code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __A : List[Any] = logging.get_logger(__name__) class __A ( lowerCAmelCase__ ): def __init__( self : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ): warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
138
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase ( _A : Optional[Any] , _A : List[str]=7 ) ->str: """simple docstring""" lowerCamelCase_ =None if token is not None: lowerCamelCase_ ={"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} # The id of a workflow (not of a workflow run) lowerCamelCase_ ="""636036""" lowerCamelCase_ =f'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' lowerCamelCase_ =requests.get(_A , headers=_A ).json() return result["workflow_runs"] def __UpperCamelCase ( _A : Optional[int] ) ->int: """simple docstring""" lowerCamelCase_ =get_daily_ci_runs(_A ) lowerCamelCase_ =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCamelCase_ =workflow_run["""id"""] break return workflow_run_id def __UpperCamelCase ( _A : Any , _A : int , _A : Tuple ) ->Tuple: """simple docstring""" lowerCamelCase_ =get_last_daily_ci_runs(_A ) if workflow_run_id is not None: lowerCamelCase_ =get_artifacts_links(worflow_run_id=_A , token=_A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCamelCase_ =artifacts_links[artifact_name] download_artifact( artifact_name=_A , artifact_url=_A , output_dir=_A , token=_A ) def __UpperCamelCase ( _A : int , _A : Any , _A : Optional[int] ) ->List[Any]: """simple docstring""" get_last_daily_ci_artifacts(_A , _A , _A ) lowerCamelCase_ ={} for artifact_name in artifact_names: lowerCamelCase_ =os.path.join(_A , f'{artifact_name}.zip' ) if os.path.isfile(_A ): lowerCamelCase_ ={} with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file with z.open(_A ) as f: lowerCamelCase_ =f.read().decode("""UTF-8""" ) return results
154
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
1
'''simple docstring''' from manim import * class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : List[str] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : Tuple = Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase : Optional[int] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase : List[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase : List[str] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase : Dict = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase : Dict = Text('CPU' , font_size=24 ) UpperCAmelCase : Optional[Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase : str = Text('GPU' , font_size=24 ) UpperCAmelCase : Dict = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) UpperCAmelCase : str = [mem.copy() for i in range(6 )] UpperCAmelCase : str = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase : Any = Text('Model' , font_size=24 ) UpperCAmelCase : Any = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : List[Any] = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) UpperCAmelCase : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) model_cpu_arr.append(lowercase_ ) self.add(*lowercase_ , *lowercase_ , *lowercase_ ) UpperCAmelCase : str = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase : str = Text('Loaded Checkpoint' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowercase_ ) UpperCAmelCase : List[Any] = [] UpperCAmelCase : Dict = [] for i, rect in enumerate(lowercase_ ): UpperCAmelCase : Optional[int] = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) ckpt_arr.append(lowercase_ ) UpperCAmelCase : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowercase_ ) self.add(*lowercase_ , *lowercase_ ) UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : Tuple = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) UpperCAmelCase : str = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowercase_ ) UpperCAmelCase : Any = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) UpperCAmelCase : List[Any] = [meta_mem.copy() for i in range(6 )] UpperCAmelCase : Any = [meta_mem.copy() for i in range(6 )] UpperCAmelCase : Optional[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase : Any = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase : Any = Text('Disk' , font_size=24 ) UpperCAmelCase : Any = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(lowercase_ , run_time=3 ) , Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) UpperCAmelCase : List[Any] = [] for i, rect in enumerate(lowercase_ ): UpperCAmelCase : Tuple = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(FadeOut(lowercase_ ) ) UpperCAmelCase : Tuple = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ , run_time=3 ) ) self.play( FadeOut(lowercase_ , lowercase_ , *lowercase_ , *lowercase_ ) , ) self.wait()
151
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): for attribute in key.split('.' ): UpperCAmelCase : Any = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: UpperCAmelCase : Tuple = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: UpperCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase : int = value elif weight_type == "weight_v": UpperCAmelCase : str = value elif weight_type == "bias": UpperCAmelCase : List[Any] = value else: UpperCAmelCase : List[str] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : str = [] UpperCAmelCase : Optional[int] = fairseq_model.state_dict() UpperCAmelCase : Dict = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCAmelCase : Any = True if "*" in mapped_key: UpperCAmelCase : Any = name.split(UpperCAmelCase_ )[0].split('.' )[-2] UpperCAmelCase : int = mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: UpperCAmelCase : Optional[Any] = 'weight_g' elif "weight_v" in name: UpperCAmelCase : Optional[int] = 'weight_v' elif "weight" in name: UpperCAmelCase : Optional[Any] = 'weight' elif "bias" in name: UpperCAmelCase : str = 'bias' else: UpperCAmelCase : str = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = full_name.split('conv_layers.' )[-1] UpperCAmelCase : Optional[Any] = name.split('.' ) UpperCAmelCase : Optional[Any] = int(items[0] ) UpperCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = SEWConfig() if is_finetuned: UpperCAmelCase : List[str] = model.wav_encoder.wav_model.cfg else: UpperCAmelCase : Optional[Any] = model.cfg UpperCAmelCase : str = fs_config.conv_bias UpperCAmelCase : Optional[Any] = eval(fs_config.conv_feature_layers ) UpperCAmelCase : Optional[Any] = [x[0] for x in conv_layers] UpperCAmelCase : str = [x[1] for x in conv_layers] UpperCAmelCase : str = [x[2] for x in conv_layers] UpperCAmelCase : Tuple = 'gelu' UpperCAmelCase : List[str] = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' UpperCAmelCase : List[Any] = 0.0 UpperCAmelCase : Optional[int] = fs_config.activation_fn.name UpperCAmelCase : Tuple = fs_config.encoder_embed_dim UpperCAmelCase : List[str] = 0.02 UpperCAmelCase : Any = fs_config.encoder_ffn_embed_dim UpperCAmelCase : Any = 1E-5 UpperCAmelCase : Any = fs_config.encoder_layerdrop UpperCAmelCase : List[str] = fs_config.encoder_attention_heads UpperCAmelCase : Union[str, Any] = fs_config.conv_pos_groups UpperCAmelCase : str = fs_config.conv_pos UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase_ ) UpperCAmelCase : List[str] = fs_config.encoder_layers UpperCAmelCase : Any = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: UpperCAmelCase : List[Any] = model.cfg UpperCAmelCase : Tuple = fs_config.final_dropout UpperCAmelCase : Tuple = fs_config.layerdrop UpperCAmelCase : int = fs_config.activation_dropout UpperCAmelCase : Union[str, Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 UpperCAmelCase : str = fs_config.attention_dropout UpperCAmelCase : Optional[Any] = fs_config.dropout_input UpperCAmelCase : Optional[int] = fs_config.dropout UpperCAmelCase : str = fs_config.mask_channel_length UpperCAmelCase : Optional[Any] = fs_config.mask_channel_prob UpperCAmelCase : Any = fs_config.mask_length UpperCAmelCase : int = fs_config.mask_prob UpperCAmelCase : Optional[Any] = 'Wav2Vec2FeatureExtractor' UpperCAmelCase : Tuple = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=True ): if is_finetuned: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: UpperCAmelCase : List[str] = SEWConfig.from_pretrained(UpperCAmelCase_ ) else: UpperCAmelCase : List[Any] = convert_config(model[0] , UpperCAmelCase_ ) UpperCAmelCase : int = model[0].eval() UpperCAmelCase : Tuple = True if config.feat_extract_norm == 'layer' else False UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) if is_finetuned: if dict_path: UpperCAmelCase : Optional[Any] = Dictionary.load(UpperCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : List[Any] = target_dict.pad_index UpperCAmelCase : Optional[Any] = target_dict.bos_index UpperCAmelCase : int = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : int = target_dict.eos_index UpperCAmelCase : Optional[int] = len(target_dict.symbols ) UpperCAmelCase : Union[str, Any] = os.path.join(UpperCAmelCase_ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase_ ) ) return os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = WavaVecaCTCTokenizer( UpperCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase_ , ) UpperCAmelCase : Union[str, Any] = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) UpperCAmelCase : List[str] = SEWForCTC(UpperCAmelCase_ ) else: UpperCAmelCase : Tuple = SEWModel(UpperCAmelCase_ ) feature_extractor.save_pretrained(UpperCAmelCase_ ) recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowercase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
151
1
__UpperCAmelCase = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
354
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __UpperCAmelCase = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) UpperCAmelCase_ : int = self.diffusers_dir shutil.copy( os.path.join(_UpperCamelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[Any]: UpperCAmelCase_ : Dict = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: UpperCAmelCase_ : Optional[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result UpperCAmelCase_ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) UpperCAmelCase_ : Optional[Any] = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) UpperCAmelCase_ : Any = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCamelCase , 'w' , newline='\n' ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase ) with open(_UpperCamelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCamelCase ) , ) # Copy consistency with a really long name UpperCAmelCase_ : Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub('Bert' , _UpperCamelCase , _UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCamelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCamelCase ) , )
145
0
"""simple docstring""" import math def _lowerCAmelCase ( ): UpperCAmelCase = input('Enter message: ' ) UpperCAmelCase = int(input(F"""Enter key [2-{len(lowercase_ ) - 1}]: """ ) ) UpperCAmelCase = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): UpperCAmelCase = encrypt_message(lowercase_ , lowercase_ ) elif mode.lower().startswith('d' ): UpperCAmelCase = decrypt_message(lowercase_ , lowercase_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"""Output:\n{text + '|'}""" ) def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = [''] * key for col in range(lowercase_ ): UpperCAmelCase = col while pointer < len(lowercase_ ): cipher_text[col] += message[pointer] pointer += key return "".join(lowercase_ ) def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = math.ceil(len(lowercase_ ) / key ) UpperCAmelCase = key UpperCAmelCase = (num_cols * num_rows) - len(lowercase_ ) UpperCAmelCase = [''] * num_cols UpperCAmelCase = 0 UpperCAmelCase = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase = 0 row += 1 return "".join(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
78
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
0
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Union[str, Any]=[] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Optional[int] = size[0] - overlap_pixels * 2 UpperCamelCase :Optional[int] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCamelCase :Optional[Any] = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 UpperCamelCase :int = np.pad(__magic_name__ , mode="""linear_ramp""" , pad_width=__magic_name__ , end_values=0 ) if "l" in remove_borders: UpperCamelCase :List[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCamelCase :Dict = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCamelCase :Dict = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCamelCase :str = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> str: """simple docstring""" return max(__magic_name__ , min(__magic_name__ , __magic_name__ ) ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : [int] , __magic_name__ : [int] , __magic_name__ : [int] ) -> Optional[Any]: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : [int] , __magic_name__ : int , __magic_name__ : [int] ) -> List[str]: """simple docstring""" UpperCamelCase :Union[str, Any] = list(__magic_name__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCamelCase :str = clamp_rect(__magic_name__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase :Optional[int] = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__magic_name__ , (original_slice, 0) ) return result def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : str ) -> Dict: """simple docstring""" UpperCamelCase :Dict = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCamelCase :List[str] = tile.crop(__magic_name__ ) return tile def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase :Optional[Any] = n % d return n - divisor class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : Any , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : CLIPTextModel , __lowerCamelCase : CLIPTokenizer , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : DDPMScheduler , __lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCamelCase : int = 350 , ): super().__init__( vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , max_noise_level=__lowerCamelCase , ) def _A ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Dict , **__lowerCamelCase : int ): torch.manual_seed(0 ) UpperCamelCase :int = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCamelCase :Optional[Any] = add_overlap_rect(__lowerCamelCase , __lowerCamelCase , image.size ) UpperCamelCase :Optional[Any] = image.crop(__lowerCamelCase ) UpperCamelCase :Tuple = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCamelCase :Union[str, Any] = translated_slice_x - (original_image_slice / 2) UpperCamelCase :Optional[int] = max(0 , __lowerCamelCase ) UpperCamelCase :List[Any] = squeeze_tile(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Dict = to_input.size UpperCamelCase :Dict = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCamelCase :Any = super(__lowerCamelCase , self ).__call__(image=__lowerCamelCase , **__lowerCamelCase ).images[0] UpperCamelCase :Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCamelCase :Dict = unsqueeze_tile(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCamelCase :int = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCamelCase :List[str] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__lowerCamelCase ) , mode="""L""" , ) final_image.paste( __lowerCamelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __lowerCamelCase ) @torch.no_grad() def __call__( self : List[str] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , __lowerCamelCase : int = 75 , __lowerCamelCase : float = 9.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 128 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): UpperCamelCase :str = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) UpperCamelCase :str = math.ceil(image.size[0] / tile_size ) UpperCamelCase :Any = math.ceil(image.size[1] / tile_size ) UpperCamelCase :Tuple = tcx * tcy UpperCamelCase :List[Any] = 0 for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): self._process_tile( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prompt=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , noise_level=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: """simple docstring""" UpperCamelCase :str = """stabilityai/stable-diffusion-x4-upscaler""" UpperCamelCase :Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(__magic_name__ , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCamelCase :int = pipe.to("""cuda""" ) UpperCamelCase :Optional[Any] = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(__magic_name__ : Dict ): print(f"""progress: {obj['progress']:.4f}""" ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCamelCase :Optional[int] = pipe(image=__magic_name__ , prompt="""Black font, white background, vector""" , noise_level=40 , callback=__magic_name__ ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
351
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ : Optional[Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] ) -> list[list[int]]: """simple docstring""" UpperCamelCase :List[str] = [] for i in range(len(__magic_name__ ) ): UpperCamelCase :Optional[int] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCamelCase :Tuple = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__magic_name__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__magic_name__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(__magic_name__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCamelCase :str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__magic_name__ ) return next_generation def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : int ) -> list[Image.Image]: """simple docstring""" UpperCamelCase :int = [] for _ in range(__magic_name__ ): # Create output image UpperCamelCase :int = Image.new("""RGB""" , (len(cells[0] ), len(__magic_name__ )) ) UpperCamelCase :Tuple = img.load() # Save cells to image for x in range(len(__magic_name__ ) ): for y in range(len(cells[0] ) ): UpperCamelCase :Union[str, Any] = 255 - cells[y][x] * 255 UpperCamelCase :int = (colour, colour, colour) # Save image images.append(__magic_name__ ) UpperCamelCase :Any = new_generation(__magic_name__ ) return images if __name__ == "__main__": UpperCAmelCase_ : Any = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
62
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a =16 a =32 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = 1_6 ) -> Optional[int]: __lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) __lowerCamelCase : int = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase : int = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase : Dict = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase : List[str] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase : Optional[int] = 1_6 elif accelerator.mixed_precision != "no": __lowerCamelCase : List[Any] = 8 else: __lowerCamelCase : Any = None return tokenizer.pad( lowerCamelCase__ , padding='longest' , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. __lowerCamelCase : Any = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) __lowerCamelCase : str = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a =mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCamelCase__ ) == "1": __lowerCamelCase : Union[str, Any] = 2 # Initialize accelerator __lowerCamelCase : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase : Tuple = config['lr'] __lowerCamelCase : List[str] = int(config['num_epochs'] ) __lowerCamelCase : List[Any] = int(config['seed'] ) __lowerCamelCase : int = int(config['batch_size'] ) __lowerCamelCase : List[str] = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCamelCase__ ) def inner_training_loop(lowerCamelCase__ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase : Any = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : str = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) # Instantiate scheduler __lowerCamelCase : int = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase : Optional[Any] = model(**lowerCamelCase__ ) __lowerCamelCase : Tuple = outputs.loss accelerator.backward(lowerCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : List[str] = model(**lowerCamelCase__ ) __lowerCamelCase : str = outputs.logits.argmax(dim=-1 ) __lowerCamelCase , __lowerCamelCase : Optional[int] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) __lowerCamelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCamelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __lowerCamelCase : Optional[int] = parser.parse_args() __lowerCamelCase : Optional[int] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
73
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( _snake_case : List[Any] ) -> List[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Dict = "mock-s3-bucket" __magic_name__ : Any = F'''s3://{mock_bucket}''' __magic_name__ : str = extract_path_from_uri(_snake_case ) assert dataset_path.startswith("s3://" ) is False __magic_name__ : Tuple = "./local/path" __magic_name__ : Optional[Any] = extract_path_from_uri(_snake_case ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : str = is_remote_filesystem(_snake_case ) assert is_remote is True __magic_name__ : Optional[int] = fsspec.filesystem("file" ) __magic_name__ : int = is_remote_filesystem(_snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , _snake_case ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Tuple , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' __magic_name__ : Any = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} __magic_name__ : str = input_paths[compression_fs_class.protocol] if input_path is None: __magic_name__ : Dict = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_snake_case ) __magic_name__ : str = fsspec.filesystem(compression_fs_class.protocol , fo=_snake_case ) assert isinstance(_snake_case , _snake_case ) __magic_name__ : int = os.path.basename(_snake_case ) __magic_name__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(_snake_case , "r" , encoding="utf-8" ) as f, open(_snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] ) -> str: '''simple docstring''' __magic_name__ : int = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} __magic_name__ : int = compressed_file_paths[protocol] __magic_name__ : Tuple = "dataset.jsonl" __magic_name__ : List[str] = F'''{protocol}://{member_file_path}::{compressed_file_path}''' __magic_name__ , *__magic_name__ : Optional[Any] = fsspec.get_fs_token_paths(_snake_case ) assert fs.isfile(_snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : Tuple ) -> str: '''simple docstring''' __magic_name__ : int = hf_api.dataset_info(_snake_case , token=_snake_case ) __magic_name__ : Optional[Any] = HfFileSystem(repo_info=_snake_case , token=_snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(_snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' __magic_name__ : Optional[Any] = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_snake_case , _snake_case , clobber=_snake_case ) with pytest.warns(_snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_snake_case ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
281
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowercase__ ( snake_case__ ): _UpperCAmelCase :torch.FloatTensor _UpperCAmelCase :Optional[torch.FloatTensor] = None def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple=0.999 , lowerCamelCase__ : Tuple="cosine" , ) -> Any: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowerCamelCase_ : Dict =[] for i in range(lowerCamelCase__ ): lowerCamelCase_ : str =i / num_diffusion_timesteps lowerCamelCase_ : Tuple =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ) , lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) class lowercase__ ( snake_case__, snake_case__ ): @register_to_config def __init__( self : List[str] , snake_case__ : int = 1000 , snake_case__ : str = "fixed_small_log" , snake_case__ : bool = True , snake_case__ : Optional[float] = 1.0 , snake_case__ : str = "epsilon" , snake_case__ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) lowerCamelCase_ : str =betas_for_alpha_bar(snake_case__ ) lowerCamelCase_ : str =1.0 - self.betas lowerCamelCase_ : str =torch.cumprod(self.alphas , dim=0 ) lowerCamelCase_ : Union[str, Any] =torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCamelCase_ : Optional[Any] =1.0 # setable values lowerCamelCase_ : int =None lowerCamelCase_ : str =torch.from_numpy(np.arange(0 , snake_case__ )[::-1].copy() ) lowerCamelCase_ : List[str] =variance_type def UpperCAmelCase__ ( self : Tuple , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): return sample def UpperCAmelCase__ ( self : Tuple , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ): lowerCamelCase_ : List[str] =num_inference_steps lowerCamelCase_ : Union[str, Any] =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCamelCase_ : List[Any] =(np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCamelCase_ : Dict =torch.from_numpy(snake_case__ ).to(snake_case__ ) def UpperCAmelCase__ ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None , snake_case__ : str=None ): if prev_timestep is None: lowerCamelCase_ : Dict =t - 1 lowerCamelCase_ : Tuple =self.alphas_cumprod[t] lowerCamelCase_ : str =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCamelCase_ : Optional[int] =1 - alpha_prod_t lowerCamelCase_ : List[str] =1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCamelCase_ : str =self.betas[t] else: lowerCamelCase_ : Any =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase_ : int =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCamelCase_ : str =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCamelCase_ : List[Any] =torch.log(torch.clamp(snake_case__ , min=1E-20 ) ) lowerCamelCase_ : Dict =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCamelCase_ : List[Any] =variance.log() lowerCamelCase_ : Tuple =beta.log() lowerCamelCase_ : List[str] =(predicted_variance + 1) / 2 lowerCamelCase_ : List[Any] =frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__ ( self : int , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None , snake_case__ : List[Any]=None , snake_case__ : bool = True , ): lowerCamelCase_ : Dict =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCamelCase_ : int =torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: lowerCamelCase_ : Dict =None # 1. compute alphas, betas if prev_timestep is None: lowerCamelCase_ : List[str] =t - 1 lowerCamelCase_ : int =self.alphas_cumprod[t] lowerCamelCase_ : Optional[int] =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCamelCase_ : str =1 - alpha_prod_t lowerCamelCase_ : str =1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCamelCase_ : str =self.betas[t] lowerCamelCase_ : Any =self.alphas[t] else: lowerCamelCase_ : List[Any] =1 - alpha_prod_t / alpha_prod_t_prev lowerCamelCase_ : Optional[int] =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase_ : List[str] =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase_ : Any =model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase_ : Tuple =torch.clamp( snake_case__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ : str =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCamelCase_ : int =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ : Optional[int] =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase_ : Optional[Any] =0 if t > 0: lowerCamelCase_ : Union[str, Any] =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=snake_case__ , device=model_output.device ) lowerCamelCase_ : Any =self._get_variance( snake_case__ , predicted_variance=snake_case__ , prev_timestep=snake_case__ , ) if self.variance_type == "fixed_small_log": lowerCamelCase_ : Tuple =variance elif self.variance_type == "learned_range": lowerCamelCase_ : Tuple =(0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) lowerCamelCase_ : Dict =variance * variance_noise lowerCamelCase_ : List[Any] =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCamelCase_ : Optional[Any] =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCamelCase_ : List[str] =timesteps.to(original_samples.device ) lowerCamelCase_ : List[Any] =alphas_cumprod[timesteps] ** 0.5 lowerCamelCase_ : Optional[Any] =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCamelCase_ : List[str] =sqrt_alpha_prod.unsqueeze(-1 ) lowerCamelCase_ : Any =(1 - alphas_cumprod[timesteps]) ** 0.5 lowerCamelCase_ : Dict =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCamelCase_ : Optional[int] =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCamelCase_ : List[Any] =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
367
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _snake_case ( lowerCamelCase__ : int=None ) -> Union[str, Any]: if subparsers is not None: lowerCamelCase_ : List[Any] =subparsers.add_parser("test" ) else: lowerCamelCase_ : List[str] =argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=lowerCamelCase__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase__ ) return parser def _snake_case ( lowerCamelCase__ : List[Any] ) -> Any: lowerCamelCase_ : Optional[Any] =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: lowerCamelCase_ : List[Any] =script_name else: lowerCamelCase_ : Union[str, Any] =F"""--config_file={args.config_file} {script_name}""" lowerCamelCase_ : List[str] =["accelerate-launch"] + test_args.split() lowerCamelCase_ : Tuple =execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def _snake_case ( ) -> Tuple: lowerCamelCase_ : Any =test_command_parser() lowerCamelCase_ : List[Any] =parser.parse_args() test_command(lowerCamelCase__ ) if __name__ == "__main__": main()
209
0
def _UpperCAmelCase ( snake_case ): """simple docstring""" if not isinstance(snake_case , snake_case ): _lowerCAmelCase = F'Input value of [number={number}] must be an integer' raise TypeError(snake_case ) if number < 0: return False _lowerCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
82
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = x UpperCAmelCase = y for step in range(lowercase_ ): # noqa: B007 UpperCAmelCase = a * a - b * b + x UpperCAmelCase = 2 * a * b + y UpperCAmelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _lowerCAmelCase ( lowercase_ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _lowerCAmelCase ( lowercase_ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase_ , 1 , 1 ) ) def _lowerCAmelCase ( lowercase_ = 800 , lowercase_ = 600 , lowercase_ = -0.6 , lowercase_ = 0 , lowercase_ = 3.2 , lowercase_ = 50 , lowercase_ = True , ): UpperCAmelCase = Image.new('RGB' , (image_width, image_height) ) UpperCAmelCase = img.load() # loop through the image-coordinates for image_x in range(lowercase_ ): for image_y in range(lowercase_ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase = figure_width / image_width * image_height UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase = get_distance(lowercase_ , lowercase_ , lowercase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase = get_color_coded_rgb(lowercase_ ) else: UpperCAmelCase = get_black_and_white_rgb(lowercase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure snake_case_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
78
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "imagegpt" lowercase__ = ["past_key_values"] lowercase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , lowerCAmelCase_ : Optional[int]=5_1_2 + 1 , lowerCAmelCase_ : Dict=3_2 * 3_2 , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : Optional[Any]=2_4 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int="quick_gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=1E-5 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : str=False , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" lowercase_ = vocab_size lowercase_ = n_positions lowercase_ = n_embd lowercase_ = n_layer lowercase_ = n_head lowercase_ = n_inner lowercase_ = activation_function lowercase_ = resid_pdrop lowercase_ = embd_pdrop lowercase_ = attn_pdrop lowercase_ = layer_norm_epsilon lowercase_ = initializer_range lowercase_ = scale_attn_weights lowercase_ = use_cache lowercase_ = scale_attn_by_inverse_layer_idx lowercase_ = reorder_and_upcast_attn lowercase_ = tie_word_embeddings super().__init__(tie_word_embeddings=lowerCAmelCase_ , **lowerCAmelCase_) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : Dict): """simple docstring""" return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ]) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : "FeatureExtractionMixin" , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional["TensorType"] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 3_2 , ): """simple docstring""" lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) return inputs
355
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' lowercase_ , lowercase_ = np.shape(__lowerCAmelCase ) if rows != columns: lowercase_ = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) lowercase_ = np.zeros((rows, columns) ) lowercase_ = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase_ = (table[i][j] - total) / upper[j][j] lowercase_ = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) lowercase_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
313
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class __magic_name__ ( a__ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'roberta' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> str: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase, bos_token_id=__UpperCAmelCase, eos_token_id=__UpperCAmelCase, **__UpperCAmelCase ) a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =hidden_act a__ =intermediate_size a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =initializer_range a__ =layer_norm_eps a__ =position_embedding_type a__ =use_cache a__ =classifier_dropout class __magic_name__ ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": a__ ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a__ ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
188
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
0
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = DDIMPipeline UpperCAmelCase__ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCAmelCase__ : Dict = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } UpperCAmelCase__ : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCAmelCase__ : Optional[Any] = False def _a ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) __UpperCamelCase =DDIMScheduler() __UpperCamelCase ={'unet': unet, 'scheduler': scheduler} return components def _a ( self , A_ , A_=0 ) -> Tuple: if str(A_ ).startswith('mps' ): __UpperCamelCase =torch.manual_seed(A_ ) else: __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase ={ 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _a ( self ) -> Union[str, Any]: __UpperCamelCase ='cpu' __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase =pipe(**A_ ).images __UpperCamelCase =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) __UpperCamelCase =np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) __UpperCamelCase =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A_ , 1E-3 ) def _a ( self ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _a ( self ) -> Dict: super().test_save_load_local(expected_max_difference=3E-3 ) def _a ( self ) -> Optional[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _a ( self ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> List[str]: __UpperCamelCase ='google/ddpm-cifar10-32' __UpperCamelCase =UNetaDModel.from_pretrained(A_ ) __UpperCamelCase =DDIMScheduler() __UpperCamelCase =DDIMPipeline(unet=A_ , scheduler=A_ ) ddim.to(A_ ) ddim.set_progress_bar_config(disable=A_ ) __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =ddim(generator=A_ , eta=0.0 , output_type='numpy' ).images __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase =np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Optional[int]: __UpperCamelCase ='google/ddpm-ema-bedroom-256' __UpperCamelCase =UNetaDModel.from_pretrained(A_ ) __UpperCamelCase =DDIMScheduler.from_pretrained(A_ ) __UpperCamelCase =DDIMPipeline(unet=A_ , scheduler=A_ ) ddpm.to(A_ ) ddpm.set_progress_bar_config(disable=A_ ) __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =ddpm(generator=A_ , output_type='numpy' ).images __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCamelCase =np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
356
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _UpperCAmelCase ( ): print('Making key files...' ) make_key_files('rsa' , 10_24 ) print('Key files generation successful.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): print('Generating prime p...' ) __UpperCamelCase =rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) print('Generating prime q...' ) __UpperCamelCase =rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: __UpperCamelCase =random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(SCREAMING_SNAKE_CASE__ , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) __UpperCamelCase =cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE__ , (p - 1) * (q - 1) ) __UpperCamelCase =(n, e) __UpperCamelCase =(n, d) return (public_key, private_key) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() __UpperCamelCase , __UpperCamelCase =generate_key(SCREAMING_SNAKE_CASE__ ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
117
0
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = IFImgaImgSuperResolutionPipeline _SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} _SCREAMING_SNAKE_CASE : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'latents'} def _lowerCamelCase ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" if str(_UpperCamelCase ).startswith("mps" ): _lowercase : int = torch.manual_seed(_UpperCamelCase ) else: _lowercase : List[Any] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _lowercase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCamelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCamelCase ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
250
'''simple docstring''' import os import pytest from attr import dataclass _snake_case = 'us-east-1' # defaults region @dataclass class a__ : _SCREAMING_SNAKE_CASE : str _SCREAMING_SNAKE_CASE : str = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _SCREAMING_SNAKE_CASE : Dict = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } _SCREAMING_SNAKE_CASE : List[str] = {**hyperparameters, 'max_steps': 1000} @property def _lowerCamelCase ( self ): """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowerCamelCase ( self ): """simple docstring""" return f'''{self.framework}-transfromers-test''' @property def _lowerCamelCase ( self ): """simple docstring""" return f'''./tests/sagemaker/scripts/{self.framework}''' @property def _lowerCamelCase ( self ): """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def _A ( snake_case ) -> Tuple: _lowercase : List[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
250
1
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) _UpperCamelCase : Optional[Any] = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" ,lowercase_ ) if matches: _UpperCamelCase : Tuple = float(matches[1] ) _UpperCamelCase : Dict = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _UpperCamelCase : Optional[Any] = 1_001 _UpperCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _UpperCamelCase : Union[str, Any] = "huggingface/label-files" _UpperCamelCase : Union[str, Any] = json.load(open(hf_hub_download(lowercase_ ,lowercase_ ,repo_type="dataset" ) ,"r" ) ) _UpperCamelCase : str = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} _UpperCamelCase : Optional[Any] = "background" _UpperCamelCase : Optional[int] = idalabel _UpperCamelCase : Dict = {v: k for k, v in idalabel.items()} return config def lowercase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase : str = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=False ) -> Dict: """simple docstring""" _UpperCamelCase : Dict = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model _UpperCamelCase : str = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ ,lowercase_ ,lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _UpperCamelCase : List[Any] = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} ,size={"shortest_edge": config.image_size + 32} ,) _UpperCamelCase : Optional[int] = image_processor(images=prepare_img() ,return_tensors="pt" ) _UpperCamelCase : Optional[int] = model(**lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": _UpperCamelCase : str = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": _UpperCamelCase : Optional[int] = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: _UpperCamelCase : int = None if expected_logits is not None: assert torch.allclose(logits[0, :3] ,lowercase_ ,atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print("Pushing to the hub..." ) _UpperCamelCase : Dict = "google/" + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
371
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
310
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: Dict =tempfile.mkdtemp() # fmt: off lowerCamelCase__: Optional[int] =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) lowerCamelCase__: Optional[int] ={ "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , _UpperCAmelCase) with open(self.image_processor_file , "w" , encoding="utf-8") as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : List[Any] , **UpperCAmelCase_ : List[str]) ->Tuple: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : List[Any] , **UpperCAmelCase_ : Tuple) ->str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: List[Any] =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] lowerCamelCase__: str =[Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.get_tokenizer() lowerCamelCase__: Optional[Any] =self.get_image_processor() lowerCamelCase__: Dict =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) processor.save_pretrained(self.tmpdirname) lowerCamelCase__: str =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Dict =VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) lowerCamelCase__: Optional[int] =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") lowerCamelCase__: Dict =self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0) lowerCamelCase__: Any =VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_UpperCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.get_image_processor() lowerCamelCase__: List[str] =self.get_tokenizer() lowerCamelCase__: int =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) lowerCamelCase__: Union[str, Any] =self.prepare_image_inputs() lowerCamelCase__: str =image_processor(_UpperCAmelCase , return_tensors="np") lowerCamelCase__: List[str] =processor(images=_UpperCAmelCase , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.get_image_processor() lowerCamelCase__: List[Any] =self.get_tokenizer() lowerCamelCase__: str =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) lowerCamelCase__: Optional[Any] ="lower newer" lowerCamelCase__: List[str] =processor(text=_UpperCAmelCase) lowerCamelCase__: List[str] =tokenizer(_UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.get_image_processor() lowerCamelCase__: List[str] =self.get_tokenizer() lowerCamelCase__: Optional[Any] =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) lowerCamelCase__: str ="lower newer" lowerCamelCase__: int =self.prepare_image_inputs() lowerCamelCase__: int =processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with self.assertRaises(_UpperCAmelCase): processor() def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =self.get_image_processor() lowerCamelCase__: Any =self.get_tokenizer() lowerCamelCase__: List[Any] =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) lowerCamelCase__: int =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__: Optional[int] =processor.batch_decode(_UpperCAmelCase) lowerCamelCase__: Dict =tokenizer.batch_decode(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: str =self.get_image_processor() lowerCamelCase__: Optional[int] =self.get_tokenizer() lowerCamelCase__: Dict =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) lowerCamelCase__: str ="lower newer" lowerCamelCase__: Optional[Any] =self.prepare_image_inputs() lowerCamelCase__: List[str] =processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
10
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
0
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCamelCase_ = datasets.load_iris() lowerCamelCase_ = np.array(data['''data''']) lowerCamelCase_ = np.array(data['''target''']) lowerCamelCase_ = data['''target_names'''] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = train_test_split(X, y) def snake_case ( A__ ,A__ ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def snake_case ( A__ ,A__ ,A__ ,A__ ,A__=5 ): UpperCAmelCase_ : Any = zip(A__ ,A__ ) # List of distances of all points from the point to be classified UpperCAmelCase_ : Tuple = [] for data_point in data: UpperCAmelCase_ : Tuple = euclidean_distance(data_point[0] ,A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCAmelCase_ : List[str] = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCAmelCase_ : Dict = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
253
