code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from math import pow, sqrt def __a(*SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) > 0 and all(value > 0.0 for value in values ) return result def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
158
'''simple docstring''' import math import sys def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 _lowerCAmelCase = [-1] * (number + 1) _lowerCAmelCase = 0 for i in range(1 , number + 1 ): _lowerCAmelCase = sys.maxsize _lowerCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): _lowerCAmelCase = 1 + answers[i - (j**2)] _lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
158
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Tuple = '''xlnet''' _UpperCamelCase : Any = ['''mems'''] _UpperCamelCase : Optional[int] = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Dict=32000 , _SCREAMING_SNAKE_CASE: Optional[Any]=1024 , _SCREAMING_SNAKE_CASE: int=24 , _SCREAMING_SNAKE_CASE: List[Any]=16 , _SCREAMING_SNAKE_CASE: List[str]=4096 , _SCREAMING_SNAKE_CASE: List[Any]="gelu" , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: Union[str, Any]="bi" , _SCREAMING_SNAKE_CASE: Dict=0.02 , _SCREAMING_SNAKE_CASE: List[Any]=1e-12 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: int=512 , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Optional[Any]=False , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: str=-1 , _SCREAMING_SNAKE_CASE: Optional[Any]=False , _SCREAMING_SNAKE_CASE: Optional[int]="last" , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: int="tanh" , _SCREAMING_SNAKE_CASE: List[Any]=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=5 , _SCREAMING_SNAKE_CASE: Any=5 , _SCREAMING_SNAKE_CASE: Optional[int]=5 , _SCREAMING_SNAKE_CASE: Dict=1 , _SCREAMING_SNAKE_CASE: Dict=2 , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> Dict: """simple docstring""" UpperCamelCase_ = vocab_size UpperCamelCase_ = d_model UpperCamelCase_ = n_layer UpperCamelCase_ = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) UpperCamelCase_ = d_model // n_head UpperCamelCase_ = ff_activation UpperCamelCase_ = d_inner UpperCamelCase_ = untie_r UpperCamelCase_ = attn_type UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = dropout UpperCamelCase_ = mem_len UpperCamelCase_ = reuse_len UpperCamelCase_ = bi_data UpperCamelCase_ = clamp_len UpperCamelCase_ = same_length UpperCamelCase_ = summary_type UpperCamelCase_ = summary_use_proj UpperCamelCase_ = summary_activation UpperCamelCase_ = summary_last_dropout UpperCamelCase_ = start_n_top UpperCamelCase_ = end_n_top UpperCamelCase_ = bos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , _SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = kwargs["use_cache"] UpperCamelCase_ = use_mems_eval UpperCamelCase_ = use_mems_train super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def lowercase ( self: Dict ) -> List[Any]: """simple docstring""" logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Optional[int]: """simple docstring""" raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
328
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _snake_case ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE:Any = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:Any = TFAutoModel.from_pretrained(__UpperCAmelCase ,from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:str = AutoModel.from_pretrained(__UpperCAmelCase ,from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) @slow def __UpperCamelCase ( self : str ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE:Optional[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:Union[str, Any] = TFAutoModelForPreTraining.from_pretrained(__UpperCAmelCase ,from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:List[str] = AutoModelForPreTraining.from_pretrained(__UpperCAmelCase ,from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) @slow def __UpperCamelCase ( self : Optional[int] ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE:int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:Optional[int] = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase ,from_pt=__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[Any] = TFAutoModelForCausalLM.from_pretrained( __UpperCAmelCase ,output_loading_info=__UpperCAmelCase ,from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:int = AutoModelForCausalLM.from_pretrained(__UpperCAmelCase ,from_tf=__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = AutoModelForCausalLM.from_pretrained( __UpperCAmelCase ,output_loading_info=__UpperCAmelCase ,from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) @slow def __UpperCamelCase ( self : Any ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE:int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:Optional[int] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ,from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:int = AutoModelWithLMHead.from_pretrained(__UpperCAmelCase ,from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) @slow def __UpperCamelCase ( self : Dict ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE:Dict = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:str = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase ,from_pt=__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = TFAutoModelForMaskedLM.from_pretrained( __UpperCAmelCase ,output_loading_info=__UpperCAmelCase ,from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:int = AutoModelForMaskedLM.from_pretrained(__UpperCAmelCase ,from_tf=__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Tuple = AutoModelForMaskedLM.from_pretrained( __UpperCAmelCase ,output_loading_info=__UpperCAmelCase ,from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) @slow def __UpperCamelCase ( self : Optional[Any] ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE:int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:Dict = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ,from_pt=__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained( __UpperCAmelCase ,output_loading_info=__UpperCAmelCase ,from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:Any = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ,from_tf=__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( __UpperCAmelCase ,output_loading_info=__UpperCAmelCase ,from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) @slow def __UpperCamelCase ( self : int ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE:Optional[int] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase ,from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:List[str] = AutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase ,from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) @slow def __UpperCamelCase ( self : str ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE:List[str] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:Union[str, Any] = TFAutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase ,from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) SCREAMING_SNAKE_CASE:Optional[int] = AutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase ,from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:Optional[int] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ,from_pt=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) ,14_410 ) SCREAMING_SNAKE_CASE:Tuple = AutoModelWithLMHead.from_pretrained(__UpperCAmelCase ,from_tf=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) ,14_410 ) def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:str = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ,from_pt=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) ,14_410 ) SCREAMING_SNAKE_CASE:str = AutoModelWithLMHead.from_pretrained(__UpperCAmelCase ,from_tf=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) ,14_410 )
139
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=32 ,__UpperCAmelCase=2 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,__UpperCAmelCase=0 ,) -> Dict: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = projection_dim def snake_case__ ( self ) -> Optional[Any]: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A__ = ids_tensor([self.batch_size] ,self.num_choices ) A__ = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__UpperCAmelCase ,initializer_range=self.initializer_range ,) A__ = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: A__ = TFDPRContextEncoder(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: A__ = TFDPRQuestionEncoder(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: A__ = TFDPRReader(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def snake_case__ ( self ) -> int: A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'input_ids': input_ids} return config, inputs_dict @require_tf class UpperCamelCase__( __A , __A , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : str = False def snake_case__ ( self ) -> str: A__ = TFDPRModelTester(self ) A__ = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=37 ) def snake_case__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def snake_case__ ( self ) -> int: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__UpperCAmelCase ) def snake_case__ ( self ) -> List[str]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__UpperCAmelCase ) @slow def snake_case__ ( self ) -> int: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRContextEncoder.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRContextEncoder.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRQuestionEncoder.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRReader.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class UpperCamelCase__( unittest.TestCase ): @slow def snake_case__ ( self ) -> Optional[Any]: A__ = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) A__ = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] A__ = model(__UpperCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. A__ = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
221
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = False while is_sorted is False: # Until all the indices are traversed keep looping A = True for i in range(0 , len(lowercase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: A , A = input_list[i + 1], input_list[i] # swapping if elements not in order A = False for i in range(1 , len(lowercase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: A , A = input_list[i + 1], input_list[i] # swapping if elements not in order A = False return input_list if __name__ == "__main__": print('Enter list to be sorted') __A : str = [int(x) for x in input().split()] # inputing elements of the list in one line __A : int = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
57
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A : Optional[Any] = random.Random() if is_torch_available(): import torch def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): """simple docstring""" if rng is None: A = global_rng A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __UpperCamelCase ( unittest.TestCase ): def __init__(self : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=7 , __SCREAMING_SNAKE_CASE : Optional[int]=4_0_0 , __SCREAMING_SNAKE_CASE : Optional[int]=2_0_0_0 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : int=1_6_0_0_0 , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , ): A = parent A = batch_size A = min_seq_length A = max_seq_length A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A = feature_size A = padding_value A = sampling_rate A = return_attention_mask A = do_normalize def SCREAMING_SNAKE_CASE__ (self : Tuple): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Any=False): def _flatten(__SCREAMING_SNAKE_CASE : Dict): return list(itertools.chain(*__SCREAMING_SNAKE_CASE)) if equal_length: A = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size A = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: A = [np.asarray(__SCREAMING_SNAKE_CASE) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCamelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = ASTFeatureExtractor def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = ASTFeatureExtractionTester(self) def SCREAMING_SNAKE_CASE__ (self : Dict): # Tests that all call wrap to encode_plus and batch_encode_plus A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 A = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] A = [np.asarray(__SCREAMING_SNAKE_CASE) for speech_input in speech_inputs] # Test not batched input A = feat_extract(speech_inputs[0] , return_tensors="np").input_values A = feat_extract(np_speech_inputs[0] , return_tensors="np").input_values self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) # Test batched A = feat_extract(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="np").input_values A = feat_extract(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) # Test 2-D numpy arrays are batched. A = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] A = np.asarray(__SCREAMING_SNAKE_CASE) A = feat_extract(__SCREAMING_SNAKE_CASE , return_tensors="np").input_values A = feat_extract(__SCREAMING_SNAKE_CASE , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) @require_torch def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): import torch A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) A = np.random.rand(1_0_0).astype(np.floataa) A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.floataa) A = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict): from datasets import load_dataset A = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech A = ds.sort("id").select(range(__SCREAMING_SNAKE_CASE))[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def SCREAMING_SNAKE_CASE__ (self : Dict): # fmt: off A = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9]) # fmt: on A = self._load_datasamples(1) A = ASTFeatureExtractor() A = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="pt").input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8)) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , __SCREAMING_SNAKE_CASE , atol=1E-4))
57
1
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :jnp.ndarray UpperCAmelCase_ :jnp.ndarray class _SCREAMING_SNAKE_CASE ( nn.Module ): UpperCAmelCase_ :int UpperCAmelCase_ :Tuple[int] = (16, 32, 96, 256) UpperCAmelCase_ :jnp.dtype = jnp.floataa def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Optional[int] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase_ :int = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCAmelCase_ :Union[str, Any] = self.block_out_channels[i] lowerCAmelCase_ :Optional[int] = self.block_out_channels[i + 1] lowerCAmelCase_ :int = nn.Conv( __A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__A ) lowerCAmelCase_ :List[str] = nn.Conv( __A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__A ) lowerCAmelCase_ :Optional[int] = blocks lowerCAmelCase_ :int = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __A ) -> Tuple: lowerCAmelCase_ :Dict = self.conv_in(__A ) lowerCAmelCase_ :List[str] = nn.silu(__A ) for block in self.blocks: lowerCAmelCase_ :Any = block(__A ) lowerCAmelCase_ :Optional[int] = nn.silu(__A ) lowerCAmelCase_ :List[Any] = self.conv_out(__A ) return embedding @flax_register_to_config class _SCREAMING_SNAKE_CASE ( nn.Module , A__ , A__ ): UpperCAmelCase_ :int = 32 UpperCAmelCase_ :int = 4 UpperCAmelCase_ :Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ :Union[bool, Tuple[bool]] = False UpperCAmelCase_ :Tuple[int] = (320, 640, 1280, 1280) UpperCAmelCase_ :int = 2 UpperCAmelCase_ :Union[int, Tuple[int]] = 8 UpperCAmelCase_ :Optional[Union[int, Tuple[int]]] = None UpperCAmelCase_ :int = 1280 UpperCAmelCase_ :float = 0.0 UpperCAmelCase_ :bool = False UpperCAmelCase_ :jnp.dtype = jnp.floataa UpperCAmelCase_ :bool = True UpperCAmelCase_ :int = 0 UpperCAmelCase_ :str = "rgb" UpperCAmelCase_ :Tuple[int] = (16, 32, 96, 256) def __lowerCAmelCase ( self , __A ) -> FrozenDict: # init input tensors lowerCAmelCase_ :Optional[int] = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase_ :Dict = jnp.zeros(__A , dtype=jnp.floataa ) lowerCAmelCase_ :List[Any] = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase_ :Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase_ :Any = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCAmelCase_ :Optional[int] = jnp.zeros(__A , dtype=jnp.floataa ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = jax.random.split(__A ) lowerCAmelCase_ :Optional[int] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__A , __A , __A , __A , __A )["params"] def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Union[str, Any] = self.block_out_channels lowerCAmelCase_ :int = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase_ :Dict = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase_ :int = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase_ :Optional[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase_ :Optional[Any] = FlaxTimestepEmbedding(__A , dtype=self.dtype ) lowerCAmelCase_ :int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCAmelCase_ :List[str] = self.only_cross_attention if isinstance(__A , __A ): lowerCAmelCase_ :List[str] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__A , __A ): lowerCAmelCase_ :Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase_ :Dict = [] lowerCAmelCase_ :Optional[Any] = [] lowerCAmelCase_ :Dict = block_out_channels[0] lowerCAmelCase_ :List[Any] = nn.Conv( __A , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__A ) for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase_ :List[Any] = output_channel lowerCAmelCase_ :List[str] = block_out_channels[i] lowerCAmelCase_ :Tuple = i == len(__A ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase_ :Tuple = FlaxCrossAttnDownBlockaD( in_channels=__A , out_channels=__A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCAmelCase_ :Optional[int] = FlaxDownBlockaD( in_channels=__A , out_channels=__A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__A ) for _ in range(self.layers_per_block ): lowerCAmelCase_ :List[str] = nn.Conv( __A , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__A ) if not is_final_block: lowerCAmelCase_ :str = nn.Conv( __A , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__A ) lowerCAmelCase_ :List[Any] = down_blocks lowerCAmelCase_ :Optional[Any] = controlnet_down_blocks # mid lowerCAmelCase_ :int = block_out_channels[-1] lowerCAmelCase_ :List[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=__A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCAmelCase_ :Dict = nn.Conv( __A , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __A , __A , __A , __A , __A = 1.0 , __A = True , __A = False , ) -> Union[FlaxControlNetOutput, Tuple]: lowerCAmelCase_ :Union[str, Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCAmelCase_ :Optional[int] = jnp.flip(__A , axis=1 ) # 1. time if not isinstance(__A , jnp.ndarray ): lowerCAmelCase_ :List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__A , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase_ :str = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase_ :Union[str, Any] = jnp.expand_dims(__A , 0 ) lowerCAmelCase_ :List[Any] = self.time_proj(__A ) lowerCAmelCase_ :Optional[Any] = self.time_embedding(__A ) # 2. pre-process lowerCAmelCase_ :int = jnp.transpose(__A , (0, 2, 3, 1) ) lowerCAmelCase_ :List[Any] = self.conv_in(__A ) lowerCAmelCase_ :Union[str, Any] = jnp.transpose(__A , (0, 2, 3, 1) ) lowerCAmelCase_ :List[str] = self.controlnet_cond_embedding(__A ) sample += controlnet_cond # 3. down lowerCAmelCase_ :Any = (sample,) for down_block in self.down_blocks: if isinstance(__A , __A ): lowerCAmelCase_ , lowerCAmelCase_ :Any = down_block(__A , __A , __A , deterministic=not train ) else: lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = down_block(__A , __A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCAmelCase_ :int = self.mid_block(__A , __A , __A , deterministic=not train ) # 5. contronet blocks lowerCAmelCase_ :Dict = () for down_block_res_sample, controlnet_block in zip(__A , self.controlnet_down_blocks ): lowerCAmelCase_ :Union[str, Any] = controlnet_block(__A ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase_ :Optional[Any] = controlnet_down_block_res_samples lowerCAmelCase_ :List[Any] = self.controlnet_mid_block(__A ) # 6. scaling lowerCAmelCase_ :List[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__A , mid_block_res_sample=__A )
84
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
0
from PIL import Image def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Tuple ) -> Union[str, Any]: __lowerCAmelCase : Any = image.size __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Optional[Any] = image.load() for i in range(a__ ): for j in range(a__ ): __lowerCAmelCase : str = pixels[j, i] mean += pixel mean //= width * height for j in range(a__ ): for i in range(a__ ): __lowerCAmelCase : Any = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _UpperCAmelCase = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
369
