelaid={label: i for i, label in enumerate(lowerCamelCase__ )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False def preprocess_function(lowerCamelCase__ ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=lowerCamelCase__ , max_length=data_args.max_seq_length , truncation=lowerCamelCase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) lowerCamelCase_ = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCamelCase_ = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCamelCase__ ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) lowerCamelCase_ = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCamelCase_ = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_predict_samples ) lowerCamelCase_ = predict_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCamelCase_ = predict_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function lowerCamelCase_ = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions , lowerCamelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) return metric.compute(predictions=lowerCamelCase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCamelCase__ ) trainer.save_metrics("train" , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCamelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = trainer.predict(lowerCamelCase__ , metric_key_prefix="predict" ) lowerCamelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("predict" , lowerCamelCase__ ) trainer.save_metrics("predict" , lowerCamelCase__ ) lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCamelCase__ ): lowerCamelCase_ = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
47
0
import os from collections import deque import torch from torch.utils.data import Dataset class __snake_case ( UpperCamelCase_ ): def __init__( self : Any , A_ : Dict="" , A_ : Tuple="train"): assert os.path.isdir(A_) lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : Dict = os.listdir(A_) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowerCAmelCase_ : str = os.path.join(A_ , A_) if not os.path.isfile(A_): continue self.documents.append(A_) def __len__( self : Optional[int]): return len(self.documents) def __getitem__( self : Optional[int] , A_ : Tuple): lowerCAmelCase_ : List[str] = self.documents[idx] lowerCAmelCase_ : Optional[Any] = document_path.split('''/''')[-1] with open(A_ , encoding='''utf-8''') as source: lowerCAmelCase_ : Any = source.read() lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = process_story(A_) return document_name, story_lines, summary_lines def UpperCamelCase( __UpperCamelCase : Union[str, Any] ): lowerCAmelCase_ : Tuple = list(filter(lambda __UpperCamelCase : len(__UpperCamelCase ) != 0 ,[line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it lowerCAmelCase_ : Union[str, Any] = [_add_missing_period(__UpperCamelCase ) for line in nonempty_lines] # gather article lines lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Any = deque(__UpperCamelCase ) while True: try: lowerCAmelCase_ : Any = lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(__UpperCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowerCAmelCase_ : str = list(filter(lambda __UpperCamelCase : not t.startswith('''@highlight''' ) ,__UpperCamelCase ) ) return story_lines, summary_lines def UpperCamelCase( __UpperCamelCase : Union[str, Any] ): lowerCAmelCase_ : Any = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def UpperCamelCase( __UpperCamelCase : Dict ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ): if len(__UpperCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__UpperCamelCase )) ) return sequence def UpperCamelCase( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = torch.ones_like(__UpperCamelCase ) lowerCAmelCase_ : Dict = sequence == pad_token_id lowerCAmelCase_ : int = 0 return mask def UpperCamelCase( __UpperCamelCase : Tuple ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): lowerCAmelCase_ : Dict = [tokenizer.encode(__UpperCamelCase ) for line in story_lines] lowerCAmelCase_ : Optional[Any] = [token for sentence in story_lines_token_ids for token in sentence] lowerCAmelCase_ : Tuple = [tokenizer.encode(__UpperCamelCase ) for line in summary_lines] lowerCAmelCase_ : Optional[Any] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def UpperCamelCase( __UpperCamelCase : List[str] ,__UpperCamelCase : Tuple ): lowerCAmelCase_ : Union[str, Any] = [] for sequence in batch: lowerCAmelCase_ : str = -1 lowerCAmelCase_ : List[str] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__UpperCamelCase ) return torch.tensor(__UpperCamelCase )
103
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def snake_case_ ( SCREAMING_SNAKE_CASE__ = 100_0000 , SCREAMING_SNAKE_CASE__ = 10 ): """simple docstring""" _SCREAMING_SNAKE_CASE : defaultdict = defaultdict(SCREAMING_SNAKE_CASE__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _SCREAMING_SNAKE_CASE : int = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _SCREAMING_SNAKE_CASE : List[str] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
200
0
class _a : def __init__( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: List[str]=None ) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = previous lowercase__ = next_node def __str__( self: List[str] ) -> str: """simple docstring""" return f'{self.data}' def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" return self.data def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" return self.next def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" return self.previous class _a : def __init__( self: Dict , UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" lowercase__ = head def __iter__( self: str ) -> Optional[int]: """simple docstring""" return self def lowerCamelCase_ ( self: List[str] ) -> Optional[int]: """simple docstring""" if not self.current: raise StopIteration else: lowercase__ = self.current.get_data() lowercase__ = self.current.get_next() return value class _a : def __init__( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = None # First node in list lowercase__ = None # Last node in list def __str__( self: Dict ) -> int: """simple docstring""" lowercase__ = self.head lowercase__ = [] while current is not None: nodes.append(current.get_data() ) lowercase__ = current.get_next() return " ".join(str(UpperCamelCase_ ) for node in nodes ) def __contains__( self: Union[str, Any] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = self.head while current: if current.get_data() == value: return True lowercase__ = current.get_next() return False def __iter__( self: Optional[Any] ) -> int: """simple docstring""" return LinkedListIterator(self.head ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.head: return self.head.get_data() return None def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" if self.tail: return self.tail.get_data() return None def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Node ) -> None: """simple docstring""" if self.head is None: lowercase__ = node lowercase__ = node else: self.insert_before_node(self.head , UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Node ) -> None: """simple docstring""" if self.head is None: self.set_head(UpperCamelCase_ ) else: self.insert_after_node(self.tail , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = Node(UpperCamelCase_ ) if self.head is None: self.set_head(UpperCamelCase_ ) else: self.set_tail(UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Node , UpperCamelCase_: Node ) -> None: """simple docstring""" lowercase__ = node lowercase__ = node.previous if node.get_previous() is None: lowercase__ = node_to_insert else: lowercase__ = node_to_insert lowercase__ = node_to_insert def lowerCamelCase_ ( self: str , UpperCamelCase_: Node , UpperCamelCase_: Node ) -> None: """simple docstring""" lowercase__ = node lowercase__ = node.next if node.get_next() is None: lowercase__ = node_to_insert else: lowercase__ = node_to_insert lowercase__ = node_to_insert def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = 1 lowercase__ = Node(UpperCamelCase_ ) lowercase__ = self.head while node: if current_position == position: self.insert_before_node(UpperCamelCase_ , UpperCamelCase_ ) return current_position += 1 lowercase__ = node.next self.insert_after_node(self.tail , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: int ) -> Node: """simple docstring""" lowercase__ = self.head while node: if node.get_data() == item: return node lowercase__ = node.get_next() raise Exception('''Node not found''' ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: str ) -> List[str]: """simple docstring""" if (node := self.get_node(UpperCamelCase_ )) is not None: if node == self.head: lowercase__ = self.head.get_next() if node == self.tail: lowercase__ = self.tail.get_previous() self.remove_node_pointers(UpperCamelCase_ ) @staticmethod def lowerCamelCase_ ( UpperCamelCase_: Node ) -> None: """simple docstring""" if node.get_next(): lowercase__ = node.previous if node.get_previous(): lowercase__ = node.next lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.head is None def _a ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
357
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) lowerCAmelCase = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE ) lowercase__ = { '''repo_id''': str(SCREAMING_SNAKE_CASE ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(SCREAMING_SNAKE_CASE , '''git_log.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=4 ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if params.n_gpu <= 0: lowercase__ = 0 lowercase__ = -1 lowercase__ = True lowercase__ = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase__ = int(os.environ['''WORLD_SIZE'''] ) lowercase__ = int(os.environ['''N_GPU_NODE'''] ) lowercase__ = int(os.environ['''RANK'''] ) # number of nodes / node ID lowercase__ = params.world_size // params.n_gpu_per_node lowercase__ = params.global_rank // params.n_gpu_per_node lowercase__ = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase__ = 1 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 lowercase__ = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase__ = params.node_id == 0 and params.local_rank == 0 lowercase__ = params.n_nodes > 1 # summary lowercase__ = f'--- Global rank: {params.global_rank} - ' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
93
0
import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __lowercase : Tuple , __lowercase : Tuple = True , __lowercase : List[str] = math.inf , __lowercase : List[Any] = -math.inf , __lowercase : str = math.inf , __lowercase : Dict = -math.inf , __lowercase : Optional[int] = False , __lowercase : Optional[Any] = 100 , __lowercase : Optional[int] = 0.0_1 , __lowercase : int = 1 , ) -> Any: _snake_case = False _snake_case = search_prob _snake_case = start_temperate _snake_case = [] _snake_case = 0 _snake_case = None while not search_end: _snake_case = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case = current_state scores.append(__a ) iterations += 1 _snake_case = None _snake_case = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case = random.randint(0 , len(__a ) - 1 ) # picking a random neighbor _snake_case = neighbors.pop(__a ) _snake_case = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case = picked_neighbor else: _snake_case = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case = picked_neighbor _snake_case = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case = True else: _snake_case = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__a ) , __a ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __lowercase : Union[str, Any] , __lowercase : Dict ) -> Tuple: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _lowerCamelCase : Tuple = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowerCamelCase : Dict = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) _lowerCamelCase : Union[str, Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowerCamelCase : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def a_ ( __lowercase : int , __lowercase : List[str] ) -> Any: return (3 * x**2) - (6 * y) _lowerCamelCase : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowerCamelCase : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' ) _lowerCamelCase : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowerCamelCase : Optional[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' )
282
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=400 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=True , UpperCamelCase_=1 / 255 , UpperCamelCase_=True , ): '''simple docstring''' UpperCamelCase__ :Dict = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} UpperCamelCase__ :str = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :str = min_resolution UpperCamelCase__ :Optional[Any] = max_resolution UpperCamelCase__ :int = do_resize UpperCamelCase__ :Optional[Any] = size UpperCamelCase__ :Tuple = do_normalize UpperCamelCase__ :List[Any] = image_mean UpperCamelCase__ :Dict = image_std UpperCamelCase__ :Union[str, Any] = do_rescale UpperCamelCase__ :Union[str, Any] = rescale_factor UpperCamelCase__ :Union[str, Any] = do_pad def lowerCAmelCase__ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' if not batched: UpperCamelCase__ :List[str] = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): UpperCamelCase__ , UpperCamelCase__ :List[str] = image.size else: UpperCamelCase__ , UpperCamelCase__ :List[Any] = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ :int = int(self.size['''shortest_edge'''] * h / w ) UpperCamelCase__ :Dict = self.size['''shortest_edge'''] elif w > h: UpperCamelCase__ :int = self.size['''shortest_edge'''] UpperCamelCase__ :Tuple = int(self.size['''shortest_edge'''] * w / h ) else: UpperCamelCase__ :str = self.size['''shortest_edge'''] UpperCamelCase__ :str = self.size['''shortest_edge'''] else: UpperCamelCase__ :Any = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ :Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ :List[Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] UpperCamelCase__ :Optional[int] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase__ :Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) UpperCamelCase__ :List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase__ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ :Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase__ :str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Dict = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ :List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.loads(f.read() ) UpperCamelCase__ :Any = {'''image_id''': 39769, '''annotations''': target} # encode them UpperCamelCase__ :str = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) UpperCamelCase__ :List[Any] = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase__ :List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) UpperCamelCase__ :str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase__ :str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes UpperCamelCase__ :Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase__ :List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd UpperCamelCase__ :int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels UpperCamelCase__ :List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify orig_size UpperCamelCase__ :Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size UpperCamelCase__ :Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCamelCase__ :Tuple = json.loads(f.read() ) UpperCamelCase__ :List[str] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} UpperCamelCase__ :Any = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCamelCase__ :List[Any] = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) UpperCamelCase__ :Dict = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase__ :str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase__ :Tuple = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes UpperCamelCase__ :Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) UpperCamelCase__ :List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase__ :List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd UpperCamelCase__ :Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels UpperCamelCase__ :str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify masks UpperCamelCase__ :Optional[Any] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase_ ) # verify orig_size UpperCamelCase__ :List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size UpperCamelCase__ :List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) )
97
0
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFImgaImgSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
263
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase : Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
263
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''MaskFormerFeatureExtractor'''] lowerCamelCase = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] lowerCamelCase = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
188
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase : int = logging.get_logger("transformers.models.speecht5") def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): hf_model.apply_weight_norm() lowercase :str = checkpoint["input_conv.weight_g"] lowercase :List[str] = checkpoint["input_conv.weight_v"] lowercase :List[Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): lowercase :int = checkpoint[F"upsamples.{i}.1.weight_g"] lowercase :int = checkpoint[F"upsamples.{i}.1.weight_v"] lowercase :Optional[Any] = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowercase :Optional[Any] = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowercase :Any = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowercase :Union[str, Any] = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowercase :int = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowercase :List[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowercase :Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowercase :Any = checkpoint["output_conv.1.weight_g"] lowercase :str = checkpoint["output_conv.1.weight_v"] lowercase :Dict = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, ): if config_path is not None: lowercase :Optional[int] = SpeechTaHifiGanConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: lowercase :str = SpeechTaHifiGanConfig() lowercase :Optional[int] = SpeechTaHifiGan(__SCREAMING_SNAKE_CASE ) lowercase :Optional[Any] = torch.load(__SCREAMING_SNAKE_CASE ) load_weights(orig_checkpoint["model"]["generator"], __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) lowercase :str = np.load(__SCREAMING_SNAKE_CASE ) lowercase :Optional[Any] = stats[0].reshape(-1 ) lowercase :Optional[int] = stats[1].reshape(-1 ) lowercase :str = torch.from_numpy(__SCREAMING_SNAKE_CASE ).float() lowercase :Optional[int] = torch.from_numpy(__SCREAMING_SNAKE_CASE ).float() model.save_pretrained(__SCREAMING_SNAKE_CASE ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _UpperCAmelCase : str = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
370
from typing import TYPE_CHECKING from ...utils import _LazyModule _UpperCAmelCase : Optional[int] = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
0
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowercase : Dict = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: A : Union[str, Any] = os.path.abspath(snake_case__ ) logger.info(F'Loading PyTorch weights from {pt_path}' ) A : Any = torch.load(snake_case__ , map_location='''cpu''' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ ) return flax_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool: return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean A : Tuple = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var A : Dict = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # embedding A : Any = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # conv layer A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ): A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ): A : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 A : Dict = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): A : List[Any] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): A : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: A : int = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} A : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: A : List[str] = flax_model.params['''params'''] else: A : Dict = flax_model.params A : List[Any] = flatten_dict(snake_case__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(snake_case__ ) A : int = {} A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : str = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Any = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Dict = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : Any = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: A : Tuple = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : List[str] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' import torch # Load the index A : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils A : List[str] = torch.load(snake_case__ ) A : int = {k: v.numpy() for k, v in pt_state_dict.items()} A : Tuple = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : Optional[int] = flax_model.params['''params'''] A : List[Any] = flatten_dict(snake_case__ ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: A : Dict = flax_model.params A : Tuple = flatten_dict(snake_case__ ) A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : int = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : List[str] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Any = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue if "var" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = os.path.abspath(snake_case__ ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(snake_case__ , '''rb''' ) as state_f: try: A : int = from_bytes(snake_case__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) A : Optional[Any] = jax.tree_util.tree_map( lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) A : Union[str, Any] = flatten_dict(snake_case__ ) A : List[Any] = pt_model.state_dict() A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) A : Tuple = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys A : int = [] A : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: A : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict: # conv layer A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict: # linear layer A : Tuple = flax_key_tuple[:-1] + ('''weight''',) A : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: A : Union[str, Any] = '''.'''.join(snake_case__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. A : int = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: A : Optional[int] = key.split('''.''' ) A : Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: A : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: A : List[Any] = key_components[-2] + '''_v''' if name is not None: A : str = key_components[:-3] + [name] A : Optional[Any] = '''.'''.join(snake_case__ ) A : Optional[Any] = key if flax_key in special_pt_names: A : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor A : Dict = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list A : List[Any] = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(snake_case__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
3
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowercase : Dict = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: A : Union[str, Any] = os.path.abspath(snake_case__ ) logger.info(F'Loading PyTorch weights from {pt_path}' ) A : Any = torch.load(snake_case__ , map_location='''cpu''' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ ) return flax_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool: return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean A : Tuple = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var A : Dict = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # embedding A : Any = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # conv layer A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ): A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ): A : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 A : Dict = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): A : List[Any] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): A : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: A : int = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} A : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: A : List[str] = flax_model.params['''params'''] else: A : Dict = flax_model.params A : List[Any] = flatten_dict(snake_case__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(snake_case__ ) A : int = {} A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : str = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Any = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Dict = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : Any = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: A : Tuple = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : List[str] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' import torch # Load the index A : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils A : List[str] = torch.load(snake_case__ ) A : int = {k: v.numpy() for k, v in pt_state_dict.items()} A : Tuple = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : Optional[int] = flax_model.params['''params'''] A : List[Any] = flatten_dict(snake_case__ ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: A : Dict = flax_model.params A : Tuple = flatten_dict(snake_case__ ) A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : int = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : List[str] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Any = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue if "var" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = os.path.abspath(snake_case__ ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(snake_case__ , '''rb''' ) as state_f: try: A : int = from_bytes(snake_case__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) A : Optional[Any] = jax.tree_util.tree_map( lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) A : Union[str, Any] = flatten_dict(snake_case__ ) A : List[Any] = pt_model.state_dict() A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) A : Tuple = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys A : int = [] A : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: A : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict: # conv layer A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict: # linear layer A : Tuple = flax_key_tuple[:-1] + ('''weight''',) A : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: A : Union[str, Any] = '''.'''.join(snake_case__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. A : int = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: A : Optional[int] = key.split('''.''' ) A : Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: A : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: A : List[Any] = key_components[-2] + '''_v''' if name is not None: A : str = key_components[:-3] + [name] A : Optional[Any] = '''.'''.join(snake_case__ ) A : Optional[Any] = key if flax_key in special_pt_names: A : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor A : Dict = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list A : List[Any] = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(snake_case__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
3
1
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
1
'''simple docstring''' import math class __UpperCAmelCase : def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = 0.0 _snake_case = 0.0 for i in range(len(lowerCAmelCase_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i in range(len(lowerCAmelCase_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE__ ( ) -> None: # Training Examples ( m, n ) _snake_case = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _snake_case = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _snake_case = SelfOrganizingMap() _snake_case = 3 _snake_case = 0.5 for _ in range(__A ): for j in range(len(__A ) ): # training sample _snake_case = training_samples[j] # Compute the winning vector _snake_case = self_organizing_map.get_winner(__A , __A ) # Update the winning vector _snake_case = self_organizing_map.update(__A , __A , __A , __A ) # classify test sample _snake_case = [0, 0, 0, 1] _snake_case = self_organizing_map.get_winner(__A , __A ) # results print(F'Clusters that the test sample belongs to : {winner}' ) print(F'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
42
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A = 100 ) -> int: _snake_case = n * (n + 1) * (2 * n + 1) / 6 _snake_case = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
42
1
from manim import * class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): snake_case_ = Rectangle(height=0.5 , width=0.5 ) snake_case_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ = Rectangle(height=0.25 , width=0.25 ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) snake_case_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) snake_case_ = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) snake_case_ = Text('''CPU''' , font_size=24 ) snake_case_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) snake_case_ = [mem.copy() for i in range(4 )] snake_case_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) snake_case_ = Text('''GPU''' , font_size=24 ) snake_case_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) snake_case_ = Text('''Model''' , font_size=24 ) snake_case_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) snake_case_ = [] snake_case_ = [] for i, rect in enumerate(_UpperCAmelCase ): snake_case_ = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) snake_case_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) snake_case_ = [meta_mem.copy() for i in range(6 )] snake_case_ = [meta_mem.copy() for i in range(6 )] snake_case_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) snake_case_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) snake_case_ = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) snake_case_ = Text('''Disk''' , font_size=24 ) snake_case_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) snake_case_ = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) snake_case_ = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) snake_case_ = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) snake_case_ = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) snake_case_ = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) snake_case_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) snake_case_ = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: snake_case_ = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) snake_case_ = a_c snake_case_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) snake_case_ = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
351
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
267
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ = TypeVar("""T""") class A__ ( Generic[T] ): lowerCAmelCase__ : deque[T] # Cache store of keys lowerCAmelCase__ : set[T] # References of the keys in cache lowerCAmelCase__ : int = 10 # Maximum capacity of cache def __init__( self : Optional[int] , _UpperCAmelCase : int ) -> None: """simple docstring""" __lowercase = deque() __lowercase = set() if not n: __lowercase = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: __lowercase = n def a__ ( self : int , _UpperCAmelCase : T ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __lowercase = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> None: """simple docstring""" for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self : Union[str, Any] ) -> str: """simple docstring""" return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
325