"""simple docstring""" import re import string import numpy as np import datasets lowerCamelCase_ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' lowerCamelCase_ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' lowerCamelCase_ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Optional[Any]=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase_ : str = np.array([re.sub(lowerCAmelCase_ , "" , lowerCAmelCase_ ) for x in predictions] ) UpperCAmelCase_ : Dict = np.array([re.sub(lowerCAmelCase_ , "" , lowerCAmelCase_ ) for x in references] ) else: UpperCAmelCase_ : int = np.asarray(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.asarray(lowerCAmelCase_ ) if ignore_case: UpperCAmelCase_ : Optional[Any] = np.char.lower(lowerCAmelCase_ ) UpperCAmelCase_ : int = np.char.lower(lowerCAmelCase_ ) if ignore_punctuation: UpperCAmelCase_ : Any = string.punctuation.maketrans("" , "" , string.punctuation ) UpperCAmelCase_ : Any = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : Any = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) if ignore_numbers: UpperCAmelCase_ : Dict = string.digits.maketrans("" , "" , string.digits ) UpperCAmelCase_ : Optional[Any] = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : int = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = predictions == references return {"exact_match": np.mean(lowerCAmelCase_ ) * 100}
253
1
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Any =['image_processor', 'tokenizer'] lowercase : Optional[int] ='BridgeTowerImageProcessor' lowercase : str =('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.tokenizer( text=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel_values + pixel_mask lowerCamelCase_ =self.image_processor( lowerCAmelCase, return_tensors=lowerCAmelCase, do_normalize=lowerCAmelCase, do_center_crop=lowerCAmelCase, **lowerCAmelCase ) encoding.update(lowerCAmelCase ) return encoding def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer.model_input_names lowerCamelCase_ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
75
"""simple docstring""" import argparse import json import subprocess def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = ( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) lowercase = subprocess.run(lowerCAmelCase__ , shell=lowerCAmelCase__ , stdout=subprocess.PIPE ) lowercase = output.stdout.decode("""utf-8""" ) lowercase = json.loads(lowerCAmelCase__ ) lowercase = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowerCAmelCase__ ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) > 0: lowercase = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] ) -> Tuple: '''simple docstring''' return values.split(""",""" ) __lowerCAmelCase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) __lowerCAmelCase : str =parser.parse_args() get_runner_status(args.target_runners, args.token)
197
0
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
361
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Any , lowerCAmelCase_ : float ) -> float: '''simple docstring''' return 0.0 def __lowerCamelCase ( __snake_case : np.ndarray, __snake_case : int ) -> tuple[int | float, int | float]: """simple docstring""" A__ : Tuple =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A__ : str =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCamelCase ( __snake_case : FilterType, __snake_case : int ) -> None: """simple docstring""" A__ : Any =512 A__ : int =[1] + [0] * (size - 1) A__ : int =[filter_type.process(__snake_case ) for item in inputs] A__ : Union[str, Any] =[0] * (samplerate - size) # zero-padding outputs += filler A__ : List[Any] =np.abs(np.fft.fft(__snake_case ) ) A__ : int =20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds A__ : Union[str, Any] =get_bounds(__snake_case, __snake_case ) plt.ylim(max([-80, bounds[0]] ), min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__snake_case ) plt.show() def __lowerCamelCase ( __snake_case : FilterType, __snake_case : int ) -> None: """simple docstring""" A__ : List[Any] =512 A__ : List[Any] =[1] + [0] * (size - 1) A__ : Dict =[filter_type.process(__snake_case ) for item in inputs] A__ : Union[str, Any] =[0] * (samplerate - size) # zero-padding outputs += filler A__ : str =np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi, 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__snake_case, -2 * pi ) ) plt.show()
136
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int ) -> int: """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('Input value must be a \'int\' type' ) return bin(_UpperCamelCase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
47
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCAmelCase ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_UpperCamelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_UpperCamelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_UpperCamelCase ) return parser.parse_args() def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =parse_args() # Import training_script as a module. _SCREAMING_SNAKE_CASE =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _SCREAMING_SNAKE_CASE =script_fpath.stem _SCREAMING_SNAKE_CASE =importlib.import_module(_UpperCamelCase ) # Patch sys.argv _SCREAMING_SNAKE_CASE =[args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
47
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowercase__ = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def __a ( ) ->str: a__: Dict = Github(os.environ['GITHUB_TOKEN'] ) a__: Dict = g.get_repo('huggingface/diffusers' ) a__: Tuple = repo.get_issues(state='open' ) for issue in open_issues: a__: Union[str, Any] = sorted(issue.get_comments() , key=lambda _SCREAMING_SNAKE_CASE : i.created_at , reverse=_SCREAMING_SNAKE_CASE ) a__: Any = comments[0] if len(_SCREAMING_SNAKE_CASE ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
203
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowercase__ = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowercase__ = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } lowercase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } lowercase__ = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } lowercase__ = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } lowercase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } lowercase__ = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } lowercase__ = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __snake_case ( __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __snake_case ( __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase__ = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) lowercase__ = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) lowercase__ = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__lowerCAmelCase ) class __snake_case : def __call__( self , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , return_tensors=lowercase , return_attention_mask=lowercase , **lowercase , ) elif titles is None or texts is None: a__: str = titles if texts is None else texts return super().__call__( lowercase , lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , return_tensors=lowercase , return_attention_mask=lowercase , **lowercase , ) a__: Tuple = titles if not isinstance(lowercase , lowercase) else [titles] a__: Optional[int] = texts if not isinstance(lowercase , lowercase) else [texts] a__: Dict = len(lowercase) a__: Dict = questions if not isinstance(lowercase , lowercase) else [questions] * n_passages if len(lowercase) != len(lowercase): raise ValueError( f'There should be as many titles than texts but got {len(lowercase)} titles and {len(lowercase)} texts.') a__: List[str] = super().__call__(lowercase , lowercase , padding=lowercase , truncation=lowercase)['input_ids'] a__: List[Any] = super().__call__(lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase)['input_ids'] a__: Optional[Any] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase , lowercase) ] } if return_attention_mask is not False: a__: Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) a__: int = attention_mask return self.pad(lowercase , padding=lowercase , max_length=lowercase , return_tensors=lowercase) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = 16 , lowercase = 64 , lowercase = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' a__: Dict = reader_input['input_ids'] a__ , a__ , a__: Tuple = reader_output[:3] a__: Tuple = len(lowercase) a__: Optional[Any] = sorted(range(lowercase) , reverse=lowercase , key=relevance_logits.__getitem__) a__: List[DPRReaderOutput] = [] for doc_id in sorted_docs: a__: Tuple = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence a__: Dict = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: a__: Any = sequence_ids.index(self.pad_token_id) else: a__: Optional[Any] = len(lowercase) a__: Optional[int] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase , top_spans=lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase , start_index=lowercase , end_index=lowercase , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(lowercase) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , ) -> List[DPRSpanPrediction]: '''simple docstring''' a__: Optional[Any] = [] for start_index, start_score in enumerate(lowercase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) a__: str = sorted(lowercase , key=lambda lowercase: x[1] , reverse=lowercase) a__: Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'Wrong span indices: [{start_index}:{end_index}]') a__: str = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'Span is too long: {length} > {max_answer_length}') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowercase) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = READER_PRETRAINED_VOCAB_FILES_MAP a__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = READER_PRETRAINED_INIT_CONFIGURATION a__ = ["""input_ids""", """attention_mask"""]
203
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = UnCLIPImageVariationPipeline _a = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} _a = IMAGE_VARIATION_BATCH_PARAMS _a = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] _a = False @property def __lowercase ( self : Optional[Any] ): return 32 @property def __lowercase ( self : Optional[Any] ): return 32 @property def __lowercase ( self : Any ): return self.time_input_dim @property def __lowercase ( self : Dict ): return self.time_input_dim * 4 @property def __lowercase ( self : Optional[Any] ): return 100 @property def __lowercase ( self : Dict ): lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __lowercase ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def __lowercase ( self : int ): torch.manual_seed(0 ) lowerCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def __lowercase ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } lowerCAmelCase = UnCLIPTextProjModel(**SCREAMING_SNAKE_CASE_ ) return model @property def __lowercase ( self : List[Any] ): torch.manual_seed(0 ) lowerCAmelCase = { """sample_size""": 32, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } lowerCAmelCase = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ ) return model @property def __lowercase ( self : Tuple ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __lowercase ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __lowercase ( self : Dict ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) lowerCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __lowercase ( self : int ): lowerCAmelCase = self.dummy_decoder lowerCAmelCase = self.dummy_text_proj lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_super_res_first lowerCAmelCase = self.dummy_super_res_last lowerCAmelCase = UnCLIPScheduler( variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) lowerCAmelCase = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) lowerCAmelCase = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __lowercase ( self : int , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Any=True ): lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) if pil_image: lowerCAmelCase = input_image * 0.5 + 0.5 lowerCAmelCase = input_image.clamp(0 , 1 ) lowerCAmelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase = DiffusionPipeline.numpy_to_pil(SCREAMING_SNAKE_CASE_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __lowercase ( self : Optional[int] ): lowerCAmelCase = """cpu""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = pipe(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = output.images lowerCAmelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = pipe( **SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self : str ): lowerCAmelCase = """cpu""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = pipe(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = output.images lowerCAmelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = pipe( **SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self : str ): lowerCAmelCase = """cpu""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] lowerCAmelCase = pipe(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = output.images lowerCAmelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] lowerCAmelCase = pipe( **SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self : Any ): lowerCAmelCase = torch.device("""cpu""" ) class SCREAMING_SNAKE_CASE__ : _a = 1 lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) lowerCAmelCase = pipe.decoder.dtype lowerCAmelCase = 1 lowerCAmelCase = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase = pipe.prepare_latents( SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , scheduler=DummyScheduler() ) lowerCAmelCase = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase = pipe.prepare_latents( SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , scheduler=DummyScheduler() ) lowerCAmelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = pipe( **SCREAMING_SNAKE_CASE_ , decoder_latents=SCREAMING_SNAKE_CASE_ , super_res_latents=SCREAMING_SNAKE_CASE_ ).images lowerCAmelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_ ) # Don't pass image, instead pass embedding lowerCAmelCase = pipeline_inputs.pop("""image""" ) lowerCAmelCase = pipe.image_encoder(SCREAMING_SNAKE_CASE_ ).image_embeds lowerCAmelCase = pipe( **SCREAMING_SNAKE_CASE_ , decoder_latents=SCREAMING_SNAKE_CASE_ , super_res_latents=SCREAMING_SNAKE_CASE_ , image_embeddings=SCREAMING_SNAKE_CASE_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def __lowercase ( self : Tuple ): lowerCAmelCase = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=SCREAMING_SNAKE_CASE_ , expected_max_diff=SCREAMING_SNAKE_CASE_ ) @skip_mps def __lowercase ( self : List[str] ): lowerCAmelCase = torch_device == """cpu""" lowerCAmelCase = True lowerCAmelCase = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , additional_params_copy_to_batched_inputs=SCREAMING_SNAKE_CASE_ , ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase = [2, 3] self._test_inference_batch_consistent( batch_sizes=SCREAMING_SNAKE_CASE_ , additional_params_copy_to_batched_inputs=SCREAMING_SNAKE_CASE_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=SCREAMING_SNAKE_CASE_ ) @skip_mps def __lowercase ( self : Optional[int] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def __lowercase ( self : str ): return super().test_save_load_local() @skip_mps def __lowercase ( self : str ): return super().test_save_load_optional_components() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Optional[int] ): lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" ) lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" ) lowerCAmelCase = UnCLIPImageVariationPipeline.from_pretrained( """kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa ) lowerCAmelCase = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase = pipeline( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) lowerCAmelCase = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 15 )
155
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
30
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" a = DPTConfig() if "large" in checkpoint_url: a = 1_0_2_4 a = 4_0_9_6 a = 2_4 a = 1_6 a = [5, 1_1, 1_7, 2_3] a = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] a = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: a = True a = 1_5_0 a = '''huggingface/label-files''' a = '''ade20k-id2label.json''' a = json.load(open(cached_download(hf_hub_url(lowercase_, lowercase_, repo_type='''dataset''' ) ), '''r''' ) ) a = {int(lowercase_ ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} a = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(lowercase_, lowercase_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): a = name.replace('''pretrained.model''', '''dpt.encoder''' ) if "pretrained.model" in name: a = name.replace('''pretrained.model''', '''dpt.embeddings''' ) if "patch_embed" in name: a = name.replace('''patch_embed''', '''patch_embeddings''' ) if "pos_embed" in name: a = name.replace('''pos_embed''', '''position_embeddings''' ) if "attn.proj" in name: a = name.replace('''attn.proj''', '''attention.output.dense''' ) if "proj" in name and "project" not in name: a = name.replace('''proj''', '''projection''' ) if "blocks" in name: a = name.replace('''blocks''', '''layer''' ) if "mlp.fc1" in name: a = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: a = name.replace('''mlp.fc2''', '''output.dense''' ) if "norm1" in name: a = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: a = name.replace('''norm2''', '''layernorm_after''' ) if "scratch.output_conv" in name: a = name.replace('''scratch.output_conv''', '''head''' ) if "scratch" in name: a = name.replace('''scratch''', '''neck''' ) if "layer1_rn" in name: a = name.replace('''layer1_rn''', '''convs.0''' ) if "layer2_rn" in name: a = name.replace('''layer2_rn''', '''convs.1''' ) if "layer3_rn" in name: a = name.replace('''layer3_rn''', '''convs.2''' ) if "layer4_rn" in name: a = name.replace('''layer4_rn''', '''convs.3''' ) if "refinenet" in name: a = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 a = name.replace(f"""refinenet{layer_idx}""", f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: a = name.replace('''out_conv''', '''projection''' ) if "resConfUnit1" in name: a = name.replace('''resConfUnit1''', '''residual_layer1''' ) if "resConfUnit2" in name: a = name.replace('''resConfUnit2''', '''residual_layer2''' ) if "conv1" in name: a = name.replace('''conv1''', '''convolution1''' ) if "conv2" in name: a = name.replace('''conv2''', '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: a = name.replace('''pretrained.act_postprocess1.0.project.0''', '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: a = name.replace('''pretrained.act_postprocess2.0.project.0''', '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: a = name.replace('''pretrained.act_postprocess3.0.project.0''', '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: a = name.replace('''pretrained.act_postprocess4.0.project.0''', '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: a = name.replace('''pretrained.act_postprocess1.3''', '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: a = name.replace('''pretrained.act_postprocess1.4''', '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: a = name.replace('''pretrained.act_postprocess2.3''', '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: a = name.replace('''pretrained.act_postprocess2.4''', '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: a = name.replace('''pretrained.act_postprocess3.3''', '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: a = name.replace('''pretrained.act_postprocess4.3''', '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: a = name.replace('''pretrained.act_postprocess4.4''', '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: a = name.replace('''pretrained''', '''dpt''' ) if "bn" in name: a = name.replace('''bn''', '''batch_norm''' ) if "head" in name: a = name.replace('''head''', '''head.head''' ) if "encoder.norm" in name: a = name.replace('''encoder.norm''', '''layernorm''' ) if "auxlayer" in name: a = name.replace('''auxlayer''', '''auxiliary_head.head''' ) return name def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) a = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[: config.hidden_size, :] a = in_proj_bias[: config.hidden_size] a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a = in_proj_weight[ -config.hidden_size :, : ] a = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(lowercase_, stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple: """simple docstring""" a , a = get_dpt_config(lowercase_ ) # load original state_dict from URL a = torch.hub.load_state_dict_from_url(lowercase_, map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(lowercase_ ) # rename keys for key in state_dict.copy().keys(): a = state_dict.pop(lowercase_ ) a = val # read in qkv matrices read_in_q_k_v(lowercase_, lowercase_ ) # load HuggingFace model a = DPTForSemanticSegmentation(lowercase_ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() # Check outputs on an image a = 4_8_0 if '''ade''' in checkpoint_url else 3_8_4 a = DPTImageProcessor(size=lowercase_ ) a = prepare_img() a = image_processor(lowercase_, return_tensors='''pt''' ) # forward pass a = model(**lowercase_ ).logits if '''ade''' in checkpoint_url else model(**lowercase_ ).predicted_depth # Assert logits a = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: a = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(lowercase_ ) assert ( torch.allclose(outputs[0, 0, :3, :3], lowercase_, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], lowercase_ ) ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(lowercase_, lowercase_ ), organization='''nielsr''', commit_message='''Add model''', use_temp_dir=lowercase_, ) image_processor.push_to_hub( repo_path_or_name=Path(lowercase_, lowercase_ ), organization='''nielsr''', commit_message='''Add image processor''', use_temp_dir=lowercase_, ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you\'re pushing to the hub.""", ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
362
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase__ : Optional[Any] = """bert-base-cased""" UpperCamelCase__ : int = """fp16""" UpperCamelCase__ : str = """bf16""" UpperCamelCase__ : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().setUp() a = dict( ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = F"""{i + 1}""" a = strategy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = prefetch_policy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = state_dict_type with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = AutoModel.from_pretrained(__lowerCamelCase ) for policy in FSDP_AUTO_WRAP_POLICY: a = self.dist_env.copy() a = policy if policy == "TRANSFORMER_BASED_WRAP": a = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": a = '''2000''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) a = self.dist_env.copy() a = '''TRANSFORMER_BASED_WRAP''' a = '''T5Layer''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCamelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) a = self.dist_env.copy() a = '''SIZE_BASED_WRAP''' a = '''0''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: a = self.dist_env.copy() a = mp_dtype with mockenv_context(**__lowerCamelCase ): a = Accelerator() if mp_dtype == "fp16": a = torch.floataa elif mp_dtype == "bf16": a = torch.bfloataa a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: a = self.dist_env.copy() a = str(__lowerCamelCase ).lower() with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' super().setUp() a = 0.82 a = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] a = { '''multi_gpu_fp16''': 32_00, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00, '''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } a = 1_60 a = 1_60 a = inspect.getfile(accelerate.test_utils ) a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' ) a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: a = cmd.copy() for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__lowerCamelCase ): a = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue a = len(__lowerCamelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: a = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) a = cmd_config[:-1] a = os.path.join(self.tmpdir ,'''epoch_0''' ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): a = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
330
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _UpperCamelCase = logging.get_logger(__name__) @dataclass class __lowercase (_lowerCAmelCase ): _UpperCamelCase = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **A_ ) ->Dict: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCAmelCase : List[Any] = deprecated_arg[3:] __lowerCAmelCase : List[str] = not kwargs.pop(_lowercase ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) __lowerCAmelCase : int = kwargs.pop('''tpu_name''' , self.tpu_name ) __lowerCAmelCase : Optional[Any] = kwargs.pop('''device_idx''' , self.device_idx ) __lowerCAmelCase : Tuple = kwargs.pop('''eager_mode''' , self.eager_mode ) __lowerCAmelCase : List[Any] = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**_lowercase ) _UpperCamelCase = field( default=_lowerCAmelCase , metadata={"""help""": """Name of TPU"""} , ) _UpperCamelCase = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) _UpperCamelCase = field(default=_lowerCAmelCase , metadata={"""help""": """Benchmark models in eager model."""} ) _UpperCamelCase = field( default=_lowerCAmelCase , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' requires_backends(self , ['''tf'''] ) __lowerCAmelCase : Any = None if self.tpu: try: if self.tpu_name: __lowerCAmelCase : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __lowerCAmelCase : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __lowerCAmelCase : Tuple = None return tpu @cached_property def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __lowerCAmelCase : Optional[int] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) __lowerCAmelCase : List[str] = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU __lowerCAmelCase : Tuple = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def UpperCamelCase__ ( self ) ->str: '''simple docstring''' requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' return self.n_gpu > 0
275
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : a__ : int a__ : Node | None = None a__ : Node | None = None def lowercase__ ( ): __UpperCAmelCase = Node(1 ) __UpperCAmelCase = Node(2 ) __UpperCAmelCase = Node(3 ) __UpperCAmelCase = Node(4 ) __UpperCAmelCase = Node(5 ) return tree def lowercase__ ( snake_case_ :Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase__ ( snake_case_ :Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase__ ( snake_case_ :Node | None ): __UpperCAmelCase = [] if root is None: return output __UpperCAmelCase = deque([root] ) while process_queue: __UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None ): if root is None: return [] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = height(snake_case_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 0 return output def lowercase__ ( ): # Main function for testing. __UpperCAmelCase = make_tree() print(F'''In-order Traversal: {inorder(snake_case_ )}''' ) print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' ) print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' ) print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
0
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __A : Tuple = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ (cls : int): A = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE) @classmethod def SCREAMING_SNAKE_CASE__ (cls : Dict): try: delete_repo(token=cls._token , repo_id="test-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config") except HTTPError: pass def SCREAMING_SNAKE_CASE__ (self : Dict): A = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) config.push_to_hub("test-config" , use_auth_token=self._token) A = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="test-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE , repo_id="test-config" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) A = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def SCREAMING_SNAKE_CASE__ (self : int): A = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token) A = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id="valid_org/test-config-org" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) A = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): CustomConfig.register_for_auto_class() A = CustomConfig(attribute=4_2) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"}) A = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=__SCREAMING_SNAKE_CASE) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig") self.assertEqual(new_config.attribute , 4_2) class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A = c.n_embd + 1 # int A = c.resid_pdrop + 1.0 # float A = not c.scale_attn_weights # bool A = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(__SCREAMING_SNAKE_CASE , c.n_embd , "mismatch for key: n_embd") self.assertEqual(__SCREAMING_SNAKE_CASE , c.resid_pdrop , "mismatch for key: resid_pdrop") self.assertEqual(__SCREAMING_SNAKE_CASE , c.scale_attn_weights , "mismatch for key: scale_attn_weights") self.assertEqual(__SCREAMING_SNAKE_CASE , c.summary_type , "mismatch for key: summary_type") def SCREAMING_SNAKE_CASE__ (self : Dict): A = PretrainedConfig() A = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __SCREAMING_SNAKE_CASE , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"]) A = [key for key, value in config_common_kwargs.items() if value == getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] if len(__SCREAMING_SNAKE_CASE) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {", ".join(__SCREAMING_SNAKE_CASE)}.""") def SCREAMING_SNAKE_CASE__ (self : Dict): with self.assertRaises(__SCREAMING_SNAKE_CASE): # config is in subfolder, the following should not work without specifying the subfolder A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder") A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert") self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : int): # A mock response for an HTTP head request to emulate server down A = mock.Mock() A = 5_0_0 A = {} A = HTTPError A = {} # Download this model to make sure it's in the cache. A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__SCREAMING_SNAKE_CASE) as mock_head: A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # This test is for deprecated behavior and can be removed in v5 A = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json") def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = AutoConfig.from_pretrained("bert-base-cased") A = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__SCREAMING_SNAKE_CASE) A = 2 json.dump(configuration.to_dict() , open(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json") , "w")) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A = ["config.42.0.0.json"] A = 7_6_8 configuration.save_pretrained(__SCREAMING_SNAKE_CASE) shutil.move(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json") , os.path.join(__SCREAMING_SNAKE_CASE , "config.42.0.0.json")) A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 7_6_8) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. A = "hf-internal-testing/test-two-configs" import transformers as new_transformers A = "v4.0.0" A , A = new_transformers.models.auto.AutoConfig.from_pretrained( __SCREAMING_SNAKE_CASE , return_unused_kwargs=__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__SCREAMING_SNAKE_CASE , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A = "v3.0.0" A = old_transformers.models.auto.AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(old_configuration.hidden_size , 7_6_8)
57
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A : int = logging.get_logger(__name__) __A : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __A : str = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A = "lm_head" A = getattr(lowercase__ , lowercase__ ) if weight_type is not None: A = getattr(lowercase__ , lowercase__ ).shape else: A = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = [] A = fairseq_model.state_dict() A = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == "group" , ) A = True else: for key, mapped_key in MAPPING.items(): A = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A = True if "*" in mapped_key: A = name.split(lowercase__ )[0].split("." )[-2] A = mapped_key.replace("*" , lowercase__ ) if "weight_g" in name: A = "weight_g" elif "weight_v" in name: A = "weight_v" elif "bias" in name: A = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj A = "weight" else: A = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = full_name.split("conv_layers." )[-1] A = name.split("." ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=True ): """simple docstring""" if config_path is not None: A = UniSpeechConfig.from_pretrained(lowercase__ ) else: A = UniSpeechConfig() if is_finetuned: if dict_path: A = Dictionary.load_from_json(lowercase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A = target_dict.pad_index A = target_dict.bos_index A = target_dict.eos_index A = len(target_dict.symbols ) A = os.path.join(lowercase__ , "vocab.json" ) if not os.path.isdir(lowercase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase__ ) ) return os.makedirs(lowercase__ , exist_ok=lowercase__ ) A = target_dict.indices # fairseq has the <pad> and <s> switched A = 42 A = 43 with open(lowercase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowercase__ , lowercase__ ) A = WavaVecaPhonemeCTCTokenizer( lowercase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowercase__ , ) A = True if config.feat_extract_norm == "layer" else False A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) A = WavaVecaProcessor(feature_extractor=lowercase__ , tokenizer=lowercase__ ) processor.save_pretrained(lowercase__ ) A = UniSpeechForCTC(lowercase__ ) else: A = UniSpeechForPreTraining(lowercase__ ) if is_finetuned: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ , lowercase__ ) hf_unispeech.save_pretrained(lowercase__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __A : int = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
57
1
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class __A ( nn.Module ): _UpperCamelCase : int _UpperCamelCase : jnp.dtype = jnp.floataa def __A ( self ): _lowerCAmelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , a__ ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = hidden_states.shape _lowerCAmelCase : List[Any] = jax.image.resize( a__ , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) _lowerCAmelCase : str = self.conv(a__ ) return hidden_states class __A ( nn.Module ): _UpperCamelCase : int _UpperCamelCase : jnp.dtype = jnp.floataa def __A ( self ): _lowerCAmelCase : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , a__ ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _lowerCAmelCase : Optional[int] = self.conv(a__ ) return hidden_states class __A ( nn.Module ): _UpperCamelCase : int _UpperCamelCase : int = None _UpperCamelCase : float = 0.0 _UpperCamelCase : bool = None _UpperCamelCase : jnp.dtype = jnp.floataa def __A ( self ): _lowerCAmelCase : Tuple = self.in_channels if self.out_channels is None else self.out_channels _lowerCAmelCase : List[str] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowerCAmelCase : Tuple = nn.Conv( a__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowerCAmelCase : Optional[Any] = nn.Dense(a__ , dtype=self.dtype ) _lowerCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowerCAmelCase : Any = nn.Dropout(self.dropout_prob ) _lowerCAmelCase : Optional[Any] = nn.Conv( a__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowerCAmelCase : Any = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _lowerCAmelCase : str = None if use_nin_shortcut: _lowerCAmelCase : Dict = nn.Conv( a__ , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , a__ , a__ , a__=True ): _lowerCAmelCase : Union[str, Any] = hidden_states _lowerCAmelCase : Union[str, Any] = self.norma(a__ ) _lowerCAmelCase : Union[str, Any] = nn.swish(a__ ) _lowerCAmelCase : Dict = self.conva(a__ ) _lowerCAmelCase : Any = self.time_emb_proj(nn.swish(a__ ) ) _lowerCAmelCase : int = jnp.expand_dims(jnp.expand_dims(a__ , 1 ) , 1 ) _lowerCAmelCase : Optional[Any] = hidden_states + temb _lowerCAmelCase : Optional[Any] = self.norma(a__ ) _lowerCAmelCase : int = nn.swish(a__ ) _lowerCAmelCase : Optional[int] = self.dropout(a__ , a__ ) _lowerCAmelCase : List[Any] = self.conva(a__ ) if self.conv_shortcut is not None: _lowerCAmelCase : Tuple = self.conv_shortcut(a__ ) return hidden_states + residual
44
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping _lowerCAmelCase :Tuple = tuple[int, int] class _UpperCAmelCase : '''simple docstring''' def __init__( self , A , A ) -> None: _UpperCAmelCase : set[int] = vertices _UpperCAmelCase : dict[EdgeT, int] = { (min(A ), max(A )): weight for edge, weight in edges.items() } def __lowerCAmelCase ( self , A , A ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) _UpperCAmelCase : List[Any] = weight def __lowerCAmelCase ( self ) -> Graph: _UpperCAmelCase : Graph = Graph({min(self.vertices )} , {} ) _UpperCAmelCase : EdgeT _UpperCAmelCase : int _UpperCAmelCase : EdgeT _UpperCAmelCase : int while len(subgraph.vertices ) < len(self.vertices ): _UpperCAmelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _UpperCAmelCase : Tuple = edge _UpperCAmelCase : Optional[int] = weight subgraph.add_edge(A , A ) return subgraph def lowerCamelCase_ (UpperCamelCase__ : str = "p107_network.txt" ): _UpperCAmelCase : str = os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) _UpperCAmelCase : str = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : dict[EdgeT, int] = {} _UpperCAmelCase : list[str] _UpperCAmelCase : int _UpperCAmelCase : int with open(UpperCamelCase__ ) as f: _UpperCAmelCase : str = f.read().strip().split('''\n''' ) _UpperCAmelCase : List[Any] = [line.split(''',''' ) for line in data] for edgea in range(1 , len(UpperCamelCase__ ) ): for edgea in range(UpperCamelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": _UpperCAmelCase : Optional[Any] = int(adjaceny_matrix[edgea][edgea] ) _UpperCAmelCase : Graph = Graph(set(range(len(UpperCamelCase__ ) ) ) , UpperCamelCase__ ) _UpperCAmelCase : Graph = graph.prims_algorithm() _UpperCAmelCase : int = sum(graph.edges.values() ) _UpperCAmelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"{solution() = }")
263
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : List[Any] = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
208
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = "Hello world! cécé herlolip" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str , lowercase : bool ): '''simple docstring''' lowerCamelCase_ = FairseqRobertaModel.from_pretrained(lowercase ) roberta.eval() # disable dropout lowerCamelCase_ = roberta.model.encoder.sentence_encoder lowerCamelCase_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , lowercase ) lowerCamelCase_ = XLMRobertaXLForSequenceClassification(lowercase ) if classification_head else XLMRobertaXLForMaskedLM(lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ = roberta_sent_encoder.embed_tokens.weight lowerCamelCase_ = roberta_sent_encoder.embed_positions.weight lowerCamelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCamelCase_ = roberta_sent_encoder.layer_norm.weight lowerCamelCase_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ = model.roberta.encoder.layer[i] lowerCamelCase_ = roberta_sent_encoder.layers[i] lowerCamelCase_ = layer.attention lowerCamelCase_ = roberta_layer.self_attn_layer_norm.weight lowerCamelCase_ = roberta_layer.self_attn_layer_norm.bias # self attention lowerCamelCase_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCamelCase_ = roberta_layer.self_attn.q_proj.weight lowerCamelCase_ = roberta_layer.self_attn.q_proj.bias lowerCamelCase_ = roberta_layer.self_attn.k_proj.weight lowerCamelCase_ = roberta_layer.self_attn.k_proj.bias lowerCamelCase_ = roberta_layer.self_attn.v_proj.weight lowerCamelCase_ = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCamelCase_ = roberta_layer.self_attn.out_proj.weight lowerCamelCase_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCamelCase_ = roberta_layer.final_layer_norm.weight lowerCamelCase_ = roberta_layer.final_layer_norm.bias # intermediate lowerCamelCase_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase_ = roberta_layer.fca.weight lowerCamelCase_ = roberta_layer.fca.bias # output lowerCamelCase_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase_ = roberta_layer.fca.weight lowerCamelCase_ = roberta_layer.fca.bias # end of layer if classification_head: lowerCamelCase_ = roberta.model.classification_heads['mnli'].dense.weight lowerCamelCase_ = roberta.model.classification_heads['mnli'].dense.bias lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.weight lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowerCamelCase_ = roberta.model.encoder.lm_head.dense.weight lowerCamelCase_ = roberta.model.encoder.lm_head.dense.bias lowerCamelCase_ = roberta.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ = roberta.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ = roberta.model.encoder.lm_head.weight lowerCamelCase_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ = roberta.encode(lowercase ).unsqueeze(0 ) # batch of size 1 lowerCamelCase_ = model(lowercase )[0] if classification_head: lowerCamelCase_ = roberta.model.classification_heads['mnli'](roberta.extract_features(lowercase ) ) else: lowerCamelCase_ = roberta.model(lowercase )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ = torch.allclose(lowercase , lowercase , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(lowercase ).mkdir(parents=lowercase , exist_ok=lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) lowerCamelCase : List[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
208
1
import argparse import json from tqdm import tqdm def UpperCamelCase ( ): snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=__lowerCamelCase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=__lowerCamelCase , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=__lowerCamelCase , help="where to store parsed gold_data_path file" , ) snake_case : Tuple = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: snake_case : Tuple = json.load(__lowerCamelCase ) for dpr_record in tqdm(__lowerCamelCase ): snake_case : Dict = dpr_record["question"] snake_case : Dict = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(__lowerCamelCase ) + "\n" ) if __name__ == "__main__": main()
59