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _UpperCAmelCase = 'bart' _UpperCAmelCase = True @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: if LOAD_DENSE_INDEX: __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase : str = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase : Tuple = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase : str = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase : str = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase : List[str] = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase : Optional[int] = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> Tuple: if LOAD_DENSE_INDEX: __lowerCAmelCase : List[str] = faiss.StandardGpuResources() __lowerCAmelCase : Optional[int] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase : Optional[int] = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase : int = faiss.IndexFlatIP(128 ) __lowerCAmelCase : Optional[int] = faiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE , 1 , SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase : Dict = (None, None) __lowerCAmelCase : List[Any] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: __lowerCAmelCase : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase : int = elia["""train_eli5"""] __lowerCAmelCase : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase : List[Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = load_indexes() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = load_models() _UpperCAmelCase , _UpperCAmelCase = load_train_data() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[str]=10 ) -> List[str]: __lowerCAmelCase : Optional[Any] = embed_questions_for_retrieval([question] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Dict = eli5_train_q_index.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = [elia_train[int(SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict="wiki40b" , SCREAMING_SNAKE_CASE :List[Any]="dense" , SCREAMING_SNAKE_CASE :List[str]=10 ) -> str: if source == "none": __lowerCAmelCase , __lowerCAmelCase : Any = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = query_qa_dense_index( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = query_es_index( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index_name="""english_wiki40b_snippets_100w""" , n_results=SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase : str = """question: {} context: {}""".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda SCREAMING_SNAKE_CASE : None), } ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :int=64 , SCREAMING_SNAKE_CASE :int=256 , SCREAMING_SNAKE_CASE :Tuple=False , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :int=0.95 , SCREAMING_SNAKE_CASE :Any=0.8 ) -> str: with torch.no_grad(): __lowerCAmelCase : Any = qa_sas_generate( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=SCREAMING_SNAKE_CASE , min_len=SCREAMING_SNAKE_CASE , max_len=SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , temp=SCREAMING_SNAKE_CASE , top_p=SCREAMING_SNAKE_CASE , top_k=SCREAMING_SNAKE_CASE , max_input_length=1_024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _UpperCAmelCase = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _UpperCAmelCase = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _UpperCAmelCase = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _UpperCAmelCase = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _UpperCAmelCase = st.sidebar.checkbox('Demo options') if demo_options: _UpperCAmelCase = st.sidebar.selectbox( '', action_list, index=3, ) _UpperCAmelCase = action_list.index(action_st) _UpperCAmelCase = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _UpperCAmelCase = show_type == 'Show full text of passages' else: _UpperCAmelCase = 3 _UpperCAmelCase = True _UpperCAmelCase = st.sidebar.checkbox('Retrieval options') if retrieval_options: _UpperCAmelCase = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _UpperCAmelCase = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _UpperCAmelCase = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _UpperCAmelCase = 'wiki40b' _UpperCAmelCase = 'dense' _UpperCAmelCase = 'beam' _UpperCAmelCase = 2 _UpperCAmelCase = 64 _UpperCAmelCase = 256 _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = st.sidebar.checkbox('Generation options') if generate_options: _UpperCAmelCase = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _UpperCAmelCase = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _UpperCAmelCase = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _UpperCAmelCase = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _UpperCAmelCase = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _UpperCAmelCase = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _UpperCAmelCase = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _UpperCAmelCase = None # start main text _UpperCAmelCase = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _UpperCAmelCase = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _UpperCAmelCase = st.text_input('Enter your question here:', '') else: _UpperCAmelCase = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _UpperCAmelCase , _UpperCAmelCase = make_support(question, source=wiki_source, method='dense', n_results=10) _UpperCAmelCase , _UpperCAmelCase = make_support(question, source=wiki_source, method='sparse', n_results=10) _UpperCAmelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _UpperCAmelCase = support_list[:10] _UpperCAmelCase = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _UpperCAmelCase , _UpperCAmelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _UpperCAmelCase , _UpperCAmelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _UpperCAmelCase = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _UpperCAmelCase = res[1].strip() if sec_titles == "": _UpperCAmelCase = '[{}]({})'.format(res[0], wiki_url) else: _UpperCAmelCase = sec_titles.split(' & ') _UpperCAmelCase = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _UpperCAmelCase = find_nearest_training(question) _UpperCAmelCase = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _UpperCAmelCase = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _UpperCAmelCase = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
232
0
'''simple docstring''' def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> float: __lowerCamelCase : str = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def a_ ( ) -> Optional[int]: print(sum_of_series(1 ,1 ,10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
208
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =["""image_processor""", """tokenizer"""] a_ ="""OwlViTImageProcessor""" a_ =("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Any , _a : str=None , _a : Optional[Any]=None , **_a : int ) -> List[str]: __lowerCamelCase : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _a , ) __lowerCamelCase : Tuple = kwargs.pop('feature_extractor' ) __lowerCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_a , _a ) def __call__( self : Tuple , _a : Tuple=None , _a : int=None , _a : List[Any]=None , _a : List[Any]="max_length" , _a : Union[str, Any]="np" , **_a : Union[str, Any] ) -> List[str]: if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(_a , _a ) or (isinstance(_a , _a ) and not isinstance(text[0] , _a )): __lowerCamelCase : Any = [self.tokenizer(_a , padding=_a , return_tensors=_a , **_a )] elif isinstance(_a , _a ) and isinstance(text[0] , _a ): __lowerCamelCase : List[Any] = [] # Maximum number of queries across batch __lowerCamelCase : str = max([len(_a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_a ) != max_num_queries: __lowerCamelCase : List[Any] = t + [' '] * (max_num_queries - len(_a )) __lowerCamelCase : Dict = self.tokenizer(_a , padding=_a , return_tensors=_a , **_a ) encodings.append(_a ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __lowerCamelCase : Optional[Any] = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __lowerCamelCase : str = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowerCamelCase : int = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __lowerCamelCase : List[str] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __lowerCamelCase : str = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __lowerCamelCase : Optional[Any] = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowerCamelCase : List[Any] = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __lowerCamelCase : int = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __lowerCamelCase : Any = BatchEncoding() __lowerCamelCase : Dict = input_ids __lowerCamelCase : str = attention_mask if query_images is not None: __lowerCamelCase : Optional[int] = BatchEncoding() __lowerCamelCase : List[Any] = self.image_processor( _a , return_tensors=_a , **_a ).pixel_values __lowerCamelCase : str = query_pixel_values if images is not None: __lowerCamelCase : Union[str, Any] = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: __lowerCamelCase : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowerCamelCase : Tuple = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def _lowercase ( self : Optional[Any] , *_a : List[str] , **_a : Dict ) -> int: return self.image_processor.post_process(*_a , **_a ) def _lowercase ( self : str , *_a : str , **_a : List[str] ) -> int: return self.image_processor.post_process_object_detection(*_a , **_a ) def _lowercase ( self : int , *_a : List[Any] , **_a : Optional[int] ) -> str: return self.image_processor.post_process_image_guided_detection(*_a , **_a ) def _lowercase ( self : Tuple , *_a : Optional[Any] , **_a : List[Any] ) -> Tuple: return self.tokenizer.batch_decode(*_a , **_a ) def _lowercase ( self : str , *_a : Optional[Any] , **_a : str ) -> Union[str, Any]: return self.tokenizer.decode(*_a , **_a ) @property def _lowercase ( self : Any ) -> Any: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _a , ) return self.image_processor_class @property def _lowercase ( self : Union[str, Any] ) -> Any: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _a , ) return self.image_processor
208
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase: Optional[Any] = logging.get_logger(__name__) class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = ['pixel_values'] def __init__( self : Union[str, Any], lowerCAmelCase : bool = True, lowerCAmelCase : Dict[str, int] = None, lowerCAmelCase : float = None, lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR, lowerCAmelCase : bool = True, lowerCAmelCase : Union[int, float] = 1 / 255, lowerCAmelCase : bool = True, lowerCAmelCase : Optional[Union[float, List[float]]] = None, lowerCAmelCase : Optional[Union[float, List[float]]] = None, **lowerCAmelCase : List[str], ) -> Union[str, Any]: super().__init__(**a_ ) lowercase : int = size if size is not None else {'shortest_edge': 384} lowercase : int = get_size_dict(a_, default_to_square=a_ ) lowercase : Optional[Any] = do_resize lowercase : Dict = size # Default value set here for backwards compatibility where the value in config is None lowercase : List[Any] = crop_pct if crop_pct is not None else 224 / 256 lowercase : int = resample lowercase : int = do_rescale lowercase : List[Any] = rescale_factor lowercase : List[str] = do_normalize lowercase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : Optional[Any], lowerCAmelCase : np.ndarray, lowerCAmelCase : Dict[str, int], lowerCAmelCase : float, lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC, lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : Any, ) -> Union[str, Any]: lowercase : List[str] = get_size_dict(a_, default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) lowercase : Any = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowercase : str = int(shortest_edge / crop_pct ) lowercase : List[str] = get_resize_output_image_size(a_, size=a_, default_to_square=a_ ) lowercase : Optional[int] = resize(image=a_, size=a_, resample=a_, data_format=a_, **a_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=a_, size=(shortest_edge, shortest_edge), data_format=a_, **a_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( a_, size=(shortest_edge, shortest_edge), resample=a_, data_format=a_, **a_ ) def lowercase ( self : Union[str, Any], lowerCAmelCase : np.ndarray, lowerCAmelCase : Union[int, float], lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : Tuple, ) -> Tuple: return rescale(a_, scale=a_, data_format=a_, **a_ ) def lowercase ( self : str, lowerCAmelCase : np.ndarray, lowerCAmelCase : Union[float, List[float]], lowerCAmelCase : Union[float, List[float]], lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : List[str], ) -> int: return normalize(a_, mean=a_, std=a_, data_format=a_, **a_ ) def lowercase ( self : str, lowerCAmelCase : ImageInput, lowerCAmelCase : bool = None, lowerCAmelCase : Dict[str, int] = None, lowerCAmelCase : float = None, lowerCAmelCase : PILImageResampling = None, lowerCAmelCase : bool = None, lowerCAmelCase : float = None, lowerCAmelCase : bool = None, lowerCAmelCase : Optional[Union[float, List[float]]] = None, lowerCAmelCase : Optional[Union[float, List[float]]] = None, lowerCAmelCase : Optional[Union[str, TensorType]] = None, lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST, **lowerCAmelCase : Optional[Any], ) -> List[Any]: lowercase : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase : List[Any] = crop_pct if crop_pct is not None else self.crop_pct lowercase : List[str] = resample if resample is not None else self.resample lowercase : int = do_rescale if do_rescale is not None else self.do_rescale lowercase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowercase : str = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : Optional[int] = size if size is not None else self.size lowercase : Any = get_size_dict(a_, default_to_square=a_ ) lowercase : List[str] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase : List[str] = [to_numpy_array(a_ ) for image in images] if do_resize: lowercase : Tuple = [self.resize(image=a_, size=a_, crop_pct=a_, resample=a_ ) for image in images] if do_rescale: lowercase : int = [self.rescale(image=a_, scale=a_ ) for image in images] if do_normalize: lowercase : Tuple = [self.normalize(image=a_, mean=a_, std=a_ ) for image in images] lowercase : Tuple = [to_channel_dimension_format(a_, a_ ) for image in images] lowercase : Any = {'pixel_values': images} return BatchFeature(data=a_, tensor_type=a_ )
359
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase: str = logging.get_logger(__name__) _UpperCamelCase: Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'mgp-str' def __init__( self : Tuple, lowerCAmelCase : str=[32, 128], lowerCAmelCase : List[Any]=4, lowerCAmelCase : Union[str, Any]=3, lowerCAmelCase : Union[str, Any]=27, lowerCAmelCase : Union[str, Any]=38, lowerCAmelCase : Tuple=50257, lowerCAmelCase : Dict=30522, lowerCAmelCase : Optional[int]=768, lowerCAmelCase : Optional[int]=12, lowerCAmelCase : Optional[int]=12, lowerCAmelCase : Union[str, Any]=4.0, lowerCAmelCase : Any=True, lowerCAmelCase : Optional[int]=False, lowerCAmelCase : Optional[int]=1e-5, lowerCAmelCase : List[str]=0.0, lowerCAmelCase : Optional[Any]=0.0, lowerCAmelCase : List[str]=0.0, lowerCAmelCase : Dict=False, lowerCAmelCase : Union[str, Any]=0.02, **lowerCAmelCase : Optional[int], ) -> List[Any]: super().__init__(**lowerCAmelCase ) lowercase : int = image_size lowercase : Dict = patch_size lowercase : List[str] = num_channels lowercase : Union[str, Any] = max_token_length lowercase : str = num_character_labels lowercase : Tuple = num_bpe_labels lowercase : Tuple = num_wordpiece_labels lowercase : Optional[Any] = hidden_size lowercase : Tuple = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : Tuple = mlp_ratio lowercase : Union[str, Any] = distilled lowercase : List[str] = layer_norm_eps lowercase : Optional[int] = drop_rate lowercase : Tuple = qkv_bias lowercase : int = attn_drop_rate lowercase : Any = drop_path_rate lowercase : Optional[Any] = output_aa_attentions lowercase : Optional[Any] = initializer_range
53
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ : Optional[int] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : str = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Tuple = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Any = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
335
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self: Optional[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[int]=7 , UpperCamelCase: str=3 , UpperCamelCase: int=30 , UpperCamelCase: int=4_00 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Tuple=None , UpperCamelCase: Any=True , UpperCamelCase: int=[0.5, 0.5, 0.5] , UpperCamelCase: Any=[0.5, 0.5, 0.5] , UpperCamelCase: Optional[Any]=True , UpperCamelCase: List[Any]=1 / 2_55 , UpperCamelCase: Tuple=True , ): """simple docstring""" A__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self: Any , UpperCamelCase: List[str] , UpperCamelCase: int=False ): """simple docstring""" if not batched: A__ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["""shortest_edge"""] * h / w ) A__ = self.size["""shortest_edge"""] elif w > h: A__ = self.size["""shortest_edge"""] A__ = int(self.size["""shortest_edge"""] * w / h ) else: A__ = self.size["""shortest_edge"""] A__ = self.size["""shortest_edge"""] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = YolosImageProcessor if is_vision_available() else None def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = YolosImageProcessingTester(self ) @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """size""" ) ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" pass def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) A__ = self.image_processing_class(do_resize=UpperCamelCase , do_normalize=UpperCamelCase , do_rescale=UpperCamelCase ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors A__ = image_processing_a.pad(UpperCamelCase , return_tensors="""pt""" ) A__ = image_processing_a(UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def UpperCamelCase ( self: str ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""image_id""": 3_97_69, """annotations""": target} # encode them A__ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) ) @slow def UpperCamelCase ( self: int ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} A__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A__ = YolosImageProcessor(format="""coco_panoptic""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify masks A__ = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
335
1
import math __UpperCAmelCase = 10 __UpperCAmelCase = 7 __UpperCAmelCase = BALLS_PER_COLOUR * NUM_COLOURS def __UpperCamelCase ( lowercase__ : int = 20 ) -> str: '''simple docstring''' lowerCAmelCase_ : str = math.comb(lowercase__ , lowercase__ ) lowerCAmelCase_ : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowercase__ ) lowerCAmelCase_ : Optional[Any] = NUM_COLOURS * (1 - missing_colour / total) return f'{result:.9f}' if __name__ == "__main__": print(solution(20))
28
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
1
from math import pow, sqrt def _SCREAMING_SNAKE_CASE ( *lowercase : float ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) > 0 and all(value > 0.0 for value in values ) return result def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float ): '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase , lowercase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase , lowercase , lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase , lowercase , lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowercase , lowercase , lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowercase , lowercase , lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
204
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
204
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def a ( __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :str = os.path.join(args.tf_model_dir , '''parameters.json''' ) UpperCamelCase__ :List[str] = json.loads(open(__a ).read() ) if not params: raise ValueError( f'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('''.pt''' ): UpperCamelCase__ :int = args.output + '''.pt''' UpperCamelCase__ :int = OrderedDict() with tf.device('''/CPU:0''' ): UpperCamelCase__ :Tuple = tf.train.load_checkpoint(args.tf_model_dir ) UpperCamelCase__ :Tuple = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCamelCase__ :Optional[Any] = reader.get_tensor(__a ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): UpperCamelCase__ :Any = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): UpperCamelCase__ :List[Any] = 8 UpperCamelCase__ :Optional[Any] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCamelCase__ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :List[Any] = torch.tensor(__a ) elif key_name.startswith('''model/moe''' ): UpperCamelCase__ :List[Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): UpperCamelCase__ :int = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player UpperCamelCase__ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Dict = torch.tensor(__a ) elif key_name.endswith('''/softmlp/kernel''' ): UpperCamelCase__ :List[Any] = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player UpperCamelCase__ :str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :int = torch.tensor(__a ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): UpperCamelCase__ :Union[str, Any] = key_name[-9:-7] for i in range(16 ): UpperCamelCase__ :Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) UpperCamelCase__ :Tuple = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCamelCase__ :Optional[int] = torch.tensor(__a ) elif key_name.startswith('''model/mlp''' ): UpperCamelCase__ :Optional[int] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): UpperCamelCase__ :List[Any] = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player UpperCamelCase__ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Optional[Any] = torch.tensor(__a ) elif key_name.endswith('''/p1/bias''' ): UpperCamelCase__ :Any = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player UpperCamelCase__ :Any = vnp.copy() # same because it is one dimensional UpperCamelCase__ :Any = torch.tensor(__a ) elif key_name.endswith('''/p2/kernel''' ): UpperCamelCase__ :Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player UpperCamelCase__ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Any = torch.tensor(__a ) elif key_name.endswith('''/p2/bias''' ): UpperCamelCase__ :List[str] = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player UpperCamelCase__ :Optional[int] = vnp.copy() # same because it is one dimensional UpperCamelCase__ :List[str] = torch.tensor(__a ) elif key_name.startswith('''model/ln''' ): UpperCamelCase__ :Dict = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): UpperCamelCase__ :Any = '''model.blocks.%d.feed_forward.norm.bias''' % player UpperCamelCase__ :Tuple = vnp.copy() # same because it is one dimensional UpperCamelCase__ :Dict = torch.tensor(__a ) elif key_name.endswith('''/g''' ): UpperCamelCase__ :str = '''model.blocks.%d.feed_forward.norm.weight''' % player UpperCamelCase__ :List[str] = vnp.copy() # same because it is one dimensional UpperCamelCase__ :Union[str, Any] = torch.tensor(__a ) elif key_name.startswith('''model/att''' ): UpperCamelCase__ :Optional[int] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): UpperCamelCase__ :Tuple = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCamelCase__ :Union[str, Any] = state[:, 0, :, :] UpperCamelCase__ :Tuple = state[:, 1, :, :] UpperCamelCase__ :List[Any] = state[:, 2, :, :] UpperCamelCase__ :Any = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :str = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :str = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :Any = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player UpperCamelCase__ :List[str] = torch.tensor(__a ) UpperCamelCase__ :Optional[Any] = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player UpperCamelCase__ :Optional[Any] = torch.tensor(__a ) UpperCamelCase__ :Any = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player UpperCamelCase__ :List[str] = torch.tensor(__a ) elif key_name.endswith('''/o/kernel''' ): UpperCamelCase__ :Optional[Any] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player UpperCamelCase__ :Optional[Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :List[Any] = torch.tensor(__a ) elif key_name.startswith('''model/an''' ): UpperCamelCase__ :Union[str, Any] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): UpperCamelCase__ :Dict = '''model.blocks.%d.self_attn.norm.bias''' % player UpperCamelCase__ :Any = vnp.copy() # same because it is one dimensional UpperCamelCase__ :List[Any] = torch.tensor(__a ) elif key_name.endswith('''/g''' ): UpperCamelCase__ :List[str] = '''model.blocks.%d.self_attn.norm.weight''' % player UpperCamelCase__ :List[Any] = vnp.copy() # same because it is one dimensional UpperCamelCase__ :Optional[Any] = torch.tensor(__a ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): UpperCamelCase__ :List[str] = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] UpperCamelCase__ :Optional[Any] = '''model.%s.weight''' % nlayer UpperCamelCase__ :Dict = vnp.copy() # same in embedded UpperCamelCase__ :Optional[Any] = torch.tensor(__a ) if key_name.startswith('''model/wte''' ): UpperCamelCase__ :Any = '''lm_head.weight''' UpperCamelCase__ :Tuple = vnp.copy() # same in embedded UpperCamelCase__ :Optional[Any] = torch.tensor(__a ) elif key_name.startswith('''model/wob''' ): UpperCamelCase__ :List[str] = '''final_logits_bias''' UpperCamelCase__ :List[Any] = vnp.copy() # same in embedded UpperCamelCase__ :Any = state.reshape((1, -1) ) UpperCamelCase__ :str = torch.tensor(__a ) elif key_name == "model/dense/kernel": UpperCamelCase__ :Union[str, Any] = '''model.last_project.weight''' UpperCamelCase__ :List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ :List[str] = torch.tensor(__a ) elif key_name == "model/dense_1/bias": UpperCamelCase__ :Any = '''model.last_project.bias''' UpperCamelCase__ :Any = vnp.copy() # same because it is one dimensional UpperCamelCase__ :Dict = torch.tensor(__a ) torch.save(__a , args.output ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') __snake_case = parser.parse_args() convert_tf_gptsan_to_pt(args)
219