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 3_84 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = 'gelu' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_12 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = 1_28 __lowercase = 2 __lowercase = 9 __lowercase = 1 __lowercase = None def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModel(config=_UpperCAmelCase ) __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[str] = False def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = True if hasattr(_UpperCAmelCase , 'use_cache' ): __lowercase = True __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) __lowercase = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) __lowercase = tf.keras.models.load_model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = outputs['encoder_hidden_states'] __lowercase = outputs['encoder_attentions'] else: __lowercase = outputs['hidden_states'] __lowercase = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : int ): __lowercase = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): __lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 7_68] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
1
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def a__ ( snake_case__ ) -> Optional[int]: if isinstance(snake_case__ , collections.abc.Iterable ): return x return (x, x) @require_tf class __magic_name__ : '''simple docstring''' def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self , _a , _a , _a , _a , _a=None , **_a ): """simple docstring""" lowerCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_a , _a ) lowerCamelCase = TFVisionTextDualEncoderModel(_a ) lowerCamelCase = model(input_ids=_a , pixel_values=_a , attention_mask=_a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a=None , **_a ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.get_vision_text_model(_a , _a ) lowerCamelCase = TFVisionTextDualEncoderModel(vision_model=_a , text_model=_a ) lowerCamelCase = model(input_ids=_a , pixel_values=_a , attention_mask=_a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a=None , **_a ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.get_vision_text_model(_a , _a ) lowerCamelCase = {"""vision_model""": vision_model, """text_model""": text_model} lowerCamelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_a ) lowerCamelCase = model(input_ids=_a , pixel_values=_a , attention_mask=_a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a=None , **_a ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.get_vision_text_model(_a , _a ) lowerCamelCase = TFVisionTextDualEncoderModel(vision_model=_a , text_model=_a ) lowerCamelCase = model(input_ids=_a , pixel_values=_a , attention_mask=_a ) lowerCamelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a ) lowerCamelCase = TFVisionTextDualEncoderModel.from_pretrained(_a ) lowerCamelCase = model(input_ids=_a , pixel_values=_a , attention_mask=_a ) lowerCamelCase = after_output[0].numpy() lowerCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_a , 1e-5 ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a=None , **_a ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.get_vision_text_model(_a , _a ) lowerCamelCase = TFVisionTextDualEncoderModel(vision_model=_a , text_model=_a ) lowerCamelCase = model( input_ids=_a , pixel_values=_a , attention_mask=_a , output_attentions=_a ) lowerCamelCase = output.vision_model_output.attentions self.assertEqual(len(_a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase = to_atuple(vision_model.config.image_size ) lowerCamelCase = to_atuple(vision_model.config.patch_size ) lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCamelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCamelCase = output.text_model_output.attentions self.assertEqual(len(_a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = np.abs((a - b) ).max() self.assertLessEqual(_a , _a , f'Difference between torch and flax is {diff} (>= {tol}).' ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() self.check_save_load(**_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_a ) @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.get_pretrained_model_and_inputs() lowerCamelCase = model_a(**_a ) lowerCamelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_a ) lowerCamelCase = TFVisionTextDualEncoderModel.from_pretrained(_a ) lowerCamelCase = model_a(**_a ) lowerCamelCase = after_outputs[0].numpy() lowerCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_a , 1e-5 ) @require_tf class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) lowerCamelCase = 13 lowerCamelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCamelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCamelCase = random_attention_mask([batch_size, 4] ) lowerCamelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = TFViTModel(_a , name="""vision_model""" ) lowerCamelCase = TFBertModel(_a , name="""text_model""" ) return vision_model, text_model def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFViTModelTester(self ) lowerCamelCase = TFBertModelTester(self ) lowerCamelCase = vit_model_tester.prepare_config_and_inputs() lowerCamelCase = bert_model_tester.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = vision_config_and_inputs ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. lowerCamelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) lowerCamelCase = 13 lowerCamelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCamelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCamelCase = random_attention_mask([batch_size, 4] ) lowerCamelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowerCAmelCase ( self , _a , _a , _a , _a , _a=None , **_a ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.get_vision_text_model(_a , _a ) lowerCamelCase = TFVisionTextDualEncoderModel(vision_model=_a , text_model=_a ) lowerCamelCase = model( input_ids=_a , pixel_values=_a , attention_mask=_a , output_attentions=_a ) lowerCamelCase = output.vision_model_output.attentions self.assertEqual(len(_a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCamelCase = to_atuple(vision_model.config.image_size ) lowerCamelCase = to_atuple(vision_model.config.patch_size ) lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCamelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCamelCase = output.text_model_output.attentions self.assertEqual(len(_a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = TFDeiTModel(_a , name="""vision_model""" ) lowerCamelCase = TFRobertaModel(_a , name="""text_model""" ) return vision_model, text_model def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFDeiTModelTester(self ) lowerCamelCase = TFRobertaModelTester(self ) lowerCamelCase = vit_model_tester.prepare_config_and_inputs() lowerCamelCase = bert_model_tester.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = vision_config_and_inputs ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) lowerCamelCase = 13 lowerCamelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCamelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCamelCase = random_attention_mask([batch_size, 4] ) lowerCamelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = TFCLIPVisionModel(_a , name="""vision_model""" ) lowerCamelCase = TFBertModel(_a , name="""text_model""" ) return vision_model, text_model def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFCLIPVisionModelTester(self ) lowerCamelCase = TFBertModelTester(self ) lowerCamelCase = clip_model_tester.prepare_config_and_inputs() lowerCamelCase = bert_model_tester.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase = vision_config_and_inputs ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_a ) lowerCamelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_a , padding=_a , return_tensors="""np""" ) lowerCamelCase = model(**_a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCamelCase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _a , atol=1e-3 ) )
168
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a__ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ) -> Tuple: if attention_mask is None: lowerCamelCase = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __magic_name__ : '''simple docstring''' __UpperCamelCase = OPTConfig __UpperCamelCase = {} __UpperCamelCase = "gelu" def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=16 , _a=2 , _a=4 , _a=4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , _a=16 , _a=16 , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = eos_token_id lowerCamelCase = pad_token_id lowerCamelCase = bos_token_id lowerCamelCase = embed_dim lowerCamelCase = word_embed_proj_dim lowerCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_a , **self.config_updates , ) lowerCamelCase = prepare_opt_inputs_dict(_a , _a ) return config, inputs_dict def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = TFOPTModel(config=_a ) lowerCamelCase = inputs_dict["""input_ids"""] lowerCamelCase = input_ids[:1, :] lowerCamelCase = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase = 1 # first forward pass lowerCamelCase = model(_a , attention_mask=_a , use_cache=_a ) lowerCamelCase , lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase = model(_a , attention_mask=_a )[0] lowerCamelCase = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) @require_tf class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __UpperCamelCase = (TFOPTForCausalLM,) if is_tf_available() else () __UpperCamelCase = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 10 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFOPTModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_a ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_a , _a ): if hasattr(_a , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_a , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase = model_class(config=_a ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_input_embeddings() ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_a ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_input_embeddings() ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _a ) # check that weights remain the same after resizing lowerCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase = False self.assertTrue(_a ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _a ) lowerCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase = False self.assertTrue(_a ) def a__ ( snake_case__ ) -> List[Any]: return tf.constant(snake_case__ , dtype=tf.intaa ) @require_tf class __magic_name__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = 99 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase = input_ids.shape[0] lowerCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCamelCase = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowerCamelCase = tf.not_equal(_a , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase = model(input_ids=_a , attention_mask=_a ).last_hidden_state lowerCamelCase = (1, 11, 512) self.assertEqual(output.shape , _a ) lowerCamelCase = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=4e-3 ) ) lowerCamelCase = tf.function(_a , jit_compile=_a ) lowerCamelCase = xla_generate(_a , _a )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=4e-2 ) ) @require_tf @slow class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" super().setUp() lowerCamelCase = """facebook/opt-350m""" def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase = tokenizer(_a , return_tensors="""tf""" , padding=_a , add_special_tokens=_a ) lowerCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(_a , _a , atol=1e-4 ) ) lowerCamelCase = tf.function(_a , jit_compile=_a ) lowerCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_a , _a , atol=1e-4 ) ) @require_tf @slow class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @property def _lowerCAmelCase ( self ): """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """facebook/opt-125m""" lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase = [] lowerCamelCase = GPTaTokenizer.from_pretrained(_a ) lowerCamelCase = TFOPTForCausalLM.from_pretrained(_a ) for prompt in self.prompts: lowerCamelCase = tokenizer(_a , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(_a , max_length=10 ) lowerCamelCase = tokenizer.batch_decode(_a , skip_special_tokens=_a ) predicted_outputs += generated_string self.assertListEqual(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """facebook/opt-350m""" lowerCamelCase = GPTaTokenizer.from_pretrained(_a ) lowerCamelCase = TFOPTForCausalLM.from_pretrained(_a ) lowerCamelCase = """left""" # use different length sentences to test batching lowerCamelCase = [ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase = tokenizer(_a , return_tensors="""tf""" , padding=_a ) lowerCamelCase = inputs["""input_ids"""] lowerCamelCase = model.generate(input_ids=_a , attention_mask=inputs["""attention_mask"""] ) lowerCamelCase = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(input_ids=_a ) lowerCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCamelCase = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(input_ids=_a , max_length=model.config.max_length - num_paddings ) lowerCamelCase = tokenizer.batch_decode(_a , skip_special_tokens=_a ) lowerCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a ) lowerCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_a ) lowerCamelCase = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , [non_padded_sentence, padded_sentence] ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """facebook/opt-350m""" lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase = [] lowerCamelCase = GPTaTokenizer.from_pretrained(_a ) lowerCamelCase = TFOPTForCausalLM.from_pretrained(_a ) for prompt in self.prompts: lowerCamelCase = tokenizer(_a , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(_a , max_length=10 ) lowerCamelCase = tokenizer.batch_decode(_a , skip_special_tokens=_a ) predicted_outputs += generated_string self.assertListEqual(_a , _a )
168
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Tuple = logging.get_logger(__name__) lowercase : Tuple = { """google/vit-base-patch16-224""": """https://huggingface.co/vit-base-patch16-224/resolve/main/config.json""", # See all ViT models at https://huggingface.co/models?filter=vit } class __snake_case ( lowerCAmelCase ): _a : Tuple= "vit" def __init__( self ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=224 ,snake_case=16 ,snake_case=3 ,snake_case=True ,snake_case=16 ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) lowercase : Union[str, Any] = hidden_size lowercase : int = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : Optional[Any] = intermediate_size lowercase : str = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : Tuple = initializer_range lowercase : int = layer_norm_eps lowercase : Optional[Any] = image_size lowercase : Any = patch_size lowercase : List[Any] = num_channels lowercase : Dict = qkv_bias lowercase : List[Any] = encoder_stride class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 1e-4
20
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __lowerCAmelCase : Any =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowerCAmelCase : Optional[int] =" def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Tuple )-> Union[str, Any]: A__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) A__ = self.transformer_dir shutil.copy( os.path.join(lowercase_ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def UpperCAmelCase_ ( self :Optional[int] )-> Tuple: A__ = "src/transformers" shutil.rmtree(self.transformer_dir ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :List[str] , lowercase_ :Union[str, Any] , lowercase_ :int , lowercase_ :Tuple=None )-> Optional[Any]: A__ = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: A__ = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result A__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) A__ = black.format_str(lowercase_ , mode=lowercase_ ) A__ = os.path.join(self.transformer_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def UpperCAmelCase_ ( self :str )-> Optional[Any]: A__ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , lowercase_ ) , ) # Copy consistency with a really long name A__ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , lowercase_ , overwrite_result=re.sub("Bert" , "TestModel" , lowercase_ ) , ) def UpperCAmelCase_ ( self :Dict )-> Any: A__ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) self.assertFalse(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase_ ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(lowercase_ , lowercase_ )
237
0
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Union[str, Any] ,_a : Union[str, "sqlalchemy.sql.Selectable"] ,_a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_a : Optional[Features] = None ,_a : str = None ,_a : bool = False ,**_a : List[Any] ,): '''simple docstring''' super().__init__(features=_a ,cache_dir=_a ,keep_in_memory=_a ,**_a ) _a : Any = Sql( cache_dir=_a ,features=_a ,sql=_a ,con=_a ,**_a ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[str] = None _a : Dict = None _a : Any = None _a : Optional[int] = None self.builder.download_and_prepare( download_config=_a ,download_mode=_a ,verification_mode=_a ,base_path=_a ,) # Build dataset for splits _a : Dict = self.builder.as_dataset( split='train' ,verification_mode=_a ,in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ,_a : Dataset ,_a : str ,_a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_a : Optional[int] = None ,_a : Optional[int] = None ,**_a : int ,): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _a : List[Any] = dataset _a : Dict = name _a : Optional[Any] = con _a : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _a : Optional[Any] = num_proc _a : Any = to_sql_kwargs def __lowercase ( self : List[str] ): '''simple docstring''' _a : Dict = self.to_sql_kwargs.pop('sql' ,_a ) _a : Tuple = self.to_sql_kwargs.pop('con' ,_a ) _a : Optional[Any] = self.to_sql_kwargs.pop('index' ,_a ) _a : Union[str, Any] = self._write(index=_a ,**self.to_sql_kwargs ) return written def __lowercase ( self : Any ,_a : Tuple ): '''simple docstring''' _a, _a, _a : Any = args _a : Any = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _a : Optional[int] = query_table( table=self.dataset.data ,key=slice(_a ,offset + self.batch_size ) ,indices=self.dataset._indices ,) _a : Any = batch.to_pandas() _a : Union[str, Any] = df.to_sql(self.name ,self.con ,index=_a ,**_a ) return num_rows or len(_a ) def __lowercase ( self : Optional[int] ,_a : List[str] ,**_a : List[Any] ): '''simple docstring''' _a : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _a, _a : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,_a ,_a )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += num_rows return written
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _snake_case = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case_ = "AAPL" ): _A : str = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A : List[Any] = BeautifulSoup(requests.get(snake_case_ ).text,"""html.parser""" ) _A : Union[str, Any] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""",class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
26
1
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=2_2_4 , lowerCamelCase__=1_0_0_0 , lowerCamelCase__=[3, 3, 6, 4] , lowerCamelCase__=[4_8, 5_6, 1_1_2, 2_2_0] , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = num_labels _lowerCamelCase = image_size _lowerCamelCase = layer_depths _lowerCamelCase = embed_dims def snake_case__ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase = self.get_config() return config, pixel_values, labels def snake_case__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=a__ , layer_scale_init_value=1e-5 , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = SwiftFormerModel(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = SwiftFormerForImageClassification(a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _lowerCamelCase = SwiftFormerForImageClassification(a__ ) model.to(a__ ) model.eval() _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self ): ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) = self.prepare_config_and_inputs() _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_( __a, __a, unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowercase__ : Union[str, Any] = False lowercase__ : Dict = False lowercase__ : List[str] = False lowercase__ : Union[str, Any] = False lowercase__ : Optional[int] = False def snake_case__ ( self ): _lowerCamelCase = SwiftFormerModelTester(self ) _lowerCamelCase = ConfigTester( self , config_class=a__ , has_text_modality=a__ , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def snake_case__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(a__ ) _lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(a__ ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def snake_case__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = SwiftFormerModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCamelCase = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCamelCase = outputs.hidden_states _lowerCamelCase = 8 self.assertEqual(len(a__ ) , a__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(a__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(a__ , a__ , a__ ) def snake_case__ ( self ): def _config_zero_init(lowerCamelCase__ ): _lowerCamelCase = copy.deepcopy(a__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(a__ , a__ , 1e-10 ) if isinstance(getattr(a__ , a__ , a__ ) , a__ ): _lowerCamelCase = _config_zero_init(getattr(a__ , a__ ) ) setattr(a__ , a__ , a__ ) return configs_no_init _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = _config_zero_init(a__ ) for model_class in self.all_model_classes: _lowerCamelCase = model_class(config=a__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self ): pass def lowerCAmelCase_( ) -> str: _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def snake_case__ ( self ): _lowerCamelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(a__ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**a__ ) # verify the logits _lowerCamelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCamelCase = torch.tensor([[-2.1703e00, 2.1107e00, -2.0811e00]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : Dict = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( A__ ) -> int: """simple docstring""" if not nums: return 0 UpperCamelCase = nums[0] UpperCamelCase = 0 for num in nums[1:]: UpperCamelCase , UpperCamelCase = ( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' def __lowerCamelCase ( A__ = 10**9 ) -> int: """simple docstring""" UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCamelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
28
1
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def UpperCAmelCase_ ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
210
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Tuple=10 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Dict=32 * 8 , _lowerCAmelCase : List[str]=32 * 8 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : Optional[Any]=64 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_size SCREAMING_SNAKE_CASE_ = max_size SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = hidden_dim def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() SCREAMING_SNAKE_CASE_ = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) SCREAMING_SNAKE_CASE_ = self.num_queries SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = [1, 1, 1, 1] SCREAMING_SNAKE_CASE_ = self.num_channels SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim return config def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = output.encoder_hidden_states SCREAMING_SNAKE_CASE_ = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_layers ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ = MaskaFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowercase_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowerCAmelCase_ ( self : Tuple ): pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowerCAmelCase_ ( self : List[Any] ): pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowerCAmelCase_ ( self : Tuple ): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCAmelCase_ ( self : Any ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : int ): pass def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Any ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_lowerCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_lowerCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } SCREAMING_SNAKE_CASE_ = self.model_tester.get_config() SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase_ ( self : List[str] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ : Tuple = 1E-4 def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[int] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase_ ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) # masks_queries_logits SCREAMING_SNAKE_CASE_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) SCREAMING_SNAKE_CASE_ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits SCREAMING_SNAKE_CASE_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['mask_labels']] SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
210
1
def lowerCAmelCase_ ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' return int(input_a == input_a == 0 ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
281
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration snake_case : List[str] = "facebook/wmt19-en-de" snake_case : Dict = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model snake_case : List[str] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) snake_case : int = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test snake_case : Optional[Any] = tokenizer(["Making tiny model"], return_tensors="pt") snake_case : List[str] = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save snake_case : Dict = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
281
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : UNetaDModel , SCREAMING_SNAKE_CASE_ : UNetaDModel , SCREAMING_SNAKE_CASE_ : DDPMScheduler , SCREAMING_SNAKE_CASE_ : Dict , ) -> Tuple: '''simple docstring''' super().__init__() A: int = value_function A: int = unet A: Optional[Any] = scheduler A: Union[str, Any] = env A: Union[str, Any] = env.get_dataset() A: Tuple = {} for key in self.data.keys(): try: A: List[str] = self.data[key].mean() except: # noqa: E722 pass A: Tuple = {} for key in self.data.keys(): try: A: List[str] = self.data[key].std() except: # noqa: E722 pass A: Optional[int] = env.observation_space.shape[0] A: Any = env.action_space.shape[0] def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: '''simple docstring''' if type(SCREAMING_SNAKE_CASE_ ) is dict: return {k: self.to_torch(SCREAMING_SNAKE_CASE_ ) for k, v in x_in.items()} elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ): return x_in.to(self.unet.device ) return torch.tensor(SCREAMING_SNAKE_CASE_ , device=self.unet.device ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' for key, val in cond.items(): A: List[Any] = val.clone() return x_in def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: '''simple docstring''' A: str = x.shape[0] A: List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model A: int = torch.full((batch_size,) , SCREAMING_SNAKE_CASE_ , device=self.unet.device , dtype=torch.long ) for _ in range(SCREAMING_SNAKE_CASE_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models A: List[str] = self.value_function(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE_ ).sample A: Optional[Any] = torch.autograd.grad([y.sum()] , [x] )[0] A: str = self.scheduler._get_variance(SCREAMING_SNAKE_CASE_ ) A: int = torch.exp(0.5 * posterior_variance ) A: Dict = model_std * grad A: List[Any] = 0 A: List[str] = x.detach() A: Dict = x + scale * grad A: Dict = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) A: Optional[Any] = self.unet(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg A: str = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , predict_epsilon=SCREAMING_SNAKE_CASE_ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) A: List[str] = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) A: List[str] = self.to_torch(SCREAMING_SNAKE_CASE_ ) return x, y def __call__( self : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int=64 , SCREAMING_SNAKE_CASE_ : Optional[Any]=32 , SCREAMING_SNAKE_CASE_ : Any=2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 ) -> List[Any]: '''simple docstring''' A: Dict = self.normalize(SCREAMING_SNAKE_CASE_ , '''observations''' ) A: Tuple = obs[None].repeat(SCREAMING_SNAKE_CASE_ , axis=0 ) A: int = {0: self.to_torch(SCREAMING_SNAKE_CASE_ )} A: List[str] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) A: Optional[int] = randn_tensor(SCREAMING_SNAKE_CASE_ , device=self.unet.device ) A: str = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) A: int = self.to_torch(SCREAMING_SNAKE_CASE_ ) # run the diffusion process A , A: List[str] = self.run_diffusion(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # sort output trajectories by value A: str = y.argsort(0 , descending=SCREAMING_SNAKE_CASE_ ).squeeze() A: List[str] = x[sorted_idx] A: str = sorted_values[:, :, : self.action_dim] A: Any = actions.detach().cpu().numpy() A: List[str] = self.de_normalize(SCREAMING_SNAKE_CASE_ , key='''actions''' ) # select the action with the highest value if y is not None: A: Union[str, Any] = 0 else: # if we didn't run value guiding, select a random action A: List[Any] = np.random.randint(0 , SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = denorm_actions[selected_index, 0] return denorm_actions
334
'''simple docstring''' from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: return np.maximum(0 , __lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
334
1
def __UpperCamelCase ( lowerCAmelCase__ : list ): def merge(lowerCAmelCase__ : list , lowerCAmelCase__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCAmelCase__ ) <= 1: return collection __a : List[str] = len(lowerCAmelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ =input('Enter numbers separated by a comma:\n').strip() lowercase__ =[int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
216
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ =logging.get_logger(__name__) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict ): __a : List[str] = os.path.abspath(lowerCAmelCase__ ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model __a : Tuple = tf.train.list_variables(lowerCAmelCase__ ) __a : Optional[Any] = [] __a : Union[str, Any] = [] __a : str = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __a : Any = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' __a : Any = name[1:] # figure out how many levels deep the name is __a : List[Any] = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(lowerCAmelCase__ ) # read data __a : Tuple = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ ) names.append('''/'''.join(lowerCAmelCase__ ) ) arrays.append(lowerCAmelCase__ ) logger.info(f"Read a total of {len(lowerCAmelCase__ ):,} layers" ) # Sanity check if len(set(lowerCAmelCase__ ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(lowerCAmelCase__ ) )})" ) __a : int = list(set(lowerCAmelCase__ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __a : int = full_name.split('''/''' ) __a : Tuple = model __a : Dict = [] for i, m_name in enumerate(lowerCAmelCase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): __a : Union[str, Any] = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''embeddings''' ) __a : List[str] = getattr(lowerCAmelCase__ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) __a : Dict = getattr(lowerCAmelCase__ , '''encoder''' ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''layer''' ) __a : Any = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) __a : Any = getattr(lowerCAmelCase__ , '''pooler''' ) __a : Optional[int] = getattr(lowerCAmelCase__ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) __a : int = getattr(lowerCAmelCase__ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) __a : Optional[int] = getattr(lowerCAmelCase__ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) __a : List[str] = getattr(lowerCAmelCase__ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) __a : Optional[Any] = getattr(lowerCAmelCase__ , '''token_type_embeddings''' ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append('''weight''' ) __a : Tuple = getattr(lowerCAmelCase__ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) __a : Optional[Any] = getattr(lowerCAmelCase__ , '''attention''' ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) __a : int = getattr(lowerCAmelCase__ , '''attention''' ) __a : List[Any] = getattr(lowerCAmelCase__ , '''output''' ) __a : List[Any] = getattr(lowerCAmelCase__ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) __a : Optional[int] = getattr(lowerCAmelCase__ , '''attention''' ) __a : Optional[Any] = getattr(lowerCAmelCase__ , '''output''' ) __a : Any = getattr(lowerCAmelCase__ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) __a : Tuple = getattr(lowerCAmelCase__ , '''output''' ) __a : str = getattr(lowerCAmelCase__ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) __a : int = getattr(lowerCAmelCase__ , '''output''' ) __a : str = getattr(lowerCAmelCase__ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) __a : Union[str, Any] = getattr(lowerCAmelCase__ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) __a : Optional[Any] = getattr(lowerCAmelCase__ , '''intermediate''' ) __a : Optional[int] = getattr(lowerCAmelCase__ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) __a : int = getattr(lowerCAmelCase__ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) __a : Dict = getattr(lowerCAmelCase__ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) __a : List[Any] = getattr(lowerCAmelCase__ , '''weight''' ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary __a : List[str] = '''.'''.join(lowerCAmelCase__ ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , lowerCAmelCase__ ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , lowerCAmelCase__ ): __a : str = array.reshape(pointer.data.shape ) if "kernel" in full_name: __a : Optional[Any] = array.transpose() if pointer.shape == array.shape: __a : str = torch.from_numpy(lowerCAmelCase__ ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ): # Instantiate model logger.info(f"Loading model based on config from {config_path}..." ) __a : Dict = BertConfig.from_json_file(lowerCAmelCase__ ) __a : int = BertModel(lowerCAmelCase__ ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) lowercase__ =parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