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = """pytorch_model.bin""" @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} ,) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "A csv or a json file containing the validation data."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "The name of the task to train on."} ,) A__ : Optional[List[str]] = dataclasses.field( default=A_ ,metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) A__ : Optional[str] = dataclasses.field( default="accuracy" ,metadata={"help": "The evaluation metric used for the task."} ) A__ : Optional[str] = dataclasses.field( default="no" ,metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } ,) A__ : Optional[int] = dataclasses.field( default=10 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} ,) A__ : Optional[int] = dataclasses.field( default=1_00 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[int] = dataclasses.field( default=A_ ,metadata={"help": "Random seed for initialization."} ,) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): snake_case : Tuple = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case : Optional[int] = dataset.filter(lambda __lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case : int = int(eval_result * len(__lowerCamelCase ) ) print(__lowerCamelCase ) snake_case : List[str] = dataset.sort("probability" , reverse=__lowerCamelCase ) snake_case : Tuple = dataset.select(range(__lowerCamelCase ) ) snake_case : List[Any] = dataset.remove_columns(["label", "probability"] ) snake_case : Any = dataset.rename_column("prediction" , "label" ) snake_case : str = dataset.map(lambda __lowerCamelCase : {"label": idalabel[example["label"]]} ) snake_case : List[str] = dataset.shuffle(seed=args.seed ) snake_case : int = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCamelCase , index=__lowerCamelCase ) else: dataset.to_json(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , **__lowerCamelCase : List[Any] ): snake_case : int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case : Dict = STModelArguments(model_name_or_path=__lowerCamelCase ) snake_case : Tuple = STDataArguments(train_file=__lowerCamelCase , infer_file=__lowerCamelCase ) snake_case : str = STTrainingArguments(output_dir=__lowerCamelCase ) snake_case : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCamelCase ).items(): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for key, value in kwargs.items(): if hasattr(__lowerCamelCase , __lowerCamelCase ): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Sanity checks snake_case : List[str] = {} snake_case : Optional[int] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case : str = args.train_file snake_case : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case : Tuple = args.eval_file for key in data_files: snake_case : List[Any] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: snake_case : Union[str, Any] = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case : List[Any] = f"""{args.output_dir}/self-train_iter-{{}}""".format snake_case : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) accelerator.wait_for_everyone() snake_case : Dict = None snake_case : Union[str, Any] = None snake_case : Tuple = 0 snake_case : List[Any] = False # Show the progress bar snake_case : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case : str = data_dir_format(__lowerCamelCase ) assert os.path.exists(__lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case : Dict = os.path.join(__lowerCamelCase , "stage-1" ) snake_case : Optional[Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCamelCase , __lowerCamelCase ): arguments_dict.update({key: value} ) snake_case : int = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case : str = os.path.join(__lowerCamelCase , "best-checkpoint" ) snake_case : Dict = os.path.join(__lowerCamelCase , "stage-2" ) # Update arguments_dict snake_case : List[str] = model_path snake_case : Optional[Any] = data_files["train"] snake_case : Optional[Any] = current_output_dir snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __lowerCamelCase ) snake_case : int = iteration snake_case : Tuple = data_dir_format(iteration + 1 ) snake_case : Tuple = AutoConfig.from_pretrained(os.path.join(__lowerCamelCase , "best-checkpoint" ) ) snake_case : Optional[int] = config.idalabel snake_case : List[Any] = os.path.join(__lowerCamelCase , "eval_results_best-checkpoint.json" ) snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "test_results_best-checkpoint.json" ) assert os.path.exists(__lowerCamelCase ) with open(__lowerCamelCase , "r" ) as f: snake_case : Dict = float(json.load(__lowerCamelCase )[args.eval_metric] ) snake_case : Optional[int] = os.path.join(__lowerCamelCase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__lowerCamelCase ) # Loading the dataset from local csv or json files. snake_case : Optional[Any] = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case : Dict = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__lowerCamelCase ): shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.wait_for_everyone() snake_case : str = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case : List[Any] = eval_result if best_iteration is None: snake_case : List[Any] = new_iteration snake_case : int = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case : int = new_iteration snake_case : Union[str, Any] = new_eval_result snake_case : str = 0 else: if new_eval_result == best_eval_result: snake_case : Any = new_iteration snake_case : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case : Tuple = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __lowerCamelCase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , )
59
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : List[Any] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( enum.Enum ): a__ : str = 0 a__ : List[Any] = 1 a__ : str = 2 @add_end_docstrings(_lowerCAmelCase ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : Optional[Any] , *_lowercase : Any , **_lowercase : Optional[int] ): super().__init__(*_lowercase , **_lowercase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __UpperCAmelCase = None if self.model.config.prefix is not None: __UpperCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __UpperCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._sanitize_parameters(prefix=_lowercase , **self._forward_params ) __UpperCAmelCase = {**self._preprocess_params, **preprocess_params} __UpperCAmelCase = {**self._forward_params, **forward_params} def a ( self : Any , _lowercase : Optional[Any]=None , _lowercase : List[str]=None , _lowercase : int=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : List[Any]=None , **_lowercase : str , ): __UpperCAmelCase = {} if prefix is not None: __UpperCAmelCase = prefix if prefix: __UpperCAmelCase = self.tokenizer( _lowercase , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) __UpperCAmelCase = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ''' [None, \'hole\']''' ) __UpperCAmelCase = handle_long_generation preprocess_params.update(_lowercase ) __UpperCAmelCase = generate_kwargs __UpperCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) __UpperCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) __UpperCAmelCase = ReturnType.TENSORS if return_type is not None: __UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: __UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: __UpperCAmelCase = self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) if len(_lowercase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a ( self : Optional[int] , *_lowercase : Optional[int] , **_lowercase : Any ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_lowercase , **_lowercase ) def __call__( self : List[str] , _lowercase : str , **_lowercase : Optional[Any] ): return super().__call__(_lowercase , **_lowercase ) def a ( self : Union[str, Any] , _lowercase : Any , _lowercase : Dict="" , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): __UpperCAmelCase = self.tokenizer( prefix + prompt_text , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) __UpperCAmelCase = prompt_text if handle_long_generation == "hole": __UpperCAmelCase = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: __UpperCAmelCase = generate_kwargs['''max_new_tokens'''] else: __UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __UpperCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) __UpperCAmelCase = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: __UpperCAmelCase = inputs['''attention_mask'''][:, -keep_length:] return inputs def a ( self : Union[str, Any] , _lowercase : List[str] , **_lowercase : Optional[int] ): __UpperCAmelCase = model_inputs['''input_ids'''] __UpperCAmelCase = model_inputs.get('''attention_mask''' , _lowercase ) # Allow empty prompts if input_ids.shape[1] == 0: __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = 1 else: __UpperCAmelCase = input_ids.shape[0] __UpperCAmelCase = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __UpperCAmelCase = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: __UpperCAmelCase = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: __UpperCAmelCase = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __UpperCAmelCase = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __UpperCAmelCase = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase , **_lowercase ) __UpperCAmelCase = generated_sequence.shape[0] if self.framework == "pt": __UpperCAmelCase = generated_sequence.reshape(_lowercase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __UpperCAmelCase = tf.reshape(_lowercase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a ( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Optional[int]=ReturnType.FULL_TEXT , _lowercase : List[str]=True ): __UpperCAmelCase = model_outputs['''generated_sequence'''][0] __UpperCAmelCase = model_outputs['''input_ids'''] __UpperCAmelCase = model_outputs['''prompt_text'''] __UpperCAmelCase = generated_sequence.numpy().tolist() __UpperCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __UpperCAmelCase = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __UpperCAmelCase = self.tokenizer.decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __UpperCAmelCase = 0 else: __UpperCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) ) if return_type == ReturnType.FULL_TEXT: __UpperCAmelCase = prompt_text + text[prompt_length:] else: __UpperCAmelCase = text[prompt_length:] __UpperCAmelCase = {'''generated_text''': all_text} records.append(_lowercase ) return records
86
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def a ( A__ : List[Any] ) -> List[Any]: """simple docstring""" monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def a ( A__ : Dict ) -> List[str]: """simple docstring""" class __lowerCAmelCase : def __init__( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' _lowercase =metric_id class __lowerCAmelCase : _a = [MetricMock(snake_case__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def A__ ( self ) -> List[str]: '''simple docstring''' return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def a ( A__ : List[Any] , A__ : Optional[Any] , A__ : Union[str, Any] , A__ : Dict , A__ : Any ) -> int: """simple docstring""" if "tmp_path" in args: _lowercase =tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(A__ , match='https://huggingface.co/docs/evaluate' ): func(*A__ )
205
def _SCREAMING_SNAKE_CASE ( a , a = 0 ) -> list: __A : int = length or len(a ) __A : str = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __A , __A : Optional[int] = list_data[i + 1], list_data[i] __A : Union[str, Any] = True return list_data if not swapped else bubble_sort(a , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
280
0
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> str: _lowerCAmelCase =int(__UpperCamelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =divmod(__UpperCamelCase , 2 ) return binary_recursive(__UpperCamelCase ) + str(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> str: _lowerCAmelCase =str(__UpperCamelCase ).strip() if not number: raise ValueError("""No input value was provided""" ) _lowerCAmelCase ="""-""" if number.startswith("""-""" ) else """""" _lowerCAmelCase =number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return F'''{negative}0b{binary_recursive(int(__UpperCamelCase ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['PerceiverFeatureExtractor'] __A = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A__ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. A__ = direct_transformers_import(PATH_TO_TRANSFORMERS) A__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A__ = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") A__ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = None # source code of `config_class` _lowerCAmelCase = inspect.getsource(snake_case ) _lowerCAmelCase = _re_checkpoint.findall(snake_case ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): _lowerCAmelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _lowerCAmelCase = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _lowerCAmelCase = ckpt_name break return checkpoint def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _lowerCAmelCase = get_checkpoint_from_config_class(snake_case ) _lowerCAmelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(snake_case ) if len(snake_case ) > 0: _lowerCAmelCase = """\n""".join(sorted(snake_case ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
82
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Dict ): """simple docstring""" __snake_case = logging.get_logger() # the current default level is logging.WARNING __snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a__ ) def a (self : Dict ): """simple docstring""" __snake_case = logging.get_verbosity() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(a__ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def a (self : Dict ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = os.getenv('''TRANSFORMERS_VERBOSITY''' , a__ ) __snake_case = logging.log_levels[env_level_str] __snake_case = logging.get_verbosity() self.assertEqual( a__ , a__ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __snake_case = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def a (self : List[Any] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.logging.getLogger() with CaptureLogger(a__ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def a (self : Any ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) def lowerCamelCase__ ( ) -> str: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
24
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCAmelCase_ = logging.getLogger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' UpperCAmelCase__ = np.argmax(_lowercase , axis=1 ) return np.sum(outputs == labels ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' with open(_lowercase , encoding="""utf_8""" ) as f: UpperCAmelCase__ = csv.reader(_lowercase ) UpperCAmelCase__ = [] next(_lowercase ) # skip the first line for line in tqdm(_lowercase ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = [] for dataset in encoded_datasets: UpperCAmelCase__ = len(_lowercase ) UpperCAmelCase__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) UpperCAmelCase__ = np.zeros((n_batch, 2) , dtype=np.intaa ) UpperCAmelCase__ = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) UpperCAmelCase__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_lowercase ): UpperCAmelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase__ = with_conta UpperCAmelCase__ = with_conta UpperCAmelCase__ = len(_lowercase ) - 1 UpperCAmelCase__ = len(_lowercase ) - 1 UpperCAmelCase__ = with_conta UpperCAmelCase__ = with_conta UpperCAmelCase__ = mc_label UpperCAmelCase__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_lowercase ) for t in all_inputs ) ) return tensor_datasets def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=_lowercase , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=_lowercase , default="""""" ) parser.add_argument("""--eval_dataset""" , type=_lowercase , default="""""" ) parser.add_argument("""--seed""" , type=_lowercase , default=42 ) parser.add_argument("""--num_train_epochs""" , type=_lowercase , default=3 ) parser.add_argument("""--train_batch_size""" , type=_lowercase , default=8 ) parser.add_argument("""--eval_batch_size""" , type=_lowercase , default=16 ) parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=_lowercase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=_lowercase , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=_lowercase , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=_lowercase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=_lowercase , default=6.25e-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=_lowercase , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=_lowercase , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=_lowercase , default=0.01 ) parser.add_argument("""--lm_coef""" , type=_lowercase , default=0.9 ) parser.add_argument("""--n_valid""" , type=_lowercase , default=374 ) parser.add_argument("""--server_ip""" , type=_lowercase , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=_lowercase , default="""""" , help="""Can be used for distant debugging.""" ) UpperCAmelCase__ = parser.parse_args() print(_lowercase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowercase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) UpperCAmelCase__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) UpperCAmelCase__ = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(_lowercase , _lowercase ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset UpperCAmelCase__ = ["""_start_""", """_delimiter_""", """_classify_"""] UpperCAmelCase__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_lowercase ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_lowercase ) UpperCAmelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_lowercase ) ) model.to(_lowercase ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE__ : Any ): if isinstance(_lowercase , _lowercase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_lowercase ) ) elif isinstance(_lowercase , _lowercase ): return obj return [tokenize_and_encode(_lowercase ) for o in obj] logger.info("""Encoding dataset...""" ) UpperCAmelCase__ = load_rocstories_dataset(args.train_dataset ) UpperCAmelCase__ = load_rocstories_dataset(args.eval_dataset ) UpperCAmelCase__ = (train_dataset, eval_dataset) UpperCAmelCase__ = tokenize_and_encode(_lowercase ) # Compute the max input length for the Transformer UpperCAmelCase__ = model.config.n_positions // 2 - 2 UpperCAmelCase__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) UpperCAmelCase__ = min(_lowercase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders UpperCAmelCase__ = pre_process_datasets(_lowercase , _lowercase , _lowercase , *_lowercase ) UpperCAmelCase__ , UpperCAmelCase__ = tensor_datasets[0], tensor_datasets[1] UpperCAmelCase__ = TensorDataset(*_lowercase ) UpperCAmelCase__ = RandomSampler(_lowercase ) UpperCAmelCase__ = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.train_batch_size ) UpperCAmelCase__ = TensorDataset(*_lowercase ) UpperCAmelCase__ = SequentialSampler(_lowercase ) UpperCAmelCase__ = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: UpperCAmelCase__ = args.max_steps UpperCAmelCase__ = args.max_steps // (len(_lowercase ) // args.gradient_accumulation_steps) + 1 else: UpperCAmelCase__ = len(_lowercase ) // args.gradient_accumulation_steps * args.num_train_epochs UpperCAmelCase__ = list(model.named_parameters() ) UpperCAmelCase__ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] UpperCAmelCase__ = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] UpperCAmelCase__ = AdamW(_lowercase , lr=args.learning_rate , eps=args.adam_epsilon ) UpperCAmelCase__ = get_linear_schedule_with_warmup( _lowercase , num_warmup_steps=args.warmup_steps , num_training_steps=_lowercase ) if args.do_train: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = tqdm(_lowercase , desc="""Training""" ) for step, batch in enumerate(_lowercase ): UpperCAmelCase__ = tuple(t.to(_lowercase ) for t in batch ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = batch UpperCAmelCase__ = model(_lowercase , mc_token_ids=_lowercase , lm_labels=_lowercase , mc_labels=_lowercase ) UpperCAmelCase__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() UpperCAmelCase__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 UpperCAmelCase__ = """Training loss: {:.2e} lr: {:.2e}""".format(_lowercase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer UpperCAmelCase__ = model.module if hasattr(_lowercase , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` UpperCAmelCase__ = os.path.join(args.output_dir , _lowercase ) UpperCAmelCase__ = os.path.join(args.output_dir , _lowercase ) torch.save(model_to_save.state_dict() , _lowercase ) model_to_save.config.to_json_file(_lowercase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned UpperCAmelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) UpperCAmelCase__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_lowercase ) if args.do_eval: model.eval() UpperCAmelCase__ , UpperCAmelCase__ = 0, 0 UpperCAmelCase__ , UpperCAmelCase__ = 0, 0 for batch in tqdm(_lowercase , desc="""Evaluating""" ): UpperCAmelCase__ = tuple(t.to(_lowercase ) for t in batch ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = batch with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = model( _lowercase , mc_token_ids=_lowercase , lm_labels=_lowercase , mc_labels=_lowercase ) UpperCAmelCase__ = mc_logits.detach().cpu().numpy() UpperCAmelCase__ = mc_labels.to("""cpu""" ).numpy() UpperCAmelCase__ = accuracy(_lowercase , _lowercase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 UpperCAmelCase__ = eval_loss / nb_eval_steps UpperCAmelCase__ = eval_accuracy / nb_eval_examples UpperCAmelCase__ = tr_loss / nb_tr_steps if args.do_train else None UpperCAmelCase__ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} UpperCAmelCase__ = os.path.join(args.output_dir , """eval_results.txt""" ) with open(_lowercase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , _lowercase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
358
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ = s.rsplit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return new.join(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = {} UpperCAmelCase__ = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: UpperCAmelCase__ = key.replace(F'''{group_key}.''' , F'''{group_key}.group.''' ) if "res_path" in key: UpperCAmelCase__ = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): UpperCAmelCase__ = rreplace(SCREAMING_SNAKE_CASE__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): UpperCAmelCase__ = rreplace(SCREAMING_SNAKE_CASE__ , """.b""" , """.bias""" , 1 ) UpperCAmelCase__ = value.float() return upgrade @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[Any]=True ): '''simple docstring''' from dall_e import Encoder UpperCAmelCase__ = Encoder() if os.path.exists(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = ckpt.state_dict() encoder.load_state_dict(SCREAMING_SNAKE_CASE__ ) if config_path is not None: UpperCAmelCase__ = FlavaImageCodebookConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = FlavaImageCodebookConfig() UpperCAmelCase__ = FlavaImageCodebook(SCREAMING_SNAKE_CASE__ ).eval() UpperCAmelCase__ = encoder.state_dict() UpperCAmelCase__ = upgrade_state_dict(SCREAMING_SNAKE_CASE__ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = hf_model.state_dict() UpperCAmelCase__ = count_parameters(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = count_parameters(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) else: return hf_state_dict if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCAmelCase_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
61
0
def lowerCAmelCase__ ( lowerCamelCase_ : Tuple): '''simple docstring''' lowerCAmelCase__ : Tuple = 1 lowerCAmelCase__ : Dict = 2 while i * i <= n: lowerCAmelCase__ : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : str = 1 lowerCAmelCase__ : Any = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE_) > 500: break return t_num if __name__ == "__main__": print(solution())
129
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Any = """distilbert""" __lowerCamelCase : List[Any] = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self , a=3_0522 , a=512 , a=False , a=6 , a=12 , a=768 , a=4 * 768 , a=0.1 , a=0.1 , a="gelu" , a=0.02 , a=0.1 , a=0.2 , a=0 , **a , ): lowercase__ : int = vocab_size lowercase__ : int = max_position_embeddings lowercase__ : List[str] = sinusoidal_pos_embds lowercase__ : Tuple = n_layers lowercase__ : Optional[int] = n_heads lowercase__ : List[Any] = dim lowercase__ : Any = hidden_dim lowercase__ : Union[str, Any] = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : List[Any] = activation lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = qa_dropout lowercase__ : Tuple = seq_classif_dropout super().__init__(**a , pad_token_id=a) class SCREAMING_SNAKE_CASE__ (__snake_case ): @property def snake_case_ ( self): if self.task == "multiple-choice": lowercase__ : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
214
0
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'xlm-prophetnet' snake_case_ = ['past_key_values'] snake_case_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self : Optional[int] , snake_case : Optional[float] = 0.1 , snake_case : Optional[Union[str, Callable]] = "gelu" , snake_case : Optional[int] = 3_0522 , snake_case : Optional[int] = 1024 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[float] = 0.1 , snake_case : Optional[float] = 0.1 , snake_case : Optional[int] = 512 , snake_case : Optional[float] = 0.02 , snake_case : Optional[bool] = True , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 2 , snake_case : Optional[int] = 32 , snake_case : Optional[int] = 128 , snake_case : Optional[bool] = False , snake_case : Optional[float] = 0.0 , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 1 , snake_case : Optional[int] = 2 , **snake_case : Optional[Any] , ): '''simple docstring''' A__ : Union[str, Any] = vocab_size A__ : Dict = hidden_size A__ : List[Any] = encoder_ffn_dim A__ : int = num_encoder_layers A__ : str = num_encoder_attention_heads A__ : Tuple = decoder_ffn_dim A__ : str = num_decoder_layers A__ : Union[str, Any] = num_decoder_attention_heads A__ : int = max_position_embeddings A__ : str = init_std # Normal(0, this parameter) A__ : Optional[int] = activation_function # parameters for xlmprophetnet A__ : List[str] = ngram A__ : Tuple = num_buckets A__ : List[Any] = relative_max_distance A__ : Dict = disable_ngram_loss A__ : Any = eps # 3 Types of Dropout A__ : str = attention_dropout A__ : Any = activation_dropout A__ : str = dropout A__ : Optional[Any] = use_cache super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , add_cross_attention=snake_case , decoder_start_token_id=snake_case , **snake_case , ) @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _UpperCamelCase ( self : str , snake_case : Tuple ): '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
296
"""simple docstring""" import os from distutils.util import strtobool def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]: for e in env_keys: A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]: A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int: A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return value
296
1
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_1_2, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def UpperCAmelCase_ (__a : int ): """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
271
'''simple docstring''' class UpperCAmelCase__ : """simple docstring""" def __init__( self : Dict ): '''simple docstring''' _a : Dict = {} def __lowercase ( self : Union[str, Any] ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_a ,' -> ' ,' -> '.join([str(_a ) for j in self.vertex[i]] ) ) def __lowercase ( self : Dict ,_a : int ,_a : int ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_a ) else: # else make a new vertex _a : int = [to_vertex] def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Tuple = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_a ,_a ) def __lowercase ( self : Union[str, Any] ,_a : int ,_a : list ): '''simple docstring''' _a : List[Any] = True print(_a ,end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_a ,_a ) if __name__ == "__main__": __lowerCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
271
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
102
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class a__ ( snake_case__ ): _a : Dict = """mgp-str""" def __init__( self , _A=[3_2, 1_2_8] , _A=4 , _A=3 , _A=2_7 , _A=3_8 , _A=5_0_2_5_7 , _A=3_0_5_2_2 , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=4.0 , _A=True , _A=False , _A=1E-5 , _A=0.0 , _A=0.0 , _A=0.0 , _A=False , _A=0.02 , **_A , ): """simple docstring""" super().__init__(**_A ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = max_token_length __lowerCAmelCase = num_character_labels __lowerCAmelCase = num_bpe_labels __lowerCAmelCase = num_wordpiece_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = mlp_ratio __lowerCAmelCase = distilled __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = drop_rate __lowerCAmelCase = qkv_bias __lowerCAmelCase = attn_drop_rate __lowerCAmelCase = drop_path_rate __lowerCAmelCase = output_aa_attentions __lowerCAmelCase = initializer_range
102
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = 'The Nymphenburg Palace is a beautiful palace in Munich!' def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } lowercase__ : Optional[Any] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowercase__ : Tuple = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=__lowerCamelCase , output_all_encodings=__lowerCamelCase , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , __lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowercase__ : List[str] = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab lowercase__ : Union[str, Any] = os.path.join(get_home_dir() , '''models''' ) lowercase__ : List[str] = _load_vocab(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls=__lowerCamelCase ) lowercase__ : str = nlp.model.BERTModel( __lowerCamelCase , len(__lowerCamelCase ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=__lowerCamelCase , use_token_type_embed=__lowerCamelCase , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=__lowerCamelCase , use_decoder=__lowerCamelCase , ) original_bort.load_parameters(__lowerCamelCase , cast_dtype=__lowerCamelCase , ignore_extra=__lowerCamelCase ) lowercase__ : List[Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 lowercase__ : Optional[int] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.0_2, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(__lowerCamelCase ), } lowercase__ : str = BertConfig.from_dict(__lowerCamelCase ) lowercase__ : str = BertForMaskedLM(__lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowerCamelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowerCamelCase , __lowerCamelCase ): lowercase__ : str = hf_param.shape lowercase__ : int = to_torch(params[gluon_param] ) lowercase__ : Optional[Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowercase__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) lowercase__ : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) lowercase__ : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) lowercase__ : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowercase__ : int = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowercase__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowercase__ : BertSelfAttention = layer.attention.self lowercase__ : Any = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowercase__ : int = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowercase__ : Optional[int] = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowercase__ : int = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowercase__ : Optional[int] = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowercase__ : Optional[Any] = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowercase__ : BertSelfOutput = layer.attention.output lowercase__ : Union[str, Any] = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowercase__ : List[str] = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowercase__ : List[str] = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowercase__ : Any = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowercase__ : BertIntermediate = layer.intermediate lowercase__ : Dict = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowercase__ : Union[str, Any] = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowercase__ : BertOutput = layer.output lowercase__ : str = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowercase__ : Any = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowercase__ : int = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowercase__ : Any = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowercase__ : str = RobertaTokenizer.from_pretrained('''roberta-base''' ) lowercase__ : Tuple = tokenizer.encode_plus(__lowerCamelCase )['''input_ids'''] # Get gluon output lowercase__ : List[str] = mx.nd.array([input_ids] ) lowercase__ : Union[str, Any] = original_bort(inputs=__lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCamelCase ) lowercase__ : List[str] = BertModel.from_pretrained(__lowerCamelCase ) hf_bort_model.eval() lowercase__ : Tuple = tokenizer.encode_plus(__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : Dict = hf_bort_model(**__lowerCamelCase )[0] lowercase__ : List[str] = output_gluon[0].asnumpy() lowercase__ : Optional[Any] = output_hf[0].detach().numpy() lowercase__ : List[str] = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowercase__ : List[str] = np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , __lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
16
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: lowercase :Tuple = 1024 lowercase :Tuple = 4096 lowercase :Union[str, Any] = 24 lowercase :Tuple = 16 lowercase :Optional[Any] = [5, 11, 17, 23] lowercase :Optional[Any] = [256, 512, 1024, 1024] lowercase :Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowercase :Any = 768 lowercase :Optional[int] = [1, 1, 1, 0.5] lowercase :int = [256, 512, 768, 768] lowercase :str = 150 lowercase :Tuple = 16 lowercase :List[str] = (1, 384, 384) lowercase :Any = False lowercase :Optional[int] = "project" if "ade" in checkpoint_url: lowercase :Dict = True lowercase :str = 768 lowercase :Tuple = [1, 1, 1, 0.5] lowercase :Dict = 150 lowercase :Any = 16 lowercase :List[Any] = "huggingface/label-files" lowercase :Union[str, Any] = "ade20k-id2label.json" lowercase :List[str] = json.load(open(cached_download(hf_hub_url(lowerCamelCase, lowerCamelCase, repo_type="dataset" ) ), "r" ) ) lowercase :Optional[Any] = {int(lowerCamelCase ): v for k, v in idalabel.items()} lowercase :Union[str, Any] = idalabel lowercase :Optional[Any] = {v: k for k, v in idalabel.items()} lowercase :List[str] = [1, 150, 480, 480] return config, expected_shape def UpperCAmelCase__ ( lowerCamelCase ): lowercase :List[str] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase :Any = name.replace("pretrained.model", "dpt.encoder" ) if "pretrained.model" in name: lowercase :int = name.replace("pretrained.model", "dpt.embeddings" ) if "patch_embed" in name: lowercase :Any = name.replace("patch_embed", "" ) if "pos_embed" in name: lowercase :Optional[Any] = name.replace("pos_embed", "position_embeddings" ) if "attn.proj" in name: lowercase :List[str] = name.replace("attn.proj", "attention.output.dense" ) if "proj" in name and "project" not in name: lowercase :str = name.replace("proj", "projection" ) if "blocks" in name: lowercase :List[Any] = name.replace("blocks", "layer" ) if "mlp.fc1" in name: lowercase :str = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: lowercase :Any = name.replace("mlp.fc2", "output.dense" ) if "norm1" in name and "backbone" not in name: lowercase :Any = name.replace("norm1", "layernorm_before" ) if "norm2" in name and "backbone" not in name: lowercase :Any = name.replace("norm2", "layernorm_after" ) if "scratch.output_conv" in name: lowercase :Optional[Any] = name.replace("scratch.output_conv", "head" ) if "scratch" in name: lowercase :Union[str, Any] = name.replace("scratch", "neck" ) if "layer1_rn" in name: lowercase :str = name.replace("layer1_rn", "convs.0" ) if "layer2_rn" in name: lowercase :Dict = name.replace("layer2_rn", "convs.1" ) if "layer3_rn" in name: lowercase :Tuple = name.replace("layer3_rn", "convs.2" ) if "layer4_rn" in name: lowercase :Optional[int] = name.replace("layer4_rn", "convs.3" ) if "refinenet" in name: lowercase :Any = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase :Any = name.replace(F"refinenet{layer_idx}", F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowercase :str = name.replace("out_conv", "projection" ) if "resConfUnit1" in name: lowercase :Optional[Any] = name.replace("resConfUnit1", "residual_layer1" ) if "resConfUnit2" in name: lowercase :int = name.replace("resConfUnit2", "residual_layer2" ) if "conv1" in name: lowercase :Optional[int] = name.replace("conv1", "convolution1" ) if "conv2" in name: lowercase :List[str] = name.replace("conv2", "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase :Tuple = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase :Dict = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase :Any = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase :Optional[Any] = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase :Dict = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase :Any = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase :List[Any] = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase :str = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase :str = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase :List[Any] = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase :Any = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase :Any = name.replace("pretrained", "dpt" ) if "bn" in name: lowercase :Optional[int] = name.replace("bn", "batch_norm" ) if "head" in name: lowercase :Union[str, Any] = name.replace("head", "head.head" ) if "encoder.norm" in name: lowercase :Optional[Any] = name.replace("encoder.norm", "layernorm" ) if "auxlayer" in name: lowercase :str = name.replace("auxlayer", "auxiliary_head.head" ) if "backbone" in name: lowercase :List[str] = name.replace("backbone", "backbone.bit.encoder" ) if ".." in name: lowercase :Optional[int] = name.replace("..", "." ) if "stem.conv" in name: lowercase :Union[str, Any] = name.replace("stem.conv", "bit.embedder.convolution" ) if "blocks" in name: lowercase :List[str] = name.replace("blocks", "layers" ) if "convolution" in name and "backbone" in name: lowercase :int = name.replace("convolution", "conv" ) if "layer" in name and "backbone" in name: lowercase :List[str] = name.replace("layer", "layers" ) if "backbone.bit.encoder.bit" in name: lowercase :Dict = name.replace("backbone.bit.encoder.bit", "backbone.bit" ) if "embedder.conv" in name: lowercase :Dict = name.replace("embedder.conv", "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: lowercase :str = name.replace("backbone.bit.encoder.stem.norm", "backbone.bit.embedder.norm" ) return name def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase :str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowercase :str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase :List[str] = in_proj_weight[: config.hidden_size, :] lowercase :int = in_proj_bias[: config.hidden_size] lowercase :Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase :Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase :Dict = in_proj_weight[ -config.hidden_size :, : ] lowercase :List[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( ): lowercase :List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase :Any = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase , lowercase :Optional[int] = get_dpt_config(lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowercase :List[str] = torch.load(lowerCamelCase, map_location="cpu" ) # remove certain keys remove_ignore_keys_(lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): lowercase :int = state_dict.pop(lowerCamelCase ) lowercase :Dict = val # read in qkv matrices read_in_q_k_v(lowerCamelCase, lowerCamelCase ) # load HuggingFace model lowercase :int = DPTForSemanticSegmentation(lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # Check outputs on an image lowercase :Union[str, Any] = 480 if "ade" in checkpoint_url else 384 lowercase :Optional[int] = DPTImageProcessor(size=lowerCamelCase ) lowercase :Dict = prepare_img() lowercase :Optional[Any] = image_processor(lowerCamelCase, return_tensors="pt" ) # forward pass lowercase :Any = model(**lowerCamelCase ).logits if "ade" in checkpoint_url else model(**lowerCamelCase ).predicted_depth if show_prediction: lowercase :List[Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode="bicubic", align_corners=lowerCamelCase, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _UpperCAmelCase : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
236
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : Dict = 16 lowercase__ : int = 32 def _lowerCAmelCase ( __snake_case : Accelerator , __snake_case : int = 16 ) -> Optional[int]: __A : List[str] = AutoTokenizer.from_pretrained('bert-base-cased' ) __A : List[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(__snake_case : Any ): # max_length=None => use the model max length (it's actually the default) __A : Dict = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __A : Dict = datasets.map( __snake_case , batched=__snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __A : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__snake_case : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __A : Any = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __A : Tuple = 16 elif accelerator.mixed_precision != "no": __A : int = 8 else: __A : List[Any] = None return tokenizer.pad( __snake_case , padding='longest' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='pt' , ) # Instantiate dataloaders. __A : Any = DataLoader( tokenized_datasets['train'] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case , drop_last=__snake_case ) __A : Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def _lowerCAmelCase ( __snake_case : str , __snake_case : Any ) -> Union[str, Any]: # Initialize accelerator __A : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __A : Union[str, Any] = config['lr'] __A : Union[str, Any] = int(config['num_epochs'] ) __A : List[Any] = int(config['seed'] ) __A : Union[str, Any] = int(config['batch_size'] ) __A : int = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __A : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __A : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE __A : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(__snake_case ) __A ,__A : Union[str, Any] = get_dataloaders(__snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __A : List[str] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __A : Dict = model.to(accelerator.device ) # Instantiate optimizer __A : Optional[int] = AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler __A : Dict = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=1_00 , num_training_steps=(len(__snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __A ,__A ,__A ,__A ,__A : Optional[int] = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __A : Any = model(**__snake_case ) __A : Optional[Any] = outputs.loss __A : Any = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __A : Dict = model(**__snake_case ) __A : Optional[Any] = outputs.logits.argmax(dim=-1 ) __A ,__A : Any = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) __A : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __snake_case ) def _lowerCAmelCase ( ) -> List[Any]: __A : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__snake_case , default=__snake_case , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __A : List[Any] = parser.parse_args() __A : Union[str, Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
190
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ : List[Any] = '''bert-base-cased''' lowercase__ : Union[str, Any] = '''google/pegasus-xsum''' lowercase__ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase__ : Optional[Any] = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase__ : str = '''patrickvonplaten/t5-tiny-random''' lowercase__ : List[str] = '''sshleifer/bart-tiny-random''' lowercase__ : List[str] = '''sshleifer/tiny-mbart''' lowercase__ : str = '''sshleifer/tiny-marian-en-de''' def _lowerCAmelCase ( __snake_case : Path , __snake_case : list ) -> str: __A : Any = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: for split in ["train", "val", "test"]: _dump_articles(os.path.join(__snake_case , f'{split}.source' ) , __snake_case ) _dump_articles(os.path.join(__snake_case , f'{split}.target' ) , __snake_case ) return tmp_dir class SCREAMING_SNAKE_CASE (a__ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : int = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : str = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Dict = 4 __A : Optional[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __A ,__A : Any = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __A : List[str] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , ) __A : Any = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(_UpperCAmelCase , _UpperCAmelCase) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __A : Optional[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : Tuple = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : Any = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Optional[int] = 4 __A : Any = LegacySeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=20 , max_target_length=_UpperCAmelCase , ) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25') __A : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __A : List[str] = tmp_dir.joinpath('train.source').open().readlines() __A : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(_UpperCAmelCase , _UpperCAmelCase , 128 , _UpperCAmelCase) __A : Dict = {x.name for x in tmp_dir.iterdir()} __A : Dict = {x.name for x in save_dir.iterdir()} __A : str = save_dir.joinpath('train.source').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_UpperCAmelCase) < len(_UpperCAmelCase) assert len(_UpperCAmelCase) == 1 assert len(packed_examples[0]) == sum(len(_UpperCAmelCase) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return __A ,__A ,__A : List[Any] = self._get_dataset(max_len=64) __A : Union[str, Any] = 64 __A : List[Any] = ds.make_dynamic_sampler(_UpperCAmelCase , required_batch_size_multiple=_UpperCAmelCase) __A : Union[str, Any] = [len(_UpperCAmelCase) for x in batch_sampler] assert len(set(_UpperCAmelCase)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_UpperCAmelCase) == len(_UpperCAmelCase) # no dropped or added examples __A : List[Any] = DataLoader(_UpperCAmelCase , batch_sampler=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Optional[int] = [] __A : Tuple = [] for batch in data_loader: __A : Optional[int] = batch['input_ids'].shape __A : Any = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __A : Tuple = np.product(batch['input_ids'].shape) num_src_per_batch.append(_UpperCAmelCase) if num_src_tokens > (max_tokens * 1.1): failures.append(_UpperCAmelCase) assert num_src_per_batch[0] == max(_UpperCAmelCase) if failures: raise AssertionError(F'too many tokens in {len(_UpperCAmelCase)} batches') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Optional[int] = self._get_dataset(max_len=512) __A : Optional[int] = 2 __A : Dict = ds.make_sortish_sampler(_UpperCAmelCase , shuffle=_UpperCAmelCase) __A : Tuple = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_UpperCAmelCase) __A : str = tokenizer.pad_token_id def count_pad_tokens(_UpperCAmelCase , _UpperCAmelCase="input_ids"): return [batch[k].eq(_UpperCAmelCase).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_UpperCAmelCase , k='labels')) < sum(count_pad_tokens(_UpperCAmelCase , k='labels')) assert sum(count_pad_tokens(_UpperCAmelCase)) < sum(count_pad_tokens(_UpperCAmelCase)) assert len(_UpperCAmelCase) == len(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=1000 , _UpperCAmelCase=128): '''simple docstring''' if os.getenv('USE_REAL_DATA' , _UpperCAmelCase): __A : Dict = 'examples/seq2seq/wmt_en_ro' __A : Any = max_len * 2 * 64 if not Path(_UpperCAmelCase).joinpath('train.len').exists(): save_len_file(_UpperCAmelCase , _UpperCAmelCase) else: __A : int = 'examples/seq2seq/test_data/wmt_en_ro' __A : Any = max_len * 4 save_len_file(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , n_obs=_UpperCAmelCase , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Tuple = self._get_dataset() __A : Optional[int] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=_UpperCAmelCase)) __A : List[str] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=_UpperCAmelCase)) assert idsa.intersection(_UpperCAmelCase) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase) if tok_name == MBART_TINY: __A : Dict = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __A : List[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __A : Any = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __A : List[str] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_UpperCAmelCase) == 1 if tok_name == BART_TINY else len(_UpperCAmelCase) == 0