'''simple docstring''' from collections import Counter from timeit import timeit def a ( __a = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def a ( __a = "" ) -> bool: '''simple docstring''' if len(__a ) == 0: return True UpperCamelCase__ :List[Any] = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string UpperCamelCase__ :dict[str, int] = {} for character in lower_case_input_str: UpperCamelCase__ :Optional[int] = character_freq_dict.get(__a , 0 ) + 1 UpperCamelCase__ :List[str] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def a ( __a = "" ) -> None: '''simple docstring''' print('''\nFor string = ''' , __a , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(__a ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(__a ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": __snake_case = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) __snake_case = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
219
1
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase_ : def __init__( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : List[str]=3 , __UpperCamelCase : Union[str, Any]=32 , __UpperCamelCase : Optional[Any]=3 , __UpperCamelCase : Any=10 , __UpperCamelCase : Dict=[8, 16, 32, 64] , __UpperCamelCase : Optional[Any]=[1, 1, 2, 1] , __UpperCamelCase : int=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any="relu" , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Optional[Any]=["stage2", "stage3", "stage4"] , __UpperCamelCase : int=[2, 3, 4] , __UpperCamelCase : List[str]=1 , ) -> Tuple: _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = embeddings_size _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_act _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = len(__UpperCamelCase ) _UpperCamelCase = out_features _UpperCamelCase = out_indices _UpperCamelCase = num_groups def _UpperCamelCase ( self : str ) -> Tuple: _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _UpperCamelCase ( self : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] ) -> Any: _UpperCamelCase = BitModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ) -> Union[str, Any]: _UpperCamelCase = self.num_labels _UpperCamelCase = BitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ) -> Optional[Any]: _UpperCamelCase = BitBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCamelCase = None _UpperCamelCase = BitBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _UpperCamelCase ( self : Dict ) -> str: _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowercase_ , lowercase_ , unittest.TestCase): snake_case__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () snake_case__ = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def _UpperCamelCase ( self : List[str] ) -> str: _UpperCamelCase = BitModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self : List[Any] ) -> Tuple: return @unittest.skip(reason='''Bit does not output attentions''' ) def _UpperCamelCase ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _UpperCamelCase ( self : Dict ) -> List[str]: pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _UpperCamelCase ( self : Any ) -> Tuple: pass def _UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__UpperCamelCase ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> str: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> str: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> Tuple: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__UpperCamelCase ) for name, module in model.named_modules(): if isinstance(__UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _UpperCamelCase ( self : Tuple ) -> Optional[int]: def check_hidden_states_output(__UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): _UpperCamelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase = layer_type _UpperCamelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: pass def _UpperCamelCase ( self : Dict ) -> Union[str, Any]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def _UpperCamelCase ( self : Tuple ) -> Any: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = BitModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase ( ) -> Dict: _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _UpperCamelCase ( self : List[str] ) -> Tuple: _UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCamelCase ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__UpperCamelCase ) # verify the logits _UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @require_torch class UpperCAmelCase_ ( lowercase_ , unittest.TestCase): snake_case__ = (BitBackbone,) if is_torch_available() else () snake_case__ = BitConfig snake_case__ = False def _UpperCamelCase ( self : List[str] ) -> Dict: _UpperCamelCase = BitModelTester(self )
256
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _UpperCAmelCase : Dict = logging.get_logger(__name__) class lowercase : def __init__( self , snake_case = None , snake_case = None , snake_case=None , snake_case=None ): if not conversation_id: snake_case_ = uuid.uuida() if past_user_inputs is None: snake_case_ = [] if generated_responses is None: snake_case_ = [] snake_case_ = conversation_id snake_case_ = past_user_inputs snake_case_ = generated_responses snake_case_ = text def __eq__( self , snake_case ): if not isinstance(snake_case , snake_case ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def a ( self , snake_case , snake_case = False ): if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) snake_case_ = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: snake_case_ = text def a ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) snake_case_ = None def a ( self , snake_case ): self.generated_responses.append(snake_case ) def a ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): snake_case_ = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): snake_case_ = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( lowercase_ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowercase ( lowercase_ ): def __init__( self , *snake_case , **snake_case ): super().__init__(*snake_case , **snake_case ) if self.tokenizer.pad_token_id is None: snake_case_ = self.tokenizer.eos_token def a ( self , snake_case=None , snake_case=None , snake_case=None , **snake_case ): snake_case_ = {} snake_case_ = {} snake_case_ = {} if min_length_for_response is not None: snake_case_ = min_length_for_response if minimum_tokens is not None: snake_case_ = minimum_tokens if "max_length" in generate_kwargs: snake_case_ = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: snake_case_ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(snake_case ) return preprocess_params, forward_params, postprocess_params def __call__( self , snake_case , snake_case=0 , **snake_case ): snake_case_ = super().__call__(snake_case , num_workers=snake_case , **snake_case ) if isinstance(snake_case , snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs def a ( self , snake_case , snake_case=32 ): if not isinstance(snake_case , snake_case ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): snake_case_ = self.tokenizer._build_conversation_input_ids(snake_case ) else: # If the tokenizer cannot handle conversations, we default to only the old version snake_case_ = self._legacy_parse_and_tokenize(snake_case ) if self.framework == "pt": snake_case_ = torch.LongTensor([input_ids] ) elif self.framework == "tf": snake_case_ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def a ( self , snake_case , snake_case=10 , **snake_case ): snake_case_ = generate_kwargs.get('max_length' , self.model.config.max_length ) snake_case_ = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) snake_case_ = max_length - minimum_tokens snake_case_ = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: snake_case_ = model_inputs['attention_mask'][:, -trim:] snake_case_ = model_inputs.pop('conversation' ) snake_case_ = max_length snake_case_ = self.model.generate(**snake_case , **snake_case ) if self.model.config.is_encoder_decoder: snake_case_ = 1 else: snake_case_ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def a ( self , snake_case , snake_case=True ): snake_case_ = model_outputs['output_ids'] snake_case_ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case , ) snake_case_ = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(snake_case ) return conversation def a ( self , snake_case ): snake_case_ = self.tokenizer.eos_token_id snake_case_ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(snake_case , add_special_tokens=snake_case ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) if len(snake_case ) > self.tokenizer.model_max_length: snake_case_ = input_ids[-self.tokenizer.model_max_length :] return input_ids
285
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowercase_ = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowercase_ = {"facebook/blenderbot-3B": 1_28} class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = VOCAB_FILES_NAMES A : int = PRETRAINED_VOCAB_FILES_MAP A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[str] = ["input_ids", "attention_mask"] A : str = BlenderbotTokenizer def __init__( self : Optional[int] , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : int=None , _lowerCAmelCase : List[Any]="replace" , _lowerCAmelCase : Union[str, Any]="<s>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : str="<mask>" , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]=True , **_lowerCAmelCase : int , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: __snake_case : Dict = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) __snake_case : Optional[int] = add_prefix_space __snake_case : Dict = pre_tok_class(**_lowerCAmelCase ) __snake_case : List[str] = add_prefix_space __snake_case : Union[str, Any] = """post_processor""" __snake_case : Optional[int] = getattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) if tokenizer_component_instance: __snake_case : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : str = tuple(state["""sep"""] ) if "cls" in state: __snake_case : List[str] = tuple(state["""cls"""] ) __snake_case : str = False if state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : Tuple = True if state.get("""trim_offsets""" , _lowerCAmelCase ) != trim_offsets: __snake_case : Dict = trim_offsets __snake_case : Dict = True if changes_to_apply: __snake_case : Any = getattr(_lowerCAmelCase , state.pop("""type""" ) ) __snake_case : int = component_class(**_lowerCAmelCase ) setattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def snake_case__ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ): __snake_case : Dict = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else value __snake_case : Optional[Any] = value def snake_case__ ( self : List[Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : str ): __snake_case : List[str] = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Tuple , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : List[str] ): __snake_case : List[Any] = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : Tuple = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : str = [self.sep_token_id] __snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : str , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : "Conversation" ): __snake_case : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(_lowerCAmelCase ) __snake_case : Any = """ """.join(_lowerCAmelCase ) __snake_case : List[Any] = self.encode(_lowerCAmelCase ) if len(_lowerCAmelCase ) > self.model_max_length: __snake_case : int = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
20
from __future__ import annotations import math def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __snake_case : Optional[Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=1_3 , UpperCamelCase__ : Any=7 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[Any]=9_9 , UpperCamelCase__ : Dict=3_2 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : str=4 , UpperCamelCase__ : List[str]=3_7 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Union[str, Any]=5_1_2 , UpperCamelCase__ : Optional[Any]=1_6 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : str=0.0_2 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : List[str]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def A ( self : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) UpperCamelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = True UpperCamelCase = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , ): """simple docstring""" UpperCamelCase = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , ): """simple docstring""" UpperCamelCase = True UpperCamelCase = True UpperCamelCase = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )['hidden_states'][0] UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )['hidden_states'][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = (OpenLlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : str ): """simple docstring""" UpperCamelCase = OpenLlamaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : int ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(UpperCamelCase__ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'single_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(UpperCamelCase__ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'multi_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(UpperCamelCase__ ) UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def A ( self : Tuple ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def A ( self : Union[str, Any] , UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ids_tensor([1, 1_0] , config.vocab_size ) UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() UpperCamelCase = original_model(UpperCamelCase__ ).last_hidden_state UpperCamelCase = original_model(UpperCamelCase__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = {'type': scaling_type, 'factor': 1_0.0} UpperCamelCase = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() UpperCamelCase = scaled_model(UpperCamelCase__ ).last_hidden_state UpperCamelCase = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) )
28
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = ComputeEnvironment.AMAZON_SAGEMAKER _A = True _A = 'ml.p3.2xlarge' _A = 'accelerate_sagemaker_execution_role' _A = 'hf-sm' _A = 'us-east-1' _A = 1 _A = 'accelerate-sagemaker-1' _A = '1.6' _A = '4.4' _A = 'train.py' _A = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] _A = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :Any ) -> Optional[int]: # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCamelCase : Optional[int] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] , a ) assert isinstance(converted_args["do_train"] , a ) assert isinstance(converted_args["epochs"] , a ) assert isinstance(converted_args["learning_rate"] , a ) assert isinstance(converted_args["max_steps"] , a ) with pytest.raises(a ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
232
0
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
286
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , __A : int , __A : str=7 , __A : Union[str, Any]=3 , __A : Union[str, Any]=3_0 , __A : Optional[int]=4_0_0 , __A : Optional[Any]=True , __A : Optional[int]=None , __A : Union[str, Any]=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : Any=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : Optional[Any]=1 / 2_5_5 , __A : Union[str, Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : Optional[Any] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : List[Any] = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Tuple = num_channels snake_case__ : List[Any] = min_resolution snake_case__ : Optional[Any] = max_resolution snake_case__ : str = do_resize snake_case__ : List[str] = size snake_case__ : List[Any] = do_normalize snake_case__ : Dict = image_mean snake_case__ : List[Any] = image_std snake_case__ : int = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : str = do_pad def _lowercase ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : Dict , __A : Union[str, Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Any = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : List[str] = int(self.size["shortest_edge"] * h / w ) snake_case__ : Tuple = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Optional[Any] = self.size["shortest_edge"] snake_case__ : List[Any] = self.size["shortest_edge"] else: snake_case__ : Union[str, Any] = [] for image in image_inputs: snake_case__, snake_case__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Any = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Optional[int] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : Optional[int] ): snake_case__ : str = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Union[str, Any] ): snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Tuple ): snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Any ): pass def _lowercase ( self : Optional[int] ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : Union[str, Any] = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Any ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Union[str, Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[int] ): # prepare image and target snake_case__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : List[str] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Optional[Any] = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : int = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Union[str, Any] ): # prepare image, target and masks_path snake_case__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Optional[int] = json.loads(f.read() ) snake_case__ : Any = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : List[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Dict = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Optional[Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Dict = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
286
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='deta' __a ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[str] , __a : List[str]=None , __a : Dict=9_00 , __a : str=20_48 , __a : Tuple=6 , __a : List[str]=20_48 , __a : str=8 , __a : Union[str, Any]=6 , __a : int=10_24 , __a : List[Any]=8 , __a : Dict=0.0 , __a : Tuple=True , __a : Optional[Any]="relu" , __a : Tuple=2_56 , __a : Optional[Any]=0.1 , __a : int=0.0 , __a : List[Any]=0.0 , __a : Optional[int]=0.02 , __a : str=1.0 , __a : Dict=True , __a : Dict=False , __a : Optional[int]="sine" , __a : Any=5 , __a : List[str]=4 , __a : Optional[int]=4 , __a : List[str]=True , __a : str=3_00 , __a : int=True , __a : int=True , __a : Tuple=1 , __a : Optional[int]=5 , __a : Tuple=2 , __a : Dict=1 , __a : Optional[int]=1 , __a : Any=5 , __a : Optional[int]=2 , __a : Dict=0.1 , __a : str=0.25 , **__a : Tuple , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _a = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(__a , __a ): _a = backbone_config.pop("model_type" ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__a ) _a = backbone_config _a = num_queries _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = auxiliary_loss _a = position_embedding_type # deformable attributes _a = num_feature_levels _a = encoder_n_points _a = decoder_n_points _a = two_stage _a = two_stage_num_proposals _a = with_box_refine _a = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient _a = focal_alpha super().__init__(is_encoder_decoder=__a , **__a ) @property def UpperCamelCase__ ( self : Optional[Any] ): return self.encoder_attention_heads @property def UpperCamelCase__ ( self : Dict ): return self.d_model def UpperCamelCase__ ( self : List[str] ): _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
63
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: complex , __UpperCAmelCase: str = "x" , __UpperCAmelCase: float = 10**-10 , __UpperCAmelCase: int = 1 , ) -> complex: UpperCamelCase__ : Optional[int] = symbols(__UpperCAmelCase ) UpperCamelCase__ : Dict = lambdify(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : List[str] = lambdify(__UpperCAmelCase , diff(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCamelCase__ : int = starting_point while True: if diff_function(__UpperCAmelCase ) != 0: UpperCamelCase__ : Optional[int] = prev_guess - multiplicity * func(__UpperCAmelCase ) / diff_function( __UpperCAmelCase ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase__ : Tuple = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial # Find fourth Root of 5 print(F'''The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}''') # Find value of e print( 'The root of log(y) - 1 = 0 is ', F'''{newton_raphson("log(y) - 1", 2, variable="y")}''', ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', F'''{newton_raphson("exp(x) - 1", 10, precision=0.005)}''', ) # Find root of cos(x) print(F'''The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}''')
201
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = {'vocab_file': 'vocab.txt'} _SCREAMING_SNAKE_CASE : List[Any] = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } _SCREAMING_SNAKE_CASE : Optional[Any] = { 'YituTech/conv-bert-base': 5_12, 'YituTech/conv-bert-medium-small': 5_12, 'YituTech/conv-bert-small': 5_12, } _SCREAMING_SNAKE_CASE : int = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class A__ ( a__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ConvBertTokenizer def __init__( self , __snake_case=None , __snake_case=None , __snake_case=True , __snake_case="[UNK]" , __snake_case="[SEP]" , __snake_case="[PAD]" , __snake_case="[CLS]" , __snake_case="[MASK]" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , ) snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' , __snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __snake_case ) != tokenize_chinese_chars ): snake_case = getattr(__snake_case , normalizer_state.pop('''type''' ) ) snake_case = do_lower_case snake_case = strip_accents snake_case = tokenize_chinese_chars snake_case = normalizer_class(**__snake_case ) snake_case = do_lower_case def a_ ( self , __snake_case , __snake_case=None ): snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a_ ( self , __snake_case , __snake_case = None ): snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a_ ( self , __snake_case , __snake_case = None ): snake_case = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case )
127
'''simple docstring''' a__ : Union[str, Any] = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _UpperCamelCase ( __A ) -> int: '''simple docstring''' UpperCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a__ : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a__ : Optional[Any] = True a__ : Optional[Any] = False def _UpperCamelCase ( __A ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCamelCase__ = chain(next_number(__A ) ) UpperCamelCase__ = number_chain while number < 10000000: UpperCamelCase__ = number_chain number *= 10 return number_chain def _UpperCamelCase ( __A = 10000000 ) -> int: '''simple docstring''' for i in range(1 , __A ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__A ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
80