216
1
"""simple docstring""" import sys from pathlib import Path __lowerCamelCase = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __lowerCamelCase = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} __lowerCamelCase = "zero2" __lowerCamelCase = "zero3" __lowerCamelCase = [ZEROa, ZEROa] def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = parameterized.to_safe_name('_'.join(str(UpperCamelCase__ ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test __lowerCamelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class UpperCamelCase__( __A ): @parameterized.expand(__UpperCAmelCase ,name_func=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: self.run_and_check( stage=__UpperCAmelCase ,model=__UpperCAmelCase ,distributed=__UpperCAmelCase ,fpaa=__UpperCAmelCase ,) @require_torch_multi_gpu @parameterized.expand(__UpperCAmelCase ,name_func=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: self.run_and_check( stage=__UpperCAmelCase ,model=__UpperCAmelCase ,distributed=__UpperCAmelCase ,fpaa=__UpperCAmelCase ,) @parameterized.expand(__UpperCAmelCase ,name_func=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: self.run_and_check( stage=__UpperCAmelCase ,model=__UpperCAmelCase ,distributed=__UpperCAmelCase ,fpaa=__UpperCAmelCase ,) @require_torch_multi_gpu @parameterized.expand(__UpperCAmelCase ,name_func=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: self.run_and_check( stage=__UpperCAmelCase ,model=__UpperCAmelCase ,distributed=__UpperCAmelCase ,fpaa=__UpperCAmelCase ,) def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 10 ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,) -> Optional[int]: A__ = models[model] A__ = self.run_trainer( stage=__UpperCAmelCase ,model_name=__UpperCAmelCase ,eval_steps=__UpperCAmelCase ,num_train_epochs=1 ,distributed=__UpperCAmelCase ,fpaa=__UpperCAmelCase ,) self.do_checks(__UpperCAmelCase ) return output_dir def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 10 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,) -> List[Any]: A__ = self.get_auto_remove_tmp_dir('./xxx' ,after=__UpperCAmelCase ) A__ = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__UpperCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A__ = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() A__ = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] A__ = self.get_launcher(__UpperCAmelCase ) A__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__UpperCAmelCase ,env=self.get_env() ) return output_dir def snake_case__ ( self ,__UpperCAmelCase=False ) -> Union[str, Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) A__ = min(2 ,get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
350
"""simple docstring""" __lowerCamelCase = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __lowerCamelCase = [{"type": "code", "content": INSTALL_CONTENT}] __lowerCamelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
154
0
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model UpperCAmelCase_ = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=None ): '''simple docstring''' if rng is None: UpperCAmelCase__ = random.Random() UpperCAmelCase__ = 1 for dim in shape: total_dims *= dim UpperCAmelCase__ = [] for _ in range(SCREAMING_SNAKE_CASE__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCAmelCase__ = np.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ).reshape(SCREAMING_SNAKE_CASE__ ) return output def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None ): '''simple docstring''' UpperCAmelCase__ = ids_tensor(SCREAMING_SNAKE_CASE__ , vocab_size=2 , rng=SCREAMING_SNAKE_CASE__ ) # make sure that at least one token is attended to for each batch UpperCAmelCase__ = 1 return attn_mask @require_flax class lowerCAmelCase_ : '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : str = () def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCAmelCase__ = 2 UpperCAmelCase__ = inputs["""input_ids"""].shape[-1] // 2 UpperCAmelCase__ = inputs["""input_ids"""][:max_batch_size, :sequence_length] UpperCAmelCase__ = jnp.ones_like(_UpperCAmelCase ) UpperCAmelCase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCAmelCase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCAmelCase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length UpperCAmelCase__ = 0 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = pt_model_class(_UpperCAmelCase ).eval() UpperCAmelCase__ = load_flax_weights_in_pytorch_model(_UpperCAmelCase , flax_model.params ) UpperCAmelCase__ = flax_model.generate(_UpperCAmelCase ).sequences UpperCAmelCase__ = pt_model.generate(torch.tensor(_UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCAmelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = True UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length UpperCAmelCase__ = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length UpperCAmelCase__ = 2 UpperCAmelCase__ = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = True UpperCAmelCase__ = max_length UpperCAmelCase__ = 0.8 UpperCAmelCase__ = 10 UpperCAmelCase__ = 0.3 UpperCAmelCase__ = 1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = max_length UpperCAmelCase__ = 1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = max_length UpperCAmelCase__ = 2 UpperCAmelCase__ = 1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ = False UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ = True UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ = 2 UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) UpperCAmelCase__ = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCAmelCase__ = """Hello world""" UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_UpperCAmelCase , """do_samples""" ): model.generate(_UpperCAmelCase , do_samples=_UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_UpperCAmelCase , """foo""" ): UpperCAmelCase__ = {"""foo""": """bar"""} model.generate(_UpperCAmelCase , **_UpperCAmelCase )
346
'''simple docstring''' import string from math import logaa def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" ) UpperCAmelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return round(tf * idf , 3 )
346
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase: Tuple = "▁" _lowercase: Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _lowercase ( A_, unittest.TestCase ): """simple docstring""" __A = BigBirdTokenizer __A = BigBirdTokenizerFast __A = True __A = True def UpperCamelCase_ (self ): """simple docstring""" super().setUp() a = self.tokenizer_class(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ (self ): """simple docstring""" a = "<s>" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def UpperCamelCase_ (self ): """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(_lowerCamelCase ) , 1004 ) def UpperCamelCase_ (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ (self ): """simple docstring""" if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(_lowerCamelCase ) a = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) a = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(_lowerCamelCase ) a = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase_ (self ): """simple docstring""" a = BigBirdTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCamelCase_ (self ): """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = "Hello World!" a = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off a = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @require_torch @slow def UpperCamelCase_ (self ): """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = " ".join(_lowerCamelCase ) a = self.big_tokenizer.encode_plus(_lowerCamelCase , return_tensors="pt" , return_token_type_ids=_lowerCamelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_lowerCamelCase ) a = BigBirdConfig(attention_type="original_full" ) a = BigBirdModel(_lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCamelCase ) model(**_lowerCamelCase ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) a = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = {"input_ids": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
368
import math from numpy import inf from scipy.integrate import quad def a( A : float ) -> float: """simple docstring""" if num <= 0: raise ValueError("math domain error" ) return quad(A , 0 , A , args=(A) )[0] def a( A : float , A : float ) -> float: """simple docstring""" return math.pow(A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
71
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class __UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __lowerCAmelCase = '''xlnet''' __lowerCAmelCase = ['''mems'''] __lowerCAmelCase = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self : List[str] , _lowerCAmelCase : Tuple=3_2000 , _lowerCAmelCase : Tuple=1024 , _lowerCAmelCase : Union[str, Any]=24 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : List[Any]=4096 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Tuple="bi" , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : List[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Optional[Any]=512 , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[Any]=-1 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Optional[int]="last" , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Optional[Any]="tanh" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Dict=5 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Dict=2 , **_lowerCAmelCase : Optional[Any] , ): A = vocab_size A = d_model A = n_layer A = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) A = d_model // n_head A = ff_activation A = d_inner A = untie_r A = attn_type A = initializer_range A = layer_norm_eps A = dropout A = mem_len A = reuse_len A = bi_data A = clamp_len A = same_length A = summary_type A = summary_use_proj A = summary_activation A = summary_last_dropout A = start_n_top A = end_n_top A = bos_token_id A = pad_token_id A = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , __lowerCAmelCase , ) A = kwargs["""use_cache"""] A = use_mems_eval A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def A (self : Optional[Any] ): logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A (self : Any , _lowerCAmelCase : Optional[Any] ): raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
258
'''simple docstring''' from math import sqrt def snake_case__ ( _A: int = 1000000 ) -> int: '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'{solution() = }')
272
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( A, unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A_ ( self : int ): UpperCamelCase__ = ort.SessionOptions() UpperCamelCase__ = False return options def A_ ( self : Union[str, Any] ): UpperCamelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCamelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCamelCase__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) UpperCamelCase__ = '''A red cat sitting on a park bench''' UpperCamelCase__ = np.random.RandomState(0 ) UpperCamelCase__ = pipe( prompt=_a , image=_a , mask_image=_a , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type='''np''' , ) UpperCamelCase__ = output.images UpperCamelCase__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A_ ( self : int ): UpperCamelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCamelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCamelCase__ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCamelCase__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) UpperCamelCase__ = '''A red cat sitting on a park bench''' UpperCamelCase__ = np.random.RandomState(0 ) UpperCamelCase__ = pipe( prompt=_a , image=_a , mask_image=_a , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type='''np''' , ) UpperCamelCase__ = output.images UpperCamelCase__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
35
def lowerCamelCase_ ( UpperCamelCase__ : list[int], UpperCamelCase__ : list[int], UpperCamelCase__ : int ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : list[list[int]], UpperCamelCase__ : int, UpperCamelCase__ : list[int], UpperCamelCase__ : int ): '''simple docstring''' if index == len(UpperCamelCase__ ): return True # Recursive Step for i in range(UpperCamelCase__ ): if valid_coloring(graph[index], UpperCamelCase__, UpperCamelCase__ ): # Color current vertex UpperCamelCase__ = i # Validate coloring if util_color(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, index + 1 ): return True # Backtrack UpperCamelCase__ = -1 return False def lowerCamelCase_ ( UpperCamelCase__ : list[list[int]], UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = [-1] * len(UpperCamelCase__ ) if util_color(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, 0 ): return colored_vertices return []
35
1
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE__ ( __A ) -> List[str]: monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( __A ) -> List[Any]: class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = metric_id class __UpperCAmelCase : __lowercase = [MetricMock(_lowerCamelCase ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def lowerCamelCase ( self ): """simple docstring""" return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A ) -> Union[str, Any]: if "tmp_path" in args: _snake_case = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(__A , match='https://huggingface.co/docs/evaluate' ): func(*__A )
42
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Union[str, Any] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """xlnet""" __lowercase = ["""mems"""] __lowercase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase_=3_20_00 , lowerCAmelCase_=10_24 , lowerCAmelCase_=24 , lowerCAmelCase_=16 , lowerCAmelCase_=40_96 , lowerCAmelCase_="gelu" , lowerCAmelCase_=True , lowerCAmelCase_="bi" , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=-1 , lowerCAmelCase_=False , lowerCAmelCase_="last" , lowerCAmelCase_=True , lowerCAmelCase_="tanh" , lowerCAmelCase_=0.1 , lowerCAmelCase_=5 , lowerCAmelCase_=5 , lowerCAmelCase_=5 , lowerCAmelCase_=1 , lowerCAmelCase_=2 , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = vocab_size _snake_case = d_model _snake_case = n_layer _snake_case = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) _snake_case = d_model // n_head _snake_case = ff_activation _snake_case = d_inner _snake_case = untie_r _snake_case = attn_type _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = dropout _snake_case = mem_len _snake_case = reuse_len _snake_case = bi_data _snake_case = clamp_len _snake_case = same_length _snake_case = summary_type _snake_case = summary_use_proj _snake_case = summary_activation _snake_case = summary_last_dropout _snake_case = start_n_top _snake_case = end_n_top _snake_case = bos_token_id _snake_case = pad_token_id _snake_case = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , lowerCAmelCase_ , ) _snake_case = kwargs['use_cache'] _snake_case = use_mems_eval _snake_case = use_mems_train super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase ( self ): """simple docstring""" logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
42
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A ( lowerCAmelCase ): def A__ ( self ): """simple docstring""" lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__lowerCAmelCase , """num_heads""" ) ) class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=64 , __lowerCAmelCase=3 , __lowerCAmelCase=[16, 48, 96] , __lowerCAmelCase=[1, 3, 6] , __lowerCAmelCase=[1, 2, 10] , __lowerCAmelCase=[7, 3, 3] , __lowerCAmelCase=[4, 2, 2] , __lowerCAmelCase=[2, 1, 1] , __lowerCAmelCase=[2, 2, 2] , __lowerCAmelCase=[False, False, True] , __lowerCAmelCase=[0.0, 0.0, 0.0] , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=2 , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = image_size lowercase = patch_sizes lowercase = patch_stride lowercase = patch_padding lowercase = is_training lowercase = use_labels lowercase = num_labels lowercase = num_channels lowercase = embed_dim lowercase = num_heads lowercase = stride_kv lowercase = depth lowercase = cls_token lowercase = attention_drop_rate lowercase = initializer_range lowercase = layer_norm_eps def A__ ( self ): """simple docstring""" lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: # create a random int32 tensor of given shape lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def A__ ( self ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = TFCvtModel(config=__lowerCAmelCase ) lowercase = model(__lowerCAmelCase , training=__lowerCAmelCase ) lowercase = (self.image_size, self.image_size) lowercase , lowercase = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = TFCvtForImageClassification(__lowerCAmelCase ) lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : int = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () snake_case__ : Dict = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) snake_case__ : List[Any] = False snake_case__ : int = False snake_case__ : Tuple = False snake_case__ : Any = False snake_case__ : int = False def A__ ( self ): """simple docstring""" lowercase = TFCvtModelTester(self ) lowercase = TFCvtConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def A__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def A__ ( self ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def A__ ( self ): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def A__ ( self ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def A__ ( self ): """simple docstring""" lowercase = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__lowerCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ) lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowercase = model_class(__lowerCAmelCase ) lowercase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = len(self.model_tester.depth ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFCvtModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def UpperCAmelCase__ ( ) -> Tuple: '''simple docstring''' lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _A ( unittest.TestCase ): @cached_property def A__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A__ ( self ): """simple docstring""" lowercase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=__lowerCAmelCase , return_tensors="""tf""" ) # forward pass lowercase = model(**__lowerCAmelCase ) # verify the logits lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase = tf.constant([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __lowerCAmelCase , atol=1E-4 ) )
32
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , **UpperCAmelCase , ) -> str: super().__init__(features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , **UpperCAmelCase ) _lowercase =Sql( cache_dir=UpperCAmelCase , features=UpperCAmelCase , sql=UpperCAmelCase , con=UpperCAmelCase , **UpperCAmelCase , ) def __A (self ) -> Dict: _lowercase =None _lowercase =None _lowercase =None _lowercase =None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , ) # Build dataset for splits _lowercase =self.builder.as_dataset( split='''train''' , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> Optional[int]: if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) _lowercase =dataset _lowercase =name _lowercase =con _lowercase =batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowercase =num_proc _lowercase =to_sql_kwargs def __A (self ) -> int: _lowercase =self.to_sql_kwargs.pop('''sql''' , UpperCAmelCase ) _lowercase =self.to_sql_kwargs.pop('''con''' , UpperCAmelCase ) _lowercase =self.to_sql_kwargs.pop('''index''' , UpperCAmelCase ) _lowercase =self._write(index=UpperCAmelCase , **self.to_sql_kwargs ) return written def __A (self , UpperCAmelCase ) -> Optional[Any]: _lowercase , _lowercase , _lowercase =args _lowercase ={**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs _lowercase =query_table( table=self.dataset.data , key=slice(UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowercase =batch.to_pandas() _lowercase =df.to_sql(self.name , self.con , index=UpperCAmelCase , **UpperCAmelCase ) return num_rows or len(UpperCAmelCase ) def __A (self , UpperCAmelCase , **UpperCAmelCase ) -> int: _lowercase =0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _lowercase , _lowercase =len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCAmelCase , UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
5
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' from __future__ import annotations import time lowerCAmelCase_ : Any = list[tuple[int, int]] lowerCAmelCase_ : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase_ : List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = pos_x _UpperCAmelCase : List[Any] = pos_y _UpperCAmelCase : Union[str, Any] = (pos_y, pos_x) _UpperCAmelCase : Optional[int] = goal_x _UpperCAmelCase : Optional[Any] = goal_y _UpperCAmelCase : int = parent class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCAmelCase__ ) _UpperCAmelCase : str = [self.start] _UpperCAmelCase : Union[str, Any] = False def snake_case_ (self ): while self.node_queue: _UpperCAmelCase : Dict = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _UpperCAmelCase : List[Any] = True return self.retrace_path(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.get_successors(lowerCAmelCase__ ) for node in successors: self.node_queue.append(lowerCAmelCase__ ) if not self.reached: return [self.start.pos] return None def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = [] for action in delta: _UpperCAmelCase : List[str] = parent.pos_x + action[1] _UpperCAmelCase : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCAmelCase__ , lowerCAmelCase__ , self.target.pos_y , self.target.pos_x , lowerCAmelCase__ ) ) return successors def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Any = node _UpperCAmelCase : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCAmelCase : Dict = current_node.parent path.reverse() return path class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = BreadthFirstSearch(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = BreadthFirstSearch(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = False def snake_case_ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _UpperCAmelCase : Optional[Any] = self.fwd_bfs.node_queue.pop(0 ) _UpperCAmelCase : Dict = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _UpperCAmelCase : List[Any] = True return self.retrace_bidirectional_path( lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = current_bwd_node _UpperCAmelCase : str = current_fwd_node _UpperCAmelCase : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(lowerCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = self.fwd_bfs.retrace_path(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = self.bwd_bfs.retrace_path(lowerCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _UpperCAmelCase : Union[str, Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCAmelCase_ : int = (0, 0) lowerCAmelCase_ : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCAmelCase_ : List[Any] = time.time() lowerCAmelCase_ : Dict = BreadthFirstSearch(init, goal) lowerCAmelCase_ : Optional[int] = bfs.search() lowerCAmelCase_ : str = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) lowerCAmelCase_ : Union[str, Any] = time.time() lowerCAmelCase_ : List[str] = BidirectionalBreadthFirstSearch(init, goal) lowerCAmelCase_ : str = bd_bfs.search() lowerCAmelCase_ : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
170
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( __a ): def snake_case_ (self ): _UpperCAmelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """depth_multiplier""" ) ) class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=0.2_5 , lowerCAmelCase__=8 , lowerCAmelCase__=True , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=3_2 , lowerCAmelCase__="relu6" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1_0 , lowerCAmelCase__=None , ): _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : int = image_size _UpperCAmelCase : List[str] = depth_multiplier _UpperCAmelCase : Any = min_depth _UpperCAmelCase : Dict = tf_padding _UpperCAmelCase : Dict = int(last_hidden_size * depth_multiplier ) _UpperCAmelCase : Dict = output_stride _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Optional[Any] = classifier_dropout_prob _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Any = is_training _UpperCAmelCase : int = num_labels _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Any = scope def snake_case_ (self ): _UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : int = None _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ (self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = self.num_labels _UpperCAmelCase : Tuple = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ (self ): _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = config_and_inputs _UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __a , __a , unittest.TestCase ): snake_case : Tuple = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case : Optional[Any] = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case : str = False snake_case : str = False snake_case : Optional[Any] = False snake_case : Optional[int] = False def snake_case_ (self ): _UpperCAmelCase : Optional[int] = MobileNetVaModelTester(self ) _UpperCAmelCase : str = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def snake_case_ (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def snake_case_ (self ): pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def snake_case_ (self ): pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def snake_case_ (self ): pass def snake_case_ (self ): _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Dict = model_class(lowerCAmelCase__ ) _UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case_ (self ): def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = outputs.hidden_states _UpperCAmelCase : Tuple = 2_6 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def snake_case_ (self ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[str] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __A ( ): _UpperCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case_ (self ): return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def snake_case_ (self ): _UpperCAmelCase : Optional[int] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = self.default_image_processor _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase__ ) # verify the logits _UpperCAmelCase : Optional[int] = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : str = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
170
1
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : str= LxmertTokenizer _a : Optional[Any]= LxmertTokenizerFast _a : List[Any]= True _a : int= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : str = """UNwant\u00E9d,running""" lowercase : List[Any] = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.tokenizer_class(self.vocab_file ) lowercase : Any = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) ,[7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Optional[int] = self.get_rust_tokenizer() lowercase : str = """I was born in 92000, and this is falsé.""" lowercase : Optional[Any] = tokenizer.tokenize(snake_case ) lowercase : Tuple = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case ,snake_case ) lowercase : Tuple = tokenizer.encode(snake_case ,add_special_tokens=snake_case ) lowercase : int = rust_tokenizer.encode(snake_case ,add_special_tokens=snake_case ) self.assertListEqual(snake_case ,snake_case ) lowercase : Optional[Any] = self.get_rust_tokenizer() lowercase : Any = tokenizer.encode(snake_case ) lowercase : Union[str, Any] = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case ,snake_case )
20