190
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Dict = ['''pixel_values'''] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 2_5_5 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , **_UpperCamelCase , ) -> None: super().__init__(**_UpperCamelCase ) UpperCAmelCase_ : str = size if size is not None else {'shortest_edge': 2_2_4} UpperCAmelCase_ : Any = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) UpperCAmelCase_ : Dict = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCAmelCase_ : Union[str, Any] = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='crop_size' ) UpperCAmelCase_ : Any = do_resize UpperCAmelCase_ : List[str] = size UpperCAmelCase_ : Optional[Any] = resample UpperCAmelCase_ : Dict = do_center_crop UpperCAmelCase_ : Union[str, Any] = crop_size UpperCAmelCase_ : Tuple = do_rescale UpperCAmelCase_ : Union[str, Any] = rescale_factor UpperCAmelCase_ : Optional[int] = do_normalize UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : Dict = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : Tuple = do_convert_rgb def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: UpperCAmelCase_ : Union[str, Any] = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase_ : Union[str, Any] = get_resize_output_image_size(_UpperCamelCase , size=size['shortest_edge'] , default_to_square=_UpperCamelCase ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: UpperCAmelCase_ : str = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(_UpperCamelCase , size=(size['height'], size['width']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> Union[str, Any]: return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ) -> PIL.Image.Image: UpperCAmelCase_ : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Optional[int] = size if size is not None else self.size UpperCAmelCase_ : Tuple = get_size_dict(_UpperCamelCase , param_name='size' , default_to_square=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = resample if resample is not None else self.resample UpperCAmelCase_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : str = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Any = get_size_dict(_UpperCamelCase , param_name='crop_size' , default_to_square=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Union[str, Any] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : List[Any] = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : Dict = [convert_to_rgb(_UpperCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : List[str] = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: UpperCAmelCase_ : Union[str, Any] = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: UpperCAmelCase_ : int = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: UpperCAmelCase_ : List[Any] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: UpperCAmelCase_ : Optional[Any] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] UpperCAmelCase_ : Optional[Any] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] UpperCAmelCase_ : Tuple = {'pixel_values': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
29
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification A__ : Optional[Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co A__ : Tuple = 'main' # Default branch name A__ : Optional[Any] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) A__ : Tuple = 'aaaaaaa' # This commit does not exist, so we should 404. A__ : Tuple = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes A__ : Any = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def _snake_case ( ) -> str: print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def _snake_case ( ) -> List[str]: print("Bonjour!" ) yield print("Au revoir!" ) class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[int] ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class lowercase__ ( unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : int ): with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[int] ): with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[str] ): with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def UpperCAmelCase__ ( self : int ): self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) self.assertEqual(find_labels(snake_case__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(snake_case__ ) , ["start_positions", "end_positions"] ) class lowercase__ ( snake_case__ ): pass self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) @require_tf def UpperCAmelCase__ ( self : int ): self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) self.assertEqual(find_labels(snake_case__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(snake_case__ ) , ["start_positions", "end_positions"] ) class lowercase__ ( snake_case__ ): pass self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) @require_flax def UpperCAmelCase__ ( self : Tuple ): # Flax models don't have labels self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) class lowercase__ ( snake_case__ ): pass self.assertEqual(find_labels(snake_case__ ) , [] )
144
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } __A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } __A = { 'facebook/m2m100_418M': 1024, } # fmt: off __A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = ["input_ids", "attention_mask"] A_ = [] A_ = [] def __init__( self: Any , __A: int , __A: List[str] , __A: str=None , __A: Optional[Any]=None , __A: int="<s>" , __A: Dict="</s>" , __A: Tuple="</s>" , __A: List[str]="<pad>" , __A: List[Any]="<unk>" , __A: Any="m2m100" , __A: Optional[int] = None , __A: List[str]=8 , **__A: Any , ) -> None: _A = {} if sp_model_kwargs is None else sp_model_kwargs _A = language_codes _A = FAIRSEQ_LANGUAGE_CODES[language_codes] _A = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} _A = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__A ) for lang_code in fairseq_language_code if self.get_lang_token(__A ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__A , tgt_lang=__A , bos_token=__A , eos_token=__A , sep_token=__A , unk_token=__A , pad_token=__A , language_codes=__A , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__A , **__A , ) _A = vocab_file _A = load_json(__A ) _A = {v: k for k, v in self.encoder.items()} _A = spm_file _A = load_spm(__A , self.sp_model_kwargs ) _A = len(self.encoder ) _A = { self.get_lang_token(__A ): self.encoder_size + i for i, lang_code in enumerate(__A ) } _A = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__A )} _A = {v: k for k, v in self.lang_token_to_id.items()} _A = src_lang if src_lang is not None else '''en''' _A = tgt_lang _A = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _A = num_madeup_words @property def __A ( self: List[str] ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def __A ( self: int ) -> str: return self._src_lang @src_lang.setter def __A ( self: int , __A: List[str] ) -> None: _A = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self: int , __A: Optional[int] ) -> List[str]: return self.sp_model.encode(__A , out_type=__A ) def __A ( self: Union[str, Any] , __A: Any ) -> List[str]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__A , self.encoder[self.unk_token] ) def __A ( self: str , __A: Tuple ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__A , self.unk_token ) def __A ( self: List[Any] , __A: Union[str, Any] ) -> List[Any]: _A = [] _A = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__A ) + token _A = [] else: current_sub_tokens.append(__A ) out_string += self.sp_model.decode(__A ) return out_string.strip() def __A ( self: str , __A: int , __A: Dict = None , __A: Tuple = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) _A = [1] * len(self.prefix_tokens ) _A = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__A )) + suffix_ones return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones def __A ( self: str , __A: Optional[Any] , __A: Optional[int] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self: Optional[Any] ) -> Dict: _A = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Dict: _A = self.__dict__.copy() _A = None return state def __setstate__( self: List[str] , __A: Optional[int] ) -> None: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = load_spm(self.spm_file , self.sp_model_kwargs ) def __A ( self: List[str] , __A: int , __A: Tuple = None ) -> Tuple[str]: _A = Path(__A ) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""" ) _A = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _A = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __A ) if os.path.abspath(self.spm_file ) != os.path.abspath(__A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __A ) elif not os.path.isfile(self.spm_file ): with open(__A , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__A ) return (str(__A ), str(__A )) def __A ( self: Union[str, Any] , __A: Union[str, Any] , __A: Optional[Any] = "en" , __A: Optional[Any] = None , __A: List[str] = "ro" , **__A: str , ) -> BatchEncoding: _A = src_lang _A = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__A , __A , **__A ) def __A ( self: str , __A: Any , __A: Tuple , __A: str , **__A: List[Any] ) -> Any: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _A = src_lang _A = self(__A , add_special_tokens=__A , **__A ) _A = self.get_lang_id(__A ) _A = tgt_lang_id return inputs def __A ( self: Optional[Any] ) -> List[str]: self.set_src_lang_special_tokens(self.src_lang ) def __A ( self: Any ) -> List[str]: self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self: Tuple , __A: int ) -> None: _A = self.get_lang_token(__A ) _A = self.lang_token_to_id[lang_token] _A = [self.cur_lang_id] _A = [self.eos_token_id] def __A ( self: Optional[int] , __A: str ) -> None: _A = self.get_lang_token(__A ) _A = self.lang_token_to_id[lang_token] _A = [self.cur_lang_id] _A = [self.eos_token_id] def __A ( self: Tuple , __A: List[str] ) -> str: return self.lang_code_to_token[lang] def __A ( self: List[Any] , __A: Tuple ) -> int: _A = self.get_lang_token(__A ) return self.lang_token_to_id[lang_token] def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = sentencepiece.SentencePieceProcessor(**UpperCamelCase__ ) spm.Load(str(UpperCamelCase__ ) ) return spm def __A ( _lowercase ): '''simple docstring''' with open(UpperCamelCase__ , '''r''' ) as f: return json.load(UpperCamelCase__ ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with open(UpperCamelCase__ , '''w''' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ , indent=2 )
352
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __A = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: List[Any] , *__A: Union[str, Any] , **__A: Optional[Any] ) -> None: warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
75
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = tempfile.mkdtemp() # fmt: off __a = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __a = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } __a = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowercase , __lowercase ) def UpperCamelCase_ ( self : Dict , **__lowercase : List[Any] ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def UpperCamelCase_ ( self : Optional[int] , **__lowercase : str ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.get_tokenizer() __a = self.get_image_processor() __a = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor.save_pretrained(self.tmpdirname ) __a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __a = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __a = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = self.get_image_processor() __a = self.get_tokenizer() __a = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __a = self.prepare_image_inputs() __a = image_processor(__lowercase , return_tensors="""np""" ) __a = processor(images=__lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = self.get_image_processor() __a = self.get_tokenizer() __a = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __a = """lower newer""" __a = processor(text=__lowercase ) __a = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.get_image_processor() __a = self.get_tokenizer() __a = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __a = """lower newer""" __a = self.prepare_image_inputs() __a = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(__lowercase ): processor() def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.get_image_processor() __a = self.get_tokenizer() __a = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a = processor.batch_decode(__lowercase ) __a = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.get_image_processor() __a = self.get_tokenizer() __a = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __a = """lower newer""" __a = self.prepare_image_inputs() __a = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
302
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoTokenizer.from_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = tokenizer("""This is me""" , return_tensors="""pt""" ) __a = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**__lowercase ) __a = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __a = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
302
1
'''simple docstring''' lowerCamelCase__ = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.602176634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _UpperCAmelCase : Any = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(__lowerCAmelCase )}""" ) raise ValueError(__lowerCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _snake_case : Tuple = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _snake_case : int = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _snake_case : Union[str, Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a (datasets.Metric ): """simple docstring""" def __snake_case ( self : int ) -> List[Any]: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def __snake_case ( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , ) -> Tuple: __snake_case : Union[str, Any] = len(references[0] ) if any(len(lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) __snake_case : Tuple = [[refs[i] for refs in references] for i in range(lowerCamelCase )] __snake_case : Any = TER( normalized=lowerCamelCase , no_punct=lowerCamelCase , asian_support=lowerCamelCase , case_sensitive=lowerCamelCase , ) __snake_case : List[Any] = sb_ter.corpus_score(lowerCamelCase , lowerCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
123
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _snake_case : Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : int = 101 ) -> Dict: __snake_case : str = length def __len__( self : Optional[Any] ) -> Any: return self.length def __getitem__( self : int , lowerCamelCase : Optional[Any] ) -> int: return i class a : """simple docstring""" def __call__( self : List[Any] , lowerCamelCase : Any ) -> Tuple: return {"input_ids": torch.tensor(lowerCamelCase ), "labels": torch.tensor(lowerCamelCase )} class a (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ) -> str: super().__init__() # Add some (unused) params otherwise DDP will complain. __snake_case : Optional[Any] = nn.Linear(120 , 80 ) def __snake_case ( self : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=None ) -> Optional[Any]: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class a (_lowerCAmelCase ): """simple docstring""" @require_torch_neuroncore def __snake_case ( self : Union[str, Any] ) -> Optional[Any]: __snake_case : Dict = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __snake_case : Optional[int] = self.get_auto_remove_tmp_dir() __snake_case : int = F'--output_dir {output_dir}'.split() __snake_case : str = ["torchrun"] + distributed_args + args execute_subprocess_async(lowerCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class a (_lowerCAmelCase ): """simple docstring""" @require_torch_multi_gpu def __snake_case ( self : str ) -> int: __snake_case : List[str] = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __snake_case : Optional[int] = self.get_auto_remove_tmp_dir() __snake_case : int = F'--output_dir {output_dir}'.split() __snake_case : Optional[int] = ["torchrun"] + distributed_args + args execute_subprocess_async(lowerCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _snake_case : Optional[int] = HfArgumentParser((TrainingArguments,)) _snake_case : int = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: _snake_case : Optional[int] = DummyDataset(dataset_length) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Optional[Any] = list(range(len(__lowerCamelCase ) ) ) __snake_case : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " F'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} _snake_case : List[str] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _snake_case : List[str] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case : str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case : List[Any] = 2 _snake_case : Union[str, Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case : int = None
123
1
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class _SCREAMING_SNAKE_CASE ( __a ,__a ): __SCREAMING_SNAKE_CASE :Optional[Any] = 1 @register_to_config def __init__( self : Optional[int] , a__ : int = 1000 , a__ : Optional[Union[np.ndarray, List[float]]] = None ): # set `betas`, `alphas`, `timesteps` self.set_timesteps(a__ ) # standard deviation of the initial noise distribution __magic_name__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __magic_name__ = 4 # running values __magic_name__ = [] def snake_case__ ( self : Dict , a__ : int , a__ : Union[str, torch.device] = None ): __magic_name__ = num_inference_steps __magic_name__ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __magic_name__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __magic_name__ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __magic_name__ = torch.sin(steps * math.pi / 2 ) ** 2 __magic_name__ = (1.0 - self.betas**2) ** 0.5 __magic_name__ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __magic_name__ = timesteps.to(a__ ) __magic_name__ = [] def snake_case__ ( self : Union[str, Any] , a__ : torch.FloatTensor , a__ : int , a__ : torch.FloatTensor , a__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) __magic_name__ = (self.timesteps == timestep).nonzero().item() __magic_name__ = timestep_index + 1 __magic_name__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(a__ ) if len(self.ets ) == 1: __magic_name__ = self.ets[-1] elif len(self.ets ) == 2: __magic_name__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __magic_name__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __magic_name__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __magic_name__ = self._get_prev_sample(a__ , a__ , a__ , a__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a__ ) def snake_case__ ( self : Any , a__ : torch.FloatTensor , *a__ : Optional[int] , **a__ : Union[str, Any] ): return sample def snake_case__ ( self : str , a__ : Optional[int] , a__ : int , a__ : List[Any] , a__ : List[str] ): __magic_name__ = self.alphas[timestep_index] __magic_name__ = self.betas[timestep_index] __magic_name__ = self.alphas[prev_timestep_index] __magic_name__ = self.betas[prev_timestep_index] __magic_name__ = (sample - sigma * ets) / max(a__ , 1E-8 ) __magic_name__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : int ): return self.config.num_train_timesteps
98
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _lowerCAmelCase = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _lowerCAmelCase = 10 _lowerCAmelCase = 256 def UpperCamelCase ( a ) -> Optional[MinHash]: '''simple docstring''' if len(a ) < MIN_NUM_TOKENS: return None __magic_name__ = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase ( a ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class _SCREAMING_SNAKE_CASE : def __init__( self : Any , *, a__ : float = 0.85 , ): __magic_name__ = duplication_jaccard_threshold __magic_name__ = NUM_PERM __magic_name__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __magic_name__ = defaultdict(a__ ) def snake_case__ ( self : int , a__ : Tuple , a__ : MinHash ): __magic_name__ = self._index.query(a__ ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(a__ , a__ ) if len(a__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = [] for base, duplicates in self._duplicate_clusters.items(): __magic_name__ = [base] + list(a__ ) # reformat the cluster to be a list of dict __magic_name__ = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(a__ ) return duplicate_clusters def snake_case__ ( self : int , a__ : Tuple ): __magic_name__ = self.get_duplicate_clusters() with open(a__ , '''w''' ) as f: json.dump(a__ , a__ ) def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = element __magic_name__ = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def UpperCamelCase ( a , a ) -> Tuple: '''simple docstring''' __magic_name__ = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase ( a , a ) -> float: '''simple docstring''' __magic_name__ = get_tokens(a ) __magic_name__ = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _lowerCAmelCase = None def UpperCamelCase ( a , a ) -> Dict: '''simple docstring''' __magic_name__ = [] for elementa in cluster: __magic_name__ = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __magic_name__ = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: __magic_name__ = 1 extremes.append(a ) return extremes def UpperCamelCase ( a , a , a ) -> Optional[Any]: '''simple docstring''' global _shared_dataset __magic_name__ = dataset __magic_name__ = [] __magic_name__ = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def UpperCamelCase ( a , a = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' __magic_name__ = make_duplicate_clusters(a , a ) __magic_name__ = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __magic_name__ = {} __magic_name__ = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: __magic_name__ = element __magic_name__ = duplicate_indices - set(extreme_dict.keys() ) __magic_name__ = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __magic_name__ = element['''base_index'''] in extreme_dict if element["is_extreme"]: __magic_name__ = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(a )}''' ) print(F'''Number of duplicate clusters: {len(a )}''' ) print(F'''Files in duplicate cluster: {len(a )}''' ) print(F'''Unique files in duplicate cluster: {len(a )}''' ) print(F'''Filtered dataset size: {len(a )}''' ) return ds_filter, duplicate_clusters
98
1
"""simple docstring""" import numpy as np import qiskit def _snake_case ( lowercase__ = 8 , lowercase__ = None ): _lowerCamelCase : str = np.random.default_rng(seed=lowercase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowerCamelCase : List[str] = 6 * key_len # Measurement basis for Alice's qubits. _lowerCamelCase : int = rng.integers(2 , size=lowercase__ ) # The set of states Alice will prepare. _lowerCamelCase : str = rng.integers(2 , size=lowercase__ ) # Measurement basis for Bob's qubits. _lowerCamelCase : str = rng.integers(2 , size=lowercase__ ) # Quantum Circuit to simulate BB84 _lowerCamelCase : Dict = qiskit.QuantumCircuit(lowercase__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(lowercase__ ): if alice_state[index] == 1: bbaa_circ.x(lowercase__ ) if alice_basis[index] == 1: bbaa_circ.h(lowercase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(lowercase__ ): if bob_basis[index] == 1: bbaa_circ.h(lowercase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowerCamelCase : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowerCamelCase : List[Any] = qiskit.execute(lowercase__ , lowercase__ , shots=1 , seed_simulator=lowercase__ ) # Returns the result of measurement. _lowerCamelCase : Optional[Any] = job.result().get_counts(lowercase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowerCamelCase : Optional[int] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( lowercase__ , lowercase__ , lowercase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowerCamelCase : Union[str, Any] = gen_key[:key_len] if len(lowercase__ ) >= key_len else gen_key.ljust(lowercase__ , '0' ) return key if __name__ == "__main__": print(F"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
96
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __A : str = sys.version_info >= (3, 10) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = field(default="""toto""" , metadata={"""help""": """help message"""}) @dataclass class _a : """simple docstring""" UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """titi""" UpperCamelCase__ = """toto""" class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """titi""" UpperCamelCase__ = """toto""" UpperCamelCase__ = 42 @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" def lowercase__ ( self : Tuple )->Optional[int]: _UpperCAmelCase = BasicEnum(self.foo ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" def lowercase__ ( self : List[str] )->List[Any]: _UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """help message"""}) UpperCamelCase__ = None UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[]) @dataclass class _a : """simple docstring""" UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[1, 2, 3]) UpperCamelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) UpperCamelCase__ = list_field(default=[0.1, 0.2, 0.3]) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field() UpperCamelCase__ = field() UpperCamelCase__ = field() def lowercase__ ( self : int )->str: _UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = field() UpperCamelCase__ = None UpperCamelCase__ = field(default="""toto""" , metadata={"""help""": """help message"""}) UpperCamelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) if is_python_no_less_than_3_10: @dataclass class _a : """simple docstring""" UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """help message"""}) UpperCamelCase__ = None UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[]) class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int , __UpperCamelCase : argparse.ArgumentParser , __UpperCamelCase : argparse.ArgumentParser )->Dict: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k != '''container'''} _UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , __UpperCamelCase ) and yy.get('''choices''' , __UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](__UpperCamelCase ) , yy['''type'''](__UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : int )->str: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--bar''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--baz''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--flag''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((_UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(__UpperCamelCase , look_for_args_file=__UpperCamelCase ) self.assertFalse(example.flag ) def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=__UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=__UpperCamelCase , help='''help message''' ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple )->List[str]: _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=__UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=__UpperCamelCase , default=__UpperCamelCase ) _UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCamelCase ) for dataclass_type in dataclass_types: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) def lowercase__ ( self : Optional[Any] )->str: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) _UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowercase__ ( self : List[str] )->List[str]: @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def lowercase__ ( self : int )->int: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=__UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual( __UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) _UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(__UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=__UpperCamelCase , type=__UpperCamelCase ) expected.add_argument('''--bar''' , default=__UpperCamelCase , type=__UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=__UpperCamelCase , type=__UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) _UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCamelCase ) for dataclass_type in dataclass_types: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , bar=__UpperCamelCase , baz=__UpperCamelCase , ces=[] , des=[] ) ) _UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(__UpperCamelCase , Namespace(foo=1_2 , bar=3.1_4 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowercase__ ( self : Any )->int: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--required_str''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__UpperCamelCase , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : str )->List[Any]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__UpperCamelCase , ) expected.add_argument('''--opt''' , type=__UpperCamelCase , default=__UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=__UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } _UpperCAmelCase = parser.parse_dict(__UpperCamelCase )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(__UpperCamelCase , parser.parse_dict , __UpperCamelCase , allow_extra_keys=__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(__UpperCamelCase , '''temp_json''' ) os.mkdir(__UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(__UpperCamelCase , '''temp_yaml''' ) os.mkdir(__UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : int )->List[str]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase )
260
0
from __future__ import annotations def _A ( lowerCAmelCase_ : int = 4 ): """simple docstring""" lowerCAmelCase__ = abs(lowerCAmelCase_ ) or 4 return [[1 + x + y * row_size for x in range(lowerCAmelCase_ )] for y in range(lowerCAmelCase_ )] def _A ( lowerCAmelCase_ : list[list[int]] ): """simple docstring""" return reverse_row(transpose(lowerCAmelCase_ ) ) # OR.. transpose(reverse_column(matrix)) def _A ( lowerCAmelCase_ : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(lowerCAmelCase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def _A ( lowerCAmelCase_ : list[list[int]] ): """simple docstring""" return reverse_column(transpose(lowerCAmelCase_ ) ) # OR.. transpose(reverse_row(matrix)) def _A ( lowerCAmelCase_ : list[list[int]] ): """simple docstring""" lowerCAmelCase__ = [list(lowerCAmelCase_ ) for x in zip(*lowerCAmelCase_ )] return matrix def _A ( lowerCAmelCase_ : list[list[int]] ): """simple docstring""" lowerCAmelCase__ = matrix[::-1] return matrix def _A ( lowerCAmelCase_ : list[list[int]] ): """simple docstring""" lowerCAmelCase__ = [x[::-1] for x in matrix] return matrix def _A ( lowerCAmelCase_ : list[list[int]] ): """simple docstring""" for i in matrix: print(*lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) UpperCamelCase = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) UpperCamelCase = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
221
from math import pi, sqrt def _A ( lowerCAmelCase_ : float ): """simple docstring""" if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(lowerCAmelCase_ ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(lowerCAmelCase_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _A ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCAmelCase_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = 1.0 while num: UpperCamelCase = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
221
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowercase : str = logging.get_logger(__name__) def A_ ( A__ , A__ ) -> List[str]: try: with open(A__ , 'rb' ) as flax_state_f: a__ : Union[str, Any] = from_bytes(A__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(A__ ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(A__ , A__ ) def A_ ( A__ , A__ ) -> str: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights a__ : int = flatten_dict(jax.tree_util.tree_map(lambda A__ : x.dtype == jnp.bfloataa , A__ ) ).values() if any(A__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) a__ : Optional[Any] = jax.tree_util.tree_map( lambda A__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , A__ ) a__ : Dict = '' a__ : Optional[int] = flatten_dict(A__ , sep='.' ) a__ : Dict = pt_model.state_dict() # keep track of unexpected & missing keys a__ : Union[str, Any] = [] a__ : Optional[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): a__ : Union[str, Any] = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: a__ : Any = flax_key_tuple_array[:-1] + ['weight'] a__ : Union[str, Any] = jnp.transpose(A__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": a__ : List[str] = flax_key_tuple_array[:-1] + ['weight'] a__ : int = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": a__ : Dict = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(A__ ): a__ : Union[str, Any] = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) a__ : Optional[int] = '.'.join(A__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict a__ : Optional[int] = np.asarray(A__ ) if not isinstance(A__ , np.ndarray ) else flax_tensor a__ : Dict = torch.from_numpy(A__ ) # remove from missing keys missing_keys.remove(A__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(A__ ) pt_model.load_state_dict(A__ ) # re-transform missing_keys to list a__ : Optional[Any] = list(A__ ) if len(A__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(A__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) return pt_model
99
'''simple docstring''' import argparse import json from tqdm import tqdm def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=lowerCAmelCase , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=lowerCAmelCase , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=lowerCAmelCase , help="""where to store parsed gold_data_path file""" , ) _lowerCAmelCase = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: _lowerCAmelCase = json.load(lowerCAmelCase ) for dpr_record in tqdm(lowerCAmelCase ): _lowerCAmelCase = dpr_record["""question"""] _lowerCAmelCase = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(lowerCAmelCase ) + """\n""" ) if __name__ == "__main__": main()
70
0
"""simple docstring""" import math import unittest def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->bool: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ): '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(snake_case ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
296
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ): '''simple docstring''' A__ : int = parent A__ : Union[str, Any] = batch_size A__ : Optional[int] = seq_length A__ : List[Any] = is_training A__ : List[str] = use_input_mask A__ : Optional[Any] = use_token_type_ids A__ : List[Any] = use_labels A__ : Union[str, Any] = vocab_size A__ : List[Any] = hidden_size A__ : Any = num_hidden_layers A__ : Any = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Any = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Optional[int] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[str] = initializer_range A__ : Any = num_labels A__ : Any = num_choices A__ : int = scope def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = None if self.use_input_mask: A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_token_type_ids: A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : int = None A__ : int = None A__ : List[str] = None if self.use_labels: A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case ) A__ : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ): '''simple docstring''' A__ : List[str] = BioGptForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ): '''simple docstring''' A__ : Union[str, Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() # create attention mask A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) A__ : Any = self.seq_length // 2 A__ : str = 0 # first forward pass A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple() # create hypothetical next token and extent to next_input_ids A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1 A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A__ : int = random_other_next_tokens # append to next input_ids and attn_mask A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , ) # get two different outputs A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""] # select random slice A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() A__ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ): '''simple docstring''' A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval() A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) # first forward pass A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ , A__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ """last_hidden_state""" ] # select random slice A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM(snake_case ) model.to(snake_case ) if gradient_checkpointing: model.gradient_checkpointing_enable() A__ : Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ): '''simple docstring''' A__ : int = BioGptModel(snake_case ) A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = self.num_labels A__ : int = BioGptForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case_ = (BioGptForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = BioGptModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : str = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = """left""" # Define PAD Token = EOS Token = 50256 A__ : Optional[int] = tokenizer.eos_token A__ : Dict = model.config.eos_token_id # use different length sentences to test batching A__ : Union[str, Any] = [ """Hello, my dog is a little""", """Today, I""", ] A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case ) A__ : str = inputs["""input_ids"""].to(snake_case ) A__ : Dict = model.generate( input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , ) A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Any = model.generate(input_ids=snake_case ) A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) A__ : Optional[int] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) @slow def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] = 3 A__ : List[Any] = input_dict["""input_ids"""] A__ : Dict = input_ids.ne(1 ).to(snake_case ) A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : Any = 3 A__ : List[Any] = """multi_label_classification""" A__ : Dict = input_dict["""input_ids"""] A__ : Tuple = input_ids.ne(1 ).to(snake_case ) A__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ : Tuple = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] ) A__ : Dict = model(snake_case )[0] A__ : Tuple = 4_2384 A__ : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) torch.manual_seed(0 ) A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case ) A__ : Optional[int] = model.generate( **snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , ) A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case ) A__ : List[str] = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(snake_case , snake_case )
296
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def SCREAMING_SNAKE_CASE_ ( ) -> int: """simple docstring""" a_ : Dict = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=__A , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=__A , default=5 ) parser.add_argument('--batch_size' , type=__A , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=__A , default=1 ) parser.add_argument('--freeze' , type=__A , default=__A ) parser.add_argument('--learning_rate' , type=__A , default=5e-4 ) parser.add_argument('--seed' , type=__A , default=0 ) parser.add_argument('--lr_scheduler_type' , type=__A , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=__A , default=10 ) parser.add_argument('--weight_decay' , type=__A , default=0.01 ) parser.add_argument('--output_dir' , type=__A , default='./results' ) return parser.parse_args() UpperCAmelCase_ : Optional[int] = load('accuracy') def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> str: """simple docstring""" a_ , a_ : str = eval_pred a_ : int = np.argmax(__A , axis=1 ) return metric.compute(predictions=__A , references=__A ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> None: super().__init__() a_ : List[str] = trainer def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: if control.should_evaluate: a_ : List[Any] = deepcopy(SCREAMING_SNAKE_CASE__ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' ) return control_copy def SCREAMING_SNAKE_CASE_ ( ) -> int: """simple docstring""" a_ : List[Any] = get_args() set_seed(args.seed ) a_ : Optional[int] = load_dataset('codeparrot/codecomplex' , split='train' ) a_ : Optional[Any] = dataset.train_test_split(test_size=0.2 ) a_ : Dict = train_test['test'].train_test_split(test_size=0.5 ) a_ : Dict = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) a_ : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) a_ : Dict = tokenizer.eos_token a_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) a_ : int = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): a_ : Union[str, Any] = False a_ : int = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(__A : str ): a_ : Optional[Any] = tokenizer(example['src'] , truncation=__A , max_length=10_24 ) a_ : Union[str, Any] = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } a_ : List[str] = train_test_validation.map( __A , batched=__A , remove_columns=train_test_validation['train'].column_names , ) a_ : Tuple = DataCollatorWithPadding(tokenizer=__A ) a_ : Optional[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) a_ : Optional[Any] = Trainer( model=__A , args=__A , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=__A , data_collator=__A , compute_metrics=__A , ) print('Training...' ) trainer.add_callback(CustomCallback(__A ) ) trainer.train() if __name__ == "__main__": main()
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[str] = '''switch_transformers''' snake_case__ : Optional[int] = ['''past_key_values'''] snake_case__ : Optional[Any] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=3_2_1_2_8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6_4 , SCREAMING_SNAKE_CASE__ : List[str]=2_0_4_8 , SCREAMING_SNAKE_CASE__ : Dict=6_4 , SCREAMING_SNAKE_CASE__ : List[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Tuple=1_2 , SCREAMING_SNAKE_CASE__ : Tuple=8 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.01 , SCREAMING_SNAKE_CASE__ : str="float32" , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE__ : Dict=1_2_8 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=1E-6 , SCREAMING_SNAKE_CASE__ : Dict=0.001 , SCREAMING_SNAKE_CASE__ : Any=0.001 , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , SCREAMING_SNAKE_CASE__ : Any="relu" , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=1 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: a_ : Optional[int] = vocab_size a_ : List[str] = d_model a_ : Tuple = d_kv a_ : Optional[Any] = d_ff a_ : List[Any] = num_sparse_encoder_layers a_ : Any = num_layers a_ : str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a_ : List[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: a_ : Optional[int] = self.num_layers // self.num_sparse_encoder_layers else: a_ : List[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: a_ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: a_ : List[str] = self.num_decoder_layers # HACK: this will create 0 sparse layers a_ : Dict = num_heads a_ : str = num_experts a_ : Any = expert_capacity a_ : List[Any] = router_bias a_ : str = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) a_ : Optional[int] = router_dtype a_ : int = router_ignore_padding_tokens a_ : Any = relative_attention_num_buckets a_ : List[str] = relative_attention_max_distance a_ : Optional[Any] = dropout_rate a_ : Tuple = layer_norm_epsilon a_ : Dict = initializer_factor a_ : Any = feed_forward_proj a_ : Tuple = use_cache a_ : str = add_router_probs a_ : Optional[int] = router_z_loss_coef a_ : List[str] = router_aux_loss_coef a_ : int = self.feed_forward_proj.split('-' ) a_ : int = act_info[-1] a_ : Optional[int] = act_info[0] == 'gated' if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": a_ : Any = 'gelu_new' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