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=2 , lowerCAmelCase_=8 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=16 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=36 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self ) -> str: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = self.get_config() _snake_case = 300 return config def lowerCAmelCase ( self ) -> Any: ( _snake_case ) = self.prepare_config_and_inputs() _snake_case = True _snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _snake_case = MraModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> str: _snake_case = True _snake_case = MraModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) _snake_case = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _snake_case = MraForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = MraForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _snake_case = self.num_labels _snake_case = MraForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = self.num_labels _snake_case = MraForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = self.num_choices _snake_case = MraForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self ) -> str: _snake_case = self.prepare_config_and_inputs() ( _snake_case ) = config_and_inputs _snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( a__ , unittest.TestCase ): lowerCAmelCase_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = () def lowerCAmelCase ( self ) -> List[Any]: _snake_case = MraModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def lowerCAmelCase ( self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCAmelCase ( self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCAmelCase ( self ) -> str: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def lowerCAmelCase ( self ) -> str: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def lowerCAmelCase ( self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def lowerCAmelCase ( self ) -> Optional[Any]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = MraModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='MRA does not output attentions' ) def lowerCAmelCase ( self ) -> List[Any]: return @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self ) -> List[str]: _snake_case = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) _snake_case = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _snake_case = model(_lowerCamelCase )[0] _snake_case = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) _snake_case = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) _snake_case = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _snake_case = model(_lowerCamelCase )[0] _snake_case = 5_0265 _snake_case = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCamelCase ) _snake_case = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> Tuple: _snake_case = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) _snake_case = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _snake_case = model(_lowerCamelCase )[0] _snake_case = 5_0265 _snake_case = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _lowerCamelCase ) _snake_case = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
354
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = """ResNetConfig""" # Base docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = """tiger cat""" UpperCAmelCase_ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Union[str, Any]: super().__init__() _snake_case = nn.Convad( lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=kernel_size // 2 , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> Dict: super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.pooler(lowerCAmelCase_ ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 ) -> List[Any]: super().__init__() _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , stride=lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Any: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" , lowerCAmelCase_ = 4 ) -> List[str]: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Tuple: super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , activation=config.hidden_act ) , *[layer(lowerCAmelCase_ , lowerCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = input for layer in self.layers: _snake_case = layer(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ) -> BaseModelOutputWithNoAttention: _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowerCAmelCase_ ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ResNetConfig lowerCAmelCase_ = '''resnet''' lowerCAmelCase_ = '''pixel_values''' lowerCAmelCase_ = True def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if isinstance(lowerCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = value UpperCAmelCase_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCAmelCase_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__(lowerCAmelCase_ ) _snake_case = config _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BaseModelOutputWithPoolingAndNoAttention: _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowerCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__(lowerCAmelCase_ ) _snake_case = config.num_labels _snake_case = ResNetModel(lowerCAmelCase_ ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> ImageClassifierOutputWithNoAttention: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowerCAmelCase_ ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> List[Any]: super().__init__(lowerCAmelCase_ ) super()._init_backbone(lowerCAmelCase_ ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @replace_return_docstrings(output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BackboneOutput: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase_ , )
295
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = abs(__lowerCAmelCase ) lowercase_ = 0 while n > 0: res += n % 10 n //= 10 return res def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def _SCREAMING_SNAKE_CASE () -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) -> None: lowercase_ = F'''{func.__name__}({value})''' lowercase_ = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) print(F'''{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
136
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "gpt_neox" def __init__( self : Union[str, Any] , lowerCAmelCase_ : str=5_0_4_3_2 , lowerCAmelCase_ : List[Any]=6_1_4_4 , lowerCAmelCase_ : str=4_4 , lowerCAmelCase_ : Tuple=6_4 , lowerCAmelCase_ : Optional[int]=2_4_5_7_6 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Any=0.25 , lowerCAmelCase_ : int=1_0_0_0_0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : List[Any]=1E-5 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = rotary_pct lowercase_ = rotary_emb_base lowercase_ = attention_dropout lowercase_ = hidden_dropout lowercase_ = classifier_dropout lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_cache lowercase_ = tie_word_embeddings lowercase_ = use_parallel_residual lowercase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase_) or len(self.rope_scaling) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''') lowercase_ = self.rope_scaling.get("""type""" , lowerCAmelCase_) lowercase_ = self.rope_scaling.get("""factor""" , lowerCAmelCase_) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''') if rope_scaling_factor is None or not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''')
136
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def A_ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = compute_bleu( reference_corpus=UpperCAmelCase_ , translation_corpus=UpperCAmelCase_ , max_order=UpperCAmelCase_ , smooth=UpperCAmelCase_ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
358
from __future__ import annotations from statistics import mean def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * no_of_processes SCREAMING_SNAKE_CASE__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = burst_time[i] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = -1 for i in range(UpperCamelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: SCREAMING_SNAKE_CASE__ = i total_time += burst_time[target_process] completed += 1 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * no_of_processes for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case = 4 __snake_case = [2, 5, 3, 7] __snake_case = [0, 0, 0, 0] __snake_case = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
169
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: lowercase : Dict = ord(SCREAMING_SNAKE_CASE__ ) if not _is_chinese_char(SCREAMING_SNAKE_CASE__ ): return 0 return 1 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Union[str, Any] = set() for token in tokens: lowercase : List[str] = len(SCREAMING_SNAKE_CASE__ ) > 1 and is_chinese(SCREAMING_SNAKE_CASE__ ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ ) return word_list def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: if not chinese_word_set: return bert_tokens lowercase : List[str] = max([len(SCREAMING_SNAKE_CASE__ ) for w in chinese_word_set] ) lowercase : str = bert_tokens lowercase , lowercase : Any = 0, len(SCREAMING_SNAKE_CASE__ ) while start < end: lowercase : Optional[Any] = True if is_chinese(bert_word[start] ): lowercase : str = min(end - start , SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ , 1 , -1 ): lowercase : Any = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase : Any = """##""" + bert_word[j] lowercase : List[Any] = start + i lowercase : int = False break if single_word: start += 1 return bert_word def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Any = [] for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 100 ): lowercase : Any = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws lowercase : Tuple = [get_chinese_word(SCREAMING_SNAKE_CASE__ ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = [] for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 100 ): lowercase : Union[str, Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = [] for id in input_ids: lowercase : Optional[Any] = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) input_tokens.append(SCREAMING_SNAKE_CASE__ ) lowercase : int = add_sub_symbol(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): if token[:2] == "##": lowercase : Dict = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE__ ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE__ ) ): ref_id.append(SCREAMING_SNAKE_CASE__ ) ref_ids.append(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) return ref_ids def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase : Dict = f.readlines() lowercase : Tuple = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase : Tuple = LTP(args.ltp ) # faster in GPU device lowercase : Dict = BertTokenizer.from_pretrained(args.bert ) lowercase : Any = prepare_ref(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase : Optional[Any] = [json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) lowercase : Tuple = parser.parse_args() main(args)
20
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : int _a : TreeNode | None= None _a : TreeNode | None= None lowercase : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE__ ) != count_coins(SCREAMING_SNAKE_CASE__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : List[Any] = get_distrib(node.right ) lowercase : Optional[Any] = 1 - left_distrib_excess lowercase : Union[str, Any] = 1 - right_distrib_excess lowercase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__ ) + abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return get_distrib(SCREAMING_SNAKE_CASE__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
196
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : List[Any] =logging.get_logger(__name__) lowerCamelCase : Optional[Any] ={ '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class __a ( A__ , A__ ): _lowerCAmelCase : Union[str, Any] = '''bit''' _lowerCAmelCase : List[str] = ['''preactivation''', '''bottleneck'''] _lowerCAmelCase : Any = ['''SAME''', '''VALID'''] def __init__( self : str , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : str=64 , SCREAMING_SNAKE_CASE : List[Any]=[2_56, 5_12, 10_24, 20_48] , SCREAMING_SNAKE_CASE : Union[str, Any]=[3, 4, 6, 3] , SCREAMING_SNAKE_CASE : str="preactivation" , SCREAMING_SNAKE_CASE : Any="relu" , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : List[Any]=32 , SCREAMING_SNAKE_CASE : Tuple=0.0 , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : int=32 , SCREAMING_SNAKE_CASE : str=1 , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , **SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: UpperCamelCase__ : Any = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : Dict = embedding_size UpperCamelCase__ : Tuple = hidden_sizes UpperCamelCase__ : Any = depths UpperCamelCase__ : Optional[int] = layer_type UpperCamelCase__ : int = hidden_act UpperCamelCase__ : str = global_padding UpperCamelCase__ : Any = num_groups UpperCamelCase__ : str = drop_path_rate UpperCamelCase__ : Optional[Any] = embedding_dynamic_padding UpperCamelCase__ : Tuple = output_stride UpperCamelCase__ : List[str] = width_factor UpperCamelCase__ : Any = ["stem"] + [F'stage{idx}' for idx in range(1 , len(SCREAMING_SNAKE_CASE ) + 1 )] UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE , out_indices=SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
196
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A=13 , _A=3 , _A=True , _A=True , _A=0.1 , _A=0.1 , _A=224 , _A=1000 , _A=[3, 3, 6, 4] , _A=[48, 56, 112, 220] , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = layer_depths SCREAMING_SNAKE_CASE_ = embed_dims def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_A , layer_scale_init_value=1E-5 , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = SwiftFormerModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _UpperCamelCase ( self , _A , _A , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = SwiftFormerForImageClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE_ = SwiftFormerForImageClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase_ =( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester( self , config_class=_A , has_text_modality=_A , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _UpperCamelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> str: pass def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def _UpperCamelCase ( self ) -> Tuple: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = SwiftFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def _UpperCamelCase ( self ) -> Optional[Any]: pass def _UpperCamelCase ( self ) -> List[str]: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.hidden_states SCREAMING_SNAKE_CASE_ = 8 self.assertEqual(len(_A ) , _A ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_A ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Any: def _config_zero_init(_A ): SCREAMING_SNAKE_CASE_ = copy.deepcopy(_A ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_A , _A , 1E-10 ) if isinstance(getattr(_A , _A , _A ) , _A ): SCREAMING_SNAKE_CASE_ = _config_zero_init(getattr(_A , _A ) ) setattr(_A , _A , _A ) return configs_no_init SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = _config_zero_init(_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(config=_A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _UpperCamelCase ( self ) -> Optional[int]: pass def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Dict: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_A ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
1
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: List[Any] = [] A: int = set({'''(''', '''[''', '''{'''} ) A: Optional[Any] = set({''')''', ''']''', '''}'''} ) A: Optional[int] = {"{": "}", "[": "]", "(": ")"} for i in range(len(__SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__SCREAMING_SNAKE_CASE ) == 0 or (len(__SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__SCREAMING_SNAKE_CASE ) == 0 def SCREAMING_SNAKE_CASE( ) -> List[str]: A: str = input('''Enter sequence of brackets: ''' ) if is_balanced(__SCREAMING_SNAKE_CASE ): print(__SCREAMING_SNAKE_CASE , '''is balanced''' ) else: print(__SCREAMING_SNAKE_CASE , '''is not balanced''' ) if __name__ == "__main__": main()
370
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ["""input_features""", """attention_mask"""] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_60_00 , SCREAMING_SNAKE_CASE_ : int=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = num_mel_bins A: str = do_ceptral_normalize A: int = normalize_means A: List[Any] = normalize_vars A: Any = True def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , ) -> np.ndarray: '''simple docstring''' A: Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers A: Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) A: List[Any] = ta_kaldi.fbank(SCREAMING_SNAKE_CASE_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : float = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: A: str = x[:input_length].mean(axis=0 ) A: Dict = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if normalize_vars: A: Tuple = x[:input_length].std(axis=0 ) A: List[Any] = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: A: Optional[int] = padding_value # make sure array is in float32 A: Optional[Any] = x.astype(np.floataa ) return x def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' A: int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) A: Any = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) A: Optional[Any] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A: Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): A: int = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A: Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A: Union[str, Any] = [raw_speech] # extract fbank features A: str = [self._extract_fbank_features(SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech] # convert into correct format for padding A: int = BatchFeature({'''input_features''': features} ) A: int = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format A: List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): A: Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] A: List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: A: Dict = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A: Dict = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) A: List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: A: Dict = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
334
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Union[str, Any] = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
import math def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list: """simple docstring""" __A = end or len(a_ ) for i in range(a_ , a_ ): __A = i __A = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __A = array[temp_index - 1] temp_index -= 1 __A = temp_index_value return array def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap """simple docstring""" __A = index __A = 2 * index + 1 # Left Node __A = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __A = left_index if right_index < heap_size and array[largest] < array[right_index]: __A = right_index if largest != index: __A , __A = array[largest], array[index] heapify(a_ , a_ , a_ ) def UpperCAmelCase ( a_ ) -> list: """simple docstring""" __A = len(a_ ) for i in range(n // 2 , -1 , -1 ): heapify(a_ , a_ , a_ ) for i in range(n - 1 , 0 , -1 ): __A , __A = array[0], array[i] heapify(a_ , 0 , a_ ) return array def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" __A = low __A = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __A , __A = array[j], array[i] i += 1 def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) == 0: return array __A = 2 * math.ceil(math.loga(len(a_ ) ) ) __A = 1_6 return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a_ ) max_depth -= 1 __A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 ) __A = partition(a_ , a_ , a_ , a_ ) intro_sort(a_ , a_ , a_ , a_ , a_ ) __A = p return insertion_sort(a_ , a_ , a_ ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip() SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')] print(sort(unsorted))
15
1
import re from filelock import FileLock try: import nltk UpperCAmelCase : Tuple = True except (ImportError, ModuleNotFoundError): UpperCAmelCase : int = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' re.sub("""<n>""" , """""" , lowerCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCamelCase__ ) )
370
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowercase ( pl.LightningModule ): """simple docstring""" def __init__( self , A ) -> Any: '''simple docstring''' super().__init__() lowerCamelCase = model lowerCamelCase = 2 lowerCamelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __A ( self ) -> int: '''simple docstring''' pass def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = LongformerModel.from_pretrained(lowerCamelCase__ ) lowerCamelCase = LightningModel(lowerCamelCase__ ) lowerCamelCase = torch.load(lowerCamelCase__ , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model lowerCamelCase = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase__ ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
66
0
"""simple docstring""" def _lowerCAmelCase ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(lowercase_ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
78
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a_ = get_logger(__name__) class _UpperCamelCase ( enum.Enum ): '''simple docstring''' lowerCamelCase__ ='all_checks' lowerCamelCase__ ='basic_checks' lowerCamelCase__ ='no_checks' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' def lowerCamelCase__ ( _a , _a , _a=None): if expected_checksums is None: logger.info("Unable to verify checksums.") return if len(set(_a) - set(_a)) > 0: raise ExpectedMoreDownloadedFiles(str(set(_a) - set(_a))) if len(set(_a) - set(_a)) > 0: raise UnexpectedDownloadedFile(str(set(_a) - set(_a))) SCREAMING_SNAKE_CASE : str = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE : Tuple = " for " + verification_name if verification_name is not None else "" if len(_a) > 0: raise NonMatchingChecksumError( f"Checksums didn't match{for_verification_name}:\n" f"{bad_urls}\n" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error") logger.info("All the checksums matched successfully" + for_verification_name) class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' def lowerCamelCase__ ( _a , _a): if expected_splits is None: logger.info("Unable to verify splits sizes.") return if len(set(_a) - set(_a)) > 0: raise ExpectedMoreSplits(str(set(_a) - set(_a))) if len(set(_a) - set(_a)) > 0: raise UnexpectedSplits(str(set(_a) - set(_a))) SCREAMING_SNAKE_CASE : List[str] = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_a) > 0: raise NonMatchingSplitsSizesError(str(_a)) logger.info("All the splits matched successfully.") def lowerCamelCase__ ( _a , _a = True): if record_checksum: SCREAMING_SNAKE_CASE : List[str] = shaaaa() with open(_a , "rb") as f: for chunk in iter(lambda: f.read(1 << 20) , b""): m.update(_a) SCREAMING_SNAKE_CASE : Optional[int] = m.hexdigest() else: SCREAMING_SNAKE_CASE : List[str] = None return {"num_bytes": os.path.getsize(_a), "checksum": checksum} def lowerCamelCase__ ( _a): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
76
0
def lowerCAmelCase_( lowercase_ : int ) -> int: _lowerCamelCase = [1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0, 0, 0 _lowerCamelCase = ugly_nums[ia] * 2 _lowerCamelCase = ugly_nums[ia] * 3 _lowerCamelCase = ugly_nums[ia] * 5 for _ in range(1 , lowercase_ ): _lowerCamelCase = min(lowercase_ , lowercase_ , lowercase_ ) ugly_nums.append(lowercase_ ) if next_num == next_a: ia += 1 _lowerCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _lowerCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _lowerCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(2_0_0) = }""")
364
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCAmelCase_( lowercase_ : List[str]="" ) -> str: _lowerCamelCase = tempfile.mkdtemp() return os.path.join(lowercase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = AgentAudio(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor _lowerCamelCase , _lowerCamelCase = sf.read(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1e-4 ) ) def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = get_new_path(suffix='''.wav''' ) sf.write(lowerCamelCase__ , lowerCamelCase__ , 1_6_0_0_0 ) _lowerCamelCase = AgentAudio(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , lowerCamelCase__ ) @require_vision @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = '''Hey!''' _lowerCamelCase = AgentText(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , agent_type.to_string() ) self.assertEqual(lowerCamelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