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: _A = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _A = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } _A = tempfile.mkdtemp() _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) # load decoder from hub _A = """hf-internal-testing/ngram-beam-search-decoder""" def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Dict: _A = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Dict: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> List[Any]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Tuple: _A = self.get_tokenizer() _A = self.get_feature_extractor() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) _A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> str: _A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(lowerCAmelCase_ , """include""" ): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCAmelCase ( self ) -> Dict: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = floats_list((3, 10_00) ) _A = feature_extractor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = """This is a test string""" _A = processor(text=lowerCAmelCase_ ) _A = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self , lowerCAmelCase_=(2, 10, 16) , lowerCAmelCase_=77 ) -> Optional[Any]: np.random.seed(lowerCAmelCase_ ) return np.random.rand(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> str: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A = processor.decode(lowerCAmelCase_ ) _A = decoder.decode_beams(lowerCAmelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> str: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A = processor.batch_decode(lowerCAmelCase_ ) else: with get_context(lowerCAmelCase_ ).Pool() as pool: _A = processor.batch_decode(lowerCAmelCase_ , lowerCAmelCase_ ) _A = list(lowerCAmelCase_ ) with get_context("""fork""" ).Pool() as p: _A = decoder.decode_beams_batch(lowerCAmelCase_ , lowerCAmelCase_ ) _A , _A , _A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.logit_score ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.lm_score ) def UpperCAmelCase ( self ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() _A = 15 _A = -20.0 _A = -4.0 _A = processor.batch_decode( lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _A = decoded_processor_out.text _A = list(lowerCAmelCase_ ) with get_context("""fork""" ).Pool() as pool: _A = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _A = [d[0][0] for d in decoded_decoder_out] _A = [d[0][2] for d in decoded_decoder_out] _A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , lowerCAmelCase_ ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , lowerCAmelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , lowerCAmelCase_ , atol=1E-3 ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() _A = 2.0 _A = 5.0 _A = -20.0 _A = True _A = processor.batch_decode( lowerCAmelCase_ , alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) _A = decoded_processor_out.text _A = list(lowerCAmelCase_ ) decoder.reset_params( alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) with get_context("""fork""" ).Pool() as pool: _A = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , ) _A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , lowerCAmelCase_ ) _A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[Any]: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A = os.listdir(lowerCAmelCase_ ) _A = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _A = WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase_ ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A = os.listdir(lowerCAmelCase_ ) _A = os.listdir(lowerCAmelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Any: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = floats_list((3, 10_00) ) _A = processor_wavaveca(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor_auto(lowerCAmelCase_ , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _A = self._get_dummy_logits() _A = processor_wavaveca.batch_decode(lowerCAmelCase_ ) _A = processor_auto.batch_decode(lowerCAmelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCAmelCase ( self ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _A = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self ) -> Dict: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = self._get_dummy_logits()[0] _A = processor.decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def UpperCAmelCase ( self ) -> List[Any]: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = self._get_dummy_logits() _A = processor.batch_decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCAmelCase ( self ) -> Dict: import torch _A = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=lowerCAmelCase_ ) _A = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) _A = iter(lowerCAmelCase_ ) _A = next(lowerCAmelCase_ ) _A = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _A = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): _A = model(lowerCAmelCase_ ).logits.cpu().numpy() _A = processor.decode(logits[0] , output_word_offsets=lowerCAmelCase_ ) _A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _A = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) , lowerCAmelCase_ ) self.assertEqual(""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) , output.text ) # output times _A = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , """start_time""" ) ) _A = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , """end_time""" ) ) # fmt: off _A = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _A = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) )
81
def snake_case ( snake_case__ :int , snake_case__ :int) -> str: return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1)) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
81
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self : List[Any] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_5_5 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : int , ) -> None: """simple docstring""" super().__init__(**_lowerCAmelCase ) snake_case_ = size if size is not None else {"shortest_edge": 2_2_4} snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) snake_case_ = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="crop_size" ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case_ = image_std if image_std is not None else OPENAI_CLIP_STD snake_case_ = do_convert_rgb def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case_ = get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Any , ) -> np.ndarray: """simple docstring""" snake_case_ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : int = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase : Tuple , ) -> PIL.Image.Image: """simple docstring""" snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(_lowerCAmelCase , param_name="size" , default_to_square=_lowerCAmelCase ) snake_case_ = resample if resample is not None else self.resample snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(_lowerCAmelCase , param_name="crop_size" , default_to_square=_lowerCAmelCase ) snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: snake_case_ = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: snake_case_ = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: snake_case_ = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] snake_case_ = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] snake_case_ = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
159
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _lowerCAmelCase ( )->Any: '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=lowerCAmelCase_ , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=lowerCAmelCase_ , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=lowerCAmelCase_ , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=lowerCAmelCase_ , default=0 , help="cuda_id." , ) snake_case_ = parser.parse_args() return args def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :Union[str, Any] )->Union[str, Any]: '''simple docstring''' if not len(lowerCAmelCase_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) snake_case_ , snake_case_ = imgs[0].size snake_case_ = Image.new("RGB" , size=(cols * w, rows * h) ) snake_case_ , snake_case_ = grid.size for i, img in enumerate(lowerCAmelCase_ ): grid.paste(lowerCAmelCase_ , box=(i % cols * w, i // cols * h) ) return grid def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Union[str, Any]="robotic cat with wings" , lowerCAmelCase_ :Any=7.5 , lowerCAmelCase_ :Dict=50 , lowerCAmelCase_ :int=1 , lowerCAmelCase_ :Union[str, Any]=42 , )->str: '''simple docstring''' snake_case_ = torch.Generator(pipeline.device ).manual_seed(lowerCAmelCase_ ) snake_case_ = pipeline( lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , ).images snake_case_ = int(math.sqrt(lowerCAmelCase_ ) ) snake_case_ = image_grid(lowerCAmelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images SCREAMING_SNAKE_CASE :Dict = parse_args() # Load models and create wrapper for stable diffusion SCREAMING_SNAKE_CASE :Optional[int] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') SCREAMING_SNAKE_CASE :Tuple = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') SCREAMING_SNAKE_CASE :List[str] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') SCREAMING_SNAKE_CASE :Optional[int] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') SCREAMING_SNAKE_CASE :List[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) SCREAMING_SNAKE_CASE :Dict = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): SCREAMING_SNAKE_CASE :Union[str, Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: SCREAMING_SNAKE_CASE :Union[str, Any] = unet.to(torch.device('''cuda''', args.cuda_id)) SCREAMING_SNAKE_CASE :Optional[int] = pipeline.to(unet.device) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) SCREAMING_SNAKE_CASE :Optional[Any] = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
159
1
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __A : def __init__( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=14 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int=None , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : List[Any] = use_token_type_ids lowerCAmelCase : Any = use_input_mask lowerCAmelCase : List[Any] = use_labels lowerCAmelCase : List[Any] = use_mc_token_ids lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : Optional[int] = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Union[str, Any] = num_labels lowerCAmelCase : Union[str, Any] = num_choices lowerCAmelCase : List[str] = scope lowerCAmelCase : List[str] = self.vocab_size - 1 def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = None if self.use_input_mask: lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[Any] = None if self.use_mc_token_ids: lowerCAmelCase : str = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : int = self.get_config() lowerCAmelCase : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : List[str] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowercase__ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , *UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Optional[Any] = CTRLModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , *UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = CTRLLMHeadModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Tuple = config_and_inputs lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : Union[str, Any] = CTRLForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCAmelCase_ : List[Any] = (CTRLLMHeadModel,) if is_torch_available() else () lowerCAmelCase_ : str = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : str = False def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = CTRLModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37 ) def lowercase__ ( self : Tuple ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase__ ( self : Tuple ): pass @slow def lowercase__ ( self : List[str] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = CTRLModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : List[str] ): pass @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Dict ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowercase__ ( self : Any ): lowerCAmelCase : str = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(UpperCAmelCase_ ) lowerCAmelCase : List[str] = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=UpperCAmelCase_ ) # Legal the president is lowerCAmelCase : Dict = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase : int = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase_ )
323
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Optional[int] = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class __snake_case ( lowerCAmelCase ): _a : Any= "camembert" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=2 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=1 ,snake_case=0 ,snake_case=2 ,snake_case="absolute" ,snake_case=True ,snake_case=None ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) lowercase : List[Any] = vocab_size lowercase : Tuple = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : List[str] = num_attention_heads lowercase : Optional[Any] = hidden_act lowercase : Tuple = intermediate_size lowercase : Any = hidden_dropout_prob lowercase : List[str] = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : Union[str, Any] = initializer_range lowercase : Tuple = layer_norm_eps lowercase : Dict = position_embedding_type lowercase : Union[str, Any] = use_cache lowercase : Optional[int] = classifier_dropout class __snake_case ( lowerCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
20
import csv import tweepy # Twitter API credentials __a : Union[str, Any] = """""" __a : Union[str, Any] = """""" __a : Union[str, Any] = """""" __a : List[Any] = """""" def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = tweepy.OAuthHandler(lowercase , lowercase ) auth.set_access_token(lowercase , lowercase ) __lowercase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets __lowercase = [] # make initial request for most recent tweets (200 is the maximum allowed count) __lowercase = api.user_timeline(screen_name=lowercase , count=200 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates __lowercase = api.user_timeline( screen_name=lowercase , count=200 , max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 print(F"...{len(lowercase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv __lowercase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , '''w''' ) as f: __lowercase = csv.writer(lowercase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
210
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Any , a__ : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): """simple docstring""" super().__init__() __snake_case = nn.ModuleList(a__ ) def a (self : Tuple , a__ : torch.FloatTensor , a__ : Union[torch.Tensor, float, int] , a__ : torch.Tensor , a__ : List[torch.tensor] , a__ : List[float] , a__ : Optional[torch.Tensor] = None , a__ : Optional[torch.Tensor] = None , a__ : Optional[torch.Tensor] = None , a__ : Optional[Dict[str, Any]] = None , a__ : bool = False , a__ : bool = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(a__ , a__ , self.nets ) ): __snake_case , __snake_case = controlnet( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) # merge samples if i == 0: __snake_case , __snake_case = down_samples, mid_sample else: __snake_case = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a__ , a__ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def a (self : Union[str, Any] , a__ : Union[str, os.PathLike] , a__ : bool = True , a__ : Callable = None , a__ : bool = False , a__ : Optional[str] = None , ): """simple docstring""" __snake_case = 0 __snake_case = save_directory for controlnet in self.nets: controlnet.save_pretrained( a__ , is_main_process=a__ , save_function=a__ , safe_serialization=a__ , variant=a__ , ) idx += 1 __snake_case = model_path_to_save + f"""_{idx}""" @classmethod def a (cls : Union[str, Any] , a__ : Optional[Union[str, os.PathLike]] , **a__ : Any ): """simple docstring""" __snake_case = 0 __snake_case = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __snake_case = pretrained_model_path while os.path.isdir(a__ ): __snake_case = ControlNetModel.from_pretrained(a__ , **a__ ) controlnets.append(a__ ) idx += 1 __snake_case = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(a__ )} controlnets loaded from {pretrained_model_path}.""" ) if len(a__ ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(a__ )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(a__ )
353
import re import string import numpy as np import datasets snake_case_ = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' snake_case_ = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' snake_case_ = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def a (self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def a (self : List[Any] , a__ : int , a__ : Optional[int] , a__ : Optional[Any]=None , a__ : Any=False , a__ : Dict=False , a__ : Tuple=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: __snake_case = np.array([re.sub(a__ , '''''' , a__ ) for x in predictions] ) __snake_case = np.array([re.sub(a__ , '''''' , a__ ) for x in references] ) else: __snake_case = np.asarray(a__ ) __snake_case = np.asarray(a__ ) if ignore_case: __snake_case = np.char.lower(a__ ) __snake_case = np.char.lower(a__ ) if ignore_punctuation: __snake_case = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) __snake_case = np.char.translate(a__ , table=a__ ) __snake_case = np.char.translate(a__ , table=a__ ) if ignore_numbers: __snake_case = string.digits.maketrans('''''' , '''''' , string.digits ) __snake_case = np.char.translate(a__ , table=a__ ) __snake_case = np.char.translate(a__ , table=a__ ) __snake_case = predictions == references return {"exact_match": np.mean(a__ ) * 100}
238
0
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( snake_case_): UpperCAmelCase__ : Optional[Any] = (UnCLIPScheduler,) def lowercase_ ( self :List[str] , **_A :Any ) -> Tuple: '''simple docstring''' __A = { 'num_train_timesteps': 1_000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**_A ) return config def lowercase_ ( self :Dict ) -> Optional[int]: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_A ) def lowercase_ ( self :Dict ) -> Dict: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_A ) def lowercase_ ( self :str ) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def lowercase_ ( self :Optional[Any] ) -> List[str]: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_A ) def lowercase_ ( self :Dict ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_A ) def lowercase_ ( self :Dict ) -> Optional[int]: '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_A , prev_timestep=_A ) def lowercase_ ( self :Union[str, Any] ) -> Dict: '''simple docstring''' __A = self.scheduler_classes[0] __A = self.get_scheduler_config(variance_type='fixed_small_log' ) __A = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5 def lowercase_ ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' __A = self.scheduler_classes[0] __A = self.get_scheduler_config(variance_type='learned_range' ) __A = scheduler_class(**_A ) __A = 0.5 assert scheduler._get_variance(1 , predicted_variance=_A ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_A ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_A ) - -0.0_010_011 < 1E-5 def lowercase_ ( self :Optional[Any] ) -> Dict: '''simple docstring''' __A = self.scheduler_classes[0] __A = self.get_scheduler_config() __A = scheduler_class(**_A ) __A = scheduler.timesteps __A = self.dummy_model() __A = self.dummy_sample_deter __A = torch.manual_seed(0 ) for i, t in enumerate(_A ): # 1. predict noise residual __A = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __A = scheduler.step(_A , _A , _A , generator=_A ).prev_sample __A = pred_prev_sample __A = torch.sum(torch.abs(_A ) ) __A = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def lowercase_ ( self :Dict ) -> int: '''simple docstring''' __A = self.scheduler_classes[0] __A = self.get_scheduler_config() __A = scheduler_class(**_A ) scheduler.set_timesteps(25 ) __A = scheduler.timesteps __A = self.dummy_model() __A = self.dummy_sample_deter __A = torch.manual_seed(0 ) for i, t in enumerate(_A ): # 1. predict noise residual __A = model(_A , _A ) if i + 1 == timesteps.shape[0]: __A = None else: __A = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __A = scheduler.step( _A , _A , _A , prev_timestep=_A , generator=_A ).prev_sample __A = pred_prev_sample __A = torch.sum(torch.abs(_A ) ) __A = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def lowercase_ ( self :Any ) -> Dict: '''simple docstring''' pass def lowercase_ ( self :Union[str, Any] ) -> Any: '''simple docstring''' pass
161
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Any = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__:Optional[int] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowerCamelCase( a , a , a , a , a ): for attribute in key.split("." ): __a = getattr(a , a ) if weight_type is not None: __a = getattr(a , a ).shape else: __a = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCamelCase( a , a ): __a = [] __a = fairseq_model.state_dict() __a = hf_model.feature_extractor __a = hf_model.adapter for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( a , a , a , a , hf_model.config.feat_extract_norm == "group" , ) __a = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(a , a , a , a ) __a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __a = True if "*" in mapped_key: __a = name.split(a )[0].split("." )[-2] __a = mapped_key.replace("*" , a ) if "weight_g" in name: __a = "weight_g" elif "weight_v" in name: __a = "weight_v" elif "bias" in name: __a = "bias" elif "weight" in name: __a = "weight" else: __a = None set_recursively(a , a , a , a , a ) continue if not is_used: unused_weights.append(a ) logger.warning(F"Unused weights: {unused_weights}" ) def _lowerCamelCase( a , a , a , a , a ): __a = full_name.split("conv_layers." )[-1] __a = name.split("." ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __a = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __a = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __a = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __a = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a ) def _lowerCamelCase( a , a , a , a ): __a = full_name.split("adaptor." )[-1] __a = name.split("." ) if items[1].isdigit(): __a = int(items[1] ) else: __a = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." __a = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." __a = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." __a = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." __a = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a , a ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." __a = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." __a = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a ) def _lowerCamelCase( a ): __a , __a = emb.weight.shape __a = nn.Linear(a , a , bias=a ) __a = emb.weight.data return lin_layer @torch.no_grad() def _lowerCamelCase( a , a , a , a , a , a , a , a , a , a , a , ): __a = WavaVecaConfig.from_pretrained( a , add_adapter=a , adapter_stride=a , adapter_kernel_size=a , use_auth_token=a , output_hidden_size=a , ) __a = MBartConfig.from_pretrained(a ) # load model __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) __a = model[0].eval() # load feature extractor __a = WavaVecaFeatureExtractor.from_pretrained(a , use_auth_token=a ) # set weights for wav2vec2 encoder __a = WavaVecaModel(a ) recursively_load_weights_wavaveca(model.encoder , a ) # load decoder weights __a = MBartForCausalLM(a ) __a , __a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) __a = SpeechEncoderDecoderModel(encoder=a , decoder=a ) __a = False __a = MBartaaTokenizer(a ) tokenizer.save_pretrained(a ) __a = hf_wavavec.config.to_dict() __a = tokenizer.pad_token_id __a = tokenizer.bos_token_id __a = tokenizer.eos_token_id __a = "mbart50" __a = "wav2vec2" __a = tokenizer.eos_token_id __a = 2_5_0_0_0_4 __a = tokenizer.eos_token_id __a = SpeechEncoderDecoderConfig.from_dict(a ) hf_wavavec.save_pretrained(a ) feature_extractor.save_pretrained(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250004, type=int, help="""`decoder_start_token_id` of model config""") SCREAMING_SNAKE_CASE__:List[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
261
0
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Collection[float] | None = None ) -> None: '''simple docstring''' if components is None: A__ : Optional[Any] =[] A__ : Union[str, Any] =list(lowerCAmelCase_ ) def __len__( self : Union[str, Any] ) -> int: '''simple docstring''' return len(self.__components ) def __str__( self : Optional[Any] ) -> str: '''simple docstring''' return "(" + ",".join(map(lowerCAmelCase_ , self.__components ) ) + ")" def __add__( self : List[str] , lowerCAmelCase_ : Vector ) -> Vector: '''simple docstring''' A__ : str =len(self ) if size == len(lowerCAmelCase_ ): A__ : Dict =[self.__components[i] + other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: raise Exception("""must have the same size""" ) def __sub__( self : Any , lowerCAmelCase_ : Vector ) -> Vector: '''simple docstring''' A__ : Optional[int] =len(self ) if size == len(lowerCAmelCase_ ): A__ : Optional[Any] =[self.__components[i] - other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self : Union[str, Any] , lowerCAmelCase_ : float ) -> Vector: '''simple docstring''' ... @overload def __mul__( self : List[str] , lowerCAmelCase_ : Vector ) -> float: '''simple docstring''' ... def __mul__( self : Any , lowerCAmelCase_ : float | Vector ) -> float | Vector: '''simple docstring''' if isinstance(lowerCAmelCase_ , (float, int) ): A__ : Any =[c * other for c in self.__components] return Vector(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(self ) == len(lowerCAmelCase_ ): A__ : Tuple =len(self ) A__ : Tuple =[self.__components[i] * other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return sum(lowerCAmelCase_ ) else: # error case raise Exception("""invalid operand!""" ) def lowercase__ ( self : Tuple ) -> Vector: '''simple docstring''' return Vector(self.__components ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : int ) -> float: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) A__ : str =value def lowercase__ ( self : Dict ) -> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) A__ : Dict =[c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Vector , lowerCAmelCase_ : bool = False ) -> float: '''simple docstring''' A__ : str =self * other A__ : Optional[Any] =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __lowerCamelCase ( __snake_case : int ) -> Vector: """simple docstring""" assert isinstance(__snake_case, __snake_case ) return Vector([0] * dimension ) def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> Vector: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and (isinstance(__snake_case, __snake_case )) A__ : Optional[int] =[0] * dimension A__ : Dict =1 return Vector(__snake_case ) def __lowerCamelCase ( __snake_case : float, __snake_case : Vector, __snake_case : Vector ) -> Vector: """simple docstring""" assert ( isinstance(__snake_case, __snake_case ) and isinstance(__snake_case, __snake_case ) and (isinstance(__snake_case, (int, float) )) ) return x * scalar + y def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : int ) -> Vector: """simple docstring""" random.seed(__snake_case ) A__ : Optional[int] =[random.randint(__snake_case, __snake_case ) for _ in range(__snake_case )] return Vector(__snake_case ) class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : list[list[float]] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: '''simple docstring''' A__ : int =matrix A__ : Dict =w A__ : Dict =h def __str__( self : Tuple ) -> str: '''simple docstring''' A__ : Any ="""""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : List[str] , lowerCAmelCase_ : Matrix ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): A__ : Dict =[] for i in range(self.__height ): A__ : Any =[ self.__matrix[i][j] + other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self : int , lowerCAmelCase_ : Matrix ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): A__ : str =[] for i in range(self.__height ): A__ : Tuple =[ self.__matrix[i][j] - other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self : str , lowerCAmelCase_ : float ) -> Matrix: '''simple docstring''' ... @overload def __mul__( self : Tuple , lowerCAmelCase_ : Vector ) -> Vector: '''simple docstring''' ... def __mul__( self : List[Any] , lowerCAmelCase_ : float | Vector ) -> Vector | Matrix: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # matrix-vector if len(lowerCAmelCase_ ) == self.__width: A__ : int =zero_vector(self.__height ) for i in range(self.__height ): A__ : str =[ self.__matrix[i][j] * other.component(lowerCAmelCase_ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase_ , sum(lowerCAmelCase_ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase_ , (int, float) ): # matrix-scalar A__ : str =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase_ , self.__width , self.__height ) return None def lowercase__ ( self : int ) -> int: '''simple docstring''' return self.__height def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' return self.__width def lowercase__ ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: A__ : Optional[Any] =value else: raise Exception("""change_component: indices out of bounds""" ) def lowercase__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) A__ : Union[str, Any] =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase_ ) ): A__ : Dict =minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase_ , self.__width - 1 , self.__height - 1 ).determinant() def lowercase__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase_ , lowerCAmelCase_ ) else: raise Exception("""Indices out of bounds""" ) def lowercase__ ( self : Dict ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A__ : str =[ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase_ ) for y in range(self.__width ) ] return sum(lowerCAmelCase_ ) def __lowerCamelCase ( __snake_case : int ) -> Matrix: """simple docstring""" A__ : list[list[float]] =[[0] * n for _ in range(__snake_case )] return Matrix(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : int, __snake_case : int ) -> Matrix: """simple docstring""" random.seed(__snake_case ) A__ : list[list[float]] =[ [random.randint(__snake_case, __snake_case ) for _ in range(__snake_case )] for _ in range(__snake_case ) ] return Matrix(__snake_case, __snake_case, __snake_case )
136
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : int =tempfile.mkdtemp() # fmt: off A__ : Optional[int] =["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A__ : List[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Tuple =["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A__ : int ={"""unk_token""": """<unk>"""} A__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) A__ : Dict ={ """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } A__ : Dict =os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , **lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , **lowerCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ : Dict =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ : int =[Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' A__ : int =self.get_tokenizer() A__ : Optional[int] =self.get_rust_tokenizer() A__ : Any =self.get_image_processor() A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) A__ : Dict =CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase_ ) A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) A__ : Optional[int] =CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : List[str] =CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ : List[Any] =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ : Union[str, Any] =self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) A__ : Optional[int] =CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> str: '''simple docstring''' A__ : Optional[Any] =self.get_image_processor() A__ : int =self.get_tokenizer() A__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Dict =self.prepare_image_inputs() A__ : List[Any] =image_processor(lowerCAmelCase_ , return_tensors="""np""" ) A__ : List[Any] =processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : Any =self.get_image_processor() A__ : Optional[Any] =self.get_tokenizer() A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Any ="""lower newer""" A__ : Optional[int] =processor(text=lowerCAmelCase_ ) A__ : Optional[int] =tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ : Any =self.get_image_processor() A__ : Optional[Any] =self.get_tokenizer() A__ : Union[str, Any] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Optional[Any] ="""lower newer""" A__ : List[str] =self.prepare_image_inputs() A__ : Optional[Any] =processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =self.get_image_processor() A__ : List[str] =self.get_tokenizer() A__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Tuple =self.prepare_image_inputs() A__ : str =self.prepare_image_inputs() A__ : int =processor(images=lowerCAmelCase_ , visual_prompt=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.get_image_processor() A__ : Optional[int] =self.get_tokenizer() A__ : Any =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : List[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ : Tuple =processor.batch_decode(lowerCAmelCase_ ) A__ : List[Any] =tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
136
1