32
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , UpperCAmelCase_ : int = 65_536 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "fourier" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple[int] = (32, 32, 64) , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = False , ): """simple docstring""" super().__init__() __UpperCAmelCase : str = sample_size # time if time_embedding_type == "fourier": __UpperCAmelCase : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_ ) __UpperCAmelCase : str = 2 * block_out_channels[0] elif time_embedding_type == "positional": __UpperCAmelCase : str = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_ ) __UpperCAmelCase : Dict = block_out_channels[0] if use_timestep_embedding: __UpperCAmelCase : Union[str, Any] = block_out_channels[0] * 4 __UpperCAmelCase : str = TimestepEmbedding( in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , ) __UpperCAmelCase : Tuple = nn.ModuleList([] ) __UpperCAmelCase : int = None __UpperCAmelCase : Optional[Any] = nn.ModuleList([] ) __UpperCAmelCase : Dict = None # down __UpperCAmelCase : str = in_channels for i, down_block_type in enumerate(UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = output_channel __UpperCAmelCase : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __UpperCAmelCase : Tuple = i == len(UpperCAmelCase_ ) - 1 __UpperCAmelCase : List[str] = get_down_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase_ ) # mid __UpperCAmelCase : Optional[Any] = get_mid_block( UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , ) # up __UpperCAmelCase : Tuple = list(reversed(UpperCAmelCase_ ) ) __UpperCAmelCase : Any = reversed_block_out_channels[0] if out_block_type is None: __UpperCAmelCase : Union[str, Any] = out_channels else: __UpperCAmelCase : Dict = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_ ): __UpperCAmelCase : int = output_channel __UpperCAmelCase : str = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_ ) - 1 else final_upsample_channels ) __UpperCAmelCase : Tuple = i == len(UpperCAmelCase_ ) - 1 __UpperCAmelCase : Dict = get_up_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = output_channel # out __UpperCAmelCase : Optional[int] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) __UpperCAmelCase : List[Any] = get_out_block( out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : bool = True , ): """simple docstring""" __UpperCAmelCase : Dict = timestep if not torch.is_tensor(UpperCAmelCase_ ): __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(sample.device ) __UpperCAmelCase : List[str] = self.time_proj(UpperCAmelCase_ ) if self.config.use_timestep_embedding: __UpperCAmelCase : Any = self.time_mlp(UpperCAmelCase_ ) else: __UpperCAmelCase : Any = timestep_embed[..., None] __UpperCAmelCase : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __UpperCAmelCase : Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __UpperCAmelCase : int = () for downsample_block in self.down_blocks: __UpperCAmelCase : int = downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __UpperCAmelCase : List[str] = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __UpperCAmelCase : Any = down_block_res_samples[-1:] __UpperCAmelCase : List[Any] = down_block_res_samples[:-1] __UpperCAmelCase : str = upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_ ) # 5. post-process if self.out_block: __UpperCAmelCase : Tuple = self.out_block(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase_ )
356
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _UpperCAmelCase ): if not nums: raise ValueError("List is empty" ) return sum(_UpperCAmelCase ) / len(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
37
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = None @staticmethod def A_ ( ): raise NotImplementedError def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): raise NotImplementedError def A_ ( self , lowercase ): raise NotImplementedError def A_ ( self ): if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def A_ ( cls ): return F'''`pip install {cls.pip_package or cls.name}`''' class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ = '''optuna''' @staticmethod def A_ ( ): return is_optuna_available() def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): return run_hp_search_optuna(_A , _A , _A , **_A ) def A_ ( self , lowercase ): return default_hp_space_optuna(_A ) class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ = '''ray''' lowerCamelCase__ = '''\'ray[tune]\'''' @staticmethod def A_ ( ): return is_ray_available() def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): return run_hp_search_ray(_A , _A , _A , **_A ) def A_ ( self , lowercase ): return default_hp_space_ray(_A ) class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ = '''sigopt''' @staticmethod def A_ ( ): return is_sigopt_available() def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): return run_hp_search_sigopt(_A , _A , _A , **_A ) def A_ ( self , lowercase ): return default_hp_space_sigopt(_A ) class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ = '''wandb''' @staticmethod def A_ ( ): return is_wandb_available() def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): return run_hp_search_wandb(_A , _A , _A , **_A ) def A_ ( self , lowercase ): return default_hp_space_wandb(_A ) lowercase__ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _snake_case ( ): _lowerCamelCase : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase__ ) > 0: _lowerCamelCase : Optional[int] = available_backends[0].name if len(lowercase__ ) > 1: logger.info( f'''{len(lowercase__ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
96
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = AudioLDMPipeline lowerCAmelCase = TEXT_TO_AUDIO_PARAMS lowerCAmelCase = TEXT_TO_AUDIO_BATCH_PARAMS lowerCAmelCase = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.manual_seed(0) __A : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(32, 64) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_UpperCAmelCase , ) __A : Optional[int] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0) __A : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) __A : str = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) __A : Any = ClapTextModelWithProjection(_UpperCAmelCase) __A : int = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=77) __A : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_UpperCAmelCase , ) __A : Optional[Any] = SpeechTaHifiGan(_UpperCAmelCase) __A : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=0): '''simple docstring''' if str(_UpperCAmelCase).startswith('mps'): __A : Any = torch.manual_seed(_UpperCAmelCase) else: __A : str = torch.Generator(device=_UpperCAmelCase).manual_seed(_UpperCAmelCase) __A : List[str] = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : Dict = self.get_dummy_components() __A : Optional[int] = AudioLDMPipeline(**_UpperCAmelCase) __A : Optional[Any] = audioldm_pipe.to(_UpperCAmelCase) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : int = self.get_dummy_inputs(_UpperCAmelCase) __A : Tuple = audioldm_pipe(**_UpperCAmelCase) __A : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase) == 256 __A : Any = audio[:10] __A : Union[str, Any] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033]) assert np.abs(audio_slice - expected_slice).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.get_dummy_components() __A : List[Any] = AudioLDMPipeline(**_UpperCAmelCase) __A : List[Any] = audioldm_pipe.to(_UpperCAmelCase) __A : List[Any] = audioldm_pipe.to(_UpperCAmelCase) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : str = self.get_dummy_inputs(_UpperCAmelCase) __A : List[Any] = 3 * [inputs['prompt']] # forward __A : Tuple = audioldm_pipe(**_UpperCAmelCase) __A : str = output.audios[0] __A : Union[str, Any] = self.get_dummy_inputs(_UpperCAmelCase) __A : Union[str, Any] = 3 * [inputs.pop('prompt')] __A : Any = audioldm_pipe.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) __A : Tuple = text_inputs['input_ids'].to(_UpperCAmelCase) __A : Optional[int] = audioldm_pipe.text_encoder( _UpperCAmelCase , ) __A : Optional[Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __A : Optional[Any] = F.normalize(_UpperCAmelCase , dim=-1) __A : Optional[Any] = prompt_embeds # forward __A : Union[str, Any] = audioldm_pipe(**_UpperCAmelCase) __A : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_dummy_components() __A : Tuple = AudioLDMPipeline(**_UpperCAmelCase) __A : Dict = audioldm_pipe.to(_UpperCAmelCase) __A : Optional[Any] = audioldm_pipe.to(_UpperCAmelCase) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : Tuple = self.get_dummy_inputs(_UpperCAmelCase) __A : Union[str, Any] = 3 * ['this is a negative prompt'] __A : List[Any] = negative_prompt __A : int = 3 * [inputs['prompt']] # forward __A : List[Any] = audioldm_pipe(**_UpperCAmelCase) __A : str = output.audios[0] __A : Any = self.get_dummy_inputs(_UpperCAmelCase) __A : Any = 3 * [inputs.pop('prompt')] __A : Any = [] for p in [prompt, negative_prompt]: __A : Union[str, Any] = audioldm_pipe.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) __A : Tuple = text_inputs['input_ids'].to(_UpperCAmelCase) __A : Any = audioldm_pipe.text_encoder( _UpperCAmelCase , ) __A : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __A : str = F.normalize(_UpperCAmelCase , dim=-1) embeds.append(_UpperCAmelCase) __A : List[str] = embeds # forward __A : str = audioldm_pipe(**_UpperCAmelCase) __A : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : Optional[Any] = self.get_dummy_components() __A : List[Any] = PNDMScheduler(skip_prk_steps=_UpperCAmelCase) __A : int = AudioLDMPipeline(**_UpperCAmelCase) __A : Optional[Any] = audioldm_pipe.to(_UpperCAmelCase) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : int = self.get_dummy_inputs(_UpperCAmelCase) __A : List[str] = 'egg cracking' __A : Union[str, Any] = audioldm_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase) __A : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase) == 256 __A : Dict = audio[:10] __A : Optional[int] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032]) assert np.abs(audio_slice - expected_slice).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : Dict = self.get_dummy_components() __A : List[Any] = PNDMScheduler(skip_prk_steps=_UpperCAmelCase) __A : Optional[Any] = AudioLDMPipeline(**_UpperCAmelCase) __A : Any = audioldm_pipe.to(_UpperCAmelCase) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : int = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) __A : Dict = audioldm_pipe(_UpperCAmelCase , num_inference_steps=2).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __A : str = 2 __A : str = audioldm_pipe([prompt] * batch_size , num_inference_steps=2).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __A : Union[str, Any] = 2 __A : Union[str, Any] = audioldm_pipe(_UpperCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=_UpperCAmelCase).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __A : int = 2 __A : Any = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_UpperCAmelCase).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : Optional[int] = self.get_dummy_components() __A : int = AudioLDMPipeline(**_UpperCAmelCase) __A : List[str] = audioldm_pipe.to(_UpperCAmelCase) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : List[str] = audioldm_pipe.vocoder.config.sampling_rate __A : Optional[Any] = self.get_dummy_inputs(_UpperCAmelCase) __A : Optional[int] = audioldm_pipe(audio_length_in_s=0.016 , **_UpperCAmelCase) __A : List[str] = output.audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase) / vocoder_sampling_rate == 0.016 __A : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **_UpperCAmelCase) __A : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase) / vocoder_sampling_rate == 0.032 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.get_dummy_components() __A : List[Any] = AudioLDMPipeline(**_UpperCAmelCase) __A : Tuple = audioldm_pipe.to(_UpperCAmelCase) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : List[str] = ['hey'] __A : Dict = audioldm_pipe(_UpperCAmelCase , num_inference_steps=1) __A : Union[str, Any] = output.audios.shape assert audio_shape == (1, 256) __A : Any = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __A : Any = SpeechTaHifiGan(_UpperCAmelCase).to(_UpperCAmelCase) __A : int = audioldm_pipe(_UpperCAmelCase , num_inference_steps=1) __A : Any = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=_UpperCAmelCase) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase) @slow class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase="cpu" , _UpperCAmelCase=torch.floataa , _UpperCAmelCase=0): '''simple docstring''' __A : List[str] = torch.Generator(device=_UpperCAmelCase).manual_seed(_UpperCAmelCase) __A : Tuple = np.random.RandomState(_UpperCAmelCase).standard_normal((1, 8, 128, 16)) __A : Any = torch.from_numpy(_UpperCAmelCase).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase) __A : str = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = AudioLDMPipeline.from_pretrained('cvssp/audioldm') __A : List[str] = audioldm_pipe.to(_UpperCAmelCase) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : str = self.get_inputs(_UpperCAmelCase) __A : str = 25 __A : Union[str, Any] = audioldm_pipe(**_UpperCAmelCase).audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase) == 8_1920 __A : Optional[Any] = audio[7_7230:7_7240] __A : Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315]) __A : int = np.abs(expected_slice - audio_slice).max() assert max_diff < 1e-2 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = AudioLDMPipeline.from_pretrained('cvssp/audioldm') __A : List[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) __A : str = audioldm_pipe.to(_UpperCAmelCase) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : List[str] = self.get_inputs(_UpperCAmelCase) __A : Optional[int] = audioldm_pipe(**_UpperCAmelCase).audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase) == 8_1920 __A : Optional[int] = audio[2_7780:2_7790] __A : Optional[Any] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212]) __A : Union[str, Any] = np.abs(expected_slice - audio_slice).max() assert max_diff < 3e-2
364
'''simple docstring''' lowercase__ : Any = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowercase__ : List[Any] = ['''a''', '''b''', '''c''', '''d''', '''e'''] def _lowerCAmelCase ( __snake_case : str , __snake_case : Tuple , __snake_case : int ) -> Tuple: __A : List[str] = start # add current to visited visited.append(__snake_case ) __A : Optional[int] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __A : int = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: __A : Dict = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": lowercase__ : Tuple = topological_sort('''a''', [], []) print(sort)
190
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _A : int = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Tuple ) -> None: warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
229
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class _lowercase : '''simple docstring''' _SCREAMING_SNAKE_CASE : float _SCREAMING_SNAKE_CASE : TreeNode | None = None _SCREAMING_SNAKE_CASE : TreeNode | None = None def UpperCamelCase_ ( snake_case_ : TreeNode | None ) -> bool: '''simple docstring''' def is_valid_tree(snake_case_ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(snake_case_ , snake_case_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(snake_case_ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( snake_case_ : TreeNode | None , snake_case_ : float , snake_case_ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , snake_case_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , snake_case_ ) ) return is_binary_search_tree_recursive_check(snake_case_ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
229
1
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> Any: # Format the message. if name is None: __lowerCAmelCase: str = None else: __lowerCAmelCase: Optional[Any] = "." * max(0 , spaces - 2 ) + "# {:" + str(5_0 - spaces ) + "s}" __lowerCAmelCase: Dict = fmt.format(__SCREAMING_SNAKE_CASE ) # Print and recurse (if needed). if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if msg is not None: print(__SCREAMING_SNAKE_CASE ) for k in val.keys(): recursive_print(__SCREAMING_SNAKE_CASE , val[k] , spaces + 2 ) elif isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): print(__SCREAMING_SNAKE_CASE , ":" , val.size() ) else: print(__SCREAMING_SNAKE_CASE , ":" , __SCREAMING_SNAKE_CASE ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. __lowerCAmelCase: Union[str, Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] __lowerCAmelCase: Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] __lowerCAmelCase: Optional[int] = param.view(*__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = param.transpose(0 , 2 ) __lowerCAmelCase: Tuple = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] __lowerCAmelCase: List[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] __lowerCAmelCase: int = param.view(*__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = param.transpose(0 , 1 ).contiguous() __lowerCAmelCase: Optional[Any] = param.view(*__SCREAMING_SNAKE_CASE ) return param def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: # The converted output model. __lowerCAmelCase: Union[str, Any] = {} # old versions did not store training args __lowerCAmelCase: str = input_state_dict.get("args" , __SCREAMING_SNAKE_CASE ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) __lowerCAmelCase: Union[str, Any] = ds_args.padded_vocab_size __lowerCAmelCase: Dict = ds_args.max_position_embeddings __lowerCAmelCase: Dict = ds_args.hidden_size __lowerCAmelCase: Tuple = ds_args.num_layers __lowerCAmelCase: Any = ds_args.num_attention_heads __lowerCAmelCase: List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. __lowerCAmelCase: List[str] = config.n_head # The hidden_size per head. __lowerCAmelCase: Any = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): __lowerCAmelCase: List[Any] = input_state_dict["checkpoint_version"] else: __lowerCAmelCase: Union[str, Any] = 0.0 # The model. __lowerCAmelCase: Union[str, Any] = input_state_dict["model"] # The language model. __lowerCAmelCase: Any = model["language_model"] # The embeddings. __lowerCAmelCase: Tuple = lm["embedding"] # The word embeddings. __lowerCAmelCase: Optional[int] = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. __lowerCAmelCase: List[Any] = word_embeddings[: config.vocab_size, :] __lowerCAmelCase: Any = word_embeddings # The position embeddings. __lowerCAmelCase: str = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] __lowerCAmelCase: Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. __lowerCAmelCase: List[str] = pos_embeddings # The transformer. __lowerCAmelCase: str = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. __lowerCAmelCase: Any = re.compile(R"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. __lowerCAmelCase: Tuple = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. __lowerCAmelCase: Union[str, Any] = layer_re.match(__SCREAMING_SNAKE_CASE ) # Stop if that's not a layer if m is None: break # The index of the layer. __lowerCAmelCase: Optional[int] = int(m.group(1 ) ) # The name of the operation. __lowerCAmelCase: int = m.group(2 ) # Is it a weight or a bias? __lowerCAmelCase: int = m.group(3 ) # The name of the layer. __lowerCAmelCase: List[str] = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): __lowerCAmelCase: Union[str, Any] = "ln_1" if op_name.startswith("input" ) else "ln_2" __lowerCAmelCase: int = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. __lowerCAmelCase: List[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. __lowerCAmelCase: Optional[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) __lowerCAmelCase: Any = masked_bias __lowerCAmelCase: Optional[Any] = fix_query_key_value_ordering(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 3 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. __lowerCAmelCase: str = out_val.transpose(0 , 1 ).contiguous() # Store. __lowerCAmelCase: Dict = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": __lowerCAmelCase: Union[str, Any] = fix_query_key_value_ordering(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 3 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Store. No change of shape. __lowerCAmelCase: Optional[int] = out_val # Transpose the weights. elif weight_or_bias == "weight": __lowerCAmelCase: List[str] = megatron_to_transformers[op_name] __lowerCAmelCase: List[Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": __lowerCAmelCase: str = megatron_to_transformers[op_name] __lowerCAmelCase: List[str] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. __lowerCAmelCase: Tuple = transformer["final_layernorm.weight"] __lowerCAmelCase: Union[str, Any] = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. __lowerCAmelCase: List[str] = word_embeddings # It should be done! return output_state_dict def a__ ( ) -> Tuple: # Create the argument parser. __lowerCAmelCase: List[str] = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=__SCREAMING_SNAKE_CASE , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=__SCREAMING_SNAKE_CASE , help="An optional config json file describing the pre-trained model." , ) __lowerCAmelCase: Tuple = parser.parse_args() # Extract the basename. __lowerCAmelCase: Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: __lowerCAmelCase: List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" ) else: __lowerCAmelCase: Dict = torch.load(args.path_to_checkpoint , map_location="cpu" ) __lowerCAmelCase: Any = input_state_dict.get("args" , __SCREAMING_SNAKE_CASE ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: __lowerCAmelCase: Union[str, Any] = "gelu_fast" elif ds_args.openai_gelu: __lowerCAmelCase: int = "gelu_new" else: __lowerCAmelCase: Dict = "gelu" else: # in the very early days this used to be "gelu_new" __lowerCAmelCase: Union[str, Any] = "gelu_new" # Spell out all parameters in case the defaults change. __lowerCAmelCase: List[Any] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__SCREAMING_SNAKE_CASE , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=__SCREAMING_SNAKE_CASE , summary_activation=__SCREAMING_SNAKE_CASE , summary_proj_to_labels=__SCREAMING_SNAKE_CASE , summary_first_dropout=0.1 , scale_attn_weights=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: __lowerCAmelCase: Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) __lowerCAmelCase: str = ["GPT2LMHeadModel"] # Convert. print("Converting" ) __lowerCAmelCase: str = convert_megatron_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: __lowerCAmelCase: Tuple = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": __lowerCAmelCase: List[Any] = "gpt2" elif tokenizer_type == "PretrainedFromHF": __lowerCAmelCase: Any = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: __lowerCAmelCase: Dict = "gpt2" __lowerCAmelCase: List[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = type(__SCREAMING_SNAKE_CASE ).__name__ __lowerCAmelCase: Dict = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(__SCREAMING_SNAKE_CASE ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) # Store the state_dict to file. __lowerCAmelCase: Any = os.path.join(__SCREAMING_SNAKE_CASE , "pytorch_model.bin" ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
108
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class snake_case ( pl.LightningModule ): def __init__( self : str , UpperCamelCase__ : List[str])-> str: '''simple docstring''' super().__init__() __lowerCAmelCase: Optional[int] = model __lowerCAmelCase: Tuple = 2 __lowerCAmelCase: List[Any] = nn.Linear(self.model.config.hidden_size , self.num_labels) def lowercase_ ( self : Optional[int])-> str: '''simple docstring''' pass def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # load longformer model from model identifier __lowerCAmelCase: List[str] = LongformerModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = LightningModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = torch.load(__SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model __lowerCAmelCase: Optional[Any] = LongformerForQuestionAnswering.from_pretrained(__SCREAMING_SNAKE_CASE ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
108
1
"""simple docstring""" lowerCamelCase_ = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCamelCase ( a_ : str ) -> int: __SCREAMING_SNAKE_CASE :str = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} __SCREAMING_SNAKE_CASE :Stack[int] = Stack() __SCREAMING_SNAKE_CASE :Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(a_ ) ) elif i in operators: # RULE 2 operator_stack.push(a_ ) elif i == ")": # RULE 4 __SCREAMING_SNAKE_CASE :Optional[Any] = operator_stack.peek() operator_stack.pop() __SCREAMING_SNAKE_CASE :Any = operand_stack.peek() operand_stack.pop() __SCREAMING_SNAKE_CASE :Optional[Any] = operand_stack.peek() operand_stack.pop() __SCREAMING_SNAKE_CASE :Any = operators[opr](a_ , a_ ) operand_stack.push(a_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase_ = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f'{equation} = {dijkstras_two_stack_algorithm(equation)}')
191
"""simple docstring""" def __lowerCamelCase ( a_ : list ) -> list: if len(a_ ) < 2: return collection def circle_sort_util(a_ : list , a_ : int , a_ : int ) -> bool: __SCREAMING_SNAKE_CASE :int = False if low == high: return swapped __SCREAMING_SNAKE_CASE :int = low __SCREAMING_SNAKE_CASE :Tuple = high while left < right: if collection[left] > collection[right]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = ( collection[right], collection[left], ) __SCREAMING_SNAKE_CASE :Optional[int] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Tuple = ( collection[right + 1], collection[left], ) __SCREAMING_SNAKE_CASE :Tuple = True __SCREAMING_SNAKE_CASE :int = low + int((high - low) / 2 ) __SCREAMING_SNAKE_CASE :int = circle_sort_util(a_ , a_ , a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = circle_sort_util(a_ , mid + 1 , a_ ) return swapped or left_swap or right_swap __SCREAMING_SNAKE_CASE :Optional[Any] = True while is_not_sorted is True: __SCREAMING_SNAKE_CASE :Tuple = circle_sort_util(a_ , 0 , len(a_ ) - 1 ) return collection if __name__ == "__main__": lowerCamelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase_ = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
191
1
'''simple docstring''' class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = None lowercase_ : Union[str, Any] = None lowercase_ : Any = graph self._normalize_graph(lowercase__ , lowercase__ ) lowercase_ : str = len(lowercase__ ) lowercase_ : Optional[Any] = None def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if sources is int: lowercase_ : Union[str, Any] = [sources] if sinks is int: lowercase_ : Dict = [sinks] if len(lowercase__ ) == 0 or len(lowercase__ ) == 0: return lowercase_ : Union[str, Any] = sources[0] lowercase_ : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(lowercase__ ) > 1 or len(lowercase__ ) > 1: lowercase_ : Union[str, Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase_ : List[str] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase_ : Optional[int] = max_input_flow lowercase_ : Optional[Any] = 0 lowercase_ : Union[str, Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase_ : List[Any] = max_input_flow lowercase_ : Union[str, Any] = size - 1 def _snake_case ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[int] = algorithm(self ) class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = flow_network lowercase_ : List[str] = flow_network.verticesCount lowercase_ : Any = flow_network.sourceIndex lowercase_ : str = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase_ : Any = flow_network.graph lowercase_ : List[str] = False def _snake_case ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase_ : Dict = True def _snake_case ( self ): """simple docstring""" pass class lowerCAmelCase__ ( lowerCamelCase__ ): def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(lowercase__ ) # use this to save your result lowercase_ : List[str] = -1 def _snake_case ( self ): """simple docstring""" if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase__ ( lowerCamelCase__ ): def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(lowercase__ ) lowercase_ : str = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase_ : Dict = [0] * self.verticies_count lowercase_ : str = [0] * self.verticies_count def _snake_case ( self ): """simple docstring""" lowercase_ : str = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase_ : Union[str, Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase_ : List[Any] = 0 while i < len(lowercase__ ): lowercase_ : Tuple = vertices_list[i] lowercase_ : Dict = self.heights[vertex_index] self.process_vertex(lowercase__ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(lowercase__ ) ) lowercase_ : Any = 0 else: i += 1 lowercase_ : str = sum(self.preflow[self.source_index] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(lowercase__ , lowercase__ ) self.relabel(lowercase__ ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Union[str, Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase_ : List[Any] = self.heights[to_index] if min_height is not None: lowercase_ : List[str] = min_height + 1 if __name__ == "__main__": _lowercase : Optional[int] = [0] _lowercase : List[str] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] _lowercase : Optional[int] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network _lowercase : Dict = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate _lowercase : Dict = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
358
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = num_of_nodes lowercase_ : list[list[int]] = [] lowercase_ : dict[int, int] = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowercase_ : Optional[int] = self.find_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowercase_ : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(__SCREAMING_SNAKE_CASE ) elif component_size[u_node] >= component_size[v_node]: lowercase_ : int = self.find_component(__SCREAMING_SNAKE_CASE ) component_size[u_node] += component_size[v_node] self.set_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = [] lowercase_ : Optional[Any] = 0 lowercase_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowercase_ : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase_ , lowercase_ , lowercase_ : List[Any] = edge lowercase_ : Dict = self.m_component[u] lowercase_ : Any = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase_ : Union[str, Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ , lowercase_ : str = edge lowercase_ : Tuple = self.m_component[u] lowercase_ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 lowercase_ : str = [-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
264
0
'''simple docstring''' from math import pow def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowerCAmelCase__ : Optional[int] = int(pow(UpperCamelCase , UpperCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = backtrack( UpperCamelCase , UpperCamelCase , current_number + 1 , UpperCamelCase , UpperCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowerCAmelCase__ , lowerCAmelCase__ : Tuple = backtrack( UpperCamelCase , UpperCamelCase , current_number + 1 , UpperCamelCase , UpperCamelCase ) return current_sum, solutions_count def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(UpperCamelCase , UpperCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = abs(UpperCamelCase ) lowerCAmelCase__ : List[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = abs(UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return sum(int(UpperCamelCase ) for c in str(abs(UpperCamelCase ) ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase , UpperCamelCase ) -> None: lowerCAmelCase__ : str = f"""{func.__name__}({value})""" lowerCAmelCase__ : str = timeit(f"""__main__.{call}""" , setup="""import __main__""" ) print(f"""{call:56} = {func(UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCamelCase , UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
37
1
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase__ ): '''simple docstring''' __snake_case = ["sentencepiece"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''sentencepiece'''] )
267
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): snake_case_ = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None snake_case_ , snake_case_ = get_aligned_output_features_output_indices(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''c'''] ) self.assertEqual(_UpperCAmelCase , [2] ) # Out indices set to match out features snake_case_ , snake_case_ = get_aligned_output_features_output_indices(['''a''', '''c'''] , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''a''', '''c'''] ) self.assertEqual(_UpperCAmelCase , [0, 2] ) # Out features set to match out indices snake_case_ , snake_case_ = get_aligned_output_features_output_indices(_UpperCAmelCase , [0, 2] , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''a''', '''c'''] ) self.assertEqual(_UpperCAmelCase , [0, 2] ) # Out features selected from negative indices snake_case_ , snake_case_ = get_aligned_output_features_output_indices(_UpperCAmelCase , [-3, -1] , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''a''', '''c'''] ) self.assertEqual(_UpperCAmelCase , [-3, -1] ) def UpperCamelCase__ ( self ): # Stage names must be set with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , _UpperCAmelCase ) # Out features must be a list with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(_UpperCAmelCase , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(_UpperCAmelCase , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def UpperCamelCase__ ( self ): snake_case_ = BackboneMixin() snake_case_ = ['''a''', '''b''', '''c'''] snake_case_ = ['''a''', '''c'''] snake_case_ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly snake_case_ = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) snake_case_ = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
267
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase_ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def _A ( lowercase , lowercase , lowercase ): """simple docstring""" a =state_dict.pop(lowercase ) a =val def _A ( lowercase ): """simple docstring""" a =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: a =key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) a =value else: a =value return new_state_dict def _A ( lowercase , lowercase=False ): """simple docstring""" a ='''''' if is_panoptic: a ='''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a =state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a =state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a =in_proj_weight[:2_56, :] a =in_proj_bias[:2_56] a =in_proj_weight[2_56:5_12, :] a =in_proj_bias[2_56:5_12] a =in_proj_weight[-2_56:, :] a =in_proj_bias[-2_56:] def _A ( ): """simple docstring""" a ='''http://images.cocodataset.org/val2017/000000039769.jpg''' a =Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _A ( lowercase , lowercase ): """simple docstring""" a =ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: a ='''resnet101''' if "dc5" in model_name: a =True a ='''panoptic''' in model_name if is_panoptic: a =2_50 else: a =91 a ='''huggingface/label-files''' a ='''coco-detection-id2label.json''' a =json.load(open(hf_hub_download(lowercase , lowercase , repo_type='''dataset''' ) , '''r''' ) ) a ={int(lowercase ): v for k, v in idalabel.items()} a =idalabel a ={v: k for k, v in idalabel.items()} # load image processor a ='''coco_panoptic''' if is_panoptic else '''coco_detection''' a =ConditionalDetrImageProcessor(format=lowercase ) # prepare image a =prepare_img() a =image_processor(images=lowercase , return_tensors='''pt''' ) a =encoding['''pixel_values'''] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub a =torch.hub.load('''DeppMeng/ConditionalDETR''' , lowercase , pretrained=lowercase ).eval() a =conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: a ='''conditional_detr.''' + src rename_key(lowercase , lowercase , lowercase ) a =rename_backbone_keys(lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase , is_panoptic=lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a ='''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): a =state_dict.pop(lowercase ) a =val elif "class_labels_classifier" in key or "bbox_predictor" in key: a =state_dict.pop(lowercase ) a =val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: a =state_dict.pop(lowercase ) a =val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): a =state_dict.pop(lowercase ) a =val # finally, create HuggingFace model and load state dict a =ConditionalDetrForSegmentation(lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase ) model.load_state_dict(lowercase ) model.eval() model.push_to_hub(repo_id=lowercase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion a =conditional_detr(lowercase ) a =model(lowercase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ : str = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
81
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowercase = logging.get_logger(__name__) __lowercase = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = """deformable_detr""" a__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __lowercase=True , __lowercase=None , __lowercase=3 , __lowercase=300 , __lowercase=1_024 , __lowercase=6 , __lowercase=1_024 , __lowercase=8 , __lowercase=6 , __lowercase=1_024 , __lowercase=8 , __lowercase=0.0 , __lowercase=True , __lowercase="relu" , __lowercase=256 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=1.0 , __lowercase=True , __lowercase=False , __lowercase="sine" , __lowercase="resnet50" , __lowercase=True , __lowercase=False , __lowercase=4 , __lowercase=4 , __lowercase=4 , __lowercase=False , __lowercase=300 , __lowercase=False , __lowercase=1 , __lowercase=5 , __lowercase=2 , __lowercase=1 , __lowercase=1 , __lowercase=5 , __lowercase=2 , __lowercase=0.1 , __lowercase=0.25 , __lowercase=False , **__lowercase , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') __UpperCamelCase :str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__lowercase , __lowercase): __UpperCamelCase :str = backbone_config.get('''model_type''') __UpperCamelCase :Tuple = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase :Any = config_class.from_dict(__lowercase) __UpperCamelCase :int = use_timm_backbone __UpperCamelCase :Dict = backbone_config __UpperCamelCase :Any = num_channels __UpperCamelCase :Optional[int] = num_queries __UpperCamelCase :Any = max_position_embeddings __UpperCamelCase :str = d_model __UpperCamelCase :Tuple = encoder_ffn_dim __UpperCamelCase :Union[str, Any] = encoder_layers __UpperCamelCase :List[Any] = encoder_attention_heads __UpperCamelCase :Any = decoder_ffn_dim __UpperCamelCase :List[str] = decoder_layers __UpperCamelCase :int = decoder_attention_heads __UpperCamelCase :str = dropout __UpperCamelCase :Any = attention_dropout __UpperCamelCase :int = activation_dropout __UpperCamelCase :List[Any] = activation_function __UpperCamelCase :List[Any] = init_std __UpperCamelCase :List[Any] = init_xavier_std __UpperCamelCase :int = encoder_layerdrop __UpperCamelCase :str = auxiliary_loss __UpperCamelCase :Optional[Any] = position_embedding_type __UpperCamelCase :Union[str, Any] = backbone __UpperCamelCase :Any = use_pretrained_backbone __UpperCamelCase :str = dilation # deformable attributes __UpperCamelCase :Optional[Any] = num_feature_levels __UpperCamelCase :str = encoder_n_points __UpperCamelCase :int = decoder_n_points __UpperCamelCase :Union[str, Any] = two_stage __UpperCamelCase :Optional[Any] = two_stage_num_proposals __UpperCamelCase :Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''') # Hungarian matcher __UpperCamelCase :Optional[int] = class_cost __UpperCamelCase :List[Any] = bbox_cost __UpperCamelCase :str = giou_cost # Loss coefficients __UpperCamelCase :Tuple = mask_loss_coefficient __UpperCamelCase :Tuple = dice_loss_coefficient __UpperCamelCase :int = bbox_loss_coefficient __UpperCamelCase :Any = giou_loss_coefficient __UpperCamelCase :Dict = eos_coefficient __UpperCamelCase :Optional[Any] = focal_alpha __UpperCamelCase :Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=__lowercase , **__lowercase) @property def UpperCamelCase__ ( self) -> int: return self.encoder_attention_heads @property def UpperCamelCase__ ( self) -> int: return self.d_model def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Dict = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __UpperCamelCase :Tuple = self.backbone_config.to_dict() __UpperCamelCase :List[Any] = self.__class__.model_type return output
43
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __a : __snake_case : Optional[Any] = PegasusConfig __snake_case : List[str] = {} __snake_case : Dict = """gelu""" def __init__( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : str=20 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=1 , UpperCAmelCase : Union[str, Any]=0 , ): lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Any = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Union[str, Any] = is_training lowerCAmelCase_ : Any = use_labels lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Optional[Any] = eos_token_id lowerCAmelCase_ : List[Any] = pad_token_id lowerCAmelCase_ : Any = bos_token_id def A ( self : int ): lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCAmelCase_ : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ : List[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase_ : List[str] = prepare_pegasus_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def A ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Dict ): lowerCAmelCase_ : Optional[Any] = 20 lowerCAmelCase_ : int = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : str = model.encode(inputs_dict["""input_ids"""] ) lowerCAmelCase_ , lowerCAmelCase_ : Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCAmelCase_ : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model.decode(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = 20 lowerCAmelCase_ : Union[str, Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : List[str] = model.encode(inputs_dict["""input_ids"""] ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCAmelCase_ : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase_ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase_ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) lowerCAmelCase_ : str = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase ) lowerCAmelCase_ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any , lowercase__ : Union[str, Any]=None , lowercase__ : Any=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: lowerCAmelCase_ : List[Any] = np.not_equal(lowercase__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCAmelCase_ : Tuple = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : Tuple = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __snake_case : List[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __snake_case : List[str] = True __snake_case : Tuple = False __snake_case : List[Any] = False __snake_case : str = False def A ( self : Dict ): lowerCAmelCase_ : Union[str, Any] = FlaxPegasusModelTester(self ) lowerCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase ) def A ( self : Optional[int] ): self.config_tester.run_common_tests() def A ( self : str ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Optional[int] ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_ : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase ) @jax.jit def encode_jitted(UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Union[str, Any] ): return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): lowerCAmelCase_ : List[str] = encode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCAmelCase_ : Optional[int] = encode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def A ( self : int ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_ : Union[str, Any] = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) lowerCAmelCase_ : Union[str, Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ): return model.decode( decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , ) with self.subTest("""JIT Enabled""" ): lowerCAmelCase_ : Union[str, Any] = decode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCAmelCase_ : Tuple = decode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A ( self : List[str] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Dict = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCAmelCase ) lowerCAmelCase_ : List[str] = np.ones((1, 1) ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @slow def A ( self : int ): lowerCAmelCase_ : Tuple = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) lowerCAmelCase_ : Optional[Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) lowerCAmelCase_ : str = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowerCAmelCase_ : int = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowerCAmelCase_ : Any = tokenizer(UpperCAmelCase , return_tensors="""np""" , truncation=UpperCAmelCase , max_length=5_12 , padding=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = model.generate(**UpperCAmelCase , num_beams=2 ).sequences lowerCAmelCase_ : List[str] = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) assert tgt_text == decoded