73
0
'''simple docstring''' import logging import os from .state import PartialState class A ( logging.LoggerAdapter ): @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : List[str] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) A : Dict = kwargs.pop('''main_process_only''' , SCREAMING_SNAKE_CASE ) A : Optional[Any] = kwargs.pop('''in_order''' , SCREAMING_SNAKE_CASE ) if self.isEnabledFor(SCREAMING_SNAKE_CASE ): if self._should_log(SCREAMING_SNAKE_CASE ): A, A : Optional[Any] = self.process(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.logger.log(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif in_order: A : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: A, A : List[Any] = self.process(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.logger.log(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) state.wait_for_everyone() def lowerCAmelCase_ ( snake_case__ , snake_case__ = None ): '''simple docstring''' if log_level is None: A : str = os.environ.get('''ACCELERATE_LOG_LEVEL''' , snake_case__ ) A : Dict = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__ , {} )
3
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : List[Any] = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=32 * 4 , __SCREAMING_SNAKE_CASE=32 * 6 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=32 , ): """simple docstring""" lowercase_ : Tuple = parent lowercase_ : Optional[int] = batch_size lowercase_ : Dict = is_training lowercase_ : Optional[Any] = use_auxiliary_loss lowercase_ : Optional[Any] = num_queries lowercase_ : Any = num_channels lowercase_ : str = min_size lowercase_ : str = max_size lowercase_ : Optional[Any] = num_labels lowercase_ : List[str] = mask_feature_size def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __SCREAMING_SNAKE_CASE ) lowercase_ : str = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__SCREAMING_SNAKE_CASE ) lowercase_ : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__SCREAMING_SNAKE_CASE ) > 0.5 ).float() lowercase_ : str = (torch.rand((self.batch_size, self.num_labels) , device=__SCREAMING_SNAKE_CASE ) > 0.5).long() lowercase_ : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _snake_case ( self ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _snake_case ( self ): """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = self.prepare_config_and_inputs() lowercase_ : Any = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[str] = output.encoder_hidden_states lowercase_ : List[Any] = output.pixel_decoder_hidden_states lowercase_ : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) , config.decoder_config.decoder_layers ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" with torch.no_grad(): lowercase_ : Any = MaskFormerModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Dict = model(pixel_values=__SCREAMING_SNAKE_CASE , pixel_mask=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = MaskFormerForInstanceSegmentation(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(__SCREAMING_SNAKE_CASE ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase_ : Tuple = model(pixel_values=__SCREAMING_SNAKE_CASE , pixel_mask=__SCREAMING_SNAKE_CASE ) lowercase_ : str = model(__SCREAMING_SNAKE_CASE ) comm_check_on_output(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = model( pixel_values=__SCREAMING_SNAKE_CASE , pixel_mask=__SCREAMING_SNAKE_CASE , mask_labels=__SCREAMING_SNAKE_CASE , class_labels=__SCREAMING_SNAKE_CASE ) comm_check_on_output(__SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def _snake_case ( self ): """simple docstring""" lowercase_ : int = MaskFormerModelTester(self ) lowercase_ : Tuple = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ): """simple docstring""" lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def _snake_case ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Dict = [*signature.parameters.keys()] lowercase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: lowercase_ : Tuple = MaskFormerModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = (self.model_tester.min_size,) * 2 lowercase_ : int = { '''pixel_values''': torch.randn((2, 3, *size) , device=__SCREAMING_SNAKE_CASE ), '''mask_labels''': torch.randn((2, 10, *size) , device=__SCREAMING_SNAKE_CASE ), '''class_labels''': torch.zeros(2 , 10 , device=__SCREAMING_SNAKE_CASE ).long(), } lowercase_ : Any = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def _snake_case ( self ): """simple docstring""" lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = model(**__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def _snake_case ( self ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowercase_ : Optional[Any] = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() lowercase_ : Any = model(__SCREAMING_SNAKE_CASE , mask_labels=__SCREAMING_SNAKE_CASE , class_labels=__SCREAMING_SNAKE_CASE ).loss loss.backward() def _snake_case ( self ): """simple docstring""" lowercase_ : Any = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs() lowercase_ : Tuple = True lowercase_ : Optional[Any] = True lowercase_ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() lowercase_ : List[Any] = model(__SCREAMING_SNAKE_CASE , mask_labels=__SCREAMING_SNAKE_CASE , class_labels=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase_ : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowercase_ : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase_ : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase : int = 1E-4 def snake_case_ ( ): """simple docstring""" lowercase_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def _snake_case ( self ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def _snake_case ( self ): """simple docstring""" lowercase_ : Any = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = self.default_image_processor lowercase_ : Dict = prepare_img() lowercase_ : Any = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__SCREAMING_SNAKE_CASE , (1, 3, 8_00, 10_88) ) with torch.no_grad(): lowercase_ : Any = model(**__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[Any] = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) lowercase_ : Dict = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__SCREAMING_SNAKE_CASE ) .eval() ) lowercase_ : List[str] = self.default_image_processor lowercase_ : Union[str, Any] = prepare_img() lowercase_ : List[str] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__SCREAMING_SNAKE_CASE , (1, 3, 8_00, 10_88) ) with torch.no_grad(): lowercase_ : Tuple = model(**__SCREAMING_SNAKE_CASE ) # masks_queries_logits lowercase_ : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase_ : Any = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] lowercase_ : List[str] = torch.tensor(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) # class_queries_logits lowercase_ : Optional[int] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase_ : Any = torch.tensor( [ [1.6_5_1_2E0_0, -5.2_5_7_2E0_0, -3.3_5_1_9E0_0], [3.6_1_6_9E-0_2, -5.9_0_2_5E0_0, -2.9_3_1_3E0_0], [1.0_7_6_6E-0_4, -7.7_6_3_0E0_0, -5.1_2_6_3E0_0], ] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(__SCREAMING_SNAKE_CASE ) .eval() ) lowercase_ : Tuple = self.default_image_processor lowercase_ : Any = prepare_img() lowercase_ : Union[str, Any] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__SCREAMING_SNAKE_CASE , (1, 3, 8_00, 10_88) ) with torch.no_grad(): lowercase_ : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) # masks_queries_logits lowercase_ : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase_ : Optional[int] = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] lowercase_ : Dict = torch.tensor(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) # class_queries_logits lowercase_ : Any = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase_ : Union[str, Any] = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__SCREAMING_SNAKE_CASE ) .eval() ) lowercase_ : int = self.default_image_processor lowercase_ : Optional[Any] = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) lowercase_ : Optional[int] = inputs['''pixel_values'''].to(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = [el.to(__SCREAMING_SNAKE_CASE ) for el in inputs['''mask_labels''']] lowercase_ : int = [el.to(__SCREAMING_SNAKE_CASE ) for el in inputs['''class_labels''']] with torch.no_grad(): lowercase_ : List[str] = model(**__SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
264
0
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm __a = 2048 __a = 4096 __a = 42 __a = os.environ.pop("PROCESS_TRAIN", "false") __a = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: def choose_first(_lowerCAmelCase , _lowerCAmelCase=False ): assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) == 1: snake_case__ : Optional[Any] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: snake_case__ : Any = {k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a snake_case__ : Union[str, Any] = {"""id""": example["""id"""]} snake_case__ : int = example["""annotations"""] snake_case__ : str = annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: snake_case__ : Optional[Any] = ["""yes"""] if 1 in yes_no_answer else ["""no"""] snake_case__ : Dict = [] snake_case__ : int = [] snake_case__ : Optional[Any] = ["""<cls>"""] else: snake_case__ : Tuple = ["""short"""] snake_case__ : Tuple = choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available snake_case__ : Any = ["""long"""] snake_case__ : List[str] = choose_first(annotation["""long_answer"""] , is_long_answer=_lowerCAmelCase ) snake_case__ : Tuple = [] answer.update(_lowerCAmelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: snake_case__ : List[str] = True else: snake_case__ : str = False snake_case__ : Any = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , _lowerCAmelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> List[Any]: snake_case__ : Optional[Any] = _get_single_answer(_lowerCAmelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case__ : Optional[Any] = example["""document"""]["""tokens"""] snake_case__ : List[str] = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(_lowerCAmelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples snake_case__ : Any = ["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 snake_case__ : List[str] = example["""document"""]["""tokens"""] snake_case__ : str = answer["""start_token"""] snake_case__ : List[str] = answer["""end_token"""] snake_case__ : Tuple = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 snake_case__ : int = """ """.join(context[start_token:end_token] ) # checking above code if assertion: snake_case__ : List[str] = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] snake_case__ : List[str] = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] snake_case__ : Optional[int] = """ """.join([old[i] for i in range(len(_lowerCAmelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , _lowerCAmelCase , end="""\n""" ) print("""Old:""" , _lowerCAmelCase , end="""\n\n""" ) return { "context": " ".join(_lowerCAmelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=2_048 , _lowerCAmelCase=4_096 , _lowerCAmelCase=True ) -> Optional[Any]: # overlap will be of doc_stride - q_len snake_case__ : Optional[int] = get_context_and_ans(_lowerCAmelCase , assertion=_lowerCAmelCase ) snake_case__ : int = out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } snake_case__ : Union[str, Any] = tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids snake_case__ : int = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case__ : Tuple = [] snake_case__ : Dict = [] snake_case__ : Optional[Any] = input_ids[:q_len] snake_case__ : List[str] = range(_lowerCAmelCase , len(_lowerCAmelCase ) , max_length - doc_stride ) for i in doc_start_indices: snake_case__ : Any = i + max_length - q_len snake_case__ : str = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(_lowerCAmelCase ), "end_token": [-100] * len(_lowerCAmelCase ), "category": category, }, } snake_case__ : int = out["""context"""].split() snake_case__ : Tuple = splitted_context[answer["""end_token"""]] snake_case__ : int = len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=_lowerCAmelCase , ).input_ids ) snake_case__ : int = len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=_lowerCAmelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token snake_case__ : Tuple = len(tokenizer(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 snake_case__ : int = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive snake_case__ : Dict = answer["""start_token"""] snake_case__ : Optional[int] = answer["""end_token"""] if assertion: snake_case__ : Union[str, Any] = tokenizer.decode(_lowerCAmelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , _lowerCAmelCase , end="""\n\n""" ) if len(_lowerCAmelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } snake_case__ : Tuple = input_ids[:q_len] snake_case__ : Optional[int] = range(_lowerCAmelCase , len(_lowerCAmelCase ) , max_length - doc_stride ) snake_case__ : Dict = [] snake_case__ : List[str] = [] snake_case__ : int = [] snake_case__ : Any = [] # null, yes, no, long, short for i in doc_start_indices: snake_case__ : int = i + max_length - q_len snake_case__ : List[Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: snake_case__ : List[Any] = start_token - i + q_len snake_case__ : Dict = end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: snake_case__ : Union[str, Any] = -100 snake_case__ : Any = -100 answers_category.append("""null""" ) snake_case__ : Tuple = inputs[-1][start_token : end_token + 1] answers_start_token.append(_lowerCAmelCase ) answers_end_token.append(_lowerCAmelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(_lowerCAmelCase ) ) print("""Old:""" , tokenizer.decode(_lowerCAmelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=2_048 , _lowerCAmelCase=4_096 , _lowerCAmelCase=False ) -> Optional[Any]: snake_case__ : int = get_strided_contexts_and_ans( _lowerCAmelCase , _lowerCAmelCase , doc_stride=_lowerCAmelCase , max_length=_lowerCAmelCase , assertion=_lowerCAmelCase , ) return example def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: with jsonlines.open(_lowerCAmelCase , """a""" ) as writer: for example in tqdm(_lowerCAmelCase , total=len(_lowerCAmelCase ) , desc="""Saving samples ... """ ): snake_case__ : Optional[Any] = example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __a = load_dataset("natural_questions") __a = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") __a = data["train" if PROCESS_TRAIN == "true" else "validation"] __a = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } __a = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __a = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) __a = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
35
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] _UpperCAmelCase = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] _UpperCAmelCase = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): _UpperCAmelCase = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ ( __lowercase ): A_ = ['image_processor', 'tokenizer'] A_ = 'ChineseCLIPImageProcessor' A_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Optional[Any] , _snake_case : List[Any]=None , _snake_case : str=None , **_snake_case : int )->List[str]: '''simple docstring''' __lowerCAmelCase : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _snake_case , ) __lowerCAmelCase : List[str] = kwargs.pop("""feature_extractor""" ) __lowerCAmelCase : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_snake_case , _snake_case ) __lowerCAmelCase : Any = self.image_processor def __call__( self : Optional[Any] , _snake_case : Tuple=None , _snake_case : Tuple=None , _snake_case : List[str]=None , **_snake_case : Any )->Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __lowerCAmelCase : List[Any] = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __lowerCAmelCase : Tuple = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __lowerCAmelCase : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def UpperCAmelCase__ ( self : Optional[int] , *_snake_case : Union[str, Any] , **_snake_case : int )->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def UpperCAmelCase__ ( self : Dict , *_snake_case : Dict , **_snake_case : Any )->Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def UpperCAmelCase__ ( self : Optional[int] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.tokenizer.model_input_names __lowerCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self : Dict )->Union[str, Any]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _snake_case , ) return self.image_processor_class
232
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _UpperCamelCase = trt.Logger(trt.Logger.WARNING) _UpperCamelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _UpperCamelCase = logging.getLogger(__name__) _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) _UpperCamelCase = parser.parse_args() if args.tokenizer_name: _UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) _UpperCamelCase = args.per_device_eval_batch_size _UpperCamelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _UpperCamelCase = True _UpperCamelCase = "temp_engine/bert-fp32.engine" if args.fpaa: _UpperCamelCase = "temp_engine/bert-fp16.engine" if args.inta: _UpperCamelCase = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") _UpperCamelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _UpperCamelCase = [network.get_input(i) for i in range(network.num_inputs)] _UpperCamelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _UpperCamelCase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _UpperCamelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _UpperCamelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[Any] = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) __lowerCAmelCase : Dict = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) __lowerCAmelCase : Dict = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase__ ) # start time __lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowercase__ ) for d_inp in d_inputs] + [int(lowercase__ ), int(lowercase__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase__ , lowercase__ , lowercase__ ) cuda.memcpy_dtoh_async(lowercase__ , lowercase__ , lowercase__ ) # Synchronize the stream and take time stream.synchronize() # end time __lowerCAmelCase : str = time.time() __lowerCAmelCase : int = end_time - start_time __lowerCAmelCase : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _UpperCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCamelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _UpperCamelCase = raw_datasets["validation"].column_names _UpperCamelCase = "question" if "question" in column_names else column_names[0] _UpperCamelCase = "context" if "context" in column_names else column_names[1] _UpperCamelCase = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _UpperCamelCase = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _UpperCamelCase = min(args.max_seq_length, tokenizer.model_max_length) def _lowercase ( lowercase__ ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowerCAmelCase : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowerCAmelCase : Any = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=lowercase__ , stride=args.doc_stride , return_overflowing_tokens=lowercase__ , return_offsets_mapping=lowercase__ , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowerCAmelCase : int = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowerCAmelCase : Dict = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowerCAmelCase : Optional[int] = tokenized_examples.sequence_ids(lowercase__ ) __lowerCAmelCase : str = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowerCAmelCase : Any = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples _UpperCamelCase = raw_datasets["validation"] # Validation Feature Creation _UpperCamelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) _UpperCamelCase = default_data_collator _UpperCamelCase = eval_dataset.remove_columns(["example_id", "offset_mapping"]) _UpperCamelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowerCAmelCase : List[str] = postprocess_qa_predictions( examples=lowercase__ , features=lowercase__ , predictions=lowercase__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowerCAmelCase : List[Any] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowerCAmelCase : Any = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowerCAmelCase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase__ , label_ids=lowercase__ ) _UpperCamelCase = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _lowercase ( lowercase__ ): return trt.volume(engine.get_binding_shape(lowercase__ ) ) * engine.get_binding_dtype(lowercase__ ).itemsize # Allocate device memory for inputs and outputs. _UpperCamelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _UpperCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _UpperCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _UpperCamelCase = cuda.mem_alloc(h_outputa.nbytes) _UpperCamelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _UpperCamelCase = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(F" Num examples = {len(eval_dataset)}") logger.info(F" Batch size = {args.per_device_eval_batch_size}") _UpperCamelCase = 0.0 _UpperCamelCase = 0 _UpperCamelCase = timeit.default_timer() _UpperCamelCase = None for step, batch in enumerate(eval_dataloader): _UpperCamelCase , _UpperCamelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _UpperCamelCase , _UpperCamelCase = outputs _UpperCamelCase = torch.tensor(start_logits) _UpperCamelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _UpperCamelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _UpperCamelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _UpperCamelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _UpperCamelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _UpperCamelCase = nested_truncate(all_preds, len(eval_dataset)) _UpperCamelCase = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) _UpperCamelCase = post_processing_function(eval_examples, eval_dataset, all_preds) _UpperCamelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"Evaluation metrics: {eval_metric}")
275
"""simple docstring""" from sklearn.metrics import recall_score import datasets _UpperCAmelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ _UpperCAmelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ _UpperCAmelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[Any]="binary" , lowerCAmelCase : int=None , lowerCAmelCase : str="warn" , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =recall_score( lowerCAmelCase , lowerCAmelCase , labels=lowerCAmelCase , pos_label=lowerCAmelCase , average=lowerCAmelCase , sample_weight=lowerCAmelCase , zero_division=lowerCAmelCase , ) return {"recall": float(lowerCAmelCase ) if score.size == 1 else score}
173
0
import random def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[str]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = [], [], [] for element in data: if element < pivot: less.append(_a ) elif element > pivot: greater.append(_a ) else: equal.append(_a ) return less, equal, greater def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: """simple docstring""" if index >= len(_a ) or index < 0: return None UpperCamelCase_ = items[random.randint(0 , len(_a ) - 1 )] UpperCamelCase_ = 0 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = _partition(_a , _a ) UpperCamelCase_ = len(_a ) UpperCamelCase_ = len(_a ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_a , _a ) # must be in larger else: return quick_select(_a , index - (m + count) )
360