"""simple docstring""" class snake_case : """simple docstring""" def __init__( self : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : List[str]=None ): UpperCAmelCase__ = data UpperCAmelCase__ = previous UpperCAmelCase__ = next_node def __str__( self : List[Any] ): return f'''{self.data}''' def __lowerCAmelCase ( self : str ): return self.data def __lowerCAmelCase ( self : Tuple ): return self.next def __lowerCAmelCase ( self : List[Any] ): return self.previous class snake_case : """simple docstring""" def __init__( self : Any ,lowerCamelCase__ : List[Any] ): UpperCAmelCase__ = head def __iter__( self : Optional[int] ): return self def __lowerCAmelCase ( self : List[Any] ): if not self.current: raise StopIteration else: UpperCAmelCase__ = self.current.get_data() UpperCAmelCase__ = self.current.get_next() return value class snake_case : """simple docstring""" def __init__( self : Dict ): UpperCAmelCase__ = None # First node in list UpperCAmelCase__ = None # Last node in list def __str__( self : Tuple ): UpperCAmelCase__ = self.head UpperCAmelCase__ = [] while current is not None: nodes.append(current.get_data() ) UpperCAmelCase__ = current.get_next() return " ".join(str(lowerCamelCase__ ) for node in nodes ) def __contains__( self : Optional[int] ,lowerCamelCase__ : int ): UpperCAmelCase__ = self.head while current: if current.get_data() == value: return True UpperCAmelCase__ = current.get_next() return False def __iter__( self : str ): return LinkedListIterator(self.head ) def __lowerCAmelCase ( self : str ): if self.head: return self.head.get_data() return None def __lowerCAmelCase ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Node ): if self.head is None: UpperCAmelCase__ = node UpperCAmelCase__ = node else: self.insert_before_node(self.head ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Node ): if self.head is None: self.set_head(lowerCamelCase__ ) else: self.insert_after_node(self.tail ,lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : int ): UpperCAmelCase__ = Node(lowerCamelCase__ ) if self.head is None: self.set_head(lowerCamelCase__ ) else: self.set_tail(lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Node ,lowerCamelCase__ : Node ): UpperCAmelCase__ = node UpperCAmelCase__ = node.previous if node.get_previous() is None: UpperCAmelCase__ = node_to_insert else: UpperCAmelCase__ = node_to_insert UpperCAmelCase__ = node_to_insert def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Node ,lowerCamelCase__ : Node ): UpperCAmelCase__ = node UpperCAmelCase__ = node.next if node.get_next() is None: UpperCAmelCase__ = node_to_insert else: UpperCAmelCase__ = node_to_insert UpperCAmelCase__ = node_to_insert def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ): UpperCAmelCase__ = 1 UpperCAmelCase__ = Node(lowerCamelCase__ ) UpperCAmelCase__ = self.head while node: if current_position == position: self.insert_before_node(lowerCamelCase__ ,lowerCamelCase__ ) return current_position += 1 UpperCAmelCase__ = node.next self.insert_after_node(self.tail ,lowerCamelCase__ ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : int ): UpperCAmelCase__ = self.head while node: if node.get_data() == item: return node UpperCAmelCase__ = node.get_next() raise Exception('Node not found' ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Any ): if (node := self.get_node(lowerCamelCase__ )) is not None: if node == self.head: UpperCAmelCase__ = self.head.get_next() if node == self.tail: UpperCAmelCase__ = self.tail.get_previous() self.remove_node_pointers(lowerCamelCase__ ) @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : Node ): if node.get_next(): UpperCAmelCase__ = node.previous if node.get_previous(): UpperCAmelCase__ = node.next UpperCAmelCase__ = None UpperCAmelCase__ = None def __lowerCAmelCase ( self : Union[str, Any] ): return self.head is None def a_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
98
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCAmelCase ( unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = JukeboxTokenizer __UpperCAmelCase : Union[str, Any] = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def lowerCamelCase ( self ) -> int: '''simple docstring''' import torch snake_case : Any = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) snake_case : Optional[Any] = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case : Optional[int] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase ( self ) -> Any: '''simple docstring''' import torch snake_case : Tuple = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) snake_case : Optional[Any] = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case : List[Any] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
203
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase__ = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): lowercase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowerCAmelCase__ , ) is not None ): lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowercase = True if not attribute_used: lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase = True elif attribute.endswith('''_token_id''' ): lowercase = True # configuration class specific cases if not case_allowed: lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase = {} if len(config_class.attribute_map ) > 0: lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase = inspect.getsourcefile(lowerCAmelCase__ ) lowercase = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('''modeling_''' )] # Get the source code strings lowercase = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) lowercase = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase__ : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = unused_attributes if len(lowerCAmelCase__ ) > 0: lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
359
from pathlib import Path import fire from tqdm import tqdm def UpperCamelCase ( lowerCAmelCase__="ro" , lowerCAmelCase__="en" , lowerCAmelCase__="wmt16" , lowerCAmelCase__=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) lowercase = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) lowercase = datasets.load_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) if save_dir is None: lowercase = f'{dataset}-{pair}' lowercase = Path(lowerCAmelCase__ ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets lowercase = '''val''' if split == '''validation''' else split lowercase = save_dir.joinpath(f'{fn}.source' ) lowercase = save_dir.joinpath(f'{fn}.target' ) lowercase = src_path.open('''w+''' ) lowercase = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
97
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __A = logging.get_logger(__name__) # TODO: upload to AWS __A = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class UpperCAmelCase (UpperCAmelCase__ ): """simple docstring""" _UpperCAmelCase :List[Any] = """retribert""" def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowercase__: Optional[int] = vocab_size lowercase__: Optional[Any] = hidden_size lowercase__: List[Any] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: Any = hidden_act lowercase__: str = intermediate_size lowercase__: List[str] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: List[Any] = initializer_range lowercase__: Dict = layer_norm_eps lowercase__: Tuple = share_encoders lowercase__: List[Any] = projection_dim
177
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod @abstractmethod def a ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Tuple: raise NotImplementedError() @abstractmethod def a ( self : int ) -> Union[str, Any]: raise NotImplementedError()
229
0
from manim import * class __A( __lowerCamelCase ): """simple docstring""" def UpperCAmelCase_ (self ): UpperCamelCase__ = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase__ = Rectangle(height=0.25 , width=0.25 ) UpperCamelCase__ = [mem.copy() for i in range(6 )] UpperCamelCase__ = [mem.copy() for i in range(6 )] UpperCamelCase__ = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) UpperCamelCase__ = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) UpperCamelCase__ = VGroup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) UpperCamelCase__ = Text("""CPU""" , font_size=24 ) UpperCamelCase__ = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [mem.copy() for i in range(4 )] UpperCamelCase__ = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) UpperCamelCase__ = Text("""GPU""" , font_size=24 ) UpperCamelCase__ = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) gpu.move_to([-1, -1, 0] ) self.add(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [mem.copy() for i in range(6 )] UpperCamelCase__ = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) UpperCamelCase__ = Text("""Model""" , font_size=24 ) UpperCamelCase__ = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) model.move_to([3, -1.0, 0] ) self.add(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [] UpperCamelCase__ = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = fill.copy().set_fill(SCREAMING_SNAKE_CASE_ , opacity=0.8 ) target.move_to(SCREAMING_SNAKE_CASE_ ) model_arr.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(SCREAMING_SNAKE_CASE_ ) self.add(*SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [meta_mem.copy() for i in range(6 )] UpperCamelCase__ = [meta_mem.copy() for i in range(6 )] UpperCamelCase__ = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) UpperCamelCase__ = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) UpperCamelCase__ = VGroup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) UpperCamelCase__ = Text("""Disk""" , font_size=24 ) UpperCamelCase__ = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) disk.move_to([-4, -1.25, 0] ) self.add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase__ = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(SCREAMING_SNAKE_CASE_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MarkupText( F"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = Square(0.3 ) input.set_fill(SCREAMING_SNAKE_CASE_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , SCREAMING_SNAKE_CASE_ , buff=0.5 ) self.play(Write(SCREAMING_SNAKE_CASE_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=SCREAMING_SNAKE_CASE_ , buff=0.02 ) self.play(MoveToTarget(SCREAMING_SNAKE_CASE_ ) ) self.play(FadeOut(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = Arrow(start=SCREAMING_SNAKE_CASE_ , end=SCREAMING_SNAKE_CASE_ , color=SCREAMING_SNAKE_CASE_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , SCREAMING_SNAKE_CASE_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCamelCase__ = MarkupText( F"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE_ , run_time=3 ) ) UpperCamelCase__ = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(SCREAMING_SNAKE_CASE_ ) , Circumscribe(model_arr[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(model_cpu_arr[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCamelCase__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , SCREAMING_SNAKE_CASE_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) UpperCamelCase__ = AnimationGroup( FadeOut(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , MoveToTarget(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , FadeIn(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(SCREAMING_SNAKE_CASE_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCamelCase__ = 0.7 self.play( Circumscribe(model_arr[i] , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(cpu_left_col_base[i] , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(model_arr[i + 1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(cpu_left_col_base[-1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCamelCase__ = a_c UpperCamelCase__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(SCREAMING_SNAKE_CASE_ ) , FadeOut(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , ) UpperCamelCase__ = MarkupText(F"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE_ , run_time=3 ) , MoveToTarget(SCREAMING_SNAKE_CASE_ ) ) self.wait()
365
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = BlipImageProcessor() UpperCamelCase__ = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCamelCase__ = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) UpperCamelCase__ = InstructBlipProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).tokenizer def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).image_processor def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).qformer_tokenizer def UpperCAmelCase_ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ (self ): UpperCamelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ (self ): UpperCamelCase__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) UpperCamelCase__ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor.qformer_tokenizer , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) UpperCamelCase__ = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = qformer_tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
178
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowercase__ :Optional[Any] = parse(importlib.metadata.version("torch")) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase = STR_OPERATION_TO_FUNC[operation] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = parse(importlib.metadata.version(lowerCAmelCase__ ) ) return operation(lowerCAmelCase__ , parse(lowerCAmelCase__ ) ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
101
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCamelCase_( snake_case : Any ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def UpperCamelCase_( snake_case : str ): '''simple docstring''' for char in word: snake_case_ = ord(snake_case ) if not _is_chinese_char(snake_case ): return 0 return 1 def UpperCamelCase_( snake_case : List[str] ): '''simple docstring''' snake_case_ = set() for token in tokens: snake_case_ = len(snake_case ) > 1 and is_chinese(snake_case ) if chinese_word: word_set.add(snake_case ) snake_case_ = list(snake_case ) return word_list def UpperCamelCase_( snake_case : List[str] , snake_case : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case_ = max([len(snake_case ) for w in chinese_word_set] ) snake_case_ = bert_tokens snake_case_ , snake_case_ = 0, len(snake_case ) while start < end: snake_case_ = True if is_chinese(bert_word[start] ): snake_case_ = min(end - start , snake_case ) for i in range(snake_case , 1 , -1 ): snake_case_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ = "##" + bert_word[j] snake_case_ = start + i snake_case_ = False break if single_word: start += 1 return bert_word def UpperCamelCase_( snake_case : List[str] , snake_case : LTP , snake_case : BertTokenizer ): '''simple docstring''' snake_case_ = [] for i in range(0 , len(snake_case ) , 1_0_0 ): snake_case_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=["cws"] ).cws snake_case_ = [get_chinese_word(snake_case ) for r in res] ltp_res.extend(snake_case ) assert len(snake_case ) == len(snake_case ) snake_case_ = [] for i in range(0 , len(snake_case ) , 1_0_0 ): snake_case_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=snake_case , truncation=snake_case , max_length=5_1_2 ) bert_res.extend(res["input_ids"] ) assert len(snake_case ) == len(snake_case ) snake_case_ = [] for input_ids, chinese_word in zip(snake_case , snake_case ): snake_case_ = [] for id in input_ids: snake_case_ = bert_tokenizer._convert_id_to_token(snake_case ) input_tokens.append(snake_case ) snake_case_ = add_sub_symbol(snake_case , snake_case ) snake_case_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case ): if token[:2] == "##": snake_case_ = token[2:] # save chinese tokens' pos if len(snake_case ) == 1 and _is_chinese_char(ord(snake_case ) ): ref_id.append(snake_case ) ref_ids.append(snake_case ) assert len(snake_case ) == len(snake_case ) return ref_ids def UpperCamelCase_( snake_case : Any ): '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case_ = f.readlines() snake_case_ = [line.strip() for line in data if len(snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ = LTP(args.ltp ) # faster in GPU device snake_case_ = BertTokenizer.from_pretrained(args.bert ) snake_case_ = prepare_ref(snake_case , snake_case , snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case_ = [json.dumps(snake_case ) + "\n" for ref in ref_ids] f.writelines(snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
85
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[str] = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int = 50 ) ->int: '''simple docstring''' a : Any = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
79
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase="shi-labs/oneformer_demo" ) -> List[Any]: with open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) as f: lowerCamelCase__ : str = json.load(_UpperCAmelCase ) lowerCamelCase__ : Tuple = {} lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : str = [] for key, info in class_info.items(): lowerCamelCase__ : Union[str, Any] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(_UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = thing_ids lowerCamelCase__ : Union[str, Any] = class_names return metadata class lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : int=30 , UpperCAmelCase : List[str]=400 , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Any=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[Any]=10 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[int]=255 , UpperCAmelCase : Any="shi-labs/oneformer_demo" , UpperCAmelCase : Any="ade20k_panoptic.json" , UpperCAmelCase : List[Any]=10 , ) -> Union[str, Any]: lowerCamelCase__ : Tuple = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : Union[str, Any] = min_resolution lowerCamelCase__ : int = max_resolution lowerCamelCase__ : Dict = do_resize lowerCamelCase__ : Optional[int] = {'shortest_edge': 32, 'longest_edge': 1333} if size is None else size lowerCamelCase__ : Dict = do_normalize lowerCamelCase__ : Tuple = image_mean lowerCamelCase__ : List[str] = image_std lowerCamelCase__ : Any = class_info_file lowerCamelCase__ : Any = prepare_metadata(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = num_text lowerCamelCase__ : List[str] = repo_path # for the post_process_functions lowerCamelCase__ : Any = 2 lowerCamelCase__ : str = 10 lowerCamelCase__ : str = 10 lowerCamelCase__ : Any = 3 lowerCamelCase__ : Union[str, Any] = 4 lowerCamelCase__ : Any = num_labels lowerCamelCase__ : str = do_reduce_labels lowerCamelCase__ : str = ignore_index def A_ ( self : Union[str, Any] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A_ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any]=False ) -> int: if not batched: lowerCamelCase__ : List[str] = image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): lowerCamelCase__ , lowerCamelCase__ : Tuple = image.size else: lowerCamelCase__ , lowerCamelCase__ : Dict = image.shape[1], image.shape[2] if w < h: lowerCamelCase__ : Dict = int(self.size['shortest_edge'] * h / w ) lowerCamelCase__ : List[Any] = self.size['shortest_edge'] elif w > h: lowerCamelCase__ : Optional[Any] = self.size['shortest_edge'] lowerCamelCase__ : str = int(self.size['shortest_edge'] * w / h ) else: lowerCamelCase__ : str = self.size['shortest_edge'] lowerCamelCase__ : Union[str, Any] = self.size['shortest_edge'] else: lowerCamelCase__ : Any = [] for image in image_inputs: lowerCamelCase__ , lowerCamelCase__ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase__ : Optional[Any] = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] lowerCamelCase__ : str = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width def A_ ( self : Tuple ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCAmelCase__ = image_processing_class def A_ ( self : Any ) -> int: lowerCamelCase__ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def A_ ( self : str ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A_ ( self : int ) -> Any: lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_reduce_labels' ) ) def A_ ( self : str ) -> List[Any]: pass def A_ ( self : Tuple ) -> Union[str, Any]: # Initialize image_processor lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowerCamelCase__ : List[str] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processing_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : Tuple = self.image_processing_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) lowerCamelCase__ : List[str] = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Tuple ) -> str: # Initialize image_processor lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input lowerCamelCase__ : List[str] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : List[str] = self.image_processing_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : List[str] = self.image_processing_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) lowerCamelCase__ : str = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Optional[int] ) -> Union[str, Any]: # Initialize image_processor lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowerCamelCase__ : Union[str, Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processing_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : int = self.image_processing_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) lowerCamelCase__ : int = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : int , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Union[str, Any]="np" ) -> str: lowerCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target lowerCamelCase__ : Dict = self.image_processing_tester.num_labels lowerCamelCase__ : List[str] = None lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase ) if with_segmentation_maps: lowerCamelCase__ : Tuple = num_labels if is_instance_map: lowerCamelCase__ : Dict = list(range(UpperCAmelCase ) ) * 2 lowerCamelCase__ : Optional[int] = dict(enumerate(UpperCAmelCase ) ) lowerCamelCase__ : int = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": lowerCamelCase__ : Optional[int] = [Image.fromarray(UpperCAmelCase ) for annotation in annotations] lowerCamelCase__ : List[str] = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , UpperCAmelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCAmelCase , pad_and_return_pixel_mask=UpperCAmelCase , ) return inputs def A_ ( self : str ) -> Any: pass def A_ ( self : Tuple ) -> List[Any]: def common(UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Optional[Any]=None ): lowerCamelCase__ : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCAmelCase , is_instance_map=UpperCAmelCase , segmentation_type=UpperCAmelCase ) lowerCamelCase__ : Tuple = inputs['mask_labels'] lowerCamelCase__ : Union[str, Any] = inputs['class_labels'] lowerCamelCase__ : Optional[Any] = inputs['pixel_values'] lowerCamelCase__ : List[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCAmelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCAmelCase ) common(is_instance_map=UpperCAmelCase , segmentation_type='pil' ) common(is_instance_map=UpperCAmelCase , segmentation_type='pil' ) def A_ ( self : Optional[int] ) -> Any: lowerCamelCase__ : Dict = np.zeros((20, 50) ) lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Optional[int] = 1 lowerCamelCase__ : Union[str, Any] = binary_mask_to_rle(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A_ ( self : Union[str, Any] ) -> str: lowerCamelCase__ : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowerCamelCase__ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase__ : Any = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) lowerCamelCase__ : Any = [(1, 4) for i in range(self.image_processing_tester.batch_size )] lowerCamelCase__ : Dict = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase , target_sizes=UpperCAmelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A_ ( self : List[str] ) -> List[str]: lowerCamelCase__ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowerCamelCase__ : Union[str, Any] = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase__ : str = image_processor.post_process_instance_segmentation(UpperCAmelCase , threshold=0 ) self.assertTrue(len(UpperCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCAmelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A_ ( self : Any ) -> Union[str, Any]: lowerCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowerCamelCase__ : int = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase__ : Tuple = image_processor.post_process_panoptic_segmentation(UpperCAmelCase , threshold=0 ) self.assertTrue(len(UpperCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCAmelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
50
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if len(UpperCAmelCase_ ) < k or k < 0: raise ValueError('Invalid Input' ) UpperCAmelCase : Tuple = sum(array[:k] ) for i in range(len(UpperCAmelCase_ ) - k ): UpperCAmelCase : Optional[Any] = current_sum - array[i] + array[i + k] UpperCAmelCase : List[Any] = max(UpperCAmelCase_ , UpperCAmelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowercase__ = [randint(-1000, 1000) for i in range(100)] lowercase__ = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
151
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowercase : List[str] = '\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n' __lowercase : List[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __lowercase : int = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def __UpperCAmelCase ( self ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def __UpperCAmelCase ( self , __a , __a , __a = CHRF.CHAR_ORDER , __a = CHRF.WORD_ORDER , __a = CHRF.BETA , __a = False , __a = False , __a = False , ): '''simple docstring''' __a : List[Any] = len(references[0] ) if any(len(__a ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __a : List[Any] = [[refs[i] for refs in references] for i in range(__a )] __a : List[Any] = CHRF(__a , __a , __a , __a , __a , __a ) __a : int = sb_chrf.corpus_score(__a , __a ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
362
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): if is_torch_version('<' , '2.0.0' ) or not hasattr(_SCREAMING_SNAKE_CASE , '_dynamo' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : bool = True ): __a : int = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __a : Any = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: __a : List[Any] = model __a : Union[str, Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : Union[str, Any] = model.module if not keep_fpaa_wrapper: __a : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , 'forward' ) __a : str = model.__dict__.pop('_original_forward' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '__wrapped__' ): __a : Any = forward.__wrapped__ if forward == original_forward: break __a : str = forward if getattr(_SCREAMING_SNAKE_CASE , '_converted_to_transformer_engine' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: __a : List[str] = model __a : Optional[int] = compiled_model return model def lowerCamelCase (): PartialState().wait_for_everyone() def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def lowerCamelCase (**_SCREAMING_SNAKE_CASE : Tuple ): for key, value in kwargs.items(): __a : Optional[int] = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): if not hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ) and not hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): __a : List[Any] = getattr(_SCREAMING_SNAKE_CASE , '__class__' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : int = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a : Tuple = value return destination def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = None ): if port is None: __a : List[str] = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
294
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase ): @property def __magic_name__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __magic_name__ ( self : Dict ) -> Dict: '''simple docstring''' A__ = self.dummy_uncond_unet A__ = PNDMScheduler() A__ = PNDMPipeline(unet=lowercase_ , scheduler=lowercase_ ) pndm.to(lowercase_ ) pndm.set_progress_bar_config(disable=lowercase_ ) A__ = torch.manual_seed(0 ) A__ = pndm(generator=lowercase_ , num_inference_steps=20 , output_type="numpy" ).images A__ = torch.manual_seed(0 ) A__ = pndm(generator=lowercase_ , num_inference_steps=20 , output_type="numpy" , return_dict=lowercase_ )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = """google/ddpm-cifar10-32""" A__ = UNetaDModel.from_pretrained(lowercase_ ) A__ = PNDMScheduler() A__ = PNDMPipeline(unet=lowercase_ , scheduler=lowercase_ ) pndm.to(lowercase_ ) pndm.set_progress_bar_config(disable=lowercase_ ) A__ = torch.manual_seed(0 ) A__ = pndm(generator=lowercase_ , output_type="numpy" ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
247
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __magic_name__ ( _UpperCAmelCase): def __init__( self : Optional[Any] , lowercase_ : str ): lowercase_ : int = data def __iter__( self : int ): for element in self.data: yield element def lowerCamelCase ( UpperCAmelCase__ : Any=True ) -> Any: lowercase_ : Optional[int] = Accelerator(even_batches=UpperCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ) -> Optional[Any]: if iterable: lowercase_ : Dict = DummyIterableDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) else: lowercase_ : Union[str, Any] = TensorDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) lowercase_ : Any = DataLoader(UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowercase_ : Any = accelerator.prepare(UpperCAmelCase__ ) return dl def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , ) -> int: lowercase_ : List[str] = create_dataloader(accelerator=UpperCAmelCase__ , dataset_size=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowercase_ : Tuple = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowerCamelCase ( ) -> int: lowercase_ : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowerCamelCase ( ) -> Optional[int]: lowercase_ : Optional[int] = create_accelerator(even_batches=UpperCAmelCase__ ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowerCamelCase ( ) -> List[str]: lowercase_ : str = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Dict = torch.nn.Linear(1 , 1 ) lowercase_ : Optional[Any] = accelerator.prepare(UpperCAmelCase__ ) lowercase_ : List[Any] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase_ : Optional[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCAmelCase__ ): lowercase_ : Any = ddp_model(batch[0].float() ) lowercase_ : List[str] = output.sum() loss.backward() batch_idxs.append(UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowerCamelCase ( UpperCAmelCase__ : List[str] ) -> List[str]: with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def lowerCamelCase ( ) -> Any: lowercase_ : str = True lowercase_ : Tuple = False lowercase_ : str = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Union[str, Any] = torch.nn.Linear(1 , 1 ) lowercase_ : Any = accelerator.prepare(UpperCAmelCase__ ) lowercase_ : Optional[int] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase_ : List[Any] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): lowercase_ : Union[str, Any] = train_dl.batch_sampler.even_batches lowercase_ : List[str] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase ( ) -> Dict: lowercase_ : str = True lowercase_ : Optional[Any] = False lowercase_ : Union[str, Any] = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Optional[int] = torch.nn.Linear(1 , 1 ) lowercase_ : Optional[int] = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) lowercase_ : List[str] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): lowercase_ : Optional[Any] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase ( ) -> List[Any]: lowercase_ : Optional[Any] = create_accelerator() lowercase_ : Optional[int] = torch.nn.Linear(1 , 1 ) lowercase_ : List[Any] = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def lowerCamelCase ( ) -> List[str]: lowercase_ : List[Any] = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) lowercase_ : List[Any] = accelerator.state.distributed_type lowercase_ : Union[str, Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCAmelCase__ ) lowercase_ : str = original_state if __name__ == "__main__": main()
239
0