28
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
1
from collections import namedtuple import requests from lxml import html # type: ignore __UpperCAmelCase : Tuple = namedtuple("covid_data", "cases deaths recovered") def A__ ( SCREAMING_SNAKE_CASE__ = "https://www.worldometers.info/coronavirus/") -> covid_data: __snake_case: Optional[int] = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(SCREAMING_SNAKE_CASE__).content).xpath(SCREAMING_SNAKE_CASE__)) __UpperCAmelCase : Any = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
111
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """token-classification""" def __init__( self : Union[str, Any] , A : List[Any] ): if type(A ) == dict: __snake_case: str = Namespace(**A ) __snake_case: str = import_module("""tasks""" ) try: __snake_case: Tuple = getattr(A , hparams.task_type ) __snake_case: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) __snake_case: Optional[int] = self.token_classification_task.get_labels(hparams.labels ) __snake_case: str = CrossEntropyLoss().ignore_index super().__init__(A , len(self.labels ) , self.mode ) def UpperCAmelCase__ ( self : Union[str, Any] , **A : Union[str, Any] ): return self.model(**A ) def UpperCAmelCase__ ( self : Any , A : Optional[int] , A : str ): __snake_case: str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case: List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case: Any = self(**A ) __snake_case: Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCAmelCase__ ( self : List[str] ): __snake_case: Tuple = self.hparams for mode in ["train", "dev", "test"]: __snake_case: Union[str, Any] = self._feature_file(A ) if os.path.exists(A ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , A ) __snake_case: Tuple = torch.load(A ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __snake_case: List[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , A ) __snake_case: Optional[int] = self.token_classification_task.convert_examples_to_features( A , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , A ) torch.save(A , A ) def UpperCAmelCase__ ( self : List[str] , A : int , A : int , A : bool = False ): __snake_case: List[str] = self._feature_file(A ) logger.info("""Loading features from cached file %s""" , A ) __snake_case: int = torch.load(A ) __snake_case: Optional[int] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case: Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __snake_case: Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __snake_case: Tuple = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __snake_case: Optional[int] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(A , A , A , A ) , batch_size=A ) def UpperCAmelCase__ ( self : Tuple , A : Optional[Any] , A : int ): """Compute validation""" "" __snake_case: List[str] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case: Union[str, Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case: List[str] = self(**A ) __snake_case , __snake_case: int = outputs[:2] __snake_case: List[str] = logits.detach().cpu().numpy() __snake_case: Any = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCAmelCase__ ( self : Dict , A : Dict ): __snake_case: Union[str, Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() __snake_case: Tuple = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) __snake_case: List[str] = np.argmax(A , axis=2 ) __snake_case: Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __snake_case: Tuple = dict(enumerate(self.labels ) ) __snake_case: Dict = [[] for _ in range(out_label_ids.shape[0] )] __snake_case: Tuple = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __snake_case: Dict = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(A , A ), """precision""": precision_score(A , A ), """recall""": recall_score(A , A ), """f1""": fa_score(A , A ), } __snake_case: Dict = dict(results.items() ) __snake_case: Dict = results return ret, preds_list, out_label_list def UpperCAmelCase__ ( self : Tuple , A : int ): # when stable __snake_case , __snake_case , __snake_case: List[str] = self._eval_end(A ) __snake_case: int = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCAmelCase__ ( self : Dict , A : Optional[int] ): # updating to test_epoch_end instead of deprecated test_end __snake_case , __snake_case , __snake_case: int = self._eval_end(A ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __snake_case: List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCAmelCase__ ( A : Any , A : int ): # Add NER specific options BaseTransformer.add_model_specific_args(A , A ) parser.add_argument( """--task_type""" , default="""NER""" , type=A , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=A , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=A , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": __UpperCAmelCase : Tuple = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCAmelCase : Tuple = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase : List[str] = parser.parse_args() __UpperCAmelCase : Optional[int] = NERTransformer(args) __UpperCAmelCase : Tuple = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) __UpperCAmelCase : Any = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
111
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') _A : Optional[Any] = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : _UpperCAmelCase : Optional[int] = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase : Tuple = field( default=lowerCAmelCase_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase : Optional[int] = field( default=lowerCAmelCase_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase : List[str] = field( default=lowerCAmelCase_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) _UpperCAmelCase : Tuple = field( default=lowerCAmelCase_ ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) _UpperCAmelCase : Dict = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) _UpperCAmelCase : Dict = field( default=lowerCAmelCase_ ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) @dataclass class __SCREAMING_SNAKE_CASE : _UpperCAmelCase : Dict = field(default=lowerCAmelCase_ ,metadata={"help": "The input training data file (a text file)."} ) _UpperCAmelCase : Optional[Any] = field( default=lowerCAmelCase_ ,metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} ,) _UpperCAmelCase : Any = field( default=lowerCAmelCase_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) _UpperCAmelCase : Optional[int] = field( default=lowerCAmelCase_ ,metadata={"help": "The number of processes to use for the preprocessing."} ,) _UpperCAmelCase : int = field( default=lowerCAmelCase_ ,metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) _UpperCAmelCase : List[Any] = field( default=lowerCAmelCase_ ,metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } ,) _UpperCAmelCase : Optional[int] = field( default=lowerCAmelCase_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) _UpperCAmelCase : Optional[int] = field( default=lowerCAmelCase_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) def __lowerCamelCase ( self : Optional[int] ) ->List[Any]: if self.train_file is not None: lowerCamelCase__ : List[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase__ : Optional[int] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : _UpperCAmelCase : List[str] = 4_2 _UpperCAmelCase : List[Any] = True _UpperCAmelCase : str = None _UpperCAmelCase : Dict = None def __call__( self : Union[str, Any] , A : Any ) ->Optional[int]: lowerCamelCase__ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase__ : Optional[Any] = [feature.pop(__A ) for feature in features] lowerCamelCase__ : str = len(__A ) lowerCamelCase__ : Any = len(features[0]['''input_ids'''] ) lowerCamelCase__ : List[str] = [ [{k: v[i] for k, v in feature.items()} for i in range(__A )] for feature in features ] lowerCamelCase__ : Any = list(chain(*__A ) ) lowerCamelCase__ : List[str] = self.tokenizer.pad( __A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase__ : Dict = {k: v.view(__A , __A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase__ : Dict = torch.tensor(__A , dtype=torch.intaa ) return batch def _a ( ) -> Any: """simple docstring""" lowerCamelCase__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ : str = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase__ : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase__ : Optional[int] = {} if data_args.train_file is not None: lowerCamelCase__ : Optional[Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase__ : Optional[Any] = data_args.validation_file lowerCamelCase__ : Tuple = data_args.train_file.split('''.''' )[-1] lowerCamelCase__ : Union[str, Any] = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase__ : List[str] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : Any = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase__ : List[Any] = [f"ending{i}" for i in range(4 )] lowerCamelCase__ : Union[str, Any] = '''sent1''' lowerCamelCase__ : Optional[int] = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase__ : Optional[int] = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase__ : int = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase__ : List[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = [[context] * 4 for context in examples[context_name]] lowerCamelCase__ : Optional[Any] = examples[question_header_name] lowerCamelCase__ : Tuple = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase__ : Optional[int] = list(chain(*_lowercase ) ) lowerCamelCase__ : str = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase__ : int = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase__ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase__ : Union[str, Any] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase__ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase__ : Optional[Any] = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase__ : Any = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase__ : int = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase__ : str = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase__ : int = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase__ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCAmelCase ): lowerCamelCase__ , lowerCamelCase__ : int = eval_predictions lowerCamelCase__ : List[str] = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase__ : List[Any] = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase__ : List[str] = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : Optional[Any] = last_checkpoint lowerCamelCase__ : List[Any] = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase__ : int = train_result.metrics lowerCamelCase__ : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase__ : Optional[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase__ : str = trainer.evaluate() lowerCamelCase__ : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase__ : Any = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase__ : str = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" main() if __name__ == "__main__": main()
359
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _a ( *UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=True , UpperCAmelCase=2 ) -> str: """simple docstring""" from .. import __version__ lowerCamelCase__ : Optional[Any] = take_from lowerCamelCase__ : Any = () if not isinstance(args[0] , UpperCAmelCase ): lowerCamelCase__ : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCAmelCase ).base_version ) >= version.parse(UpperCAmelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowerCamelCase__ : List[Any] = None if isinstance(UpperCAmelCase , UpperCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCAmelCase ),) lowerCamelCase__ : Tuple = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCAmelCase , UpperCAmelCase ): values += (getattr(UpperCAmelCase , UpperCAmelCase ),) lowerCamelCase__ : Union[str, Any] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowerCamelCase__ : int = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowerCamelCase__ : int = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , UpperCAmelCase , stacklevel=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0: lowerCamelCase__ : Tuple = inspect.getouterframes(inspect.currentframe() )[1] lowerCamelCase__ : Optional[Any] = call_frame.filename lowerCamelCase__ : List[Any] = call_frame.lineno lowerCamelCase__ : Optional[Any] = call_frame.function lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCAmelCase ) == 0: return elif len(UpperCAmelCase ) == 1: return values[0] return values
265
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 SCREAMING_SNAKE_CASE_: List[str] =data_utils.TransfoXLTokenizer SCREAMING_SNAKE_CASE_: str =data_utils.TransfoXLCorpus SCREAMING_SNAKE_CASE_: List[str] =data_utils SCREAMING_SNAKE_CASE_: Optional[Any] =data_utils def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int ) -> Optional[Any]: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case_ , "rb" ) as fp: UpperCAmelCase_ = pickle.load(snake_case_ , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCAmelCase_ = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) UpperCAmelCase_ = corpus.vocab.__dict__ torch.save(snake_case_ , snake_case_ ) UpperCAmelCase_ = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , snake_case_ ) UpperCAmelCase_ = pytorch_dump_folder_path + "/" + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(snake_case_ , snake_case_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCAmelCase_ = os.path.abspath(snake_case_ ) UpperCAmelCase_ = os.path.abspath(snake_case_ ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCAmelCase_ = TransfoXLConfig() else: UpperCAmelCase_ = TransfoXLConfig.from_json_file(snake_case_ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ = TransfoXLLMHeadModel(snake_case_ ) UpperCAmelCase_ = load_tf_weights_in_transfo_xl(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model UpperCAmelCase_ = os.path.join(snake_case_ , snake_case_ ) UpperCAmelCase_ = os.path.join(snake_case_ , snake_case_ ) print(f"""Save PyTorch model to {os.path.abspath(snake_case_ )}""" ) torch.save(model.state_dict() , snake_case_ ) print(f"""Save configuration file to {os.path.abspath(snake_case_ )}""" ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: str =argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) SCREAMING_SNAKE_CASE_: Dict =parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : Tuple =logging.get_logger(__name__) lowerCamelCase : Optional[Any] ={ '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class __a ( A__ ): _lowerCAmelCase : Optional[Any] = '''conditional_detr''' _lowerCAmelCase : List[Any] = ['''past_key_values'''] _lowerCAmelCase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : str , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : Any=3_00 , SCREAMING_SNAKE_CASE : Tuple=6 , SCREAMING_SNAKE_CASE : int=20_48 , SCREAMING_SNAKE_CASE : Union[str, Any]=8 , SCREAMING_SNAKE_CASE : int=6 , SCREAMING_SNAKE_CASE : Dict=20_48 , SCREAMING_SNAKE_CASE : Optional[int]=8 , SCREAMING_SNAKE_CASE : Dict=0.0 , SCREAMING_SNAKE_CASE : List[Any]=0.0 , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : int="relu" , SCREAMING_SNAKE_CASE : Any=2_56 , SCREAMING_SNAKE_CASE : int=0.1 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=0.0 , SCREAMING_SNAKE_CASE : List[str]=0.0_2 , SCREAMING_SNAKE_CASE : Optional[int]=1.0 , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : int="sine" , SCREAMING_SNAKE_CASE : str="resnet50" , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Tuple=2 , SCREAMING_SNAKE_CASE : Tuple=5 , SCREAMING_SNAKE_CASE : List[str]=2 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : Optional[Any]=1 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : int=2 , SCREAMING_SNAKE_CASE : List[Any]=0.2_5 , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase__ : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Union[str, Any] = backbone_config.get("model_type" ) UpperCamelCase__ : Tuple = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ : Any = config_class.from_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = use_timm_backbone UpperCamelCase__ : List[Any] = backbone_config UpperCamelCase__ : Tuple = num_channels UpperCamelCase__ : List[Any] = num_queries UpperCamelCase__ : Dict = d_model UpperCamelCase__ : Any = encoder_ffn_dim UpperCamelCase__ : List[str] = encoder_layers UpperCamelCase__ : List[str] = encoder_attention_heads UpperCamelCase__ : Optional[int] = decoder_ffn_dim UpperCamelCase__ : str = decoder_layers UpperCamelCase__ : Optional[Any] = decoder_attention_heads UpperCamelCase__ : int = dropout UpperCamelCase__ : Optional[int] = attention_dropout UpperCamelCase__ : Any = activation_dropout UpperCamelCase__ : int = activation_function UpperCamelCase__ : int = init_std UpperCamelCase__ : List[Any] = init_xavier_std UpperCamelCase__ : List[str] = encoder_layerdrop UpperCamelCase__ : List[Any] = decoder_layerdrop UpperCamelCase__ : List[Any] = encoder_layers UpperCamelCase__ : Optional[Any] = auxiliary_loss UpperCamelCase__ : List[str] = position_embedding_type UpperCamelCase__ : Optional[Any] = backbone UpperCamelCase__ : Optional[int] = use_pretrained_backbone UpperCamelCase__ : List[Any] = dilation # Hungarian matcher UpperCamelCase__ : List[str] = class_cost UpperCamelCase__ : Union[str, Any] = bbox_cost UpperCamelCase__ : int = giou_cost # Loss coefficients UpperCamelCase__ : str = mask_loss_coefficient UpperCamelCase__ : List[Any] = dice_loss_coefficient UpperCamelCase__ : int = cls_loss_coefficient UpperCamelCase__ : Tuple = bbox_loss_coefficient UpperCamelCase__ : Any = giou_loss_coefficient UpperCamelCase__ : List[Any] = focal_alpha super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return self.encoder_attention_heads @property def __lowercase ( self : Tuple ): '''simple docstring''' return self.d_model def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Any = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__ : List[str] = self.backbone_config.to_dict() UpperCamelCase__ : int = self.__class__.model_type return output class __a ( A__ ): _lowerCAmelCase : Tuple = version.parse('''1.11''' ) @property def __lowercase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __lowercase ( self : Tuple ): '''simple docstring''' return 1e-5 @property def __lowercase ( self : List[str] ): '''simple docstring''' return 12
189
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : List[str] ={ "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] =["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : str =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
123
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = (PNDMScheduler,) __lowercase = (("""num_inference_steps""", 50),) def UpperCAmelCase_ ( self :List[str] , **lowercase_ :Optional[int] )-> List[str]: A__ = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCAmelCase_ ( self :int , lowercase_ :Optional[int]=0 , **lowercase_ :Any )-> int: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A__ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self :List[Any] )-> Tuple: pass def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Optional[Any]=0 , **lowercase_ :List[str] )-> str: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A__ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self :Optional[int] , **lowercase_ :Dict )-> Optional[int]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCAmelCase_ ( self :int )-> Union[str, Any]: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): A__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample A__ = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A__ = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample A__ = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self :Any )-> Dict: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(steps_offset=1 ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def UpperCAmelCase_ ( self :Optional[Any] )-> Any: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCAmelCase_ ( self :Tuple )-> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] )-> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Optional[int]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> str: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 A__ = 27 for scheduler_class in self.scheduler_classes: A__ = self.dummy_sample A__ = 0.1 * sample A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCAmelCase_ ( self :List[str] )-> str: with self.assertRaises(lowercase_ ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase_ ( self :int )-> str: A__ = self.full_loop() A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1E-3 def UpperCAmelCase_ ( self :Optional[Any] )-> List[Any]: A__ = self.full_loop(prediction_type="v_prediction" ) A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1E-3 def UpperCAmelCase_ ( self :Tuple )-> Tuple: # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.0_1 ) A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1E-3 def UpperCAmelCase_ ( self :Dict )-> Any: # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.0_1 ) A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1E-3
123
1
'''simple docstring''' class lowercase__ : def __init__( self : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : int = name _UpperCamelCase : Optional[int] = value _UpperCamelCase : Tuple = weight def __repr__( self : Optional[int] ): '''simple docstring''' return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.value def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.name def UpperCamelCase_ ( self : int ): '''simple docstring''' return self.weight def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.value / self.weight def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : str = [] for i in range(len(UpperCAmelCase_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = sorted(UpperCAmelCase_ , key=UpperCAmelCase_ , reverse=UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase , _UpperCamelCase : List[Any] = 0.0, 0.0 for i in range(len(UpperCAmelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
83
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : int = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class lowercase__ ( lowercase ): lowercase__ = """xlm-prophetnet""" lowercase__ = ["""past_key_values"""] lowercase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : Optional[int] ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[Union[str, Callable]] = "gelu" ,lowerCamelCase__ : Optional[int] = 30522 ,lowerCamelCase__ : Optional[int] = 1024 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[int] = 512 ,lowerCamelCase__ : Optional[float] = 0.0_2 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 2 ,lowerCamelCase__ : Optional[int] = 32 ,lowerCamelCase__ : Optional[int] = 128 ,lowerCamelCase__ : Optional[bool] = False ,lowerCamelCase__ : Optional[float] = 0.0 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 1 ,lowerCamelCase__ : Optional[int] = 2 ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : str = encoder_ffn_dim _UpperCamelCase : List[Any] = num_encoder_layers _UpperCamelCase : Tuple = num_encoder_attention_heads _UpperCamelCase : Optional[int] = decoder_ffn_dim _UpperCamelCase : List[Any] = num_decoder_layers _UpperCamelCase : List[Any] = num_decoder_attention_heads _UpperCamelCase : Optional[Any] = max_position_embeddings _UpperCamelCase : str = init_std # Normal(0, this parameter) _UpperCamelCase : List[str] = activation_function # parameters for xlmprophetnet _UpperCamelCase : Tuple = ngram _UpperCamelCase : Optional[Any] = num_buckets _UpperCamelCase : Tuple = relative_max_distance _UpperCamelCase : str = disable_ngram_loss _UpperCamelCase : str = eps # 3 Types of Dropout _UpperCamelCase : Union[str, Any] = attention_dropout _UpperCamelCase : str = activation_dropout _UpperCamelCase : List[str] = dropout _UpperCamelCase : Tuple = use_cache super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,add_cross_attention=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
83
1
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1024 ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = [], [] __SCREAMING_SNAKE_CASE = list(zip(UpperCamelCase_ , UpperCamelCase_ ) ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = sorted_examples[0] def is_too_big(UpperCamelCase_ ): return tok(UpperCamelCase_ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __SCREAMING_SNAKE_CASE = new_src + """ """ + src __SCREAMING_SNAKE_CASE = new_tgt + """ """ + tgt if is_too_big(UpperCamelCase_ ) or is_too_big(UpperCamelCase_ ): # cant fit, finalize example finished_src.append(UpperCamelCase_ ) finished_tgt.append(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = src, tgt else: # can fit, keep adding __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCamelCase_ ) finished_tgt.append(UpperCamelCase_ ) return finished_src, finished_tgt def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = Path(UpperCamelCase_ ) save_path.mkdir(exist_ok=UpperCamelCase_ ) for split in ["train"]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = data_dir / f"{split}.source", data_dir / f"{split}.target" __SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()] __SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = pack_examples(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print(f"packed {split} split from {len(UpperCamelCase_ )} examples -> {len(UpperCamelCase_ )}." ) Path(save_path / f"{split}.source" ).open("""w""" ).write("""\n""".join(UpperCamelCase_ ) ) Path(save_path / f"{split}.target" ).open("""w""" ).write("""\n""".join(UpperCamelCase_ ) ) for split in ["val", "test"]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = data_dir / f"{split}.source", data_dir / f"{split}.target" shutil.copyfile(UpperCamelCase_ , save_path / f"{split}.source" ) shutil.copyfile(UpperCamelCase_ , save_path / f"{split}.target" ) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=UpperCamelCase_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=UpperCamelCase_ , default=128 ) parser.add_argument("""--data_dir""" , type=UpperCamelCase_ ) parser.add_argument("""--save_path""" , type=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCamelCase_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
255
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __magic_name__ = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = {} state_dict.pop("""pixel_mean""" , UpperCamelCase_ ) state_dict.pop("""pixel_std""" , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __SCREAMING_SNAKE_CASE = key.replace(UpperCamelCase_ , UpperCamelCase_ ) if re.match(UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = int(re.match(UpperCamelCase_ , UpperCamelCase_ ).group(2 ) ) if layer_nb == 0: __SCREAMING_SNAKE_CASE = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: __SCREAMING_SNAKE_CASE = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: __SCREAMING_SNAKE_CASE = key.replace("""layers.2""" , """proj_out""" ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="ybelkada/segment-anything" ): __SCREAMING_SNAKE_CASE = hf_hub_download(UpperCamelCase_ , f"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: __SCREAMING_SNAKE_CASE = SamConfig() elif "sam_vit_l" in model_name: __SCREAMING_SNAKE_CASE = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __SCREAMING_SNAKE_CASE = SamConfig( vision_config=UpperCamelCase_ , ) elif "sam_vit_h" in model_name: __SCREAMING_SNAKE_CASE = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __SCREAMING_SNAKE_CASE = SamConfig( vision_config=UpperCamelCase_ , ) __SCREAMING_SNAKE_CASE = torch.load(UpperCamelCase_ , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = replace_keys(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = SamImageProcessor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = SamModel(UpperCamelCase_ ) hf_model.load_state_dict(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = hf_model.to("""cuda""" ) __SCREAMING_SNAKE_CASE = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("""RGB""" ) __SCREAMING_SNAKE_CASE = [[[400, 650]]] __SCREAMING_SNAKE_CASE = [[1]] __SCREAMING_SNAKE_CASE = processor(images=np.array(UpperCamelCase_ ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = hf_model(**UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 __SCREAMING_SNAKE_CASE = processor( images=np.array(UpperCamelCase_ ) , input_points=UpperCamelCase_ , input_labels=UpperCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = hf_model(**UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 __SCREAMING_SNAKE_CASE = ((75, 275, 1725, 850),) __SCREAMING_SNAKE_CASE = processor(images=np.array(UpperCamelCase_ ) , input_boxes=UpperCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = hf_model(**UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. __SCREAMING_SNAKE_CASE = [[[400, 650], [800, 650]]] __SCREAMING_SNAKE_CASE = [[1, 1]] __SCREAMING_SNAKE_CASE = processor( images=np.array(UpperCamelCase_ ) , input_points=UpperCamelCase_ , input_labels=UpperCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = hf_model(**UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() __magic_name__ = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __magic_name__ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
255
1
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "data2vec-audio" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=768 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3_072 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1E-5 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __SCREAMING_SNAKE_CASE : List[Any]=(5, 2, 2, 2, 2, 2, 2) , __SCREAMING_SNAKE_CASE : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=19 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : int=0.05 , __SCREAMING_SNAKE_CASE : Dict=10 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=10 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : List[str]="sum" , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=256 , __SCREAMING_SNAKE_CASE : Dict=(512, 512, 512, 512, 1_500) , __SCREAMING_SNAKE_CASE : str=(5, 3, 3, 1, 1) , __SCREAMING_SNAKE_CASE : Optional[int]=(1, 2, 3, 1, 1) , __SCREAMING_SNAKE_CASE : Any=512 , __SCREAMING_SNAKE_CASE : List[Any]=0 , __SCREAMING_SNAKE_CASE : List[str]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> str: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = list(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = list(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = conv_pos_kernel_size __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # adapter __SCREAMING_SNAKE_CASE = add_adapter __SCREAMING_SNAKE_CASE = adapter_kernel_size __SCREAMING_SNAKE_CASE = adapter_stride __SCREAMING_SNAKE_CASE = num_adapter_layers __SCREAMING_SNAKE_CASE = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = list(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = list(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = list(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = xvector_output_dim @property def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" return math.prod(self.conv_stride )
267
'''simple docstring''' from __future__ import annotations def a__ ( a__ , a__ , a__ ): """simple docstring""" if len(a__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(a__ ) or left < -len(a__ ) or right >= len(a__ ) or right < -len(a__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __SCREAMING_SNAKE_CASE = (left + right) >> 1 # the middle __SCREAMING_SNAKE_CASE = find_max(a__ , a__ , a__ ) # find max in range[left, mid] __SCREAMING_SNAKE_CASE = find_max(a__ , mid + 1 , a__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
267
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType a_ = logging.get_logger(__name__) a_ = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """layoutlmv3""" def __init__( self : str , __lowercase : Optional[int]=5_02_65 , __lowercase : Any=7_68 , __lowercase : Optional[Any]=12 , __lowercase : Optional[Any]=12 , __lowercase : Union[str, Any]=30_72 , __lowercase : Union[str, Any]="gelu" , __lowercase : Union[str, Any]=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Union[str, Any]=5_12 , __lowercase : Dict=2 , __lowercase : Dict=0.02 , __lowercase : Any=1e-5 , __lowercase : int=1 , __lowercase : Tuple=0 , __lowercase : List[Any]=2 , __lowercase : Optional[int]=10_24 , __lowercase : Any=1_28 , __lowercase : Union[str, Any]=1_28 , __lowercase : Dict=True , __lowercase : Tuple=32 , __lowercase : int=1_28 , __lowercase : int=64 , __lowercase : Optional[Any]=2_56 , __lowercase : Dict=True , __lowercase : Optional[Any]=True , __lowercase : Any=True , __lowercase : Dict=2_24 , __lowercase : Optional[int]=3 , __lowercase : Any=16 , __lowercase : Tuple=None , **__lowercase : int , ) -> Optional[int]: super().__init__( vocab_size=__lowercase , hidden_size=__lowercase , num_hidden_layers=__lowercase , num_attention_heads=__lowercase , intermediate_size=__lowercase , hidden_act=__lowercase , hidden_dropout_prob=__lowercase , attention_probs_dropout_prob=__lowercase , max_position_embeddings=__lowercase , type_vocab_size=__lowercase , initializer_range=__lowercase , layer_norm_eps=__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] =max_ad_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple =coordinate_size SCREAMING_SNAKE_CASE__ : Dict =shape_size SCREAMING_SNAKE_CASE__ : Optional[Any] =has_relative_attention_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] =rel_pos_bins SCREAMING_SNAKE_CASE__ : Tuple =max_rel_pos SCREAMING_SNAKE_CASE__ : str =has_spatial_attention_bias SCREAMING_SNAKE_CASE__ : Optional[Any] =rel_ad_pos_bins SCREAMING_SNAKE_CASE__ : Optional[Any] =max_rel_ad_pos SCREAMING_SNAKE_CASE__ : int =text_embed SCREAMING_SNAKE_CASE__ : Any =visual_embed SCREAMING_SNAKE_CASE__ : Optional[int] =input_size SCREAMING_SNAKE_CASE__ : Dict =num_channels SCREAMING_SNAKE_CASE__ : Dict =patch_size SCREAMING_SNAKE_CASE__ : Optional[Any] =classifier_dropout class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = version.parse("""1.12""" ) @property def __magic_name__ ( self : str ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def __magic_name__ ( self : List[str] ) -> float: return 1e-5 @property def __magic_name__ ( self : Union[str, Any] ) -> int: return 12 def __magic_name__ ( self : Dict , __lowercase : "ProcessorMixin" , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional["TensorType"] = None , __lowercase : int = 3 , __lowercase : int = 40 , __lowercase : int = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , '''apply_ocr''' , __lowercase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Tuple =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : int =processor.tokenizer.num_special_tokens_to_add(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : Optional[Any] =[[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes SCREAMING_SNAKE_CASE__ : Optional[int] =[[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) SCREAMING_SNAKE_CASE__ : List[Any] =self._generate_dummy_images(__lowercase , __lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =dict( processor( __lowercase , text=__lowercase , boxes=__lowercase , return_tensors=__lowercase , ) ) return inputs
222
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } a_ = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } a_ = {'facebook/blenderbot_small-90M': 5_1_2} def _a( UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =set() SCREAMING_SNAKE_CASE__ : Optional[Any] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ : Optional[Any] =char SCREAMING_SNAKE_CASE__ : Any =set(UpperCamelCase__ ) return pairs class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , __lowercase : int , __lowercase : Optional[int] , __lowercase : List[str]="__start__" , __lowercase : Union[str, Any]="__end__" , __lowercase : str="__unk__" , __lowercase : Union[str, Any]="__null__" , **__lowercase : List[str] , ) -> Optional[int]: super().__init__(unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , **__lowercase ) with open(__lowercase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE__ : Any =json.load(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict ={v: k for k, v in self.encoder.items()} with open(__lowercase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ : int =merges_handle.read().split('''\n''' )[1:-1] SCREAMING_SNAKE_CASE__ : List[Any] =[tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE__ : int =dict(zip(__lowercase , range(len(__lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : Dict ={} @property def __magic_name__ ( self : Any ) -> int: return len(self.encoder ) def __magic_name__ ( self : Tuple ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : Optional[Any] , __lowercase : str ) -> str: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ : Union[str, Any] =re.sub('''([.,!?()])''' , r''' \1''' , __lowercase ) SCREAMING_SNAKE_CASE__ : int =re.sub('''(\')''' , r''' \1 ''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Dict =re.sub(r'''\s{2,}''' , ''' ''' , __lowercase ) if "\n" in token: SCREAMING_SNAKE_CASE__ : List[str] =token.replace('''\n''' , ''' __newln__''' ) SCREAMING_SNAKE_CASE__ : Dict =token.split(''' ''' ) SCREAMING_SNAKE_CASE__ : Dict =[] for token in tokens: if not len(__lowercase ): continue SCREAMING_SNAKE_CASE__ : Union[str, Any] =token.lower() SCREAMING_SNAKE_CASE__ : Optional[Any] =tuple(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] =get_pairs(__lowercase ) if not pairs: words.append(__lowercase ) continue while True: SCREAMING_SNAKE_CASE__ : int =min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =bigram SCREAMING_SNAKE_CASE__ : List[Any] =[] SCREAMING_SNAKE_CASE__ : Tuple =0 while i < len(__lowercase ): try: SCREAMING_SNAKE_CASE__ : Optional[Any] =word.index(__lowercase , __lowercase ) new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ : Optional[int] =j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ : int =tuple(__lowercase ) SCREAMING_SNAKE_CASE__ : int =new_word if len(__lowercase ) == 1: break else: SCREAMING_SNAKE_CASE__ : Any =get_pairs(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] ='''@@ '''.join(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =word[:-4] SCREAMING_SNAKE_CASE__ : str =word words.append(__lowercase ) return " ".join(__lowercase ) def __magic_name__ ( self : str , __lowercase : str ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict =[] SCREAMING_SNAKE_CASE__ : List[Any] =re.findall(r'''\S+\n?''' , __lowercase ) for token in words: split_tokens.extend(list(self.bpe(__lowercase ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : List[Any] , __lowercase : str ) -> int: SCREAMING_SNAKE_CASE__ : int =token.lower() return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , __lowercase : int ) -> str: return self.decoder.get(__lowercase , self.unk_token ) def __magic_name__ ( self : List[Any] , __lowercase : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] =''' '''.join(__lowercase ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE__ : str =os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : int =os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' ) SCREAMING_SNAKE_CASE__ : List[str] =0 with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) SCREAMING_SNAKE_CASE__ : Any =token_index writer.write(''' '''.join(__lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file
222
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = [10, 20, 30, 40, 50, 60] _SCREAMING_SNAKE_CASE : List[str] = [2, 4, 6, 8, 10, 12] _SCREAMING_SNAKE_CASE : str = 100 self.assertEqual(kp.calc_profit(__snake_case , __snake_case , __snake_case ) , 210 ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """max_weight must greater than zero.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """Weight can not be negative.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """Profit can not be negative.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """max_weight must greater than zero.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex( __snake_case , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
200
0
from __future__ import annotations import numpy as np def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: SCREAMING_SNAKE_CASE = ( """'table' has to be of square shaped array but got a """ F"""{rows}x{columns} array:\n{table}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) SCREAMING_SNAKE_CASE = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : torch.FloatTensor _UpperCamelCase : torch.FloatTensor _UpperCamelCase : Optional[torch.FloatTensor] = None class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = 2 @register_to_config def __init__( self , a__ = 0.0_2 , a__ = 100 , a__ = 1.0_0_7 , a__ = 80 , a__ = 0.0_5 , a__ = 50 , ): # standard deviation of the initial noise distribution _lowerCAmelCase : Union[str, Any] = sigma_max # setable values _lowerCAmelCase : int = None _lowerCAmelCase : np.IntTensor = None _lowerCAmelCase : torch.FloatTensor = None # sigma(t_i) def __A ( self , a__ , a__ = None ): return sample def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[int] = num_inference_steps _lowerCAmelCase : Any = np.arange(0 , self.num_inference_steps )[::-1].copy() _lowerCAmelCase : int = torch.from_numpy(a__ ).to(a__ ) _lowerCAmelCase : str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _lowerCAmelCase : Dict = torch.tensor(a__ , dtype=torch.floataa , device=a__ ) def __A ( self , a__ , a__ , a__ = None ): if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase : Union[str, Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _lowerCAmelCase : Union[str, Any] = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase : str = self.config.s_noise * randn_tensor(sample.shape , generator=a__ ).to(sample.device ) _lowerCAmelCase : Dict = sigma + gamma * sigma _lowerCAmelCase : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __A ( self , a__ , a__ , a__ , a__ , a__ = True , ): _lowerCAmelCase : Union[str, Any] = sample_hat + sigma_hat * model_output _lowerCAmelCase : List[str] = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase : List[str] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=a__ , derivative=a__ , pred_original_sample=a__ ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ = True , ): _lowerCAmelCase : Tuple = sample_prev + sigma_prev * model_output _lowerCAmelCase : str = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase : Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=a__ , derivative=a__ , pred_original_sample=a__ ) def __A ( self , a__ , a__ , a__ ): raise NotImplementedError()
44
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _a : Union[str, Any] = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex _a : List[str] = 10 _a : List[Any] = 256 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Optional[MinHash]: if len(_lowerCamelCase ) < MIN_NUM_TOKENS: return None _lowerCAmelCase : Optional[Any] = MinHash(num_perm=_lowerCamelCase ) for token in set(_lowerCamelCase ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> Set[str]: return {t for t in NON_ALPHA.split(_lowerCamelCase ) if len(t.strip() ) > 0} class __A : def __init__( self , *, a__ = 0.8_5 , ): _lowerCAmelCase : List[Any] = duplication_jaccard_threshold _lowerCAmelCase : Union[str, Any] = NUM_PERM _lowerCAmelCase : Optional[int] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase : Optional[int] = defaultdict(a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self._index.query(a__ ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(a__ , a__ ) if len(a__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(a__ ) def __A ( self ): _lowerCAmelCase : int = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase : List[str] = [base] + list(a__ ) # reformat the cluster to be a list of dict _lowerCAmelCase : List[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(a__ ) return duplicate_clusters def __A ( self , a__ ): _lowerCAmelCase : Dict = self.get_duplicate_clusters() with open(a__ , """w""" ) as f: json.dump(a__ , a__ ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = element _lowerCAmelCase : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ) -> Optional[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(_lowerCamelCase ,max_queue_size=10000 ) ,chunksize=100 ,): if data is not None: yield data def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ,_lowerCamelCase : float ) -> List[str]: _lowerCAmelCase : Optional[Any] = DuplicationIndex(duplication_jaccard_threshold=_lowerCamelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowerCamelCase ) ) ,max_queue_size=100 ) ): di.add(_lowerCamelCase ,_lowerCamelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> float: _lowerCAmelCase : Any = get_tokens(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = get_tokens(_lowerCamelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _a : str = None def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : List[Any] ) -> Dict: _lowerCAmelCase : int = [] for elementa in cluster: _lowerCAmelCase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _lowerCAmelCase : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_lowerCamelCase ,_lowerCamelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase : Any = 1 extremes.append(_lowerCamelCase ) return extremes def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> str: global _shared_dataset _lowerCAmelCase : Tuple = dataset _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[Any] = partial(_find_cluster_extremes_shared ,jaccard_threshold=_lowerCamelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowerCamelCase ,_lowerCamelCase ,) ,total=len(_lowerCamelCase ) ,): extremes_list.append(_lowerCamelCase ) return extremes_list def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ,_lowerCamelCase : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase : Tuple = make_duplicate_clusters(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : Tuple = find_extremes(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase : Union[str, Any] = element _lowerCAmelCase : List[Any] = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase : List[Any] = dataset.filter(lambda _lowerCamelCase ,_lowerCamelCase : idx not in remove_indices ,with_indices=_lowerCamelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase : Tuple = element["""base_index"""] in extreme_dict if element["is_extreme"]: _lowerCAmelCase : Dict = extreme_dict[element["""base_index"""]]["""copies"""] print(f"Original dataset size: {len(_lowerCamelCase )}" ) print(f"Number of duplicate clusters: {len(_lowerCamelCase )}" ) print(f"Files in duplicate cluster: {len(_lowerCamelCase )}" ) print(f"Unique files in duplicate cluster: {len(_lowerCamelCase )}" ) print(f"Filtered dataset size: {len(_lowerCamelCase )}" ) return ds_filter, duplicate_clusters