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> list: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) <= 1: return lst UpperCamelCase_ = 1 while i < len(SCREAMING_SNAKE_CASE_ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCamelCase_ , UpperCamelCase_ = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCamelCase_ = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE :Optional[int] = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
60
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES a_ = logging.get_logger(__name__) a_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) a_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) a_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) a_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) a_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) a_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) a_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) a_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) a_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) a_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) a_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) a_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) a_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) a_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_MAPPING a_ = auto_class_update(FlaxAutoModel) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_PRETRAINING_MAPPING a_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_CAUSAL_LM_MAPPING a_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_MASKED_LM_MAPPING a_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING a_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING a_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING a_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING a_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING a_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
340
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Any =CTRLTokenizer lowercase : Union[str, Any] =False lowercase : Optional[int] =False def lowercase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ =['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ =['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowerCamelCase_ ={'''unk_token''': '''<unk>'''} lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='''adapt react readapt apt''' lowerCamelCase_ ='''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowerCamelCase_ ='''adapt react readapt apt''' lowerCamelCase_ ='''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowerCamelCase_ =tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =tokens + [tokenizer.unk_token] lowerCamelCase_ =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), lowerCAmelCase )
6
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
1
def _lowercase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 1 while len(UpperCamelCase_ ) < 1e6: constant.append(str(UpperCamelCase_ ) ) i += 1 SCREAMING_SNAKE_CASE__ = ''.join(UpperCamelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
176
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __snake_case = logging.get_logger(__name__) __snake_case = TypeVar("""DatasetType""", Dataset, IterableDataset) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(UpperCamelCase_ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCamelCase_ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase_ ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , stopping_strategy=UpperCamelCase_ ) else: return _interleave_iterable_datasets( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , stopping_strategy=UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(UpperCamelCase_ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCamelCase_ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase_ ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , axis=UpperCamelCase_ ) else: return _concatenate_iterable_datasets(UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , axis=UpperCamelCase_ )
176
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> None: warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" ,__UpperCAmelCase ,) super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase )
184
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase = True , UpperCamelCase = math.inf , UpperCamelCase = -math.inf , UpperCamelCase = math.inf , UpperCamelCase = -math.inf , UpperCamelCase = False , UpperCamelCase = 100 , UpperCamelCase = 0.01 , UpperCamelCase = 1 , ): """simple docstring""" lowerCAmelCase__ : int = False lowerCAmelCase__ : Optional[Any] = search_prob lowerCAmelCase__ : Tuple = start_temperate lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Tuple = None while not search_end: lowerCAmelCase__ : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): lowerCAmelCase__ : List[str] = current_state scores.append(UpperCamelCase ) iterations += 1 lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCAmelCase__ : Tuple = random.randint(0 , len(UpperCamelCase ) - 1 ) # picking a random neighbor lowerCAmelCase__ : str = neighbors.pop(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCAmelCase__ : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCAmelCase__ : Tuple = picked_neighbor else: lowerCAmelCase__ : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCAmelCase__ : List[Any] = picked_neighbor lowerCAmelCase__ : Optional[int] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCAmelCase__ : str = True else: lowerCAmelCase__ : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(UpperCamelCase ) , UpperCamelCase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _lowerCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowerCAmelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) _lowerCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowerCAmelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return (3 * x**2) - (6 * y) _lowerCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowerCAmelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" ) _lowerCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowerCAmelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" )
184
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int=None ) -> Dict: UpperCAmelCase_ : int = argparse.ArgumentParser(add_help=SCREAMING_SNAKE_CASE__, allow_abbrev=SCREAMING_SNAKE_CASE__ ) # The main config parser UpperCAmelCase_ : Dict = config_command_parser(SCREAMING_SNAKE_CASE__ ) # The subparser to add commands to UpperCAmelCase_ : Union[str, Any] = config_parser.add_subparsers(title='''subcommands''', dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(SCREAMING_SNAKE_CASE__, parents=[parent_parser] ) update_command_parser(SCREAMING_SNAKE_CASE__, parents=[parent_parser] ) return config_parser def lowerCamelCase_ ( ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = get_config_parser() UpperCAmelCase_ : List[Any] = config_parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE__, '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
125
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 100 ) -> int: UpperCAmelCase_ : Tuple = n * (n + 1) * (2 * n + 1) / 6 UpperCAmelCase_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
125
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
222
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class __SCREAMING_SNAKE_CASE : def __init__( self : Any , __lowercase : set[int] , __lowercase : Mapping[EdgeT, int] ) -> None: SCREAMING_SNAKE_CASE__ : set[int] =vertices SCREAMING_SNAKE_CASE__ : dict[EdgeT, int] ={ (min(__lowercase ), max(__lowercase )): weight for edge, weight in edges.items() } def __magic_name__ ( self : Union[str, Any] , __lowercase : EdgeT , __lowercase : int ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) SCREAMING_SNAKE_CASE__ : List[str] =weight def __magic_name__ ( self : Optional[Any] ) -> Graph: SCREAMING_SNAKE_CASE__ : Graph =Graph({min(self.vertices )} , {} ) SCREAMING_SNAKE_CASE__ : EdgeT SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : EdgeT SCREAMING_SNAKE_CASE__ : int while len(subgraph.vertices ) < len(self.vertices ): SCREAMING_SNAKE_CASE__ : Any =max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: SCREAMING_SNAKE_CASE__ : List[str] =edge SCREAMING_SNAKE_CASE__ : Any =weight subgraph.add_edge(__lowercase , __lowercase ) return subgraph def _a( UpperCamelCase__ : str = "p107_network.txt" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ : str =os.path.join(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : dict[EdgeT, int] ={} SCREAMING_SNAKE_CASE__ : list[str] SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ : Any =f.read().strip().split('''\n''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[line.split(''',''' ) for line in data] for edgea in range(1, len(UpperCamelCase__ ) ): for edgea in range(UpperCamelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": SCREAMING_SNAKE_CASE__ : List[Any] =int(adjaceny_matrix[edgea][edgea] ) SCREAMING_SNAKE_CASE__ : Graph =Graph(set(range(len(UpperCamelCase__ ) ) ), UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Graph =graph.prims_algorithm() SCREAMING_SNAKE_CASE__ : int =sum(graph.edges.values() ) SCREAMING_SNAKE_CASE__ : int =sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
222
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a =logging.get_logger(__name__) a ={"""vocab_file""": """vocab.txt"""} a ={ """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } a ={ """openbmb/cpm-ant-10b""": 1024, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = collections.OrderedDict() with open(lowerCamelCase__ , 'r' , encoding='utf-8' ) as reader: __lowerCamelCase : Optional[int] = reader.readlines() for index, token in enumerate(lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = token.rstrip('\n' ) __lowerCamelCase : Optional[Any] = index return vocab class A_ ( SCREAMING_SNAKE_CASE ): def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Dict="<unk>" ,SCREAMING_SNAKE_CASE__ : Tuple=2_0_0): __lowerCamelCase : Optional[Any] = vocab __lowerCamelCase : Optional[int] = unk_token __lowerCamelCase : str = max_input_chars_per_word def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : int = list(SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__) > self.max_input_chars_per_word: return [self.unk_token] __lowerCamelCase : List[Any] = 0 __lowerCamelCase : List[Any] = [] while start < len(SCREAMING_SNAKE_CASE__): __lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = None while start < end: __lowerCamelCase : Dict = ''.join(chars[start:end]) if substr in self.vocab: __lowerCamelCase : str = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = end return sub_tokens class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : str = ['''input_ids''', '''attention_mask'''] _UpperCAmelCase : Union[str, Any] = False def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[int]="<d>" ,SCREAMING_SNAKE_CASE__ : str="</d>" ,SCREAMING_SNAKE_CASE__ : Dict="<s>" ,SCREAMING_SNAKE_CASE__ : Dict="</s>" ,SCREAMING_SNAKE_CASE__ : str="<pad>" ,SCREAMING_SNAKE_CASE__ : Any="<unk>" ,SCREAMING_SNAKE_CASE__ : Dict="</n>" ,SCREAMING_SNAKE_CASE__ : Any="</_>" ,SCREAMING_SNAKE_CASE__ : Any="left" ,**SCREAMING_SNAKE_CASE__ : str ,): requires_backends(self ,['jieba']) super().__init__( bod_token=SCREAMING_SNAKE_CASE__ ,eod_token=SCREAMING_SNAKE_CASE__ ,bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,line_token=SCREAMING_SNAKE_CASE__ ,space_token=SCREAMING_SNAKE_CASE__ ,padding_side=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : List[Any] = bod_token __lowerCamelCase : int = eod_token __lowerCamelCase : Dict = load_vocab(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.encoder[space_token] __lowerCamelCase : Optional[Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __lowerCamelCase : Tuple = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda SCREAMING_SNAKE_CASE__: x[1])) __lowerCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} __lowerCamelCase : int = WordpieceTokenizer(vocab=self.encoder ,unk_token=self.unk_token) @property def lowerCAmelCase ( self : Union[str, Any]): return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : Dict): return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : int): return self.encoder["\n"] @property def lowerCAmelCase ( self : List[str]): return len(self.encoder) def lowerCAmelCase ( self : Optional[int]): return dict(self.encoder ,**self.added_tokens_encoder) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Tuple = [] for x in jieba.cut(SCREAMING_SNAKE_CASE__ ,cut_all=SCREAMING_SNAKE_CASE__): output_tokens.extend(self.wordpiece_tokenizer.tokenize(SCREAMING_SNAKE_CASE__)) return output_tokens def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : Dict = [i for i in token_ids if i >= 0] __lowerCamelCase : Optional[int] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str]): return token in self.encoder def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[str]): return "".join(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : List[str]): return self.encoder.get(SCREAMING_SNAKE_CASE__ ,self.encoder.get(self.unk_token)) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple): return self.decoder.get(SCREAMING_SNAKE_CASE__ ,self.unk_token) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None): if os.path.isdir(SCREAMING_SNAKE_CASE__): __lowerCamelCase : str = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) else: __lowerCamelCase : Dict = (filename_prefix + '-' if filename_prefix else '') + save_directory __lowerCamelCase : Optional[Any] = 0 if " " in self.encoder: __lowerCamelCase : Dict = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: __lowerCamelCase : List[str] = self.encoder['\n'] del self.encoder["\n"] __lowerCamelCase : Any = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda SCREAMING_SNAKE_CASE__: x[1])) with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!') __lowerCamelCase : Optional[Any] = token_index writer.write(token + '\n') index += 1 return (vocab_file,) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : List[int] = None): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ,SCREAMING_SNAKE_CASE__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ ,token_ids_a=SCREAMING_SNAKE_CASE__ ,already_has_special_tokens=SCREAMING_SNAKE_CASE__) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__))
73
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __lowercase ( a__ ) -> Tuple: __SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = emb.weight.shape __SCREAMING_SNAKE_CASE = nn.Linear(a__ , a__ , bias=a__ ) __SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __lowercase ( a__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = torch.load(a__ , map_location='cpu' ) __SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model'] __SCREAMING_SNAKE_CASE = mam_aaa['model'] remove_ignore_keys_(a__ ) __SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0] __SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=a__ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) __SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight'] __SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(a__ ) model.model.load_state_dict(a__ , strict=a__ ) __SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase__ : Optional[int] =parser.parse_args() lowerCAmelCase__ : Tuple =convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
257
0
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase =fname.split(os.path.sep )[-1] return re.search(R"""^(.*)_\d+\.jpg$""" , __UpperCamelCase ).groups()[0] class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Union[str, Any]: _lowerCAmelCase =file_names _lowerCAmelCase =image_transform _lowerCAmelCase =label_to_id def __len__( self ) -> Union[str, Any]: return len(self.file_names ) def __getitem__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =self.file_names[idx] _lowerCAmelCase =PIL.Image.open(__UpperCAmelCase ) _lowerCAmelCase =raw_image.convert("""RGB""" ) if self.image_transform is not None: _lowerCAmelCase =self.image_transform(__UpperCAmelCase ) _lowerCAmelCase =extract_label(__UpperCAmelCase ) if self.label_to_id is not None: _lowerCAmelCase =self.label_to_id[label] return {"image": image, "label": label} def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any: # Initialize accelerator if args.with_tracking: _lowerCAmelCase =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: _lowerCAmelCase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase =config["""lr"""] _lowerCAmelCase =int(config["""num_epochs"""] ) _lowerCAmelCase =int(config["""seed"""] ) _lowerCAmelCase =int(config["""batch_size"""] ) _lowerCAmelCase =config["""image_size"""] if not isinstance(__UpperCamelCase , (list, tuple) ): _lowerCAmelCase =(image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": _lowerCAmelCase =args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _lowerCAmelCase =int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: _lowerCAmelCase =None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _lowerCAmelCase =os.path.split(__UpperCamelCase )[-1].split(""".""" )[0] accelerator.init_trackers(__UpperCamelCase , __UpperCamelCase ) # Grab all the image filenames _lowerCAmelCase =[os.path.join(args.data_dir , __UpperCamelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences _lowerCAmelCase =[extract_label(__UpperCamelCase ) for fname in file_names] _lowerCAmelCase =list(set(__UpperCamelCase ) ) id_to_label.sort() _lowerCAmelCase ={lbl: i for i, lbl in enumerate(__UpperCamelCase )} # Set the seed before splitting the data. np.random.seed(__UpperCamelCase ) torch.manual_seed(__UpperCamelCase ) torch.cuda.manual_seed_all(__UpperCamelCase ) # Split our filenames between train and validation _lowerCAmelCase =np.random.permutation(len(__UpperCamelCase ) ) _lowerCAmelCase =int(0.8 * len(__UpperCamelCase ) ) _lowerCAmelCase =random_perm[:cut] _lowerCAmelCase =random_perm[cut:] # For training we use a simple RandomResizedCrop _lowerCAmelCase =Compose([RandomResizedCrop(__UpperCamelCase , scale=(0.5, 1.0) ), ToTensor()] ) _lowerCAmelCase =PetsDataset( [file_names[i] for i in train_split] , image_transform=__UpperCamelCase , label_to_id=__UpperCamelCase ) # For evaluation, we use a deterministic Resize _lowerCAmelCase =Compose([Resize(__UpperCamelCase ), ToTensor()] ) _lowerCAmelCase =PetsDataset([file_names[i] for i in eval_split] , image_transform=__UpperCamelCase , label_to_id=__UpperCamelCase ) # Instantiate dataloaders. _lowerCAmelCase =DataLoader(__UpperCamelCase , shuffle=__UpperCamelCase , batch_size=__UpperCamelCase , num_workers=4 ) _lowerCAmelCase =DataLoader(__UpperCamelCase , shuffle=__UpperCamelCase , batch_size=__UpperCamelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase =create_model("""resnet50d""" , pretrained=__UpperCamelCase , num_classes=len(__UpperCamelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase =model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _lowerCAmelCase =False for param in model.get_classifier().parameters(): _lowerCAmelCase =True # We normalize the batches of images to be a bit faster. _lowerCAmelCase =torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) _lowerCAmelCase =torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase =torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _lowerCAmelCase =OneCycleLR(optimizer=__UpperCamelCase , max_lr=__UpperCamelCase , epochs=__UpperCamelCase , steps_per_epoch=len(__UpperCamelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase =0 # We also need to keep track of the starting epoch so files are named properly _lowerCAmelCase =0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) _lowerCAmelCase =os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _lowerCAmelCase =[f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _lowerCAmelCase =dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _lowerCAmelCase =os.path.splitext(__UpperCamelCase )[0] if "epoch" in training_difference: _lowerCAmelCase =int(training_difference.replace("""epoch_""" , """""" ) ) + 1 _lowerCAmelCase =None else: _lowerCAmelCase =int(training_difference.replace("""step_""" , """""" ) ) _lowerCAmelCase =resume_step // len(__UpperCamelCase ) resume_step -= starting_epoch * len(__UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase , __UpperCamelCase ): model.train() if args.with_tracking: _lowerCAmelCase =0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _lowerCAmelCase =accelerator.skip_first_batches(__UpperCamelCase , __UpperCamelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _lowerCAmelCase =train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _lowerCAmelCase ={k: v.to(accelerator.device ) for k, v in batch.items()} _lowerCAmelCase =(batch["""image"""] - mean) / std _lowerCAmelCase =model(__UpperCamelCase ) _lowerCAmelCase =torch.nn.functional.cross_entropy(__UpperCamelCase , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__UpperCamelCase , __UpperCamelCase ): _lowerCAmelCase =F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _lowerCAmelCase =os.path.join(args.output_dir , __UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) model.eval() _lowerCAmelCase =0 _lowerCAmelCase =0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. _lowerCAmelCase ={k: v.to(accelerator.device ) for k, v in batch.items()} _lowerCAmelCase =(batch["""image"""] - mean) / std with torch.no_grad(): _lowerCAmelCase =model(__UpperCamelCase ) _lowerCAmelCase =outputs.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase =accelerator.gather_for_metrics((predictions, batch["""label"""]) ) _lowerCAmelCase =predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _lowerCAmelCase =accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { """accuracy""": 100 * eval_metric, """train_loss""": total_loss.item() / len(__UpperCamelCase ), """epoch""": epoch, } , step=__UpperCamelCase , ) if checkpointing_steps == "epoch": _lowerCAmelCase =F'''epoch_{epoch}''' if args.output_dir is not None: _lowerCAmelCase =os.path.join(args.output_dir , __UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) if args.with_tracking: accelerator.end_training() def _lowerCamelCase() -> Optional[Any]: _lowerCAmelCase =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=__UpperCamelCase , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=__UpperCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=__UpperCamelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase ={"""lr""": 3E-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 224} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCamelCase__: List[Any] =tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCamelCase__: str =tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCamelCase__: Any =tf_top_k_top_p_filtering(UpperCAmelCase_ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4) lowerCamelCase__: List[str] =output[output != -float("inf")] lowerCamelCase__: List[Any] =tf.cast( tf.where(tf.not_equal(UpperCAmelCase_ , tf.constant(-float("inf") , dtype=tf.floataa))) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-1_2) tf.debugging.assert_equal(UpperCAmelCase_ , UpperCAmelCase_) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase_ = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__: Any =2 lowerCamelCase__: List[Any] =2 class _SCREAMING_SNAKE_CASE ( tf.Module ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : Dict) ->Union[str, Any]: '''simple docstring''' super(UpperCAmelCase_ , self).