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase__ : int = logging.get_logger('''transformers.models.encodec''') lowercase__ : Optional[int] = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowercase__ : Tuple = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowercase__ : List[str] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowercase__ : List[Any] = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowercase__ : int = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowercase__ : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase__ : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase__ : int = [] lowercase__ : Dict = [] def __lowercase ( _a , _a , _a , _a , _a ): for attribute in key.split('''.''' ): snake_case_ : Optional[Any] = getattr(_a , _a ) if weight_type is not None: snake_case_ : Union[str, Any] = getattr(_a , _a ).shape else: snake_case_ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case_ : Dict = value elif weight_type == "weight_g": snake_case_ : List[Any] = value elif weight_type == "weight_v": snake_case_ : List[Any] = value elif weight_type == "bias": snake_case_ : Optional[Any] = value elif weight_type == "running_mean": snake_case_ : str = value elif weight_type == "running_var": snake_case_ : List[Any] = value elif weight_type == "num_batches_tracked": snake_case_ : Tuple = value elif weight_type == "weight_ih_l0": snake_case_ : Dict = value elif weight_type == "weight_hh_l0": snake_case_ : str = value elif weight_type == "bias_ih_l0": snake_case_ : str = value elif weight_type == "bias_hh_l0": snake_case_ : Dict = value elif weight_type == "weight_ih_l1": snake_case_ : Optional[int] = value elif weight_type == "weight_hh_l1": snake_case_ : Dict = value elif weight_type == "bias_ih_l1": snake_case_ : List[str] = value elif weight_type == "bias_hh_l1": snake_case_ : Optional[int] = value else: snake_case_ : Dict = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __lowercase ( _a , _a ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case_, snake_case_ : Tuple = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowercase ( _a , _a , _a ): snake_case_ : str = [] if model_name == "encodec_24khz" or "encodec_32khz": snake_case_ : Any = MAPPING_24K elif model_name == "encodec_48khz": snake_case_ : int = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(_a , _a ): logger.info(f"{name} was ignored" ) continue snake_case_ : Optional[Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: snake_case_, snake_case_ : List[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: snake_case_ : Any = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue snake_case_ : str = True if "*" in mapped_key: snake_case_ : Optional[Any] = name.split(_a )[0].split('''.''' )[-2] snake_case_ : str = mapped_key.replace('''*''' , _a ) if "weight_g" in name: snake_case_ : int = '''weight_g''' elif "weight_v" in name: snake_case_ : List[str] = '''weight_v''' elif "weight_ih_l0" in name: snake_case_ : List[Any] = '''weight_ih_l0''' elif "weight_hh_l0" in name: snake_case_ : Tuple = '''weight_hh_l0''' elif "bias_ih_l0" in name: snake_case_ : Any = '''bias_ih_l0''' elif "bias_hh_l0" in name: snake_case_ : Dict = '''bias_hh_l0''' elif "weight_ih_l1" in name: snake_case_ : str = '''weight_ih_l1''' elif "weight_hh_l1" in name: snake_case_ : List[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: snake_case_ : List[Any] = '''bias_ih_l1''' elif "bias_hh_l1" in name: snake_case_ : List[Any] = '''bias_hh_l1''' elif "bias" in name: snake_case_ : Optional[int] = '''bias''' elif "weight" in name: snake_case_ : str = '''weight''' elif "running_mean" in name: snake_case_ : Optional[int] = '''running_mean''' elif "running_var" in name: snake_case_ : int = '''running_var''' elif "num_batches_tracked" in name: snake_case_ : Optional[int] = '''num_batches_tracked''' else: snake_case_ : Optional[Any] = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def __lowercase ( _a , _a , _a , _a=None , _a=None , ): if config_path is not None: snake_case_ : Optional[int] = EncodecConfig.from_pretrained(_a ) else: snake_case_ : str = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": snake_case_ : Union[str, Any] = [8, 5, 4, 4] snake_case_ : Optional[int] = [2.2] snake_case_ : Any = 64 snake_case_ : Dict = 32_000 snake_case_ : int = 2_048 snake_case_ : int = False snake_case_ : Optional[int] = False snake_case_ : Optional[int] = False elif model_name == "encodec_48khz": snake_case_ : List[str] = [8, 5, 4, 2] snake_case_ : List[Any] = [3.0, 6.0, 12.0, 24.0] snake_case_ : Any = 48_000 snake_case_ : List[str] = 2 snake_case_ : int = False snake_case_ : str = '''time_group_norm''' snake_case_ : int = True snake_case_ : List[str] = 1.0 snake_case_ : Tuple = 0.01 else: raise ValueError(f"Unknown model name: {model_name}" ) snake_case_ : Any = EncodecModel(_a ) snake_case_ : str = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_a ) snake_case_ : Optional[Any] = torch.load(_a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights snake_case_ : Union[str, Any] = original_checkpoint['''best_state'''] recursively_load_weights(_a , _a , _a ) model.save_pretrained(_a ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(_a ) model.push_to_hub(_a ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
155
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
155
1
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCamelCase_ : List[Any] = logging.get_logger(__name__) lowerCamelCase_ : Dict = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ : int = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ : Optional[Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ : Tuple = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } lowerCamelCase_ : Optional[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } lowerCamelCase_ : Dict = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } lowerCamelCase_ : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCamelCase_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCamelCase_ : int = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ : str = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) lowerCamelCase_ : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) lowerCamelCase_ : Union[str, Any] = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(_SCREAMING_SNAKE_CASE ) class __A : """simple docstring""" def __call__( self , __A , __A = None , __A = None , __A = False , __A = False , __A = None , __A = None , __A = None , **__A , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( __A , padding=__A , truncation=__A , max_length=__A , return_tensors=__A , return_attention_mask=__A , **__A , ) elif titles is None or texts is None: a =titles if texts is None else texts return super().__call__( __A , __A , padding=__A , truncation=__A , max_length=__A , return_tensors=__A , return_attention_mask=__A , **__A , ) a =titles if not isinstance(__A , __A ) else [titles] a =texts if not isinstance(__A , __A ) else [texts] a =len(__A ) a =questions if not isinstance(__A , __A ) else [questions] * n_passages if len(__A ) != len(__A ): raise ValueError( f'''There should be as many titles than texts but got {len(__A )} titles and {len(__A )} texts.''' ) a =super().__call__(__A , __A , padding=__A , truncation=__A )['''input_ids'''] a =super().__call__(__A , add_special_tokens=__A , padding=__A , truncation=__A )['''input_ids'''] a ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__A , __A ) ] } if return_attention_mask is not False: a =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) a =attention_mask return self.pad(__A , padding=__A , max_length=__A , return_tensors=__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = 16 , __A = 64 , __A = 4 , ) -> List[DPRSpanPrediction]: a =reader_input['''input_ids'''] a , a , a =reader_output[:3] a =len(__A ) a =sorted(range(__A ) , reverse=__A , key=relevance_logits.__getitem__ ) a =[] for doc_id in sorted_docs: a =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence a =sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: a =sequence_ids.index(self.pad_token_id ) else: a =len(__A ) a =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__A , top_spans=__A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__A , start_index=__A , end_index=__A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , ) -> List[DPRSpanPrediction]: a =[] for start_index, start_score in enumerate(__A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) a =sorted(__A , key=lambda __A : x[1] , reverse=__A ) a =[] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) a =end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = ["input_ids", "attention_mask"]
81
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def snake_case_ ( SCREAMING_SNAKE_CASE__ = 100_0000 , SCREAMING_SNAKE_CASE__ = 10 ): """simple docstring""" _SCREAMING_SNAKE_CASE : defaultdict = defaultdict(SCREAMING_SNAKE_CASE__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _SCREAMING_SNAKE_CASE : int = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _SCREAMING_SNAKE_CASE : List[str] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
200
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_0_0 ): __lowercase = 2**power __lowercase = 0 while n: __lowercase , __lowercase = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
217
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _lowerCAmelCase ( ): print('''Making key files...''' ) make_key_files('''rsa''' , 1_0_2_4 ) print('''Key files generation successful.''' ) def _lowerCAmelCase ( lowerCamelCase_ : int ): print('''Generating prime p...''' ) __lowercase = rabinMiller.generate_large_prime(lowerCamelCase_ ) print('''Generating prime q...''' ) __lowercase = rabinMiller.generate_large_prime(lowerCamelCase_ ) __lowercase = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: __lowercase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCamelCase_ , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) __lowercase = cryptoMath.find_mod_inverse(lowerCamelCase_ , (p - 1) * (q - 1) ) __lowercase = (n, e) __lowercase = (n, d) return (public_key, private_key) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ): if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print('''\nWARNING:''' ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() __lowercase , __lowercase = generate_key(lowerCamelCase_ ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt" , '''w''' ) as out_file: out_file.write(f"{key_size},{public_key[0]},{public_key[1]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt" , '''w''' ) as out_file: out_file.write(f"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
217
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_=0.01 , lowerCAmelCase_=10_00 ): """simple docstring""" _snake_case = p_stop _snake_case = max_length def __iter__( self ): """simple docstring""" _snake_case = 0 _snake_case = False while not stop and count < self.max_length: yield count count += 1 _snake_case = random.random() < self.p_stop class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=True ): """simple docstring""" _snake_case = [ BatchSamplerShard(lowerCAmelCase_ , 2 , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) for i in range(2 ) ] _snake_case = [list(lowerCAmelCase_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCAmelCase_ ) for shard in batch_sampler_shards] , [len(lowerCAmelCase_ ) for e in expected] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is very small. _snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size. _snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Check the shards when the dataset is very small. _snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is very small. _snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) _snake_case = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size. _snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is very small. _snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) _snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _snake_case = [BatchSamplerShard(lowerCAmelCase_ , 2 , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=2 , lowerCAmelCase_=False ): """simple docstring""" random.seed(lowerCAmelCase_ ) _snake_case = list(lowerCAmelCase_ ) _snake_case = [ IterableDatasetShard( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=lowerCAmelCase_ , num_processes=lowerCAmelCase_ , process_index=lowerCAmelCase_ , split_batches=lowerCAmelCase_ , ) for i in range(lowerCAmelCase_ ) ] _snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCAmelCase_ ) iterable_dataset_lists.append(list(lowerCAmelCase_ ) ) _snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) self.assertTrue(len(lowerCAmelCase_ ) % shard_batch_size == 0 ) _snake_case = [] for idx in range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCAmelCase_ ) < len(lowerCAmelCase_ ): reference += reference self.assertListEqual(lowerCAmelCase_ , reference[: len(lowerCAmelCase_ )] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = 42 _snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Edge case with a very small dataset _snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) _snake_case = SkipBatchSampler(lowerCAmelCase_ , 2 ) self.assertListEqual(list(lowerCAmelCase_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) _snake_case = skip_first_batches(lowerCAmelCase_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): """simple docstring""" Accelerator() _snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
42
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" __A = args.pruning_method __A = args.threshold __A = args.model_name_or_path.rstrip("/" ) __A = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) __A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) ) __A = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: __A = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = TopKBinarizer.apply(a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = ThresholdBinarizer.apply(a_ , a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A , __A = -0.1, 1.1 __A = torch.sigmoid(a_ ) __A = s * (r - l) + l __A = s_bar.clamp(min=0.0 , max=1.0 ) __A = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: __A = os.path.join( os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' ) if not os.path.isdir(a_ ): shutil.copytree(a_ , a_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) SCREAMING_SNAKE_CASE :str = parser.parse_args() main(args)
15
0
def lowerCAmelCase_ ( __UpperCAmelCase: list ) -> list: UpperCamelCase__ : Tuple = len(__UpperCAmelCase ) for i in range(1 , __UpperCAmelCase ): UpperCamelCase__ : str = collection[i] UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = i - 1 while low <= high: UpperCamelCase__ : List[Any] = (low + high) // 2 if val < collection[mid]: UpperCamelCase__ : List[Any] = mid - 1 else: UpperCamelCase__ : Union[str, Any] = mid + 1 for j in range(__UpperCAmelCase , __UpperCAmelCase , -1 ): UpperCamelCase__ : Tuple = collection[j - 1] UpperCamelCase__ : Optional[Any] = val return collection if __name__ == "__main__": UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
247
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) UpperCAmelCase_ = logging.getLogger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> int: UpperCamelCase__ : Optional[Any] = git.Repo(search_parent_directories=__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = { '''repo_id''': str(__UpperCAmelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(__UpperCAmelCase , '''git_log.json''' ) , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=4 ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> Dict: if params.n_gpu <= 0: UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Union[str, Any] = -1 UpperCamelCase__ : str = True UpperCamelCase__ : Dict = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCamelCase__ : Optional[int] = int(os.environ['''WORLD_SIZE'''] ) UpperCamelCase__ : Any = int(os.environ['''N_GPU_NODE'''] ) UpperCamelCase__ : Optional[Any] = int(os.environ['''RANK'''] ) # number of nodes / node ID UpperCamelCase__ : Optional[int] = params.world_size // params.n_gpu_per_node UpperCamelCase__ : int = params.global_rank // params.n_gpu_per_node UpperCamelCase__ : Any = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : int = 1 UpperCamelCase__ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCamelCase__ : Any = params.node_id == 0 and params.local_rank == 0 UpperCamelCase__ : Optional[int] = params.n_nodes > 1 # summary UpperCamelCase__ : List[Any] = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> Tuple: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
247
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A = logging.get_logger(__name__) if is_vision_available(): import PIL class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :str = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_5_5 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = size if size is not None else {'''shortest_edge''': 2_2_4} lowerCAmelCase__ :Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase__ :Any = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE , param_name='crop_size' ) lowerCAmelCase__ :List[Any] = do_resize lowerCAmelCase__ :int = size lowerCAmelCase__ :int = resample lowerCAmelCase__ :Optional[int] = do_center_crop lowerCAmelCase__ :Optional[int] = crop_size lowerCAmelCase__ :Optional[Any] = do_rescale lowerCAmelCase__ :Union[str, Any] = rescale_factor lowerCAmelCase__ :List[str] = do_normalize lowerCAmelCase__ :List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ :Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ :Any = do_convert_rgb def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCAmelCase__ :Any = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['shortest_edge'] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['height'], size['width']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ :Optional[int] = size if size is not None else self.size lowerCAmelCase__ :List[str] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='size' , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = resample if resample is not None else self.resample lowerCAmelCase__ :Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ :List[str] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ :Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ :Tuple = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ :Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ :Dict = image_std if image_std is not None else self.image_std lowerCAmelCase__ :List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ :str = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ :Any = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ :str = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowerCAmelCase__ :int = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowerCAmelCase__ :int = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCAmelCase__ :int = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowerCAmelCase__ :Union[str, Any] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase__ :Optional[Any] = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase__ :Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
293
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = ["pixel_values"] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , )->None: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A_ : Tuple = size if size is not None else {'''shortest_edge''': 224} A_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) A_ : Tuple = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) A_ : str = do_resize A_ : Tuple = size A_ : Optional[Any] = resample A_ : Tuple = do_center_crop A_ : List[Any] = crop_size A_ : Optional[int] = do_rescale A_ : Tuple = rescale_factor A_ : Any = do_normalize A_ : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ : Any = image_std if image_std is not None else OPENAI_CLIP_STD A_ : Any = do_convert_rgb def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray: '''simple docstring''' A_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) A_ : Any = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray: '''simple docstring''' A_ : str = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->np.ndarray: '''simple docstring''' return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , )->PIL.Image.Image: '''simple docstring''' A_ : Optional[int] = do_resize if do_resize is not None else self.do_resize A_ : int = size if size is not None else self.size A_ : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''size''' , default_to_square=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = resample if resample is not None else self.resample A_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : List[str] = crop_size if crop_size is not None else self.crop_size A_ : int = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' , default_to_square=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : int = do_normalize if do_normalize is not None else self.do_normalize A_ : Tuple = image_mean if image_mean is not None else self.image_mean A_ : Tuple = image_std if image_std is not None else self.image_std A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : Optional[int] = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : List[str] = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. A_ : int = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: A_ : Tuple = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: A_ : Union[str, Any] = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: A_ : Tuple = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: A_ : List[Any] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] A_ : str = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] A_ : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
186
0
'''simple docstring''' a_ : int = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
360
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase__ : '''simple docstring''' lowerCamelCase_ : Optional[int] = None lowerCamelCase_ : Optional[jnp.ndarray] = None lowerCamelCase_ : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def _lowercase ( cls ) -> Dict: return cls() @dataclass class UpperCamelCase__ (A__ ): '''simple docstring''' lowerCamelCase_ : jnp.ndarray lowerCamelCase_ : jnp.ndarray lowerCamelCase_ : KarrasVeSchedulerState class UpperCamelCase__ (A__ , A__ ): '''simple docstring''' @property def _lowercase ( self ) -> Optional[Any]: return True @register_to_config def __init__( self , UpperCamelCase__ = 0.02 , UpperCamelCase__ = 100 , UpperCamelCase__ = 1.007 , UpperCamelCase__ = 80 , UpperCamelCase__ = 0.05 , UpperCamelCase__ = 50 , ) -> str: pass def _lowercase ( self ) -> Union[str, Any]: return KarrasVeSchedulerState.create() def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = () ) -> KarrasVeSchedulerState: lowerCamelCase : Any = jnp.arange(0 , __lowercase )[::-1].copy() lowerCamelCase : Dict = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__lowercase , schedule=jnp.array(__lowercase , dtype=jnp.floataa ) , timesteps=__lowercase , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Tuple[jnp.ndarray, float]: if self.config.s_min <= sigma <= self.config.s_max: lowerCamelCase : Optional[Any] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowerCamelCase : Any = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCamelCase : Any = random.split(__lowercase , num=1 ) lowerCamelCase : int = self.config.s_noise * random.normal(key=__lowercase , shape=sample.shape ) lowerCamelCase : Optional[int] = sigma + gamma * sigma lowerCamelCase : str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: lowerCamelCase : Union[str, Any] = sample_hat + sigma_hat * model_output lowerCamelCase : str = (sample_hat - pred_original_sample) / sigma_hat lowerCamelCase : str = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__lowercase , derivative=__lowercase , state=__lowercase ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: lowerCamelCase : Optional[int] = sample_prev + sigma_prev * model_output lowerCamelCase : str = (sample_prev - pred_original_sample) / sigma_prev lowerCamelCase : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__lowercase , derivative=__lowercase , state=__lowercase ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: raise NotImplementedError()
48
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCAmelCase_ ( _lowercase : float , _lowercase : float , _lowercase : bool = False) -> list[float]: """simple docstring""" if radian_mode: return [magnitude * cos(_lowercase), magnitude * sin(_lowercase)] return [magnitude * cos(radians(_lowercase)), magnitude * sin(radians(_lowercase))] def lowerCAmelCase_ ( _lowercase : NDArray[floataa] , _lowercase : NDArray[floataa] , _lowercase : float = 10**-1) -> bool: """simple docstring""" a__ : NDArray[floataa] = cross(_lowercase , _lowercase) a__ : float = sum(_lowercase) return abs(_lowercase) < eps if __name__ == "__main__": # Test to check if it works _lowercase : int =array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) _lowercase : NDArray[floataa] =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _lowercase : Union[str, Any] =array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) _lowercase : Dict =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _lowercase : Tuple =array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) _lowercase : Any =array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
170
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
61
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : str , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ): """simple docstring""" UpperCAmelCase__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } UpperCAmelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase__ = token_dict["""token"""] UpperCAmelCase__ = Tokenizer(Unigram() ) UpperCAmelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) UpperCAmelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase__ = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) UpperCAmelCase__ = TemplateProcessing( single=f'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) UpperCAmelCase__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = json.loads(self._tokenizer.to_str() ) UpperCAmelCase__ = self.special_tokens["""unk"""]["""id"""] UpperCAmelCase__ = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
61
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase__ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowerCamelCase__ ( _A ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def lowerCamelCase__ ( _A ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case_ = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowercase , id=_lowercase )
187
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _a ( __snake_case ): _lowercase : Dict = "canine" def __init__( self: Union[str, Any] , UpperCamelCase_: Dict=768 , UpperCamelCase_: List[str]=12 , UpperCamelCase_: Optional[Any]=12 , UpperCamelCase_: Optional[int]=3_072 , UpperCamelCase_: str="gelu" , UpperCamelCase_: int=0.1 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: Union[str, Any]=16_384 , UpperCamelCase_: str=16 , UpperCamelCase_: str=0.02 , UpperCamelCase_: Optional[int]=1E-1_2 , UpperCamelCase_: Optional[Any]=0 , UpperCamelCase_: str=0Xe_0_0_0 , UpperCamelCase_: Tuple=0Xe_0_0_1 , UpperCamelCase_: int=4 , UpperCamelCase_: Dict=4 , UpperCamelCase_: List[Any]=8 , UpperCamelCase_: Union[str, Any]=16_384 , UpperCamelCase_: Tuple=128 , **UpperCamelCase_: str , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Character config: lowercase__ = downsampling_rate lowercase__ = upsampling_kernel_size lowercase__ = num_hash_functions lowercase__ = num_hash_buckets lowercase__ = local_transformer_stride
365
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = AltDiffusionPipeline _lowercase : Tuple = TEXT_TO_IMAGE_PARAMS _lowercase : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS _lowercase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase : int = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) lowercase__ = CLIPTextModel(UpperCamelCase_ ) lowercase__ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase__ = 77 lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: str=0 ) -> Union[str, Any]: """simple docstring""" if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase_ ( self: Dict ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase_ ( self: Optional[int] ) -> Any: """simple docstring""" lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() torch.manual_seed(0 ) lowercase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder lowercase__ = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) lowercase__ = text_encoder lowercase__ = AltDiffusionPipeline(**UpperCamelCase_ ) lowercase__ = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) lowercase__ = '''A photo of an astronaut''' lowercase__ = alt_pipe(**UpperCamelCase_ ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) lowercase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder lowercase__ = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) lowercase__ = text_encoder lowercase__ = AltDiffusionPipeline(**UpperCamelCase_ ) lowercase__ = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) lowercase__ = alt_pipe(**UpperCamelCase_ ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=UpperCamelCase_ ) lowercase__ = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = torch.manual_seed(0 ) lowercase__ = alt_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) lowercase__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = torch.manual_seed(0 ) lowercase__ = alt_pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''numpy''' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
93
0
import unittest from knapsack import greedy_knapsack as kp class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = [10, 20, 30, 40, 50, 60] UpperCamelCase : Optional[int] = [2, 4, 6, 8, 10, 12] UpperCamelCase : str = 100 self.assertEqual(kp.calc_profit(A_ , A_ , A_ ) , 210 ) def __UpperCamelCase( self ): '''simple docstring''' self.assertRaisesRegex(A_ , "max_weight must greater than zero." ) def __UpperCamelCase( self ): '''simple docstring''' self.assertRaisesRegex(A_ , "Weight can not be negative." ) def __UpperCamelCase( self ): '''simple docstring''' self.assertRaisesRegex(A_ , "Profit can not be negative." ) def __UpperCamelCase( self ): '''simple docstring''' self.assertRaisesRegex(A_ , "max_weight must greater than zero." ) def __UpperCamelCase( self ): '''simple docstring''' self.assertRaisesRegex( A_ , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
52
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
181
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _lowercase : str =logging.get_logger(__name__) class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Optional[Any] = "upernet" def __init__( self , __lowercase=None , __lowercase=5_1_2 , __lowercase=0.0_2 , __lowercase=[1, 2, 3, 6] , __lowercase=True , __lowercase=0.4 , __lowercase=3_8_4 , __lowercase=2_5_6 , __lowercase=1 , __lowercase=False , __lowercase=2_5_5 , **__lowercase , ) -> Optional[int]: """simple docstring""" super().__init__(**__lowercase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) a__ : Optional[int] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowercase , __lowercase ): a__ : List[Any] = backbone_config.get("""model_type""" ) a__ : List[Any] = CONFIG_MAPPING[backbone_model_type] a__ : Any = config_class.from_dict(__lowercase ) a__ : Optional[int] = backbone_config a__ : Any = hidden_size a__ : Optional[int] = initializer_range a__ : List[Any] = pool_scales a__ : Optional[int] = use_auxiliary_head a__ : Any = auxiliary_loss_weight a__ : Any = auxiliary_in_channels a__ : Optional[Any] = auxiliary_channels a__ : Optional[int] = auxiliary_num_convs a__ : Optional[int] = auxiliary_concat_input a__ : str = loss_ignore_index def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Optional[int] = copy.deepcopy(self.__dict__ ) a__ : Tuple = self.backbone_config.to_dict() a__ : int = self.__class__.model_type return output
266