44
1
"""simple docstring""" from __future__ import annotations class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' A_ : List[str] = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(_SCREAMING_SNAKE_CASE ) != 0: A_ : Union[str, Any] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_SCREAMING_SNAKE_CASE ) != cols: raise error for value in row: if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): raise error A_ : int = rows else: A_ : Union[str, Any] = [] def _snake_case ( self )->list[list[int]]: '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _snake_case ( self )->int: '''simple docstring''' return len(self.rows ) @property def _snake_case ( self )->int: '''simple docstring''' return len(self.rows[0] ) @property def _snake_case ( self )->tuple[int, int]: '''simple docstring''' return (self.num_rows, self.num_columns) @property def _snake_case ( self )->bool: '''simple docstring''' return self.order[0] == self.order[1] def _snake_case ( self )->Matrix: '''simple docstring''' A_ : Optional[Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->int: '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _snake_case ( self )->bool: '''simple docstring''' return bool(self.determinant() ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : Tuple = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_SCREAMING_SNAKE_CASE ).determinant() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return -1 * self.get_minor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Matrix: '''simple docstring''' return Matrix( [ [self.get_minor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _snake_case ( self )->Matrix: '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _snake_case ( self )->Matrix: '''simple docstring''' A_ : Optional[int] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Matrix: '''simple docstring''' A_ : Dict = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self )->str: '''simple docstring''' return str(self.rows ) def __str__( self )->str: '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(_SCREAMING_SNAKE_CASE ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->None: '''simple docstring''' A_ : Optional[int] = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise type_error for value in row: if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): raise type_error if len(_SCREAMING_SNAKE_CASE ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(_SCREAMING_SNAKE_CASE ) else: A_ : List[str] = self.rows[0:position] + [row] + self.rows[position:] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->None: '''simple docstring''' A_ : Any = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise type_error for value in column: if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): raise type_error if len(_SCREAMING_SNAKE_CASE ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: A_ : Optional[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: A_ : Optional[Any] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , _SCREAMING_SNAKE_CASE )->bool: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return NotImplemented return self.rows == other.rows def __ne__( self , _SCREAMING_SNAKE_CASE )->bool: '''simple docstring''' return not self == other def __neg__( self )->Matrix: '''simple docstring''' return self * -1 def __add__( self , _SCREAMING_SNAKE_CASE )->Matrix: '''simple docstring''' if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , _SCREAMING_SNAKE_CASE )->Matrix: '''simple docstring''' if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , _SCREAMING_SNAKE_CASE )->Matrix: '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self , _SCREAMING_SNAKE_CASE )->Matrix: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) A_ : str = self for _ in range(other - 1 ): result *= self return result @classmethod def _snake_case ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' return sum(row[i] * column[i] for i in range(len(_SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
361
from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if num <= 0: A_ : Optional[int] = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [True] * (num + 1) A_ : Tuple = [] A_ : Union[str, Any] = 2 A_ : Any = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
65
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
def __lowercase ( _UpperCamelCase = 4000000 ) ->int: """simple docstring""" lowercase : int = [] lowercase , lowercase : str = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCamelCase ) lowercase , lowercase : Dict = b, a + b return sum(_UpperCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
337
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a__ ( _SCREAMING_SNAKE_CASE : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def a__ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: """simple docstring""" UpperCAmelCase_ : int = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Predict target for test data UpperCAmelCase_ : str = xgb.predict(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = predictions.reshape(len(_SCREAMING_SNAKE_CASE ) , 1 ) return predictions def a__ ( ) -> None: """simple docstring""" UpperCAmelCase_ : Dict = fetch_california_housing() UpperCAmelCase_ , UpperCAmelCase_ : Dict = data_handling(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = train_test_split( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , test_size=0.25 , random_state=1 ) UpperCAmelCase_ : Dict = xgboost(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}''' ) print(F'''Mean Square Error : {mean_squared_error(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
67
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" if gpta_config_file == "": UpperCAmelCase_ : List[str] = GPTaConfig() else: UpperCAmelCase_ : int = GPTaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = GPTaModel(_SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCAmelCase_ : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase_ : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowerCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
67
1
"""simple docstring""" from __future__ import annotations from math import pi def a__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
108
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =CLIPTokenizer _lowercase =CLIPTokenizerFast _lowercase =True _lowercase ={} _lowercase =False def __a ( self ) -> Dict: super().setUp() # fmt: off lowerCAmelCase_ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase_ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) lowerCAmelCase_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] lowerCAmelCase_ = {"unk_token": "<unk>"} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCamelCase ) ) def __a ( self , **_UpperCamelCase ) -> Any: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __a ( self , **_UpperCamelCase ) -> int: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __a ( self , _UpperCamelCase ) -> List[str]: lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = "lower newer" return input_text, output_text def __a ( self ) -> List[Any]: lowerCAmelCase_ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] lowerCAmelCase_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) @require_ftfy def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase_ = "xa\u0303y" + " " + "x\xe3y" lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase_ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase_ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase_ = f"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , ) lowerCAmelCase_ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) lowerCAmelCase_ = f""" {text}""" lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , ) lowerCAmelCase_ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) def __a ( self ) -> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_UpperCamelCase ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def __a ( self ) -> str: super().test_tokenization_python_rust_equals() def __a ( self ) -> Any: # CLIP always lower cases letters pass
231
0
def __UpperCAmelCase ( snake_case_ : Any ) -> List[str]: """simple docstring""" _lowerCAmelCase = len(snake_case_ ) _lowerCAmelCase = sum(snake_case_ ) _lowerCAmelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _lowerCAmelCase = True for i in range(1 , s + 1 ): _lowerCAmelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _lowerCAmelCase = dp[i][j - 1] if arr[i - 1] <= j: _lowerCAmelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _lowerCAmelCase = s - 2 * j break return diff
357
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _snake_case = logging.getLogger(__name__) def _A ( snake_case , snake_case ) -> List[Any]: # save results if os.path.exists(snake_case ): if os.path.exists(os.path.join(snake_case , "config.json" ) ) and os.path.isfile( os.path.join(snake_case , "config.json" ) ): os.remove(os.path.join(snake_case , "config.json" ) ) if os.path.exists(os.path.join(snake_case , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(snake_case , "pytorch_model.bin" ) ): os.remove(os.path.join(snake_case , "pytorch_model.bin" ) ) else: os.makedirs(snake_case ) model.save_pretrained(snake_case ) def _A ( snake_case , snake_case=False ) -> int: _lowercase : Union[str, Any] = 2 if unlogit: _lowercase : Optional[Any] = torch.pow(snake_case , snake_case ) _lowercase : List[Any] = p * torch.log(snake_case ) _lowercase : str = 0 return -plogp.sum(dim=-1 ) def _A ( snake_case ) -> List[Any]: logger.info("lv, h >\t" + "\t".join(F'''{x + 1}''' for x in range(len(snake_case ) ) ) ) for row in range(len(snake_case ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def _A ( snake_case , snake_case , snake_case , snake_case=True , snake_case=True , snake_case=None , snake_case=False ) -> Optional[int]: _lowercase , _lowercase : Union[str, Any] = model.config.num_hidden_layers, model.config.num_attention_heads _lowercase : Optional[int] = torch.zeros(snake_case , snake_case ).to(args.device ) _lowercase : str = torch.zeros(snake_case , snake_case ).to(args.device ) if head_mask is None: _lowercase : Any = torch.ones(snake_case , snake_case ).to(args.device ) head_mask.requires_grad_(requires_grad=snake_case ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _lowercase : int = None _lowercase : List[str] = 0.0 _lowercase : str = 0.0 for step, inputs in enumerate(tqdm(snake_case , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): _lowercase : Dict = tuple(t.to(args.device ) for t in inputs ) ((_lowercase) , ) : Any = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _lowercase : str = model(snake_case , labels=snake_case , head_mask=snake_case ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _lowercase , _lowercase , _lowercase : Optional[int] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(snake_case ): _lowercase : Optional[int] = entropy(attn.detach() , snake_case ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(snake_case ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _lowercase : List[str] = 2 _lowercase : Dict = torch.pow(torch.pow(snake_case , snake_case ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _lowercase : str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(snake_case ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(snake_case ) logger.info("Head ranked by importance scores" ) _lowercase : Any = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _lowercase : Union[str, Any] = torch.arange( head_importance.numel() , device=args.device ) _lowercase : Optional[Any] = head_ranks.view_as(snake_case ) print_ad_tensor(snake_case ) return attn_entropy, head_importance, total_loss def _A ( snake_case , snake_case , snake_case ) -> Optional[Any]: _lowercase , _lowercase , _lowercase : Union[str, Any] = compute_heads_importance(snake_case , snake_case , snake_case , compute_entropy=snake_case ) _lowercase : int = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , snake_case , original_score * args.masking_threshold ) _lowercase : List[Any] = torch.ones_like(snake_case ) _lowercase : Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _lowercase : Union[str, Any] = original_score while current_score >= original_score * args.masking_threshold: _lowercase : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _lowercase : Dict = float("Inf" ) _lowercase : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(snake_case ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads _lowercase : List[str] = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) _lowercase : int = new_head_mask.view(-1 ) _lowercase : Union[str, Any] = 0.0 _lowercase : Dict = new_head_mask.view_as(snake_case ) _lowercase : str = new_head_mask.clone().detach() print_ad_tensor(snake_case ) # Compute metric and head importance again _lowercase , _lowercase , _lowercase : Any = compute_heads_importance( snake_case , snake_case , snake_case , compute_entropy=snake_case , head_mask=snake_case ) _lowercase : str = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , snake_case , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info("Final head mask" ) print_ad_tensor(snake_case ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def _A ( snake_case , snake_case , snake_case , snake_case ) -> Any: _lowercase : List[Any] = datetime.now() _lowercase , _lowercase , _lowercase : List[Any] = compute_heads_importance( snake_case , snake_case , snake_case , compute_entropy=snake_case , compute_importance=snake_case , head_mask=snake_case ) _lowercase : Tuple = 1 / loss _lowercase : List[Any] = datetime.now() - before_time _lowercase : int = sum(p.numel() for p in model.parameters() ) _lowercase : str = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(snake_case ) ) } for k, v in heads_to_prune.items(): if isinstance(snake_case , snake_case ): _lowercase : Optional[Any] = [ v, ] assert sum(len(snake_case ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(snake_case ) _lowercase : List[str] = sum(p.numel() for p in model.parameters() ) _lowercase : int = datetime.now() _lowercase , _lowercase , _lowercase : Any = compute_heads_importance( snake_case , snake_case , snake_case , compute_entropy=snake_case , compute_importance=snake_case , head_mask=snake_case , actually_pruned=snake_case , ) _lowercase : List[Any] = 1 / loss _lowercase : int = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , snake_case , snake_case , pruned_num_params / original_num_params * 1_00 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , snake_case , snake_case ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 1_00 ) save_model(snake_case , args.output_dir ) def _A ( ) -> int: _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=snake_case , type=snake_case , required=snake_case , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=snake_case , type=snake_case , required=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=snake_case , type=snake_case , required=snake_case , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=snake_case , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=snake_case , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=snake_case , type=snake_case , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=snake_case , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=snake_case , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=snake_case , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=snake_case , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=1_28 , type=snake_case , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=snake_case , help="Batch size." ) parser.add_argument("--seed" , type=snake_case , default=42 ) parser.add_argument("--local_rank" , type=snake_case , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=snake_case , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=snake_case , default="" , help="Can be used for distant debugging." ) _lowercase : Optional[int] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _lowercase : Any = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) _lowercase : Optional[int] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _lowercase : List[Any] = torch.device("cuda" , args.local_rank ) _lowercase : Dict = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _lowercase : List[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _lowercase : str = nn.parallel.DistributedDataParallel( snake_case , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=snake_case ) elif args.n_gpu > 1: _lowercase : Dict = nn.DataParallel(snake_case ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=snake_case ) torch.save(snake_case , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , snake_case ) # Prepare dataset _lowercase : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _lowercase : List[str] = (torch.from_numpy(snake_case ),) _lowercase : Dict = TensorDataset(*snake_case ) _lowercase : List[Any] = RandomSampler(snake_case ) _lowercase : str = DataLoader(snake_case , sampler=snake_case , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(snake_case , snake_case , snake_case ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _lowercase : int = mask_heads(snake_case , snake_case , snake_case ) prune_heads(snake_case , snake_case , snake_case , snake_case ) if __name__ == "__main__": main()
250
0
def UpperCamelCase__( UpperCamelCase__ : str )->str: A__ = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCamelCase__( UpperCamelCase__ : str )->dict[str, str]: A__ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key A__ = remove_duplicates(key.upper() ) A__ = len(UpperCamelCase__ ) # First fill cipher with key characters A__ = {alphabet[i]: char for i, char in enumerate(UpperCamelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCamelCase__ ) , 26 ): A__ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 A__ = alphabet[i - offset] A__ = char return cipher_alphabet def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : dict[str, str] )->str: return "".join(cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : dict[str, str] )->str: A__ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def UpperCamelCase__( )->None: A__ = input('''Enter message to encode or decode: ''' ).strip() A__ = input('''Enter keyword: ''' ).strip() A__ = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: A__ = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) A__ = create_cipher_map(UpperCamelCase__ ) print(func(UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
39
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): # pass variant but use the non-variant filenames A__ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] A__ = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): # pass variant but use the non-variant filenames A__ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] A__ = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) )
39
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase__ = 2_5_0_0_0_4 lowerCAmelCase__ = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = MBartaaTokenizer __lowerCamelCase = MBartaaTokenizerFast __lowerCamelCase = True __lowerCamelCase = True def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = MBartaaTokenizer(lowercase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = "<s>" A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowercase ) , 1054 ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = MBartaaTokenizer(lowercase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=lowercase ) A__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) A__ = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = {"input_ids": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def UpperCamelCase ( self ) -> str: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A__ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) A__ = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(lowercase ) A__ = tokenizer_p.save_pretrained(lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) A__ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowercase , lowercase ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(lowercase ) A__ = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase ) # Save tokenizer rust, legacy_format=True A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(lowercase , legacy_format=lowercase ) A__ = tokenizer_p.save_pretrained(lowercase ) # Checks it save with the same files self.assertSequenceEqual(lowercase , lowercase ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(lowercase ) A__ = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) shutil.rmtree(lowercase ) # Save tokenizer rust, legacy_format=False A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(lowercase , legacy_format=lowercase ) A__ = tokenizer_p.save_pretrained(lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(lowercase ) A__ = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) shutil.rmtree(lowercase ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): """simple docstring""" __lowerCamelCase = 'facebook/mbart-large-50-one-to-many-mmt' __lowerCamelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __lowerCamelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __lowerCamelCase = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def UpperCamelCase ( cls ) -> Tuple: '''simple docstring''' A__ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) A__ = 1 return cls def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 250038 ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase ) def UpperCamelCase ( self ) -> int: '''simple docstring''' self.assertIn(lowercase , self.tokenizer.all_special_ids ) A__ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] A__ = self.tokenizer.decode(lowercase , skip_special_tokens=lowercase ) A__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase ) self.assertEqual(lowercase , lowercase ) self.assertNotIn(self.tokenizer.eos_token , lowercase ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , lowercase ) A__ = 10 A__ = self.tokenizer(lowercase , max_length=lowercase , truncation=lowercase ).input_ids[0] self.assertEqual(ids[0] , lowercase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowercase ) , lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250053, 250001] ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = tempfile.mkdtemp() A__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase ) A__ = MBartaaTokenizer.from_pretrained(lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase ) @require_torch def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase , return_tensors="pt" ) A__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) A__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) A__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = self.tokenizer(self.src_text , padding=lowercase , truncation=lowercase , max_length=3 , return_tensors="pt" ) A__ = self.tokenizer( text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=10 , return_tensors="pt" ) A__ = targets["input_ids"] A__ = shift_tokens_right(lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(lowercase ) , { # en_XX, A, test, EOS "input_ids": [[250004, 62, 3034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, } , )
68
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCAmelCase_ = None UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } UpperCAmelCase_ = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off UpperCAmelCase_ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Dict = VOCAB_FILES_NAMES a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Tuple = ["input_ids", "attention_mask"] a : List[str] = MBartTokenizer a : List[int] = [] a : List[int] = [] def __init__( self, __magic_name__=None, __magic_name__=None, __magic_name__="<s>", __magic_name__="</s>", __magic_name__="</s>", __magic_name__="<s>", __magic_name__="<unk>", __magic_name__="<pad>", __magic_name__="<mask>", __magic_name__=None, __magic_name__=None, __magic_name__=None, **__magic_name__, ) -> Tuple: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(__magic_name__, lstrip=__magic_name__, rstrip=__magic_name__ ) if isinstance(__magic_name__, __magic_name__ ) else mask_token super().__init__( vocab_file=__magic_name__, tokenizer_file=__magic_name__, bos_token=__magic_name__, eos_token=__magic_name__, sep_token=__magic_name__, cls_token=__magic_name__, unk_token=__magic_name__, pad_token=__magic_name__, mask_token=__magic_name__, src_lang=__magic_name__, tgt_lang=__magic_name__, additional_special_tokens=__magic_name__, **__magic_name__, ) UpperCamelCase__ : Dict = vocab_file UpperCamelCase__ : Optional[int] = False if not self.vocab_file else True UpperCamelCase__ : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase__ : Tuple = { lang_code: self.convert_tokens_to_ids(__magic_name__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase__ : Any = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase__ : int = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase__ : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> List[int]: """simple docstring""" UpperCamelCase__ : List[Any] = [self.sep_token_id] UpperCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, **__magic_name__ ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase__ : List[str] = src_lang UpperCamelCase__ : Optional[Any] = self(__magic_name__, add_special_tokens=__magic_name__, return_tensors=__magic_name__, **__magic_name__ ) UpperCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase__ : str = tgt_lang_id return inputs def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = "en_XX", __magic_name__ = None, __magic_name__ = "ro_RO", **__magic_name__, ) -> BatchEncoding: """simple docstring""" UpperCamelCase__ : List[Any] = src_lang UpperCamelCase__ : Any = tgt_lang return super().prepare_seqaseq_batch(__magic_name__, __magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Dict = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : int = [self.eos_token_id, self.cur_lang_code] UpperCamelCase__ : str = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase__ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase__ : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str, pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Optional[int] = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase__ : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase__ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str, pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__magic_name__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return UpperCamelCase__ : Tuple = os.path.join( __magic_name__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file, __magic_name__ ) return (out_vocab_file,)
247
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase__ : List[str] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } UpperCamelCase__ : Dict = Dataset.from_dict(__UpperCAmelCase ) return dataset class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : List[Any] = get_dataset() UpperCamelCase__ : List[str] = make_duplicate_clusters(__magic_name__, 0.85 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[Any] = get_dataset() UpperCamelCase__ ,UpperCamelCase__ : Dict = deduplicate_dataset(__magic_name__ ) self.assertEqual(len(__magic_name__ ), 2 ) print(__magic_name__ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], __magic_name__ )
247
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer A: List[str] = logging.get_logger(__name__) A: str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A: Union[str, Any] = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } A: int = { '''squeezebert/squeezebert-uncased''': 5_1_2, '''squeezebert/squeezebert-mnli''': 5_1_2, '''squeezebert/squeezebert-mnli-headless''': 5_1_2, } A: Tuple = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : str = SqueezeBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase_ ) != tokenize_chinese_chars ): UpperCAmelCase : Optional[int] = getattr(lowercase_ , normalizer_state.pop("""type""" ) ) UpperCAmelCase : List[Any] = do_lower_case UpperCAmelCase : Any = strip_accents UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars UpperCAmelCase : str = normalizer_class(**lowercase_ ) UpperCAmelCase : str = do_lower_case def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : List[Any] = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
264
0
def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = abs(lowercase ) UpperCamelCase = 0 while n > 0: res += n % 10 n //= 10 return res def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = abs(lowercase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A ( lowercase ) -> int: '''simple docstring''' return sum(int(lowercase ) for c in str(abs(lowercase ) ) ) def A ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase , lowercase ) -> None: UpperCamelCase = f'''{func.__name__}({value})''' UpperCamelCase = timeit(f'''__main__.{call}''' , setup='import __main__' ) print(f'''{call:56} = {func(lowercase )} -- {timing:.4f} seconds''' ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowercase , lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
110
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A ( ) -> int: '''simple docstring''' UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' UpperCamelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' ) return image def A ( lowercase ) -> Any: '''simple docstring''' UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def A ( lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase = dct.pop(lowercase ) UpperCamelCase = val def A ( lowercase , lowercase ) -> List[str]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCamelCase = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) UpperCamelCase = qkv_bias def A ( lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = 364 if 'coco' in model_name else 224 UpperCamelCase = BlipaVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=lowercase ).to_dict() elif "t5-xl" in model_name: UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() UpperCamelCase = BlipaConfig(vision_config=lowercase , text_config=lowercase ) return config, image_size @torch.no_grad() def A ( lowercase , lowercase=None , lowercase=False ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) UpperCamelCase = tokenizer('\n' , add_special_tokens=lowercase ).input_ids[0] UpperCamelCase , UpperCamelCase = get_blipa_config(lowercase , eos_token_id=lowercase ) UpperCamelCase = BlipaForConditionalGeneration(lowercase ).eval() UpperCamelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } UpperCamelCase , UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase , UpperCamelCase , UpperCamelCase = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print('Done!' ) # update state dict keys UpperCamelCase = original_model.state_dict() UpperCamelCase = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase = state_dict.pop(lowercase ) if key.startswith('Qformer.bert' ): UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCamelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: UpperCamelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): UpperCamelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): UpperCamelCase = key.replace('t5' , 'language' ) UpperCamelCase = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) UpperCamelCase , UpperCamelCase = hf_model.load_state_dict(lowercase , strict=lowercase ) assert len(lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase = load_demo_image() UpperCamelCase = vis_processors['eval'](lowercase ).unsqueeze(0 ).to(lowercase ) UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(lowercase ) # create processor UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowercase , image_std=lowercase ) UpperCamelCase = BlipaProcessor(image_processor=lowercase , tokenizer=lowercase ) UpperCamelCase = processor(images=lowercase , return_tensors='pt' ).pixel_values.to(lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits UpperCamelCase = hf_model(lowercase , lowercase ).logits else: UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase = hf_model(lowercase , lowercase , labels=lowercase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=lowercase ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=lowercase ) else: # cast to same type UpperCamelCase = logits.dtype assert torch.allclose(original_logits.to(lowercase ) , lowercase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) UpperCamelCase = '' UpperCamelCase = tokenizer(lowercase , return_tensors='pt' ).input_ids.to(lowercase ) UpperCamelCase = original_model.generate({'image': original_pixel_values} ) UpperCamelCase = hf_model.generate( lowercase , lowercase , do_sample=lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , lowercase ) UpperCamelCase = input_ids.shape[1] UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase ) UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() _UpperCAmelCase : str = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _UpperCAmelCase : List[str] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
110
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class a ( unittest.TestCase ): """simple docstring""" def __init__( self: Optional[Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any]=13 , UpperCamelCase: List[Any]=7 , UpperCamelCase: List[Any]=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: List[str]=True , UpperCamelCase: Optional[int]=True , UpperCamelCase: List[Any]=99 , UpperCamelCase: List[str]=32 , UpperCamelCase: List[Any]=5 , UpperCamelCase: Dict=4 , UpperCamelCase: int=37 , UpperCamelCase: Optional[int]="gelu" , UpperCamelCase: List[Any]=0.1 , UpperCamelCase: Optional[int]=0.1 , UpperCamelCase: Optional[int]=5_12 , UpperCamelCase: Union[str, Any]=16 , UpperCamelCase: Optional[int]=2 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: Tuple=4 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_attention_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_choices def UpperCamelCase ( self: str ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_attention_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase ( self: Any ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCamelCase ( self: Any ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = True A__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = True UpperCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase ( self: Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained("""roberta-base""" , from_pt=UpperCamelCase ) A__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase )
335
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE_ : str = parse(importlib.metadata.version('torch')) def _snake_case ( UpperCAmelCase_ : Union[str, Version] , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) A__ = STR_OPERATION_TO_FUNC[operation] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): A__ = parse(importlib.metadata.version(UpperCAmelCase_ ) ) return operation(UpperCAmelCase_ , parse(UpperCAmelCase_ ) ) def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return compare_versions(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
335
1
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase_ = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] lowerCAmelCase_ = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] lowerCAmelCase_ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase_ = F'''down_blocks.{i}.resnets.{j}.''' lowerCAmelCase_ = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase_ = F'''down_blocks.{i}.attentions.{j}.''' lowerCAmelCase_ = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase_ = F'''up_blocks.{i}.resnets.{j}.''' lowerCAmelCase_ = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase_ = F'''up_blocks.{i}.attentions.{j}.''' lowerCAmelCase_ = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase_ = F'''down_blocks.{i}.downsamplers.0.conv.''' lowerCAmelCase_ = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase_ = F'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase_ = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase_ = 'mid_block.attentions.0.' lowerCAmelCase_ = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase_ = F'''mid_block.resnets.{j}.''' lowerCAmelCase_ = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __UpperCAmelCase ( __lowerCamelCase ) -> int: # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. lowercase__ : str = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowercase__ : List[str] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowercase__ : List[Any] = v.replace(__lowerCamelCase , __lowerCamelCase ) lowercase__ : str = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowercase__ : Optional[Any] = v.replace(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = v lowercase__ : int = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase_ = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase_ = F'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCAmelCase_ = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase_ = F'''down_blocks.{i}.downsamplers.0.''' lowerCAmelCase_ = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase_ = F'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase_ = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase_ = F'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCAmelCase_ = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase_ = F'''mid_block.resnets.{i}.''' lowerCAmelCase_ = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase_ = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def __UpperCAmelCase ( __lowerCamelCase ) -> Any: # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Tuple = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowercase__ : Optional[Any] = v.replace(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[int] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowercase__ : str = v.replace(__lowerCamelCase , __lowerCamelCase ) lowercase__ : str = v lowercase__ : Optional[int] = {v: vae_state_dict[k] for k, v in mapping.items()} lowercase__ : Tuple = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) lowercase__ : List[str] = reshape_weight_for_sd(__lowerCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase_ = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] lowerCAmelCase_ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase_ = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase_ = {'q': 0, 'k': 1, 'v': 2} def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = {} lowercase__ : str = {} lowercase__ : str = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): lowercase__ : Any = k[: -len('''.q_proj.weight''' )] lowercase__ : List[str] = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: lowercase__ : Any = [None, None, None] lowercase__ : Optional[int] = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): lowercase__ : Any = k[: -len('''.q_proj.bias''' )] lowercase__ : List[str] = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: lowercase__ : Tuple = [None, None, None] lowercase__ : Optional[Any] = v continue lowercase__ : List[Any] = textenc_pattern.sub(lambda __lowerCamelCase : protected[re.escape(m.group(0 ) )] , __lowerCamelCase ) lowercase__ : Dict = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) lowercase__ : List[str] = textenc_pattern.sub(lambda __lowerCamelCase : protected[re.escape(m.group(0 ) )] , __lowerCamelCase ) lowercase__ : Tuple = torch.cat(__lowerCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) lowercase__ : Any = textenc_pattern.sub(lambda __lowerCamelCase : protected[re.escape(m.group(0 ) )] , __lowerCamelCase ) lowercase__ : Optional[int] = torch.cat(__lowerCamelCase ) return new_state_dict def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: return text_enc_dict if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) lowerCAmelCase_ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase_ = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') lowerCAmelCase_ = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') lowerCAmelCase_ = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase_ = load_file(unet_path, device='cpu') else: lowerCAmelCase_ = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') lowerCAmelCase_ = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): lowerCAmelCase_ = load_file(vae_path, device='cpu') else: lowerCAmelCase_ = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') lowerCAmelCase_ = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): lowerCAmelCase_ = load_file(text_enc_path, device='cpu') else: lowerCAmelCase_ = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') lowerCAmelCase_ = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model lowerCAmelCase_ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase_ = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase_ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase_ = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase_ = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase_ = {'transformer.' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase_ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase_ = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase_ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase_ = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase_ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase_ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase_ = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
302
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = DistilBertTokenizer lowerCAmelCase : int = DistilBertTokenizerFast lowerCAmelCase : Any = True @slow def lowerCAmelCase__ ( self : Dict ) ->Tuple: '''simple docstring''' _UpperCAmelCase : int = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) _UpperCAmelCase : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
234
'''simple docstring''' from __future__ import annotations lowerCamelCase__ = 'Muhammad Umer Farooq' lowerCamelCase__ = 'MIT' lowerCamelCase__ = '1.0.0' lowerCamelCase__ = 'Muhammad Umer Farooq' lowerCamelCase__ = '[email protected]' lowerCamelCase__ = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : str ) ->None: '''simple docstring''' super().__init__() _UpperCAmelCase : list[str] = [] _UpperCAmelCase : List[str] = domain def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : list[tuple[str, str | None]] ) ->None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _UpperCAmelCase : Dict = parse.urljoin(self.domain , lowerCamelCase__ ) self.urls.append(lowerCamelCase__ ) def __lowerCAmelCase (__lowerCAmelCase ): return ".".join(get_sub_domain_name(__lowerCAmelCase ).split("." )[-2:] ) def __lowerCAmelCase (__lowerCAmelCase ): return parse.urlparse(__lowerCAmelCase ).netloc def __lowerCAmelCase (__lowerCAmelCase = "https://github.com" ): _UpperCAmelCase : List[str] = get_domain_name(__lowerCAmelCase ) # Initialize the parser _UpperCAmelCase : int = Parser(__lowerCAmelCase ) try: # Open URL _UpperCAmelCase : Any = requests.get(__lowerCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _UpperCAmelCase : Any = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _UpperCAmelCase : List[str] = requests.get(__lowerCAmelCase ) # Get the valid email. _UpperCAmelCase : Optional[int] = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowerCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = emails_from_url('https://github.com') print(F'''{len(emails)} emails found:''') print('\n'.join(sorted(emails)))
234