__init__() lowerCamelCase__: Union[str, Any] =model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids"), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask"), ) , jit_compile=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any) ->int: '''simple docstring''' lowerCamelCase__: Any =self.model.generate( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_ , return_dict_in_generate=UpperCAmelCase_ , ) return {"sequences": outputs["sequences"]} lowerCamelCase__: Dict =[[2, 0], [102, 103]] lowerCamelCase__: List[Any] =[[1, 0], [1, 1]] lowerCamelCase__: Union[str, Any] =DummyModel(model=UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase_ , UpperCAmelCase_ , signatures={"serving_default": dummy_model.serving}) lowerCamelCase__: Tuple =tf.saved_model.load(UpperCAmelCase_).signatures["serving_default"] for batch_size in range(1 , len(UpperCAmelCase_) + 1): lowerCamelCase__: Optional[Any] ={ "input_ids": tf.constant(dummy_input_ids[:batch_size]), "attention_mask": tf.constant(dummy_attention_masks[:batch_size]), } lowerCamelCase__: int =serving_func(**UpperCAmelCase_)["sequences"] lowerCamelCase__: int =test_model.generate(**UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_) tf.debugging.assert_equal(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__: Tuple =1 lowerCamelCase__: int =2 class _SCREAMING_SNAKE_CASE ( tf.Module ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Tuple: '''simple docstring''' super(UpperCAmelCase_ , self).__init__() lowerCamelCase__: str =model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids"), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask"), ) , jit_compile=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =self.model.generate( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_ , return_dict_in_generate=UpperCAmelCase_ , ) return {"sequences": outputs["sequences"]} lowerCamelCase__: Dict =[[2], [102, 103]] lowerCamelCase__: Tuple =[[1], [1, 1]] lowerCamelCase__: List[str] =DummyModel(model=UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase_ , UpperCAmelCase_ , signatures={"serving_default": dummy_model.serving}) lowerCamelCase__: Dict =tf.saved_model.load(UpperCAmelCase_).signatures["serving_default"] for input_row in range(len(UpperCAmelCase_)): lowerCamelCase__: Optional[Any] ={ "input_ids": tf.constant([dummy_input_ids[input_row]]), "attention_mask": tf.constant([dummy_attention_masks[input_row]]), } lowerCamelCase__: List[Any] =serving_func(**UpperCAmelCase_)["sequences"] lowerCamelCase__: Optional[Any] =test_model.generate(**UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_) tf.debugging.assert_equal(UpperCAmelCase_ , UpperCAmelCase_) @slow @require_tensorflow_text def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Optional[int]) ->Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase__: Dict =text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase_ , "spiece.model") , "rb").read()) lowerCamelCase__: Dict =TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =self.tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Dict =text.pad_model_inputs( UpperCAmelCase_ , max_seq_length=64 , pad_value=self.model.config.pad_token_id) lowerCamelCase__: Dict =self.model.generate(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) return self.tokenizer.detokenize(UpperCAmelCase_) lowerCamelCase__: int =CompleteSentenceTransformer() lowerCamelCase__: Dict =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs") lowerCamelCase__: Optional[Any] =complete_model(UpperCAmelCase_) lowerCamelCase__: Optional[int] =tf.keras.Model(UpperCAmelCase_ , UpperCAmelCase_) keras_model.save(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->int: '''simple docstring''' lowerCamelCase__: str ={ "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } lowerCamelCase__: Any =14 lowerCamelCase__: Tuple =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__: int ="Hello, my dog is cute and" lowerCamelCase__: Optional[int] =tokenizer(UpperCAmelCase_ , return_tensors="tf") lowerCamelCase__: Tuple =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__: Union[str, Any] =638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): tf.random.set_seed(0) lowerCamelCase__: int =model.generate(**UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) self.assertTrue(expectation == len(generated_tokens[0])) lowerCamelCase__: List[str] =[638, 198] with tf.device(":/CPU:0"): tf.random.set_seed(0) lowerCamelCase__: Dict =model.generate(**UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) self.assertTrue(expectation == len(generated_tokens[0])) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") lowerCamelCase__: Optional[int] ="Hugging Face is a technology company based in New York and Paris." lowerCamelCase__: Any =bart_tokenizer(UpperCAmelCase_ , return_tensors="tf").input_ids lowerCamelCase__: Optional[int] =TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart") lowerCamelCase__: Optional[int] =bart_model.generate(UpperCAmelCase_).numpy() class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : int) ->Any: '''simple docstring''' return super().call(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[Any] =FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart") lowerCamelCase__: Union[str, Any] =bart_model.generate(UpperCAmelCase_ , foo="bar").numpy() self.assertTrue(np.array_equal(UpperCAmelCase_ , UpperCAmelCase_)) class _SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any]) ->Optional[int]: '''simple docstring''' return super().call(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =FakeEncoder(bart_model.config , bart_model.model.shared) lowerCamelCase__: int =fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCamelCase__: Any =bart_model.generate(UpperCAmelCase_).numpy() with self.assertRaises(UpperCAmelCase_): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCAmelCase_ , foo="bar")
10
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
136
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Dict = word.split() def justify(__SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> str: lowercase_ : str = max_width - width lowercase_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowercase_ : int = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowercase_ : int = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowercase_ : int = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__SCREAMING_SNAKE_CASE ): num_spaces_between_words_list[i] += 1 lowercase_ : Union[str, Any] = [] for i in range(__SCREAMING_SNAKE_CASE ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = [] lowercase_ : list[str] = [] lowercase_ : List[str] = 0 for word in words: if width + len(__SCREAMING_SNAKE_CASE ) + len(__SCREAMING_SNAKE_CASE ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__SCREAMING_SNAKE_CASE ) width += len(__SCREAMING_SNAKE_CASE ) else: # justify the line and add it to result answer.append(justify(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # reset new line and new width lowercase_ , lowercase_ : int = [word], len(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = max_width - width - len(__SCREAMING_SNAKE_CASE ) answer.append(''' '''.join(__SCREAMING_SNAKE_CASE ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
264
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Tuple = prime_factors(__SCREAMING_SNAKE_CASE ) if is_square_free(__SCREAMING_SNAKE_CASE ): return -1 if len(__SCREAMING_SNAKE_CASE ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
264
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A( a , unittest.TestCase ): snake_case_ = CTRLTokenizer snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] __a = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] __a = {'''unk_token''': '''<unk>'''} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self , **_snake_case ) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = '''adapt react readapt apt''' __a = '''adapt react readapt apt''' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a = '''adapt react readapt apt''' __a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() __a = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) __a = tokens + [tokenizer.unk_token] __a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case )
6
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[str] = len(SCREAMING_SNAKE_CASE ) A_ : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): A_ : Union[str, Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): A_ : Optional[int] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: A_ : Optional[Any] = subset[i - 1][j] if arr[i - 1] <= j: A_ : Optional[Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
353
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->int: '''simple docstring''' A_ : List[str] = tempfile.mkdtemp() A_ : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Union[str, Any] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } A_ : Tuple = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self )->int: '''simple docstring''' A_ : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Optional[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[int] = self.get_tokenizer() A_ : int = self.get_rust_tokenizer() A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) A_ : List[str] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) A_ : List[str] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) A_ : int = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Dict = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Any = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) A_ : Optional[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Tuple = self.prepare_image_inputs() A_ : Optional[Any] = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) A_ : Union[str, Any] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Union[str, Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : List[str] = '''lower newer''' A_ : Tuple = processor(text=_SCREAMING_SNAKE_CASE ) A_ : int = tokenizer(_SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Dict = self.get_image_processor() A_ : str = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = '''lower newer''' A_ : List[Any] = self.prepare_image_inputs() A_ : Any = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : Tuple = processor.batch_decode(_SCREAMING_SNAKE_CASE ) A_ : int = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Dict = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : int = '''lower newer''' A_ : Dict = self.prepare_image_inputs() A_ : List[Any] = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
65
0
# using dfs for finding eulerian path traversal def __lowercase ( a__ , a__ , a__ , a__=None ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True, True __SCREAMING_SNAKE_CASE = dfs(a__ , a__ , a__ , a__ ) return path def __lowercase ( a__ , a__ ) -> Tuple: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = -1 for i in range(a__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __SCREAMING_SNAKE_CASE = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __lowercase ( a__ , a__ ) -> List[Any]: __SCREAMING_SNAKE_CASE = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = check_circuit_or_path(a__ , a__ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return __SCREAMING_SNAKE_CASE = 1 if check == 2: __SCREAMING_SNAKE_CASE = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) __SCREAMING_SNAKE_CASE = dfs(a__ , a__ , a__ ) print(a__ ) def __lowercase ( ) -> Any: __SCREAMING_SNAKE_CASE = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __SCREAMING_SNAKE_CASE = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __SCREAMING_SNAKE_CASE = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __SCREAMING_SNAKE_CASE = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __SCREAMING_SNAKE_CASE = { 1: [], 2: [] # all degree is zero } __SCREAMING_SNAKE_CASE = 10 check_euler(a__ , a__ ) check_euler(a__ , a__ ) check_euler(a__ , a__ ) check_euler(a__ , a__ ) check_euler(a__ , a__ ) if __name__ == "__main__": main()
257
def __lowercase ( a__ ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowerCAmelCase__ : Optional[Any] =int(input('''Enter number: ''').strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
257
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = DanceDiffusionPipeline lowerCamelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowerCamelCase = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } lowerCamelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowerCamelCase = False lowerCamelCase = False def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) snake_case : int = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=UpperCamelCase__ , use_timestep_embedding=UpperCamelCase__ , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) snake_case : Optional[int] = IPNDMScheduler() snake_case : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, } return components def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : List[str]=0 ) -> Optional[int]: """simple docstring""" if str(UpperCamelCase__ ).startswith('''mps''' ): snake_case : List[str] = torch.manual_seed(UpperCamelCase__ ) else: snake_case : Optional[Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) snake_case : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" snake_case : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case : List[Any] = self.get_dummy_components() snake_case : Any = DanceDiffusionPipeline(**UpperCamelCase__ ) snake_case : Dict = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : str = self.get_dummy_inputs(UpperCamelCase__ ) snake_case : Union[str, Any] = pipe(**UpperCamelCase__ ) snake_case : Union[str, Any] = output.audios snake_case : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) snake_case : List[str] = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" return super().test_save_load_local() @skip_mps def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return super().test_attention_slicing_forward_pass() def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" snake_case : Optional[Any] = torch_device snake_case : Dict = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) snake_case : int = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Any = torch.manual_seed(0 ) snake_case : int = pipe(generator=UpperCamelCase__ , num_inference_steps=100 , audio_length_in_s=4.096 ) snake_case : Any = output.audios snake_case : Any = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) snake_case : List[Any] = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" snake_case : Optional[int] = torch_device snake_case : Optional[int] = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) snake_case : Tuple = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Union[str, Any] = torch.manual_seed(0 ) snake_case : Dict = pipe(generator=UpperCamelCase__ , num_inference_steps=100 , audio_length_in_s=4.096 ) snake_case : Optional[Any] = output.audios snake_case : Optional[int] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) snake_case : str = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
83
'''simple docstring''' class snake_case__ : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : list[int] ) -> None: """simple docstring""" snake_case : List[Any] = len(UpperCamelCase__ ) snake_case : Tuple = [0] * len_array if len_array > 0: snake_case : List[str] = array[0] for i in range(1 , UpperCamelCase__ ): snake_case : Tuple = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase ( self : str , UpperCamelCase__ : int ) -> bool: """simple docstring""" snake_case : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCamelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
83
1
from __future__ import annotations from math import pow, sqrt def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) + pow(SCREAMING_SNAKE_CASE , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
95
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Any =tempfile.mkdtemp() # fmt: off a__ : List[Any] =["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : str =dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) a__ : List[Any] =["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] a__ : Optional[int] ={"unk_token": "<unk>"} a__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) a__ : Optional[Any] ={ "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } a__ : Dict =os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[Any] =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] a__ : List[Any] =[Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Union[str, Any] =self.get_tokenizer() a__ : int =self.get_rust_tokenizer() a__ : List[str] =self.get_image_processor() a__ : Dict =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) a__ : Optional[Any] =CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) a__ : Tuple =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) a__ : Dict =CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] =CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ : str =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) a__ : int =self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) a__ : Optional[Any] =CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : str =self.get_image_processor() a__ : Optional[int] =self.get_tokenizer() a__ : Dict =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : str =self.prepare_image_inputs() a__ : Any =image_processor(lowerCAmelCase__ , return_tensors="np" ) a__ : Optional[int] =processor(images=lowerCAmelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] =self.get_image_processor() a__ : List[Any] =self.get_tokenizer() a__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Union[str, Any] ="lower newer" a__ : List[str] =processor(text=lowerCAmelCase__ ) a__ : str =tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Any =self.get_image_processor() a__ : Dict =self.get_tokenizer() a__ : Union[str, Any] =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict ="lower newer" a__ : int =self.prepare_image_inputs() a__ : Any =processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowercase ( self ) -> str: '''simple docstring''' a__ : Union[str, Any] =self.get_image_processor() a__ : Optional[Any] =self.get_tokenizer() a__ : str =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : int =self.prepare_image_inputs() a__ : Union[str, Any] =self.prepare_image_inputs() a__ : Tuple =processor(images=lowerCAmelCase__ , visual_prompt=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] =self.get_image_processor() a__ : Any =self.get_tokenizer() a__ : Tuple =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ : Optional[Any] =processor.batch_decode(lowerCAmelCase__ ) a__ : Dict =tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
95
1
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def __A ( lowerCAmelCase_ ): _UpperCAmelCase : int = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCAmelCase_ : list[bool | None] = [None] * 10000000 lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : Tuple = False def __A ( lowerCAmelCase_ ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _UpperCAmelCase : Union[str, Any] = chain(next_number(lowerCAmelCase_ ) ) _UpperCAmelCase : List[Any] = number_chain while number < 1000_0000: _UpperCAmelCase : List[Any] = number_chain number *= 10 return number_chain def __A ( lowerCAmelCase_ = 1000_0000 ): for i in range(1 , lowerCAmelCase_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
170
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase_ : Any = datasets.utils.logging.get_logger(__name__) @dataclass class __lowerCAmelCase ( datasets.BuilderConfig ): snake_case : Optional[datasets.Features] = None snake_case : str = "utf-8" snake_case : Optional[str] = None snake_case : Optional[str] = None snake_case : bool = True # deprecated snake_case : Optional[int] = None # deprecated snake_case : int = 1_0 << 2_0 # 10MB snake_case : Optional[bool] = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder ): snake_case : Optional[int] = JsonConfig def snake_case_ (self ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) _UpperCAmelCase : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def snake_case_ (self , lowerCAmelCase__ ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) _UpperCAmelCase : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : int = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _UpperCAmelCase : List[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Tuple = [files] _UpperCAmelCase : Union[str, Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"""files""": files} ) ) return splits def snake_case_ (self , lowerCAmelCase__ ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _UpperCAmelCase : Tuple = self.config.features.arrow_schema.field(lowerCAmelCase__ ).type _UpperCAmelCase : Any = pa_table.append_column(lowerCAmelCase__ , pa.array([None] * len(lowerCAmelCase__ ) , type=lowerCAmelCase__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCAmelCase : Optional[int] = table_cast(lowerCAmelCase__ , self.config.features.arrow_schema ) return pa_table def snake_case_ (self , lowerCAmelCase__ ): for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowerCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase : Optional[Any] = json.load(lowerCAmelCase__ ) # We keep only the field we are interested in _UpperCAmelCase : Tuple = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowerCAmelCase__ , (list, tuple) ): _UpperCAmelCase : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : Optional[int] = {col: [row.get(lowerCAmelCase__ ) for row in dataset] for col in keys} else: _UpperCAmelCase : Optional[int] = dataset _UpperCAmelCase : Any = pa.Table.from_pydict(lowerCAmelCase__ ) yield file_idx, self._cast_table(lowerCAmelCase__ ) # If the file has one json object per line else: with open(lowerCAmelCase__ , """rb""" ) as f: _UpperCAmelCase : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _UpperCAmelCase : List[Any] = max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) _UpperCAmelCase : Union[str, Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: _UpperCAmelCase : List[str] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowerCAmelCase__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _UpperCAmelCase : int = batch.decode(self.config.encoding , errors=lowerCAmelCase__ ).encode("""utf-8""" ) try: while True: try: _UpperCAmelCase : Tuple = paj.read_json( io.BytesIO(lowerCAmelCase__ ) , read_options=paj.ReadOptions(block_size=lowerCAmelCase__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowerCAmelCase__ , pa.ArrowInvalid ) and "straddling" not in str(lowerCAmelCase__ ) or block_size > len(lowerCAmelCase__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"Batch of {len(lowerCAmelCase__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowerCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase : Optional[Any] = json.load(lowerCAmelCase__ ) except json.JSONDecodeError: logger.error(F"Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # list is the only sequence type supported in JSON try: _UpperCAmelCase : Tuple = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : Dict = {col: [row.get(lowerCAmelCase__ ) for row in dataset] for col in keys} _UpperCAmelCase : int = pa.Table.from_pydict(lowerCAmelCase__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}" ) raise ValueError(F"Not able to read records in the JSON file at {file}." ) from None yield file_idx, self._cast_table(lowerCAmelCase__ ) break else: logger.error(F"Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}" ) raise ValueError( F"Not able to read records in the JSON file at {file}. " F"You should probably indicate the field of the JSON file containing your records. " F"This JSON file contain the following fields: {str(list(dataset.keys() ) )}. " F"Select the correct one and provide it as `field='XXX'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) batch_idx += 1
170
1