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : List[str] =logging.get_logger(__name__) _lowercase : List[str] ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _lowercase : Optional[Any] ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } _lowercase : int ={"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" a__ : List[str] = ( list(range(ord("""!""") , ord("""~""") + 1)) + list(range(ord("""¡""") , ord("""¬""") + 1)) + list(range(ord("""®""") , ord("""ÿ""") + 1)) ) a__ : Optional[Any] = bs[:] a__ : List[Any] = 0 for b in range(2**8): if b not in bs: bs.append(_lowercase) cs.append(2**8 + n) n += 1 a__ : Tuple = [chr(_lowercase) for n in cs] return dict(zip(_lowercase , _lowercase)) def lowerCAmelCase_ ( _lowercase : Tuple) -> List[str]: """simple docstring""" a__ : int = set() a__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char)) a__ : Any = char return pairs class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :str = VOCAB_FILES_NAMES __lowerCAmelCase :int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase :Optional[Any] = ["input_ids", "attention_mask"] def __init__( self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ) -> List[Any]: """simple docstring""" a__ : Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token a__ : Optional[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token a__ : Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token a__ : Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token a__ : List[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token a__ : str = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ : List[str] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding="""utf-8""" ) as vocab_handle: a__ : str = json.load(__lowercase ) a__ : Dict = {v: k for k, v in self.encoder.items()} a__ : Any = errors # how to handle errors in decoding a__ : Union[str, Any] = bytes_to_unicode() a__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding="""utf-8""" ) as merges_handle: a__ : List[Any] = merges_handle.read().split("""\n""" )[1:-1] a__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] a__ : str = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) a__ : Optional[Any] = {} a__ : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ : Union[str, Any] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] a__ : List[Any] = tuple(__lowercase ) a__ : Optional[int] = get_pairs(__lowercase ) if not pairs: return token while True: a__ : List[Any] = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ : Dict = bigram a__ : List[Any] = [] a__ : int = 0 while i < len(__lowercase ): try: a__ : str = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ : Optional[int] = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ : List[Any] = tuple(__lowercase ) a__ : Any = new_word if len(__lowercase ) == 1: break else: a__ : List[Any] = get_pairs(__lowercase ) a__ : Optional[Any] = """ """.join(__lowercase ) a__ : Tuple = word return word def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : int = [] for token in re.findall(self.pat , __lowercase ): a__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(""" """ ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" return self.decoder.get(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" a__ : Union[str, Any] = """""".join(__lowercase ) a__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : int = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) a__ : Optional[Any] = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + """\n""" ) a__ : str = 0 with open(__lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) a__ : Tuple = token_index writer.write(""" """.join(__lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[int]: """simple docstring""" a__ : Any = [self.sep_token_id] a__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=False , **__lowercase ) -> int: """simple docstring""" a__ : Tuple = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): a__ : Union[str, Any] = """ """ + text return (text, kwargs) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[str]: """simple docstring""" return token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[int]: """simple docstring""" a__ : List[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(__lowercase ) a__ : Optional[int] = """ """.join(__lowercase ) a__ : Any = self.encode(__lowercase ) if len(__lowercase ) > self.model_max_length: a__ : List[str] = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
266
1
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : str ={ '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict =['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =[ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] =[ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCAmelCase__ : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) UpperCamelCase__ : str = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) UpperCamelCase__ : str = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def __lowercase ( ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments,) ) ((__SCREAMING_SNAKE_CASE) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=a__ , decoder_config=a__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __SCREAMING_SNAKE_CASE = decoder_config.decoder_start_token_id __SCREAMING_SNAKE_CASE = decoder_config.pad_token_id if decoder_start_token_id is None: __SCREAMING_SNAKE_CASE = decoder_config.bos_token_id if pad_token_id is None: __SCREAMING_SNAKE_CASE = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __SCREAMING_SNAKE_CASE = decoder_config.eos_token_id __SCREAMING_SNAKE_CASE = decoder_start_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
118
1
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = len(_lowerCAmelCase) UpperCamelCase_ = [] for i in range(len(_lowerCAmelCase) - pat_len + 1): UpperCamelCase_ = True for j in range(_lowerCAmelCase): if s[i + j] != pattern[j]: UpperCamelCase_ = False break if match_found: position.append(_lowerCAmelCase) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
128
# Imports import numpy as np class _lowercase : '''simple docstring''' def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): '''simple docstring''' self.set_matricies(red=snake_case__ , green=snake_case__ , blue=snake_case__ , red_edge=snake_case__ , nir=snake_case__ ) def _lowerCamelCase ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): '''simple docstring''' if red is not None: UpperCamelCase_ = red if green is not None: UpperCamelCase_ = green if blue is not None: UpperCamelCase_ = blue if red_edge is not None: UpperCamelCase_ = red_edge if nir is not None: UpperCamelCase_ = nir return True def _lowerCamelCase ( self , snake_case__="" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None ): '''simple docstring''' self.set_matricies(red=snake_case__ , green=snake_case__ , blue=snake_case__ , red_edge=snake_case__ , nir=snake_case__ ) UpperCamelCase_ = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def _lowerCamelCase ( self ): '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def _lowerCamelCase ( self ): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _lowerCamelCase ( self ): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def _lowerCamelCase ( self ): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def _lowerCamelCase ( self ): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _lowerCamelCase ( self , snake_case__=0.08 , snake_case__=1.22 , snake_case__=0.03 ): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _lowerCamelCase ( self ): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir / self.green) - 1 def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir / self.redEdge) - 1 def _lowerCamelCase ( self ): '''simple docstring''' return (self.red - self.blue) / self.red def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _lowerCamelCase ( self ): '''simple docstring''' return self.nir - self.green def _lowerCamelCase ( self ): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def _lowerCamelCase ( self , snake_case__=0.16 ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def _lowerCamelCase ( self , snake_case__=0.5 ): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _lowerCamelCase ( self ): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def _lowerCamelCase ( self , snake_case__=None , snake_case__=None ): '''simple docstring''' return (self.nir - b) / (a * self.red) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _lowerCamelCase ( self ): '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def _lowerCamelCase ( self ): '''simple docstring''' return self.nir / self.red def _lowerCamelCase ( self ): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def _lowerCamelCase ( self ): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _lowerCamelCase ( self ): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def _lowerCamelCase ( self ): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def _lowerCamelCase ( self ): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def _lowerCamelCase ( self ): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def _lowerCamelCase ( self ): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCamelCase_ = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _lowerCamelCase ( self ): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _lowerCamelCase ( self ): '''simple docstring''' return self.nir / self.red def _lowerCamelCase ( self ): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def _lowerCamelCase ( self ): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
128
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A =logging.get_logger(__name__) class _snake_case ( __snake_case ): lowerCAmelCase :Tuple = ['pixel_values'] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PIL.Image.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase) UpperCAmelCase__ : Tuple = size if size is not None else {"""height""": 256, """width""": 256} UpperCAmelCase__ : Optional[int] = get_size_dict(_lowerCamelCase) UpperCAmelCase__ : Dict = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase__ : List[Any] = get_size_dict(_lowerCamelCase , param_name="""crop_size""") UpperCAmelCase__ : Optional[int] = do_resize UpperCAmelCase__ : Dict = size UpperCAmelCase__ : Any = resample UpperCAmelCase__ : Union[str, Any] = do_center_crop UpperCAmelCase__ : List[Any] = crop_size UpperCAmelCase__ : Any = do_rescale UpperCAmelCase__ : Optional[Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = do_normalize UpperCAmelCase__ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PIL.Image.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCAmelCase__ : Dict = get_size_dict(_lowerCamelCase) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''') return resize( _lowerCamelCase , size=(size["""height"""], size["""width"""]) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCAmelCase__ : List[Any] = get_size_dict(_lowerCamelCase) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''') return center_crop(_lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCAmelCase__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : Optional[int] = resample if resample is not None else self.resample UpperCAmelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Any = image_std if image_std is not None else self.image_std UpperCAmelCase__ : str = size if size is not None else self.size UpperCAmelCase__ : Optional[int] = get_size_dict(_lowerCamelCase) UpperCAmelCase__ : str = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : List[str] = get_size_dict(_lowerCamelCase , param_name="""crop_size""") UpperCAmelCase__ : str = make_list_of_images(_lowerCamelCase) if not valid_images(_lowerCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[int] = [to_numpy_array(_lowerCamelCase) for image in images] if do_resize: UpperCAmelCase__ : List[str] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase) for image in images] if do_center_crop: UpperCAmelCase__ : Union[str, Any] = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase) for image in images] if do_rescale: UpperCAmelCase__ : List[str] = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase) for image in images] if do_normalize: UpperCAmelCase__ : List[Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase) for image in images] UpperCAmelCase__ : str = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase) for image in images] UpperCAmelCase__ : Any = {"""pixel_values""": images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase)
362
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __A ='\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __A ='\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' __A ='\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def _UpperCamelCase ( UpperCamelCase__ ): def remove_articles(UpperCamelCase__ ): UpperCAmelCase__ : Tuple = re.compile(R"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(UpperCamelCase__ , """ """ , UpperCamelCase__ ) def white_space_fix(UpperCamelCase__ ): return " ".join(text.split() ) def remove_punc(UpperCamelCase__ ): UpperCAmelCase__ : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase__ ) ) ) ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): return int(normalize_answer(UpperCamelCase__ ) == normalize_answer(UpperCamelCase__ ) ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Any = [any(compute_exact(UpperCamelCase__ , UpperCamelCase__ ) for ref in refs ) for pred, refs in zip(UpperCamelCase__ , UpperCamelCase__ )] return (sum(UpperCamelCase__ ) / len(UpperCamelCase__ )) * 1_0_0 def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase__ : List[Any] = Counter(UpperCamelCase__ ) UpperCAmelCase__ : str = Counter(UpperCamelCase__ ) UpperCAmelCase__ : Dict = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase__ : Dict = scount * numref UpperCAmelCase__ : int = Counter(UpperCamelCase__ ) UpperCAmelCase__ : Optional[int] = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase__ : Union[str, Any] = ccount * numref # KEEP UpperCAmelCase__ : str = sgramcounter_rep & cgramcounter_rep UpperCAmelCase__ : List[Any] = keepgramcounter_rep & rgramcounter UpperCAmelCase__ : Dict = sgramcounter_rep & rgramcounter UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Union[str, Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase__ : List[str] = 1 UpperCAmelCase__ : Optional[Any] = 1 if len(UpperCamelCase__ ) > 0: UpperCAmelCase__ : Optional[int] = keeptmpscorea / len(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase__ : Any = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase__ : Any = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase__ : str = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase__ : str = sgramcounter_rep - cgramcounter_rep UpperCAmelCase__ : Optional[Any] = delgramcounter_rep - rgramcounter UpperCAmelCase__ : List[str] = sgramcounter_rep - rgramcounter UpperCAmelCase__ : str = 0 UpperCAmelCase__ : List[Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase__ : Union[str, Any] = 1 if len(UpperCamelCase__ ) > 0: UpperCAmelCase__ : Optional[Any] = deltmpscorea / len(UpperCamelCase__ ) # ADDITION UpperCAmelCase__ : Tuple = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = set(UpperCamelCase__ ) & set(UpperCamelCase__ ) UpperCAmelCase__ : List[str] = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) UpperCAmelCase__ : str = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase__ : List[Any] = 1 UpperCAmelCase__ : List[Any] = 1 if len(UpperCamelCase__ ) > 0: UpperCAmelCase__ : Optional[int] = addtmpscore / len(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: UpperCAmelCase__ : int = addtmpscore / len(UpperCamelCase__ ) UpperCAmelCase__ : Tuple = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase__ : int = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Dict = len(UpperCamelCase__ ) UpperCAmelCase__ : Tuple = ssent.split(""" """ ) UpperCAmelCase__ : Optional[int] = csent.split(""" """ ) UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : List[Any] = [] for rsent in rsents: UpperCAmelCase__ : List[str] = rsent.split(""" """ ) UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : str = [] UpperCAmelCase__ : Dict = [] ragramslist.append(UpperCamelCase__ ) for i in range(0 , len(UpperCamelCase__ ) - 1 ): if i < len(UpperCamelCase__ ) - 1: UpperCAmelCase__ : Optional[int] = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 2: UpperCAmelCase__ : Union[str, Any] = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 3: UpperCAmelCase__ : Any = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(UpperCamelCase__ ) ragramslist.append(UpperCamelCase__ ) ragramslist.append(UpperCamelCase__ ) ragramslist.append(UpperCamelCase__ ) for i in range(0 , len(UpperCamelCase__ ) - 1 ): if i < len(UpperCamelCase__ ) - 1: UpperCAmelCase__ : Optional[int] = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 2: UpperCAmelCase__ : Dict = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 3: UpperCAmelCase__ : str = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(UpperCamelCase__ ) for i in range(0 , len(UpperCamelCase__ ) - 1 ): if i < len(UpperCamelCase__ ) - 1: UpperCAmelCase__ : Dict = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 2: UpperCAmelCase__ : int = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(UpperCamelCase__ ) if i < len(UpperCamelCase__ ) - 3: UpperCAmelCase__ : List[Any] = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(UpperCamelCase__ ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : Optional[Any] = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : str = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : Any = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : Optional[int] = SARIngram(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Tuple = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase__ : Union[str, Any] = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase__ : Dict = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase__ : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = True , UpperCamelCase__ = "13a" , UpperCamelCase__ = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCAmelCase__ : List[str] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase__ : Tuple = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase__ )()(UpperCamelCase__ ) else: UpperCAmelCase__ : Tuple = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase__ ) elif tokenizer == "moses": UpperCAmelCase__ : Union[str, Any] = sacremoses.MosesTokenizer().tokenize(UpperCamelCase__ , return_str=UpperCamelCase__ , escape=UpperCamelCase__ ) elif tokenizer == "penn": UpperCAmelCase__ : Dict = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase__ , return_str=UpperCamelCase__ ) else: UpperCAmelCase__ : List[Any] = sentence if not return_str: UpperCAmelCase__ : List[str] = normalized_sent.split() return normalized_sent def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if not (len(UpperCamelCase__ ) == len(UpperCamelCase__ ) == len(UpperCamelCase__ )): raise ValueError("""Sources length must match predictions and references lengths.""" ) UpperCAmelCase__ : Optional[int] = 0 for src, pred, refs in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): sari_score += SARIsent(normalize(UpperCamelCase__ ) , normalize(UpperCamelCase__ ) , [normalize(UpperCamelCase__ ) for sent in refs] ) UpperCAmelCase__ : Optional[int] = sari_score / len(UpperCamelCase__ ) return 1_0_0 * sari_score def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="exp" , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , ): UpperCAmelCase__ : int = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) UpperCAmelCase__ : int = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] UpperCAmelCase__ : int = sacrebleu.corpus_bleu( UpperCamelCase__ , UpperCamelCase__ , smooth_method=UpperCamelCase__ , smooth_value=UpperCamelCase__ , force=UpperCamelCase__ , lowercase=UpperCamelCase__ , use_effective_order=UpperCamelCase__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def snake_case__ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""") , id="""references"""), }) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = {} result.update({"""sari""": compute_sari(sources=_lowerCamelCase , predictions=_lowerCamelCase , references=_lowerCamelCase)}) result.update({"""sacrebleu""": compute_sacrebleu(predictions=_lowerCamelCase , references=_lowerCamelCase)}) result.update({"""exact""": compute_em(predictions=_lowerCamelCase , references=_lowerCamelCase)}) return result
283
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = tempfile.mkdtemp() # fmt: off __a : Tuple = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __a : List[Any] = dict(zip(__a , range(len(__a ) ) ) ) __a : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __a : Dict = {'unk_token': '<unk>'} __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) __a : List[str] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } __a : Optional[Any] = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__a , __a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a : str = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_tokenizer() __a : Optional[Any] = self.get_rust_tokenizer() __a : Dict = self.get_image_processor() __a : Any = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) __a : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) __a : Union[str, Any] = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) __a : Optional[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __a : int = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __a : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_image_processor() __a : Optional[int] = self.get_tokenizer() __a : str = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) __a : Dict = self.prepare_image_inputs() __a : Tuple = image_processor(__a , return_tensors='np' ) __a : List[Any] = processor(images=__a , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.get_image_processor() __a : List[str] = self.get_tokenizer() __a : Optional[Any] = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) __a : Optional[Any] = 'lower newer' __a : Union[str, Any] = processor(text=__a ) __a : str = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_image_processor() __a : Dict = self.get_tokenizer() __a : List[Any] = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) __a : List[str] = 'lower newer' __a : Optional[int] = self.prepare_image_inputs() __a : Tuple = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.get_image_processor() __a : Dict = self.get_tokenizer() __a : Tuple = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) __a : Dict = self.prepare_image_inputs() __a : List[str] = self.prepare_image_inputs() __a : int = processor(images=__a , visual_prompt=__a ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.get_image_processor() __a : Union[str, Any] = self.get_tokenizer() __a : Union[str, Any] = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) __a : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a : Any = processor.batch_decode(__a ) __a : Optional[Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a )
27
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) lowerCAmelCase__ :Tuple = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class __a ( UpperCAmelCase ): _a : int = 'realm' def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=1e-3 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=320 , _SCREAMING_SNAKE_CASE=13353718 , _SCREAMING_SNAKE_CASE=5000 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Common config _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = retriever_proj_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = num_candidates _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = type_vocab_size _UpperCAmelCase = layer_norm_eps # Reader config _UpperCAmelCase = span_hidden_size _UpperCAmelCase = max_span_width _UpperCAmelCase = reader_layer_norm_eps _UpperCAmelCase = reader_beam_size _UpperCAmelCase = reader_seq_len # Retrieval config _UpperCAmelCase = num_block_records _UpperCAmelCase = searcher_beam_size
185
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ :Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :str = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :List[str] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :str = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :List[Any] = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ :Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
185
1
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan _a : Any = 6_37_81_37.0 _a : List[str] = 6_35_67_52.31_42_45 _a : Tuple = 6_378_137 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ) -> float: _lowerCAmelCase : Any = (AXIS_A - AXIS_B) / AXIS_A _lowerCAmelCase : List[str] = atan((1 - flattening) * tan(radians(_lowerCamelCase ) ) ) _lowerCAmelCase : Dict = atan((1 - flattening) * tan(radians(_lowerCamelCase ) ) ) _lowerCAmelCase : Optional[Any] = radians(_lowerCamelCase ) _lowerCAmelCase : int = radians(_lowerCamelCase ) # Equation _lowerCAmelCase : Dict = sin((phi_a - phi_a) / 2 ) _lowerCAmelCase : Tuple = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _lowerCAmelCase : int = sqrt(sin_sq_phi + (cos(_lowerCamelCase ) * cos(_lowerCamelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
44
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : Optional[int] = """ylacombe/bark-small""" _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : int = """en_speaker_1""" _lowerCAmelCase : List[Any] = """This is a test string""" _lowerCAmelCase : Any = """speaker_embeddings_path.json""" _lowerCAmelCase : List[Any] = """speaker_embeddings""" def __A ( self , **a__ ): return AutoTokenizer.from_pretrained(self.checkpoint , **a__ ) def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : int = BarkProcessor(tokenizer=a__ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : str = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __A ( self ): _lowerCAmelCase : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __A ( self ): _lowerCAmelCase : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase : Union[str, Any] = 35 _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : Dict = { """semantic_prompt""": np.ones(a__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase : Dict = processor(text=self.input_string , voice_preset=a__ ) _lowerCAmelCase : Tuple = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(a__ , **a__ ) _lowerCAmelCase : List[Any] = processor(text=self.input_string , voice_preset=a__ ) _lowerCAmelCase : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase : str = processor(text=self.input_string , voice_preset=self.voice_preset ) def __A ( self ): _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : List[Any] = BarkProcessor(tokenizer=a__ ) _lowerCAmelCase : Dict = processor(text=self.input_string ) _lowerCAmelCase : Tuple = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=a__ , return_attention_mask=a__ , return_token_type_ids=a__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
44
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A ( ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__UpperCAmelCase , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__UpperCAmelCase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__UpperCAmelCase ) return parser.parse_args() def A ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parse_args() # Import training_script as a module. UpperCAmelCase_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase_ = script_fpath.stem UpperCAmelCase_ = importlib.import_module(__UpperCAmelCase ) # Patch sys.argv UpperCAmelCase_ = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
344
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
1
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int]="shi-labs/oneformer_demo" ) -> Union[str, Any]: with open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) as f: lowerCamelCase_ = json.load(_lowerCamelCase ) lowerCamelCase_ = {} lowerCamelCase_ = [] lowerCamelCase_ = [] for key, info in class_info.items(): lowerCamelCase_ = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(_lowerCamelCase ) ) lowerCamelCase_ = thing_ids lowerCamelCase_ = class_names return metadata class a ( unittest.TestCase ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]=7 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=30 , __SCREAMING_SNAKE_CASE : Union[str, Any]=400 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Dict=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Dict=10 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : List[str]=255 , __SCREAMING_SNAKE_CASE : Optional[Any]="shi-labs/oneformer_demo" , __SCREAMING_SNAKE_CASE : Tuple="ade20k_panoptic.json" , __SCREAMING_SNAKE_CASE : Dict=10 , ) -> Optional[Any]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = {'shortest_edge': 32, 'longest_edge': 1333} if size is None else size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = class_info_file lowerCamelCase_ = prepare_metadata(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = num_text lowerCamelCase_ = repo_path # for the post_process_functions lowerCamelCase_ = 2 lowerCamelCase_ = 10 lowerCamelCase_ = 10 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = num_labels lowerCamelCase_ = do_reduce_labels lowerCamelCase_ = ignore_index def UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ) -> List[str]: if not batched: lowerCamelCase_ = image_inputs[0] if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ): lowerCamelCase_ , lowerCamelCase_ = image.size else: lowerCamelCase_ , lowerCamelCase_ = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ = int(self.size['shortest_edge'] * h / w ) lowerCamelCase_ = self.size['shortest_edge'] elif w > h: lowerCamelCase_ = self.size['shortest_edge'] lowerCamelCase_ = int(self.size['shortest_edge'] * w / h ) else: lowerCamelCase_ = self.size['shortest_edge'] lowerCamelCase_ = self.size['shortest_edge'] else: lowerCamelCase_ = [] for image in image_inputs: lowerCamelCase_ , lowerCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] lowerCamelCase_ = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width def UpperCamelCase ( self : List[Any] ) -> Any: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class a ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : Any = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string SCREAMING_SNAKE_CASE : int = image_processing_class def UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowerCamelCase_ = OneFormerImageProcessorTester(self ) @property def UpperCamelCase ( self : Optional[int] ) -> Any: return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase ( self : str ) -> Dict: lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'ignore_index' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'class_info_file' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'num_text' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'repo_path' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'metadata' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_reduce_labels' ) ) def UpperCamelCase ( self : Optional[Any] ) -> Dict: pass def UpperCamelCase ( self : Tuple ) -> List[Any]: # Initialize image_processor lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowerCamelCase_ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ , lowerCamelCase_ = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = image_processor( __SCREAMING_SNAKE_CASE , ['semantic'] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processor lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ , lowerCamelCase_ = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = image_processor( __SCREAMING_SNAKE_CASE , ['semantic'] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : str ) -> Any: # Initialize image_processor lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ , lowerCamelCase_ = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = image_processor( __SCREAMING_SNAKE_CASE , ['semantic'] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Dict="np" ) -> Any: lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # prepare image and target lowerCamelCase_ = self.image_processing_tester.num_labels lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) if with_segmentation_maps: lowerCamelCase_ = num_labels if is_instance_map: lowerCamelCase_ = list(range(__SCREAMING_SNAKE_CASE ) ) * 2 lowerCamelCase_ = dict(enumerate(__SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": lowerCamelCase_ = [Image.fromarray(__SCREAMING_SNAKE_CASE ) for annotation in annotations] lowerCamelCase_ = image_processor( __SCREAMING_SNAKE_CASE , ['semantic'] * len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , return_tensors='pt' , instance_id_to_semantic_id=__SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE , ) return inputs def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: pass def UpperCamelCase ( self : Optional[Any] ) -> Any: def common(__SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Optional[int]=None ): lowerCamelCase_ = self.comm_get_image_processor_inputs( with_segmentation_maps=__SCREAMING_SNAKE_CASE , is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = inputs['mask_labels'] lowerCamelCase_ = inputs['class_labels'] lowerCamelCase_ = inputs['pixel_values'] lowerCamelCase_ = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__SCREAMING_SNAKE_CASE ) common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type='pil' ) common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type='pil' ) def UpperCamelCase ( self : str ) -> List[str]: lowerCamelCase_ = np.zeros((20, 50) ) lowerCamelCase_ = 1 lowerCamelCase_ = 1 lowerCamelCase_ = 1 lowerCamelCase_ = binary_mask_to_rle(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase ( self : str ) -> Optional[Any]: lowerCamelCase_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowerCamelCase_ = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase_ = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) lowerCamelCase_ = [(1, 4) for i in range(self.image_processing_tester.batch_size )] lowerCamelCase_ = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE , target_sizes=__SCREAMING_SNAKE_CASE ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase ( self : List[str] ) -> Optional[int]: lowerCamelCase_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowerCamelCase_ = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase_ = image_processor.post_process_instance_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowerCamelCase_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowerCamelCase_ = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase_ = image_processor.post_process_panoptic_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