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Union[str, Any] = { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/config.json""", # See all XGLM models at https://huggingface.co/models?filter=xglm } class snake_case__ ( snake_case_ ): _snake_case : Union[str, Any] = """xglm""" _snake_case : str = ["""past_key_values"""] _snake_case : List[str] = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCamelCase=256008 , lowerCamelCase=2048 , lowerCamelCase=1024 , lowerCamelCase=4096 , lowerCamelCase=24 , lowerCamelCase=16 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , **lowerCamelCase , ): __a = vocab_size __a = max_position_embeddings __a = d_model __a = ffn_dim __a = num_layers __a = attention_heads __a = activation_function __a = dropout __a = attention_dropout __a = activation_dropout __a = layerdrop __a = init_std __a = scale_embedding # scale factor will be sqrt(d_model) if True __a = use_cache super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , decoder_start_token_id=lowerCamelCase , **lowerCamelCase , )
268
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class snake_case__ ( snake_case_ ): def __init__( self , *lowerCamelCase , **lowerCamelCase ): super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ ( self , lowerCamelCase=None ): __a = {} if top_k is not None: __a = top_k return {}, {}, postprocess_params def __call__( self , lowerCamelCase , **lowerCamelCase ): return super().__call__(lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase ): __a = load_image(lowerCamelCase ) __a = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) return model_inputs def a__ ( self , lowerCamelCase ): __a = self.model(**lowerCamelCase ) return model_outputs def a__ ( self , lowerCamelCase , lowerCamelCase=5 ): if top_k > self.model.config.num_labels: __a = self.model.config.num_labels if self.framework == "pt": __a = model_outputs.logits.softmax(-1 )[0] __a , __a = probs.topk(lowerCamelCase ) elif self.framework == "tf": __a = stable_softmax(model_outputs.logits , axis=-1 )[0] __a = tf.math.top_k(lowerCamelCase , k=lowerCamelCase ) __a , __a = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __a = scores.tolist() __a = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
268
1
"""simple docstring""" from bisect import bisect from itertools import accumulate def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Any = sorted(zip(__UpperCamelCase , __UpperCamelCase ) , key=lambda __UpperCamelCase : x[0] / x[1] , reverse=__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase_ : Optional[Any] = list(accumulate(__UpperCamelCase ) ) lowerCAmelCase_ : Tuple = bisect(__UpperCamelCase , __UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
241
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowercase__ = TypeVar("""_T""") class __lowerCamelCase ( Generic[_T] ): '''simple docstring''' def __init__( self : Optional[int] , a_ : Iterable[_T] | None = None ): lowerCAmelCase_ : list[_T] = list(iterable or [] ) lowerCAmelCase_ : list[_T] = [] def __len__( self : str ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : List[Any] ): return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def lowerCamelCase ( self : List[str] , a_ : _T ): self._stacka.append(a_ ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : int = self._stacka.pop lowerCAmelCase_ : Any = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
241
1
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _UpperCamelCase = logging.getLogger(__name__) _UpperCamelCase = tf.data.AUTOTUNE def _a ( ): """simple docstring""" UpperCAmelCase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCamelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCamelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCamelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCamelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCamelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCamelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCamelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCamelCase__ , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCamelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCamelCase__ , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCamelCase__ , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCamelCase__ , default=512 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCamelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCamelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) UpperCAmelCase = parser.parse_args() return args def _a ( _snake_case ): """simple docstring""" try: if args.tpu_name: UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCamelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCamelCase__ ) return tpu def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = 0 for file in file_list: UpperCAmelCase = file.split("""/""" )[-1] UpperCAmelCase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCamelCase__ ).group(1 ) UpperCAmelCase = int(lowerCamelCase__ ) num_samples += sample_count return num_samples def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None ): """simple docstring""" UpperCAmelCase = count_samples(lowerCamelCase__ ) UpperCAmelCase = tf.data.Dataset.from_tensor_slices(lowerCamelCase__ ) if shuffle: UpperCAmelCase = dataset.shuffle(len(lowerCamelCase__ ) ) UpperCAmelCase = tf.data.TFRecordDataset(lowerCamelCase__ , num_parallel_reads=lowerCamelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCamelCase__ ) ) UpperCAmelCase = dataset.map(lowerCamelCase__ , num_parallel_calls=lowerCamelCase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase = dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase = dataset.batch(lowerCamelCase__ , drop_remainder=lowerCamelCase__ ) UpperCAmelCase = dataset.map(lowerCamelCase__ , num_parallel_calls=lowerCamelCase__ ) UpperCAmelCase = dataset.prefetch(lowerCamelCase__ ) return dataset def _a ( _snake_case ): """simple docstring""" if not args.no_tpu: UpperCAmelCase = initialize_tpu(lowerCamelCase__ ) UpperCAmelCase = tf.distribute.TPUStrategy(lowerCamelCase__ ) else: UpperCAmelCase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase = AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(F'''No .tfrecord files found in {args.train_dataset}.''' ) UpperCAmelCase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(F'''No .tfrecord files found in {args.eval_dataset}.''' ) UpperCAmelCase = count_samples(lowerCamelCase__ ) UpperCAmelCase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase = steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase = TFAutoModelForMaskedLM.from_config(lowerCamelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase , UpperCAmelCase = create_optimizer( num_train_steps=lowerCamelCase__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCamelCase__ , metrics=["""accuracy"""] ) def decode_fn(_snake_case ): UpperCAmelCase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCamelCase__ , lowerCamelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCamelCase__ , return_tensors="""tf""" ) def mask_with_collator(_snake_case ): # TF really needs an isin() function UpperCAmelCase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) UpperCAmelCase , UpperCAmelCase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCamelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCamelCase__ , ) return batch UpperCAmelCase = args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase = prepare_dataset( lowerCamelCase__ , decode_fn=lowerCamelCase__ , mask_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ , shuffle=lowerCamelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase = prepare_dataset( lowerCamelCase__ , decode_fn=lowerCamelCase__ , mask_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ , shuffle=lowerCamelCase__ , ) UpperCAmelCase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCamelCase__ ) ) model.fit( lowerCamelCase__ , validation_data=lowerCamelCase__ , epochs=args.num_epochs , callbacks=lowerCamelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _UpperCamelCase = parse_args() main(args)
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
234
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCamelCase : Union[str, Any] = TextStreamer(__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCamelCase : int = cs.out[:-1] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : List[str] = tokenizer.decode(greedy_ids[0] ) _lowerCamelCase : Tuple = TextIteratorStreamer(__lowerCAmelCase ) _lowerCamelCase : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _lowerCamelCase : List[Any] = Thread(target=model.generate , kwargs=__lowerCAmelCase ) thread.start() _lowerCamelCase : int = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = greedy_ids[:, input_ids.shape[1] :] _lowerCamelCase : int = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCamelCase : Any = TextStreamer(__lowerCAmelCase , skip_prompt=__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCamelCase : Union[str, Any] = cs.out[:-1] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''distilgpt2''' ) _lowerCamelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = -1 _lowerCamelCase : Any = torch.ones((1, 5) , device=__lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCamelCase : List[Any] = TextStreamer(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCamelCase : Any = cs.out[:-1] # Remove the final "\n" _lowerCamelCase : int = tokenizer(__lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = -1 _lowerCamelCase : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = TextIteratorStreamer(__lowerCAmelCase , timeout=0.0_01 ) _lowerCamelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _lowerCamelCase : List[Any] = Thread(target=model.generate , kwargs=__lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text
72
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __snake_case ( _lowercase): snake_case__ : List[str] = "unispeech" def __init__( self : List[str] , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : str=7_6_8 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : int=3_0_7_2 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Dict=1E-5 , __lowerCAmelCase : Optional[int]="group" , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __lowerCAmelCase : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase : Union[str, Any]=(1_0, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : List[str]=1_2_8 , __lowerCAmelCase : Any=1_6 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]=0.05 , __lowerCAmelCase : Union[str, Any]=1_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Optional[int]=1_0 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : List[str]=3_2_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Tuple=1_0_0 , __lowerCAmelCase : Dict=2_5_6 , __lowerCAmelCase : str=2_5_6 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict="mean" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Optional[Any]=2_5_6 , __lowerCAmelCase : Dict=8_0 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Any=0.5 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = feat_extract_norm _lowerCamelCase : List[Any] = feat_extract_activation _lowerCamelCase : Any = list(__lowerCAmelCase ) _lowerCamelCase : Tuple = list(__lowerCAmelCase ) _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : List[str] = conv_bias _lowerCamelCase : List[str] = num_conv_pos_embeddings _lowerCamelCase : Tuple = num_conv_pos_embedding_groups _lowerCamelCase : List[str] = len(self.conv_dim ) _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Tuple = hidden_dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : Optional[Any] = feat_proj_dropout _lowerCamelCase : Optional[int] = final_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : List[str] = num_ctc_classes _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = do_stable_layer_norm _lowerCamelCase : Tuple = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Any = apply_spec_augment _lowerCamelCase : Dict = mask_time_prob _lowerCamelCase : List[str] = mask_time_length _lowerCamelCase : Optional[Any] = mask_time_min_masks _lowerCamelCase : List[str] = mask_feature_prob _lowerCamelCase : int = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase : Optional[Any] = num_codevectors_per_group _lowerCamelCase : int = num_codevector_groups _lowerCamelCase : List[Any] = contrastive_logits_temperature _lowerCamelCase : List[str] = feat_quantizer_dropout _lowerCamelCase : Dict = num_negatives _lowerCamelCase : Optional[int] = codevector_dim _lowerCamelCase : List[Any] = proj_codevector_dim _lowerCamelCase : List[Any] = diversity_loss_weight # ctc loss _lowerCamelCase : Union[str, Any] = ctc_loss_reduction _lowerCamelCase : Any = ctc_zero_infinity # pretraining loss _lowerCamelCase : str = replace_prob @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
72
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase__ = 5_0_0_0_0_0 lowercase__ , lowercase__ = os.path.split(__file__) lowercase__ = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: '''simple docstring''' snake_case : str = dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> str: '''simple docstring''' snake_case : Tuple = dataset.filter(**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ) -> Tuple: '''simple docstring''' snake_case : str = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case : List[Any] = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) snake_case : str = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ ) snake_case : str = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ ): return tokenizer(examples['''text'''] ) snake_case : List[Any] = map(SCREAMING_SNAKE_CASE__ ) snake_case : Tuple = map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) snake_case : Any = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''numpy''' ): snake_case : List[Any] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''pandas''' ): snake_case : Optional[int] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): snake_case : List[Any] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): snake_case : List[str] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) snake_case : Any = map(SCREAMING_SNAKE_CASE__ , function=SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) snake_case : Optional[Any] = filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
83
'''simple docstring''' from collections.abc import Generator def _UpperCamelCase ( ) -> Generator[int, None, None]: '''simple docstring''' snake_case ,snake_case : Tuple = 0, 1 while True: snake_case ,snake_case : List[Any] = b, a + b yield b def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 1000 ) -> int: '''simple docstring''' snake_case : Optional[int] = 1 snake_case : List[Any] = fibonacci_generator() while len(str(next(SCREAMING_SNAKE_CASE__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
83
1
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _snake_case ( lowercase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ :str = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
84
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) lowerCAmelCase_ :int = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :List[Any] = jax.device_count() lowerCAmelCase_ :Optional[Any] = num_samples * [prompt] lowerCAmelCase_ :int = sd_pipe.prepare_inputs(__A ) lowerCAmelCase_ :Optional[Any] = replicate(__A ) lowerCAmelCase_ :Union[str, Any] = shard(__A ) lowerCAmelCase_ :Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase_ :Tuple = jax.random.split(__A , jax.device_count() ) lowerCAmelCase_ :Union[str, Any] = sd_pipe(__A , __A , __A , num_inference_steps=25 , jit=__A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCAmelCase_ :Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ :List[str] = images[0, 253:256, 253:256, -1] lowerCAmelCase_ :Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ :Optional[int] = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Union[str, Any] = """stabilityai/stable-diffusion-2""" lowerCAmelCase_ , lowerCAmelCase_ :Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(__A , subfolder="""scheduler""" ) lowerCAmelCase_ , lowerCAmelCase_ :List[str] = FlaxStableDiffusionPipeline.from_pretrained( __A , scheduler=__A , revision="""bf16""" , dtype=jnp.bfloataa , ) lowerCAmelCase_ :Optional[int] = scheduler_params lowerCAmelCase_ :List[Any] = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :Tuple = jax.device_count() lowerCAmelCase_ :str = num_samples * [prompt] lowerCAmelCase_ :Union[str, Any] = sd_pipe.prepare_inputs(__A ) lowerCAmelCase_ :Tuple = replicate(__A ) lowerCAmelCase_ :Optional[int] = shard(__A ) lowerCAmelCase_ :List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase_ :List[Any] = jax.random.split(__A , jax.device_count() ) lowerCAmelCase_ :Optional[Any] = sd_pipe(__A , __A , __A , num_inference_steps=25 , jit=__A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCAmelCase_ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ :List[str] = images[0, 253:256, 253:256, -1] lowerCAmelCase_ :Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ :Dict = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
84
1
from math import pow def lowerCAmelCase__ ( _a : int , _a : int , _a : int , _a : int , _a : int , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count snake_case_ : int = int(pow(_a , _a ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n snake_case_ , snake_case_ : Optional[int] = backtrack( _a , _a , current_number + 1 , _a , _a ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. snake_case_ , snake_case_ : Optional[int] = backtrack( _a , _a , current_number + 1 , _a , _a ) return current_sum, solutions_count def lowerCAmelCase__ ( _a : int , _a : int ): if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(_a , _a , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
36
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
36
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = PriorTransformer __snake_case : Optional[int] = "hidden_states" @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Dict=0 ): '''simple docstring''' torch.manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return (4, 8) @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return (4, 8) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } _SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prepare_init_args_and_inputs_for_common() _SCREAMING_SNAKE_CASE = self.model_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) _SCREAMING_SNAKE_CASE = model.to(UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , """set_default_attn_processor""" ): model.set_default_attn_processor() _SCREAMING_SNAKE_CASE = self.get_dummy_seed_input() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = output[0, :5].flatten().cpu() print(UpperCAmelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. _SCREAMING_SNAKE_CASE = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2 ) ) @slow class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: str , UpperCAmelCase_: List[str]=1 , UpperCAmelCase_: int=768 , UpperCAmelCase_: List[Any]=77 , UpperCAmelCase_: str=0 ): '''simple docstring''' torch.manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = embedding_dim _SCREAMING_SNAKE_CASE = num_embeddings _SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase ( self: Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_seed_input(seed=UpperCAmelCase_ ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ )[0] assert list(sample.shape ) == [1, 768] _SCREAMING_SNAKE_CASE = sample[0, :8].flatten().cpu() print(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase_ ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 )
306
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : @staticmethod def UpperCamelCase__ ( *_snake_case , **_snake_case ): """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class a ( unittest.TestCase ): snake_case__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = ObjectDetectionPipeline(model=_a , image_processor=_a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { 'score': ANY(_a ), 'label': ANY(_a ), 'box': {'xmin': ANY(_a ), 'ymin': ANY(_a ), 'xmax': ANY(_a ), 'ymax': ANY(_a )}, } , ) import datasets lowerCAmelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowerCAmelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] lowerCAmelCase = object_detector(_a , threshold=0.0 ) self.assertEqual(len(_a ) , len(_a ) ) for outputs in batch_outputs: self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { 'score': ANY(_a ), 'label': ANY(_a ), 'box': {'xmin': ANY(_a ), 'ymin': ANY(_a ), 'xmax': ANY(_a ), 'ymax': ANY(_a )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' lowerCAmelCase = AutoModelForObjectDetection.from_pretrained(_a ) lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_a ) lowerCAmelCase = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) lowerCAmelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ] , ) lowerCAmelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], [ {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], ] , ) @require_torch @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'facebook/detr-resnet-50' lowerCAmelCase = AutoModelForObjectDetection.from_pretrained(_a ) lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_a ) lowerCAmelCase = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) lowerCAmelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) lowerCAmelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'facebook/detr-resnet-50' lowerCAmelCase = pipeline('object-detection' , model=_a ) lowerCAmelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) lowerCAmelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 0.9_985 lowerCAmelCase = 'facebook/detr-resnet-50' lowerCAmelCase = pipeline('object-detection' , model=_a ) lowerCAmelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=_a ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) @require_torch @require_pytesseract @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'Narsil/layoutlmv3-finetuned-funsd' lowerCAmelCase = 0.9_993 lowerCAmelCase = pipeline('object-detection' , model=_a , threshold=_a ) lowerCAmelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.9_993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, {'score': 0.9_993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, ] , )
355
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = '''▁''' __UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __UpperCamelCase : str = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __UpperCamelCase : Tuple = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __UpperCamelCase : Optional[Any] = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __UpperCamelCase : str = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = ["input_ids"] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = sentencepiece_model_ckpt lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase = self.load_vocab(filepath=_snake_case ) else: lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if text is None: return None lowerCAmelCase = self.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = '', [] for i, ch in enumerate(_snake_case ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case ) else: lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case ) if self.is_whitespace(_snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(_snake_case ) ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase = token[1:] lowerCAmelCase = text[offset:].index(_snake_case ) + offset lowerCAmelCase = start + len(_snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase = end return token_mapping @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case ) else: lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = [] for pi, piece in enumerate(_snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_snake_case ) and pi != 0: new_pieces.append(_snake_case ) continue else: continue lowerCAmelCase = 0 for i, chunk in enumerate(_snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_snake_case ) lowerCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i if len(_snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.reverse_vocab.get(_snake_case , self.unk_token ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_snake_case ) == 1: lowerCAmelCase = unicodedata.category(_snake_case ) if cat == "Zs": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = {} with io.open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): lowerCAmelCase = line.rstrip('\n' ) lowerCAmelCase = int(_snake_case ) return token_to_idx def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' ) with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (vocab_file,)
309
0
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE__ = list[tuple[int, int]] SCREAMING_SNAKE_CASE__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowercase : def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = pos_x lowerCAmelCase = pos_y lowerCAmelCase = (pos_y, pos_x) lowerCAmelCase = goal_x lowerCAmelCase = goal_y lowerCAmelCase = g_cost lowerCAmelCase = parent lowerCAmelCase = self.calculate_heuristic() def _snake_case ( self ) -> float: lowerCAmelCase = abs(self.pos_x - self.goal_x ) lowerCAmelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , lowercase ) -> bool: return self.f_cost < other.f_cost class lowercase : def __init__( self , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase ) lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , lowercase ) lowerCAmelCase = [self.start] lowerCAmelCase = [] lowerCAmelCase = False def _snake_case ( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase = True return self.retrace_path(lowercase ) self.closed_nodes.append(lowercase ) lowerCAmelCase = self.get_successors(lowercase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase ) else: # retrieve the best current path lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowercase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase ) else: self.open_nodes.append(lowercase ) if not self.reached: return [self.start.pos] return None def _snake_case ( self , lowercase ) -> list[Node]: lowerCAmelCase = [] for action in delta: lowerCAmelCase = parent.pos_x + action[1] lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase , lowercase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase , ) ) return successors def _snake_case ( self , lowercase ) -> Path: lowerCAmelCase = node lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase = current_node.parent path.reverse() return path if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = (0, 0) SCREAMING_SNAKE_CASE__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") SCREAMING_SNAKE_CASE__ = GreedyBestFirst(init, goal) SCREAMING_SNAKE_CASE__ = greedy_bf.search() if path: for pos_x, pos_y in path: SCREAMING_SNAKE_CASE__ = 2 for elem in grid: print(elem)
46
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE ): return ext raise Exception( F'Unable to determine file format from file extension {path}. ' F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) lowerCAmelCase = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format lowerCAmelCase = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase ) -> Union[str, Any]: lowerCAmelCase = nlp lowerCAmelCase = reader @staticmethod def _snake_case ( lowercase ) -> Optional[int]: lowerCAmelCase = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=lowercase , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=lowercase , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=lowercase , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=lowercase , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=lowercase , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=lowercase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=lowercase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=lowercase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase , lowerCAmelCase = self._nlp, [] for entry in self._reader: lowerCAmelCase = nlp(**lowercase ) if self._reader.is_multi_columns else nlp(lowercase ) if isinstance(lowercase , lowercase ): outputs.append(lowercase ) else: outputs += output # Saving data if self._nlp.binary_output: lowerCAmelCase = self._reader.save_binary(lowercase ) logger.warning(f'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(lowercase )
46
1
'''simple docstring''' import os lowercase__ : Any = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def _lowerCAmelCase ( __snake_case : str ) -> int: __A : str = 0 __A : int = 0 while index < len(__snake_case ) - 1: __A : Tuple = SYMBOLS[numerals[index]] __A : List[str] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowerCAmelCase ( __snake_case : int ) -> str: __A : str = '' __A : Optional[int] = num // 10_00 numerals += m_count * "M" num %= 10_00 __A : Union[str, Any] = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 __A : Union[str, Any] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowerCAmelCase ( __snake_case : str = "/p089_roman.txt" ) -> int: __A : Optional[Any] = 0 with open(os.path.dirname(__snake_case ) + roman_numerals_filename ) as filea: __A : str = filea.readlines() for line in lines: __A : Any = line.strip() __A : int = parse_roman_numerals(__snake_case ) __A : Tuple = generate_roman_numerals(__snake_case ) savings += len(__snake_case ) - len(__snake_case ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
190
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : str = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''roberta-prelayernorm''' def __init__( self , _UpperCAmelCase=5_0265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Union[str, Any] = vocab_size __A : List[str] = hidden_size __A : Tuple = num_hidden_layers __A : List[str] = num_attention_heads __A : Tuple = hidden_act __A : Optional[Any] = intermediate_size __A : List[Any] = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Dict = max_position_embeddings __A : Any = type_vocab_size __A : Optional[int] = initializer_range __A : List[str] = layer_norm_eps __A : Optional[int] = position_embedding_type __A : Dict = use_cache __A : List[str] = classifier_dropout class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
190
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase__ ) lowerCAmelCase = -1 lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) lowerCAmelCase = model.generate(UpperCAmelCase__ , max_new_tokens=1_0 , do_sample=UpperCAmelCase__ ) lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase = TextStreamer(UpperCAmelCase__ ) model.generate(UpperCAmelCase__ , max_new_tokens=1_0 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase = cs.out[:-1] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Any: lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase__ ) lowerCAmelCase = -1 lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) lowerCAmelCase = model.generate(UpperCAmelCase__ , max_new_tokens=1_0 , do_sample=UpperCAmelCase__ ) lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase = TextIteratorStreamer(UpperCAmelCase__ ) lowerCAmelCase = {'input_ids': input_ids, 'max_new_tokens': 1_0, 'do_sample': False, 'streamer': streamer} lowerCAmelCase = Thread(target=model.generate , kwargs=UpperCAmelCase__ ) thread.start() lowerCAmelCase = '' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> str: lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase__ ) lowerCAmelCase = -1 lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) lowerCAmelCase = model.generate(UpperCAmelCase__ , max_new_tokens=1_0 , do_sample=UpperCAmelCase__ ) lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase = TextStreamer(UpperCAmelCase__ , skip_prompt=UpperCAmelCase__ ) model.generate(UpperCAmelCase__ , max_new_tokens=1_0 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase = cs.out[:-1] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase = AutoTokenizer.from_pretrained('distilgpt2' ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(UpperCAmelCase__ ) lowerCAmelCase = -1 lowerCAmelCase = torch.ones((1, 5) , device=UpperCAmelCase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase = TextStreamer(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) model.generate(UpperCAmelCase__ , max_new_tokens=1 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase = cs.out[:-1] # Remove the final "\n" lowerCAmelCase = tokenizer(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase__ ) lowerCAmelCase = -1 lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) lowerCAmelCase = TextIteratorStreamer(UpperCAmelCase__ , timeout=0.001 ) lowerCAmelCase = {'input_ids': input_ids, 'max_new_tokens': 1_0, 'do_sample': False, 'streamer': streamer} lowerCAmelCase = Thread(target=model.generate , kwargs=UpperCAmelCase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCAmelCase__ ): lowerCAmelCase = '' for new_text in streamer: streamer_text += new_text
4
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase = '''Create a default config file for Accelerate with only a few flags set.''' def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE="no" , __SCREAMING_SNAKE_CASE = default_json_config_file , __SCREAMING_SNAKE_CASE = False ): lowercase = Path(__SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False lowercase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) lowercase = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): lowercase = torch.cuda.device_count() lowercase = num_gpus lowercase = False if num_gpus > 1: lowercase = 'MULTI_GPU' else: lowercase = 'NO' elif is_xpu_available() and use_xpu: lowercase = torch.xpu.device_count() lowercase = num_xpus lowercase = False if num_xpus > 1: lowercase = 'MULTI_XPU' else: lowercase = 'NO' elif is_npu_available(): lowercase = torch.npu.device_count() lowercase = num_npus lowercase = False if num_npus > 1: lowercase = 'MULTI_NPU' else: lowercase = 'NO' else: lowercase = 0 lowercase = True lowercase = 1 lowercase = 'NO' lowercase = ClusterConfig(**__SCREAMING_SNAKE_CASE ) config.to_json_file(__SCREAMING_SNAKE_CASE ) return path def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = parser.add_parser('default' , parents=__SCREAMING_SNAKE_CASE , help=__SCREAMING_SNAKE_CASE , formatter_class=__SCREAMING_SNAKE_CASE ) parser.add_argument( '--config_file' , default=__SCREAMING_SNAKE_CASE , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=__SCREAMING_SNAKE_CASE , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
195
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCAmelCase (__lowerCAmelCase ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def __lowerCAmelCase (__lowerCAmelCase ): # word like '180' or '身高' or '神' for char in word: _UpperCAmelCase : Union[str, Any] = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = set() for token in tokens: _UpperCAmelCase : Union[str, Any] = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) _UpperCAmelCase : str = list(__lowerCAmelCase ) return word_list def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if not chinese_word_set: return bert_tokens _UpperCAmelCase : int = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) _UpperCAmelCase : Optional[int] = bert_tokens _UpperCAmelCase : Dict = 0, len(__lowerCAmelCase ) while start < end: _UpperCAmelCase : List[Any] = True if is_chinese(bert_word[start] ): _UpperCAmelCase : Optional[Any] = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): _UpperCAmelCase : Tuple = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _UpperCAmelCase : Any = "##" + bert_word[j] _UpperCAmelCase : List[Any] = start + i _UpperCAmelCase : Dict = False break if single_word: start += 1 return bert_word def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): _UpperCAmelCase : Union[str, Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws _UpperCAmelCase : Union[str, Any] = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): _UpperCAmelCase : List[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [] for id in input_ids: _UpperCAmelCase : Optional[Any] = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": _UpperCAmelCase : Optional[Any] = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def __lowerCAmelCase (__lowerCAmelCase ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: _UpperCAmelCase : Optional[int] = f.readlines() _UpperCAmelCase : Union[str, Any] = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCAmelCase : str = LTP(args.ltp ) # faster in GPU device _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained(args.bert ) _UpperCAmelCase : Any = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _UpperCAmelCase : Optional[int] = [json.dumps(__lowerCAmelCase ) + "\n" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) lowerCamelCase__ = parser.parse_args() main(args)
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase = logging.get_logger(__name__) class __magic_name__ ( __a ): '''simple docstring''' lowerCamelCase__ : List[str] = ['''pixel_values'''] def __init__( self, lowercase_ = True, lowercase_ = 1 / 255, lowercase_ = True, lowercase_ = 8, **lowercase_, ) -> None: """simple docstring""" super().__init__(**__a ) a__ =do_rescale a__ =rescale_factor a__ =do_pad a__ =pad_size def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_ ) -> np.ndarray: """simple docstring""" return rescale(__a, scale=__a, data_format=__a, **__a ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_ = None ) -> Dict: """simple docstring""" a__ =get_image_size(__a ) a__ =(old_height // size + 1) * size - old_height a__ =(old_width // size + 1) * size - old_width return pad(__a, ((0, pad_height), (0, pad_width)), mode='''symmetric''', data_format=__a ) def _UpperCAmelCase ( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = ChannelDimension.FIRST, **lowercase_, ) -> Union[str, Any]: """simple docstring""" a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_pad if do_pad is not None else self.do_pad a__ =pad_size if pad_size is not None else self.pad_size a__ =make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. a__ =[to_numpy_array(__a ) for image in images] if do_rescale: a__ =[self.rescale(image=__a, scale=__a ) for image in images] if do_pad: a__ =[self.pad(__a, size=__a ) for image in images] a__ =[to_channel_dimension_format(__a, __a ) for image in images] a__ ={"""pixel_values""": images} return BatchFeature(data=__a, tensor_type=__a )
188
lowerCamelCase : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def snake_case_ ( ): __lowercase : List[str] = input("""Enter message: """ ) __lowercase : int = input("""Enter key [alphanumeric]: """ ) __lowercase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __lowercase : Optional[int] = """encrypt""" __lowercase : Dict = encrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) elif mode.lower().startswith("""d""" ): __lowercase : Union[str, Any] = """decrypt""" __lowercase : Optional[int] = decrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) print(F"\n{mode.title()}ed message:" ) print(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , """encrypt""" ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , """decrypt""" ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Union[str, Any] = [] __lowercase : Tuple = 0 __lowercase : Dict = key.upper() for symbol in message: __lowercase : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowerCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowerCAmelCase_ ): __lowercase : str = 0 else: translated.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": main()
233
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='deberta-v2' def __init__( self : Dict , __a : List[str]=12_81_00 , __a : int=15_36 , __a : Tuple=24 , __a : Dict=24 , __a : Any=61_44 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Any=0.1 , __a : Optional[Any]=5_12 , __a : int=0 , __a : Tuple=0.02 , __a : Tuple=1e-7 , __a : List[str]=False , __a : Tuple=-1 , __a : Dict=0 , __a : Tuple=True , __a : Dict=None , __a : int=0 , __a : Tuple="gelu" , **__a : Optional[Any] , ): super().__init__(**__a ) _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = relative_attention _a = max_relative_positions _a = pad_token_id _a = position_biased_input # Backwards compatibility if type(__a ) == str: _a = [x.strip() for x in pos_att_type.lower().split("|" )] _a = pos_att_type _a = vocab_size _a = layer_norm_eps _a = kwargs.get("pooler_hidden_size" , __a ) _a = pooler_dropout _a = pooler_hidden_act class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : Tuple ): if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def UpperCamelCase__ ( self : List[Any] ): return 12 def UpperCamelCase__ ( self : Tuple , __a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __a : int = -1 , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , __a : "PreTrainedTokenizerBase" = None , ): _a = super().generate_dummy_inputs(preprocessor=__a , framework=__a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
346
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase_ : Union[str, Any] = None try: import msvcrt except ImportError: lowerCAmelCase_ : Tuple = None try: import fcntl except ImportError: lowerCAmelCase_ : Optional[int] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase_ : Any = OSError # Data # ------------------------------------------------ lowerCAmelCase_ : Tuple = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowerCAmelCase_ : Optional[int] = '3.0.12' lowerCAmelCase_ : Tuple = None def _lowerCamelCase ( ) -> Optional[int]: global _logger _a = _logger or logging.getLogger(__name__ ) return _logger class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Dict , __a : Optional[Any] ): _a = lock_file return None def __str__( self : Any ): _a = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] , __a : Optional[int] ): _a = lock return None def __enter__( self : str ): return self.lock def __exit__( self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ): self.lock.release() return None class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int]=-1 , __a : Tuple=None ): _a = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long _a = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. _a = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _a = None # The default timeout value. _a = timeout # We use this lock primarily for the lock counter. _a = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _a = 0 return None @property def UpperCamelCase__ ( self : Optional[Any] ): return self._lock_file @property def UpperCamelCase__ ( self : List[Any] ): return self._timeout @timeout.setter def UpperCamelCase__ ( self : int , __a : List[Any] ): _a = float(__a ) return None def UpperCamelCase__ ( self : Dict ): raise NotImplementedError() def UpperCamelCase__ ( self : str ): raise NotImplementedError() @property def UpperCamelCase__ ( self : Optional[Any] ): return self._lock_file_fd is not None def UpperCamelCase__ ( self : int , __a : int=None , __a : Tuple=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: _a = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _a = id(self ) _a = self._lock_file _a = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _a = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCamelCase__ ( self : Union[str, Any] , __a : int=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _a = id(self ) _a = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() _a = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self : List[Any] ): self.acquire() return self def __exit__( self : str , __a : str , __a : Dict , __a : Dict ): self.release() return None def __del__( self : int ): self.release(force=__a ) return None def UpperCamelCase__ ( self : Tuple , __a : str , __a : int ): _a = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: _a = os.path.dirname(__a ) _a = str(hash(__a ) ) _a = filename[: max_length - len(__a ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(__a , __a ) else: return path class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , __a : str , __a : List[Any]=-1 , __a : List[Any]=None ): from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) _a = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def UpperCamelCase__ ( self : int ): _a = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _a = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: _a = fd return None def UpperCamelCase__ ( self : Optional[Any] ): _a = self._lock_file_fd _a = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[str] , __a : Optional[Any] , __a : Union[str, Any]=-1 , __a : int=None ): _a = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def UpperCamelCase__ ( self : Any ): _a = os.O_RDWR | os.O_CREAT | os.O_TRUNC _a = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: _a = fd return None def UpperCamelCase__ ( self : Tuple ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _a = self._lock_file_fd _a = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ): _a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _a = os.open(self._lock_file , __a ) except OSError: pass else: _a = fd return None def UpperCamelCase__ ( self : Union[str, Any] ): os.close(self._lock_file_fd ) _a = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase_ : str = None if msvcrt: lowerCAmelCase_ : List[str] = WindowsFileLock elif fcntl: lowerCAmelCase_ : List[str] = UnixFileLock else: lowerCAmelCase_ : int = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
346
1