183
"""simple docstring""" import string def lowerCamelCase__ ( _lowerCamelCase : str ) -> None: for key in range(len(string.ascii_uppercase ) ): lowerCamelCase_ = '' for symbol in message: if symbol in string.ascii_uppercase: lowerCamelCase_ = string.ascii_uppercase.find(_lowerCamelCase ) lowerCamelCase_ = num - key if num < 0: lowerCamelCase_ = num + len(string.ascii_uppercase ) lowerCamelCase_ = translated + string.ascii_uppercase[num] else: lowerCamelCase_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = input('Encrypted message: ' ) lowerCamelCase_ = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
183
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
351
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging a =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: __lowerCamelCase : Tuple = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ), F"{len(lowerCamelCase__ )} != {len(lowerCamelCase__ )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) a ={ # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } a ={ # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: try: __lowerCamelCase : List[str] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[int]: if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCamelCase__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = "student" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Tuple[PreTrainedModel, List[int], List[int]]: __lowerCamelCase : int = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(lowerCamelCase__ , lowerCamelCase__ ): AutoTokenizer.from_pretrained(lowerCamelCase__ ).save_pretrained(lowerCamelCase__ ) # purely for convenience __lowerCamelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ).eval() else: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), F"teacher must be a model or string got type {type(lowerCamelCase__ )}" __lowerCamelCase : str = teacher.config.to_diff_dict() try: __lowerCamelCase , __lowerCamelCase : Dict = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __lowerCamelCase : Optional[int] = teacher_e if d is None: __lowerCamelCase : Optional[Any] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): __lowerCamelCase , __lowerCamelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __lowerCamelCase , __lowerCamelCase : Any = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __lowerCamelCase : Union[str, Any] = teacher_e if d is None: __lowerCamelCase : Any = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCamelCase__ ) # Copy weights __lowerCamelCase : str = teacher.config_class(**lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_config(lowerCamelCase__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __lowerCamelCase : Tuple = student.load_state_dict(teacher.state_dict() , strict=lowerCamelCase__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(range(lowerCamelCase__ ) ), list(range(lowerCamelCase__ ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCamelCase__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __lowerCamelCase : List[int] = pick_layers_to_copy(lowerCamelCase__ , lowerCamelCase__ ) if d_layers_to_copy is None: __lowerCamelCase : List[int] = pick_layers_to_copy(lowerCamelCase__ , lowerCamelCase__ ) try: if hasattr( lowerCamelCase__ , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCamelCase__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCamelCase__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCamelCase__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCamelCase__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCamelCase__ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCamelCase__ ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) __lowerCamelCase : Dict = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(lowerCamelCase__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
113
0
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ['''flax''', '''transformers'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :List[Any] , *lowerCAmelCase__ :Any , **lowerCAmelCase__ :Union[str, Any] ) -> Any: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Union[str, Any] , *lowerCAmelCase__ :List[Any] , **lowerCAmelCase__ :str ) -> Any: requires_backends(cls , ['''flax''', '''transformers'''] ) class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''flax''', '''transformers'''] def __init__( self :List[str] , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :List[Any] ) -> Optional[int]: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Any , *lowerCAmelCase__ :str , **lowerCAmelCase__ :str ) -> Dict: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :str , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :List[str] ) -> Tuple: requires_backends(cls , ['''flax''', '''transformers'''] ) class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ['''flax''', '''transformers'''] def __init__( self :Any , *lowerCAmelCase__ :List[str] , **lowerCAmelCase__ :List[str] ) -> int: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Optional[Any] , *lowerCAmelCase__ :str , **lowerCAmelCase__ :int ) -> Optional[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Dict , *lowerCAmelCase__ :List[Any] , **lowerCAmelCase__ :Tuple ) -> Dict: requires_backends(cls , ['''flax''', '''transformers'''] ) class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self :Dict , *lowerCAmelCase__ :Dict , **lowerCAmelCase__ :List[str] ) -> Tuple: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Tuple , *lowerCAmelCase__ :int , **lowerCAmelCase__ :int ) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :List[str] ) -> str: requires_backends(cls , ['''flax''', '''transformers'''] )
9
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[str] = (DDIMParallelScheduler,) __lowerCamelCase : int = (("eta", 0.0), ("num_inference_steps", 50)) def _lowerCAmelCase ( self, **lowerCamelCase__ ): A : int = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**lowerCamelCase__ ) return config def _lowerCAmelCase ( self, **lowerCamelCase__ ): A : Dict = self.scheduler_classes[0] A : str = self.get_scheduler_config(**lowerCamelCase__ ) A : Tuple = scheduler_class(**lowerCamelCase__ ) A , A : Tuple = 10, 0.0 A : Optional[int] = self.dummy_model() A : List[str] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for t in scheduler.timesteps: A : Optional[int] = model(lowerCamelCase__, lowerCamelCase__ ) A : str = scheduler.step(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ).prev_sample return sample def _lowerCAmelCase ( self ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) A : Tuple = self.scheduler_classes[0] A : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) A : List[Any] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowerCAmelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase__, beta_end=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCamelCase__ ) def _lowerCAmelCase ( self ): self.check_over_configs(thresholding=lowerCamelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase__, prediction_type=lowerCamelCase__, sample_max_value=lowerCamelCase__, ) def _lowerCAmelCase ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500] ): self.check_over_forward(time_step=lowerCamelCase__, num_inference_steps=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCamelCase__, eta=lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[str] = self.scheduler_classes[0] A : List[str] = self.get_scheduler_config() A : Dict = scheduler_class(**lowerCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420, 400 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980, 960 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487, 486 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999, 998 ) - 0.02 ) ) < 1e-5 def _lowerCAmelCase ( self ): A : int = self.scheduler_classes[0] A : Any = self.get_scheduler_config() A : Union[str, Any] = scheduler_class(**lowerCamelCase__ ) A , A : List[str] = 10, 0.0 scheduler.set_timesteps(lowerCamelCase__ ) A : Any = self.dummy_model() A : Dict = self.dummy_sample_deter A : Dict = self.dummy_sample_deter + 0.1 A : Tuple = self.dummy_sample_deter - 0.1 A : Tuple = samplea.shape[0] A : List[Any] = torch.stack([samplea, samplea, samplea], dim=0 ) A : str = torch.arange(lowerCamelCase__ )[0:3, None].repeat(1, lowerCamelCase__ ) A : Any = model(samples.flatten(0, 1 ), timesteps.flatten(0, 1 ) ) A : Any = scheduler.batch_step_no_noise(lowerCamelCase__, timesteps.flatten(0, 1 ), samples.flatten(0, 1 ), lowerCamelCase__ ) A : List[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) A : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def _lowerCAmelCase ( self ): A : Dict = self.full_loop() A : str = torch.sum(torch.abs(lowerCamelCase__ ) ) A : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def _lowerCAmelCase ( self ): A : str = self.full_loop(prediction_type="""v_prediction""" ) A : Any = torch.sum(torch.abs(lowerCamelCase__ ) ) A : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def _lowerCAmelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A : Any = self.full_loop(set_alpha_to_one=lowerCamelCase__, beta_start=0.01 ) A : Dict = torch.sum(torch.abs(lowerCamelCase__ ) ) A : str = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def _lowerCAmelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A : int = self.full_loop(set_alpha_to_one=lowerCamelCase__, beta_start=0.01 ) A : List[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) A : List[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
116
0
"""simple docstring""" import sys lowercase__ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _snake_case ( lowercase__ = N ): _lowerCamelCase : Optional[Any] = -sys.maxsize - 1 for i in range(len(snake_case__ ) - 12 ): _lowerCamelCase : Any = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _lowerCamelCase : Optional[Any] = product return largest_product if __name__ == "__main__": print(F"{solution() = }")
364
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
0
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase_ = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase_ = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def __lowercase ( __lowercase ) -> Optional[Any]: '''simple docstring''' _A = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowercase )[0] @deprecated(__lowercase , "Please use tf.data to implement this functionality." ) def __lowercase ( __lowercase ) -> List[Any]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: _A = _readaa(__lowercase ) if magic != 2051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) _A = _readaa(__lowercase ) _A = _readaa(__lowercase ) _A = _readaa(__lowercase ) _A = bytestream.read(rows * cols * num_images ) _A = numpy.frombuffer(__lowercase , dtype=numpy.uinta ) _A = data.reshape(__lowercase , __lowercase , __lowercase , 1 ) return data @deprecated(__lowercase , "Please use tf.one_hot on tensors." ) def __lowercase ( __lowercase , __lowercase ) -> int: '''simple docstring''' _A = labels_dense.shape[0] _A = numpy.arange(__lowercase ) * num_classes _A = numpy.zeros((num_labels, num_classes) ) _A = 1 return labels_one_hot @deprecated(__lowercase , "Please use tf.data to implement this functionality." ) def __lowercase ( __lowercase , __lowercase=False , __lowercase=10 ) -> List[Any]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: _A = _readaa(__lowercase ) if magic != 2049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) _A = _readaa(__lowercase ) _A = bytestream.read(__lowercase ) _A = numpy.frombuffer(__lowercase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowercase , __lowercase ) return labels class _UpperCAmelCase : """simple docstring""" @deprecated( __UpperCAmelCase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Optional[Any]=dtypes.floataa , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[int]=None , ): '''simple docstring''' _A , _A = random_seed.get_seed(__UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _A = dtypes.as_dtype(__UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: _A = 10000 _A = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' _A = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _A = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _A = images.astype(numpy.floataa ) _A = numpy.multiply(__UpperCAmelCase , 1.0 / 255.0 ) _A = images _A = labels _A = 0 _A = 0 @property def lowerCAmelCase ( self : int ): '''simple docstring''' return self._images @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self._labels @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self._num_examples @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self._epochs_completed def lowerCAmelCase ( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): '''simple docstring''' if fake_data: _A = [1] * 784 _A = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__UpperCAmelCase )], [fake_label for _ in range(__UpperCAmelCase )], ) _A = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _A = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) _A = self.images[perma] _A = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _A = self._num_examples - start _A = self._images[start : self._num_examples] _A = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _A = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) _A = self.images[perm] _A = self.labels[perm] # Start next epoch _A = 0 _A = batch_size - rest_num_examples _A = self._index_in_epoch _A = self._images[start:end] _A = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _A = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowercase , "Please write your own downloading logic." ) def __lowercase ( __lowercase , __lowercase , __lowercase ) -> Union[str, Any]: '''simple docstring''' if not gfile.Exists(__lowercase ): gfile.MakeDirs(__lowercase ) _A = os.path.join(__lowercase , __lowercase ) if not gfile.Exists(__lowercase ): urllib.request.urlretrieve(__lowercase , __lowercase ) # noqa: S310 with gfile.GFile(__lowercase ) as f: _A = f.size() print("Successfully downloaded" , __lowercase , __lowercase , "bytes." ) return filepath @deprecated( __lowercase , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def __lowercase ( __lowercase , __lowercase=False , __lowercase=False , __lowercase=dtypes.floataa , __lowercase=True , __lowercase=5000 , __lowercase=None , __lowercase=DEFAULT_SOURCE_URL , ) -> List[str]: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowercase , one_hot=__lowercase , dtype=__lowercase , seed=__lowercase ) _A = fake() _A = fake() _A = fake() return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase ) if not source_url: # empty string check _A = DEFAULT_SOURCE_URL _A = "train-images-idx3-ubyte.gz" _A = "train-labels-idx1-ubyte.gz" _A = "t10k-images-idx3-ubyte.gz" _A = "t10k-labels-idx1-ubyte.gz" _A = _maybe_download( __lowercase , __lowercase , source_url + train_images_file ) with gfile.Open(__lowercase , "rb" ) as f: _A = _extract_images(__lowercase ) _A = _maybe_download( __lowercase , __lowercase , source_url + train_labels_file ) with gfile.Open(__lowercase , "rb" ) as f: _A = _extract_labels(__lowercase , one_hot=__lowercase ) _A = _maybe_download( __lowercase , __lowercase , source_url + test_images_file ) with gfile.Open(__lowercase , "rb" ) as f: _A = _extract_images(__lowercase ) _A = _maybe_download( __lowercase , __lowercase , source_url + test_labels_file ) with gfile.Open(__lowercase , "rb" ) as f: _A = _extract_labels(__lowercase , one_hot=__lowercase ) if not 0 <= validation_size <= len(__lowercase ): _A = ( "Validation size should be between 0 and " F'''{len(__lowercase )}. Received: {validation_size}.''' ) raise ValueError(__lowercase ) _A = train_images[:validation_size] _A = train_labels[:validation_size] _A = train_images[validation_size:] _A = train_labels[validation_size:] _A = {"dtype": dtype, "reshape": reshape, "seed": seed} _A = _DataSet(__lowercase , __lowercase , **__lowercase ) _A = _DataSet(__lowercase , __lowercase , **__lowercase ) _A = _DataSet(__lowercase , __lowercase , **__lowercase ) return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase )
79
'''simple docstring''' from scipy.stats import pearsonr import datasets __snake_case = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __snake_case = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __snake_case = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' if return_pvalue: UpperCamelCase__ :Any = pearsonr(UpperCamelCase_ , UpperCamelCase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCamelCase_ , UpperCamelCase_ )[0] )}
97
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Any = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class snake_case__ ( A__ ): A__ = 'gpt_neox_japanese' def __init__( self : Dict , __a : List[str]=32000 , __a : List[str]=2560 , __a : Optional[Any]=32 , __a : int=32 , __a : List[str]=4 , __a : Union[str, Any]="gelu" , __a : Optional[Any]=1.0_0 , __a : str=10000 , __a : Dict=2048 , __a : str=0.0_2 , __a : Tuple=1e-5 , __a : Optional[int]=True , __a : Union[str, Any]=31996 , __a : Optional[Any]=31999 , __a : Optional[Any]=0.1 , __a : Union[str, Any]=0.0 , **__a : List[str] , ) -> str: '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __snake_case : List[str] = vocab_size __snake_case : Optional[Any] = max_position_embeddings __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Dict = intermediate_multiple_size __snake_case : Optional[Any] = hidden_act __snake_case : Any = rotary_pct __snake_case : int = rotary_emb_base __snake_case : Optional[Any] = initializer_range __snake_case : List[Any] = layer_norm_eps __snake_case : Optional[int] = use_cache __snake_case : Union[str, Any] = attention_dropout __snake_case : List[Any] = hidden_dropout
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[Any] = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
0
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = tmp_path / '''file.csv''' A__ = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = tmp_path / '''malformed_file.csv''' A__ = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = tmp_path / '''csv_with_image.csv''' A__ = textwrap.dedent( f"""\ image {image_file} """ ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = tmp_path / '''csv_with_label.csv''' A__ = textwrap.dedent( '''\ label good bad good ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" A__ = tmp_path / '''csv_with_int_list.csv''' A__ = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ = Csv() A__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowercase_ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(lowercase_ ) in record.message for record in caplog.records ) @require_pil def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: """simple docstring""" with open(lowercase_ , encoding='''utf-8''' ) as f: A__ = f.read().splitlines()[1] A__ = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) A__ = csv._generate_tables([[csv_file_with_image]] ) A__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() A__ = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" with open(lowercase_ , encoding='''utf-8''' ) as f: A__ = f.read().splitlines()[1:] A__ = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) A__ = csv._generate_tables([[csv_file_with_label]] ) A__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() A__ = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(lowercase_ ) for label in labels] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" A__ = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda lowercase_ : [int(lowercase_ ) for i in x.split()]} ) A__ = csv._generate_tables([[csv_file_with_int_list]] ) A__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) A__ = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
14
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm a_ = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( snake_case ): UpperCamelCase =[ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **UpperCamelCase_ ) -> Optional[Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowercase : Union[str, Any] = deprecated_arg[3:] setattr(self , UpperCamelCase_ , not kwargs.pop(UpperCamelCase_ ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) __lowercase : Dict = kwargs.pop('''torchscript''' , self.torchscript ) __lowercase : str = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) __lowercase : str = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**UpperCamelCase_ ) UpperCamelCase =field(default=snake_case , metadata={"help": "Trace the models using torchscript"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) UpperCamelCase =field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def _lowerCamelCase ( self ) -> Tuple["torch.device", int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: __lowercase : str = torch.device('''cpu''' ) __lowercase : Optional[Any] = 0 elif is_torch_tpu_available(): __lowercase : str = xm.xla_device() __lowercase : Any = 0 else: __lowercase : List[str] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __lowercase : Any = torch.cuda.device_count() return device, n_gpu @property def _lowerCamelCase ( self ) -> Union[str, Any]: return is_torch_tpu_available() and self.tpu @property def _lowerCamelCase ( self ) -> int: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _lowerCamelCase ( self ) -> "torch.device": requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def _lowerCamelCase ( self ) -> int: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def _lowerCamelCase ( self ) -> Dict: return self.n_gpu > 0
249
0
"""simple docstring""" import requests def lowerCamelCase (a_ :str , a_ :str) -> None: lowercase :str = {'''Content-Type''': '''application/json'''} lowercase :Any = requests.post(a_ , json={'''text''': message_body} , headers=a_) if response.status_code != 200: lowercase :str = ( '''Request to slack returned an error ''' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(a_) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
356
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = "layoutlmv3" def __init__( self : int , snake_case__ : Any=5_0_2_6_5 , snake_case__ : int=7_6_8 , snake_case__ : Dict=1_2 , snake_case__ : Optional[Any]=1_2 , snake_case__ : Union[str, Any]=3_0_7_2 , snake_case__ : Tuple="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : int=5_1_2 , snake_case__ : int=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : Union[str, Any]=1e-5 , snake_case__ : Optional[int]=1 , snake_case__ : Any=0 , snake_case__ : Optional[int]=2 , snake_case__ : int=1_0_2_4 , snake_case__ : str=1_2_8 , snake_case__ : Tuple=1_2_8 , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=3_2 , snake_case__ : Any=1_2_8 , snake_case__ : List[Any]=6_4 , snake_case__ : List[Any]=2_5_6 , snake_case__ : Any=True , snake_case__ : Optional[Any]=True , snake_case__ : Tuple=True , snake_case__ : List[Any]=2_2_4 , snake_case__ : Optional[int]=3 , snake_case__ : Union[str, Any]=1_6 , snake_case__ : str=None , **snake_case__ : List[str] , ): '''simple docstring''' super().__init__( vocab_size=snake_case__ , hidden_size=snake_case__ , num_hidden_layers=snake_case__ , num_attention_heads=snake_case__ , intermediate_size=snake_case__ , hidden_act=snake_case__ , hidden_dropout_prob=snake_case__ , attention_probs_dropout_prob=snake_case__ , max_position_embeddings=snake_case__ , type_vocab_size=snake_case__ , initializer_range=snake_case__ , layer_norm_eps=snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , ) lowercase :Optional[int] = max_ad_position_embeddings lowercase :Tuple = coordinate_size lowercase :Any = shape_size lowercase :Union[str, Any] = has_relative_attention_bias lowercase :Optional[Any] = rel_pos_bins lowercase :Tuple = max_rel_pos lowercase :Any = has_spatial_attention_bias lowercase :Any = rel_ad_pos_bins lowercase :str = max_rel_ad_pos lowercase :int = text_embed lowercase :Optional[int] = visual_embed lowercase :str = input_size lowercase :List[str] = num_channels lowercase :str = patch_size lowercase :Any = classifier_dropout class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = version.parse("1.12" ) @property def __snake_case ( self : Any ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def __snake_case ( self : int ): '''simple docstring''' return 1e-5 @property def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return 1_2 def __snake_case ( self : str , snake_case__ : "ProcessorMixin" , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 4_0 , snake_case__ : int = 4_0 , ): '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , snake_case__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase :Dict = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase :Union[str, Any] = processor.tokenizer.num_special_tokens_to_add(snake_case__ ) lowercase :List[str] = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence lowercase :Tuple = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase :List[str] = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase :List[Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase :Dict = dict( processor( snake_case__ , text=snake_case__ , boxes=snake_case__ , return_tensors=snake_case__ , ) ) return inputs
172
0
class __A : """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =set_counts __UpperCamelCase : Optional[Any] =max(lowerCamelCase__ ) __UpperCamelCase : Dict =len(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =[1] * num_sets __UpperCamelCase : Optional[Any] =list(range(lowerCamelCase__ ) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =self.get_parent(lowerCamelCase__ ) __UpperCamelCase : List[str] =self.get_parent(lowerCamelCase__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCamelCase : int =0 __UpperCamelCase : Any =dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCamelCase : List[str] =self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCamelCase : List[Any] =0 __UpperCamelCase : int =src_parent __UpperCamelCase : int =self.set_counts[src_parent] __UpperCamelCase : Tuple =max(self.max_set , lowerCamelCase__ ) return True def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set __UpperCamelCase : Dict =self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
71
"""simple docstring""" import numpy as np def __lowercase ( _a ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
264
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
363
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
0
from collections.abc import Callable def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : float = a _lowerCAmelCase : float = b if function(_lowerCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_lowerCamelCase ) == 0: return b elif ( function(_lowerCamelCase ) * function(_lowerCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: _lowerCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_lowerCamelCase ) == 0: return mid elif function(_lowerCamelCase ) * function(_lowerCamelCase ) < 0: _lowerCAmelCase : Tuple = mid else: _lowerCAmelCase : Dict = mid _lowerCAmelCase : List[str] = start + (end - start) / 2.0 return mid def A ( _lowerCamelCase ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
36
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = '''ZinengTang/tvlt-base''' UpperCamelCase__ : int = tempfile.mkdtemp() def UpperCAmelCase__ ( self : int , **lowerCamelCase__ : List[str] ) -> List[Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , **lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' UpperCamelCase__ : int = self.get_image_processor() UpperCamelCase__ : Union[str, Any] = self.get_feature_extractor() UpperCamelCase__ : List[str] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Optional[int] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCamelCase__ ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : List[Any] = self.get_feature_extractor() UpperCamelCase__ : Dict = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) UpperCamelCase__ : Any = np.ones([12000] ) UpperCamelCase__ : Union[str, Any] = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ) UpperCamelCase__ : Any = processor(audio=lowerCamelCase__ , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = self.get_image_processor() UpperCamelCase__ : Any = self.get_feature_extractor() UpperCamelCase__ : int = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) UpperCamelCase__ : int = np.ones([3, 224, 224] ) UpperCamelCase__ : List[str] = image_processor(lowerCamelCase__ , return_tensors='''np''' ) UpperCamelCase__ : str = processor(images=lowerCamelCase__ , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_feature_extractor() UpperCamelCase__ : Union[str, Any] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) UpperCamelCase__ : List[str] = np.ones([12000] ) UpperCamelCase__ : Tuple = np.ones([3, 224, 224] ) UpperCamelCase__ : Optional[Any] = processor(audio=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def UpperCAmelCase__ ( self : Dict ) -> int: '''simple docstring''' UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : str = self.get_feature_extractor() UpperCamelCase__ : Tuple = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
146
0
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list: """simple docstring""" A__ = len(lowercase_ ) A__ = [] for i in range(len(lowercase_ ) - pat_len + 1 ): A__ = True for j in range(lowercase_ ): if s[i + j] != pattern[j]: A__ = False break if match_found: position.append(lowercase_ ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
231
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if "cls_token" in name: A__ = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: A__ = name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: A__ = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: A__ = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: A__ = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A__ = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: A__ = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: A__ = name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: A__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: A__ = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: A__ = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: A__ = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: A__ = name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: A__ = name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split('''.''' ) A__ = int(key_split[1] ) if "decoder_blocks" in key: A__ = config.decoder_hidden_size A__ = '''decoder.decoder_layers.''' if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = config.hidden_size A__ = '''vit.encoder.layer.''' if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = ViTMAEConfig() if "large" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 elif "huge" in checkpoint_url: A__ = 14 A__ = 1_280 A__ = 5_120 A__ = 32 A__ = 16 A__ = ViTMAEForPreTraining(lowercase_ ) A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' )['''model'''] A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() A__ = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = image_processor(images=lowercase_ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) A__ = model(**lowercase_ ) A__ = outputs.logits if "large" in checkpoint_url: A__ = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: A__ = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: A__ = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase_ , atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
231
1