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_ ( A_): UpperCamelCase__: Tuple = SwinConfig() UpperCamelCase__: int = swin_name.split("_") UpperCamelCase__: Optional[Any] = name_split[1] UpperCamelCase__: Optional[Any] = int(name_split[4]) UpperCamelCase__: int = int(name_split[3][-1]) if model_size == "tiny": UpperCamelCase__: Optional[int] = 96 UpperCamelCase__: int = (2, 2, 6, 2) UpperCamelCase__: Optional[Any] = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__: Any = 96 UpperCamelCase__: Optional[Any] = (2, 2, 18, 2) UpperCamelCase__: Tuple = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__: Optional[Any] = 1_28 UpperCamelCase__: List[str] = (2, 2, 18, 2) UpperCamelCase__: Dict = (4, 8, 16, 32) else: UpperCamelCase__: int = 1_92 UpperCamelCase__: Optional[int] = (2, 2, 18, 2) UpperCamelCase__: Any = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__: List[str] = 2_18_41 else: UpperCamelCase__: Union[str, Any] = 10_00 UpperCamelCase__: str = "huggingface/label-files" UpperCamelCase__: Tuple = "imagenet-1k-id2label.json" UpperCamelCase__: str = json.load(open(hf_hub_download(A_ ,A_ ,repo_type="dataset") ,"r")) UpperCamelCase__: List[str] = {int(A_): v for k, v in idalabel.items()} UpperCamelCase__: List[Any] = idalabel UpperCamelCase__: List[Any] = {v: k for k, v in idalabel.items()} UpperCamelCase__: List[Any] = img_size UpperCamelCase__: str = num_classes UpperCamelCase__: Tuple = embed_dim UpperCamelCase__: Any = depths UpperCamelCase__: Any = num_heads UpperCamelCase__: Union[str, Any] = window_size return config def lowerCAmelCase_ ( A_): if "patch_embed.proj" in name: UpperCamelCase__: Optional[Any] = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: UpperCamelCase__: Union[str, Any] = name.replace("patch_embed.norm" ,"embeddings.norm") if "layers" in name: UpperCamelCase__: str = "encoder." + name if "attn.proj" in name: UpperCamelCase__: Union[str, Any] = name.replace("attn.proj" ,"attention.output.dense") if "attn" in name: UpperCamelCase__: Any = name.replace("attn" ,"attention.self") if "norm1" in name: UpperCamelCase__: Any = name.replace("norm1" ,"layernorm_before") if "norm2" in name: UpperCamelCase__: List[str] = name.replace("norm2" ,"layernorm_after") if "mlp.fc1" in name: UpperCamelCase__: Optional[Any] = name.replace("mlp.fc1" ,"intermediate.dense") if "mlp.fc2" in name: UpperCamelCase__: Optional[int] = name.replace("mlp.fc2" ,"output.dense") if name == "norm.weight": UpperCamelCase__: int = "layernorm.weight" if name == "norm.bias": UpperCamelCase__: Optional[int] = "layernorm.bias" if "head" in name: UpperCamelCase__: Optional[Any] = name.replace("head" ,"classifier") else: UpperCamelCase__: int = "swin." + name return name def lowerCAmelCase_ ( A_ ,A_): for key in orig_state_dict.copy().keys(): UpperCamelCase__: Union[str, Any] = orig_state_dict.pop(A_) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__: Optional[int] = key.split(".") UpperCamelCase__: Optional[Any] = int(key_split[1]) UpperCamelCase__: List[Any] = int(key_split[3]) UpperCamelCase__: Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__: Optional[int] = val[:dim, :] UpperCamelCase__: Optional[Any] = val[ dim : dim * 2, : ] UpperCamelCase__: Optional[int] = val[-dim:, :] else: UpperCamelCase__: Union[str, Any] = val[ :dim ] UpperCamelCase__: List[Any] = val[ dim : dim * 2 ] UpperCamelCase__: Dict = val[ -dim: ] else: UpperCamelCase__: List[Any] = val return orig_state_dict def lowerCAmelCase_ ( A_ ,A_): UpperCamelCase__: List[Any] = timm.create_model(A_ ,pretrained=A_) timm_model.eval() UpperCamelCase__: List[str] = get_swin_config(A_) UpperCamelCase__: int = SwinForImageClassification(A_) model.eval() UpperCamelCase__: int = convert_state_dict(timm_model.state_dict() ,A_) model.load_state_dict(A_) UpperCamelCase__: Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase__: List[str] = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" ,"-"))) UpperCamelCase__: int = Image.open(requests.get(A_ ,stream=A_).raw) UpperCamelCase__: str = image_processor(images=A_ ,return_tensors="pt") UpperCamelCase__: int = timm_model(inputs["pixel_values"]) UpperCamelCase__: str = model(**A_).logits assert torch.allclose(A_ ,A_ ,atol=1e-3) print(F"Saving model {swin_name} to {pytorch_dump_folder_path}") model.save_pretrained(A_) print(F"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(A_) if __name__ == "__main__": A__: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__: str = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
149
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__: str = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: List[str] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A__: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
1
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __snake_case( enum.Enum ): '''simple docstring''' UpperCAmelCase : str = 0 UpperCAmelCase : List[Any] = 1 UpperCAmelCase : str = 2 @add_end_docstrings(_lowerCAmelCase ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Dict = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *A_ , **A_ ) -> Dict: super().__init__(*_lowercase , **_lowercase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase = None if self.model.config.prefix is not None: lowerCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = self._sanitize_parameters(prefix=_lowercase , **self._forward_params ) lowerCAmelCase = {**self._preprocess_params, **preprocess_params} lowerCAmelCase = {**self._forward_params, **forward_params} def __snake_case ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , ) -> List[Any]: lowerCAmelCase = {} if prefix is not None: lowerCAmelCase = prefix if prefix: lowerCAmelCase = self.tokenizer( _lowercase , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) lowerCAmelCase = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' """ [None, \'hole\']""" ) lowerCAmelCase = handle_long_generation preprocess_params.update(_lowercase ) lowerCAmelCase = generate_kwargs lowerCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) lowerCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) lowerCAmelCase = ReturnType.TENSORS if return_type is not None: lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase = self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) if len(_lowercase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __snake_case ( self , *A_ , **A_ ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*_lowercase , **_lowercase ) def __call__( self , A_ , **A_ ) -> Dict: return super().__call__(_lowercase , **_lowercase ) def __snake_case ( self , A_ , A_="" , A_=None , **A_ ) -> Dict: lowerCAmelCase = self.tokenizer( prefix + prompt_text , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) lowerCAmelCase = prompt_text if handle_long_generation == "hole": lowerCAmelCase = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase = generate_kwargs["""max_new_tokens"""] else: lowerCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) lowerCAmelCase = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase = inputs["""attention_mask"""][:, -keep_length:] return inputs def __snake_case ( self , A_ , **A_ ) -> Any: lowerCAmelCase = model_inputs["""input_ids"""] lowerCAmelCase = model_inputs.get("""attention_mask""" , _lowercase ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = 1 else: lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase = generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: lowerCAmelCase = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase , **_lowercase ) lowerCAmelCase = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase = generated_sequence.reshape(_lowercase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCAmelCase = tf.reshape(_lowercase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __snake_case ( self , A_ , A_=ReturnType.FULL_TEXT , A_=True ) -> List[str]: lowerCAmelCase = model_outputs["""generated_sequence"""][0] lowerCAmelCase = model_outputs["""input_ids"""] lowerCAmelCase = model_outputs["""prompt_text"""] lowerCAmelCase = generated_sequence.numpy().tolist() lowerCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase = self.tokenizer.decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase = 0 else: lowerCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) ) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase = prompt_text + text[prompt_length:] else: lowerCAmelCase = text[prompt_length:] lowerCAmelCase = {"""generated_text""": all_text} records.append(_lowercase ) return records
370
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( _SCREAMING_SNAKE_CASE : Namespace ) -> Tuple: """simple docstring""" return TrainCommand(_SCREAMING_SNAKE_CASE ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' @staticmethod def __snake_case ( A_ ) -> Optional[int]: lowerCAmelCase = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=A_ , required=A_ , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=A_ , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=A_ , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=A_ , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=A_ , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=A_ , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=A_ , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=A_ , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=A_ , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=A_ , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=A_ , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=A_ , default=3e-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=A_ , default=1e-08 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=A_ ) def __init__( self , A_ ) -> Tuple: lowerCAmelCase = logging.get_logger("""transformers-cli/training""" ) lowerCAmelCase = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=A_ ) lowerCAmelCase = args.output lowerCAmelCase = args.column_label lowerCAmelCase = args.column_text lowerCAmelCase = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": lowerCAmelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) lowerCAmelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) lowerCAmelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase = args.validation_split lowerCAmelCase = args.train_batch_size lowerCAmelCase = args.valid_batch_size lowerCAmelCase = args.learning_rate lowerCAmelCase = args.adam_epsilon def __snake_case ( self ) -> Optional[int]: if self.framework == "tf": return self.run_tf() return self.run_torch() def __snake_case ( self ) -> Tuple: raise NotImplementedError def __snake_case ( self ) -> Tuple: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
187
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __A : a__ : str = field( metadata={"""help""": """The output directory where the model will be written."""} , ) a__ : str = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) a__ : str = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) a__ : Optional[str] = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) a__ : Optional[str] = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = HfArgumentParser((ModelArguments,) ) (UpperCAmelCase_ ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=snake_case_ , decoder_config=snake_case_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens UpperCAmelCase_ = decoder_config.decoder_start_token_id UpperCAmelCase_ = decoder_config.pad_token_id if decoder_start_token_id is None: UpperCAmelCase_ = decoder_config.bos_token_id if pad_token_id is None: UpperCAmelCase_ = decoder_config.eos_token_id # This is necessary to make Flax's generate() work UpperCAmelCase_ = decoder_config.eos_token_id UpperCAmelCase_ = decoder_start_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) UpperCAmelCase_ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
1
from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self : Tuple , A : int = 6 ) ->None: lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None self.create_linked_list(A ) def __lowerCamelCase ( self : Optional[int] , A : int ) ->None: lowerCamelCase__ : Optional[int] = Node() lowerCamelCase__ : List[str] = current_node lowerCamelCase__ : Union[str, Any] = current_node lowerCamelCase__ : List[str] = current_node for _ in range(1 , A ): lowerCamelCase__ : List[str] = Node() lowerCamelCase__ : List[Any] = current_node lowerCamelCase__ : Optional[Any] = previous_node lowerCamelCase__ : Dict = current_node lowerCamelCase__ : Union[str, Any] = self.front lowerCamelCase__ : int = previous_node def __lowerCamelCase ( self : Optional[int] ) ->bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __lowerCamelCase ( self : Optional[int] ) ->Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __lowerCamelCase ( self : Optional[int] , A : Any ) ->None: if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCamelCase__ : List[str] = self.rear.next if self.rear: lowerCamelCase__ : Optional[Any] = data def __lowerCamelCase ( self : str ) ->Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCamelCase__ : List[Any] = self.front.data lowerCamelCase__ : Optional[Any] = None return data lowerCamelCase__ : Optional[int] = self.front lowerCamelCase__ : Optional[int] = old_front.next lowerCamelCase__ : Any = old_front.data lowerCamelCase__ : List[str] = None return data def __lowerCamelCase ( self : Dict ) ->None: if self.is_empty(): raise Exception('''Empty Queue''' ) def __lowerCamelCase ( self : int ) ->None: if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) ->None: lowerCamelCase__ : Any | None = None lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
142
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) _lowerCamelCase : Tuple = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) _lowerCamelCase : str = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) _lowerCamelCase : Any = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) _lowerCamelCase : str = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) _lowerCamelCase : Dict = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) _lowerCamelCase : List[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) _lowerCamelCase : Tuple = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) _lowerCamelCase : Tuple = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) _lowerCamelCase : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) _lowerCamelCase : Dict = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) _lowerCamelCase : int = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) _lowerCamelCase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowercase ( _BaseAutoModelClass ): lowercase__ : Union[str, Any] = FLAX_MODEL_MAPPING _lowerCamelCase : int = auto_class_update(FlaxAutoModel) class lowercase ( _BaseAutoModelClass ): lowercase__ : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase : int = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowercase ( _BaseAutoModelClass ): lowercase__ : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowercase ( _BaseAutoModelClass ): lowercase__ : Optional[int] = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase : Any = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowercase ( _BaseAutoModelClass ): lowercase__ : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase : List[str] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowercase ( _BaseAutoModelClass ): lowercase__ : List[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowercase ( _BaseAutoModelClass ): lowercase__ : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowercase ( _BaseAutoModelClass ): lowercase__ : Optional[int] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : int = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowercase ( _BaseAutoModelClass ): lowercase__ : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase : str = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowercase ( _BaseAutoModelClass ): lowercase__ : Dict = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowercase ( _BaseAutoModelClass ): lowercase__ : Union[str, Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : str = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowercase ( _BaseAutoModelClass ): lowercase__ : Union[str, Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowercase ( _BaseAutoModelClass ): lowercase__ : int = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase : str = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
206
from random import randint, random def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 5 , ): SCREAMING_SNAKE_CASE = [[-1] * number_of_cells] # Create a highway without any car SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , 0 ) while i < number_of_cells: SCREAMING_SNAKE_CASE = ( randint(0 , UpperCAmelCase__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __lowerCamelCase (UpperCAmelCase__ : list , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = highway_now[car_index + 1 :] for cell in range(len(UpperCAmelCase__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(UpperCAmelCase__ , -1 ) def __lowerCamelCase (UpperCAmelCase__ : list , UpperCAmelCase__ : float , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # Beforce calculations, the highway is empty SCREAMING_SNAKE_CASE = [-1] * number_of_cells for car_index in range(UpperCAmelCase__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed SCREAMING_SNAKE_CASE = min(highway_now[car_index] + 1 , UpperCAmelCase__ ) # Number of empty cell before the next car SCREAMING_SNAKE_CASE = get_distance(UpperCAmelCase__ , UpperCAmelCase__ ) - 1 # We can't have the car causing an accident SCREAMING_SNAKE_CASE = min(next_highway[car_index] , UpperCAmelCase__ ) if random() < probability: # Randomly, a driver will slow down SCREAMING_SNAKE_CASE = max(next_highway[car_index] - 1 , 0 ) return next_highway def __lowerCamelCase (UpperCAmelCase__ : list , UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = len(highway[0] ) for i in range(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = update(highway[i] , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = [-1] * number_of_cells for car_index in range(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) SCREAMING_SNAKE_CASE = (car_index + speed) % number_of_cells # Commit the change of position SCREAMING_SNAKE_CASE = speed highway.append(UpperCAmelCase__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
206
1
"""simple docstring""" # Lint as: python3 import itertools import os import re A : Dict = re.compile(R"([A-Z]+)([A-Z][a-z])") A : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])") A : Any = re.compile(R"(?<!_)_(?!_)") A : List[Any] = re.compile(R"(_{2,})") A : Union[str, Any] = R"^\w+(\.\w+)*$" A : Union[str, Any] = R"<>:/\|?*" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = _uppercase_uppercase_re.sub(R"\1_\2" , _UpperCamelCase ) __lowerCAmelCase = _lowercase_uppercase_re.sub(R"\1_\2" , _UpperCamelCase ) return name.lower() def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = _single_underscore_re.split(_UpperCamelCase ) __lowerCAmelCase = [_multiple_underscores_re.split(_UpperCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_UpperCamelCase ) if n != "" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if os.path.basename(_UpperCamelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if os.path.basename(_UpperCamelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , _UpperCamelCase ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(_UpperCamelCase )}-{split}" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowerCAmelCase = filename_prefix_for_split(_UpperCamelCase , _UpperCamelCase ) if filetype_suffix: prefix += f".{filetype_suffix}" __lowerCAmelCase = os.path.join(_UpperCamelCase , _UpperCamelCase ) return f"{filepath}*" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ): '''simple docstring''' __lowerCAmelCase = filename_prefix_for_split(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = os.path.join(_UpperCamelCase , _UpperCamelCase ) if shard_lengths: __lowerCAmelCase = len(_UpperCamelCase ) __lowerCAmelCase = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(_UpperCamelCase )] if filetype_suffix: __lowerCAmelCase = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: __lowerCAmelCase = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
57
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="audio-spectrogram-transformer" def __init__( self , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=16 , UpperCamelCase_=True , UpperCamelCase_=10 , UpperCamelCase_=10 , UpperCamelCase_=10_24 , UpperCamelCase_=1_28 , **UpperCamelCase_ , ) -> Optional[int]: super().__init__(**UpperCamelCase_ ) __lowercase : Optional[Any] = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : List[str] = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : List[str] = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Dict = initializer_range __lowercase : Optional[int] = layer_norm_eps __lowercase : Optional[int] = patch_size __lowercase : List[str] = qkv_bias __lowercase : Union[str, Any] = frequency_stride __lowercase : List[Any] = time_stride __lowercase : Tuple = max_length __lowercase : int = num_mel_bins
249
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[int] = 'luke' def __init__( self , __UpperCAmelCase=50267 , __UpperCAmelCase=500000 , __UpperCAmelCase=768 , __UpperCAmelCase=256 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Dict: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _a = vocab_size _a = entity_vocab_size _a = hidden_size _a = entity_emb_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = use_entity_aware_attention _a = classifier_dropout
153
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Dict: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _UpperCAmelCase ( self ) -> str: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__UpperCAmelCase , ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
153
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Any, lowerCamelCase : Any=13, lowerCamelCase : int=7, lowerCamelCase : List[str]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Optional[int]=True, lowerCamelCase : List[str]=True, lowerCamelCase : Dict=99, lowerCamelCase : Union[str, Any]=32, lowerCamelCase : str=5, lowerCamelCase : Any=4, lowerCamelCase : Optional[int]=37, lowerCamelCase : Tuple="gelu", lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : str=512, lowerCamelCase : Tuple=16, lowerCamelCase : Optional[Any]=2, lowerCamelCase : Any=0.02, lowerCamelCase : List[Any]=4, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = True lowercase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = FlaxRoFormerModelTester(self ) @slow def lowercase__ ( self : List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''', from_pt=lowerCamelCase ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase__ = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(lowerCamelCase )[0] lowercase__ = 50_000 lowercase__ = (1, 6, vocab_size) self.assertEqual(output.shape, lowerCamelCase ) lowercase__ = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) )
207
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowercase__ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) lowercase__ = model.state_dict() def to_tf_var_name(lowerCamelCase_ ): for patt, repl in iter(lowerCamelCase_ ): lowercase__ = name.replace(lowerCamelCase_ , lowerCamelCase_ ) return F"""bert/{name}""" def create_tf_var(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ = tf.get_variable(dtype=lowerCamelCase_ , shape=tensor.shape , name=lowerCamelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCamelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ = to_tf_var_name(lowerCamelCase_ ) lowercase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ = torch_tensor.T lowercase__ = create_tf_var(tensor=lowerCamelCase_ , name=lowerCamelCase_ , session=lowerCamelCase_ ) tf.keras.backend.set_value(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = session.run(lowerCamelCase_ ) print(F"""Successfully created {tf_name}: {np.allclose(lowerCamelCase_ , lowerCamelCase_ )}""" ) lowercase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def a ( lowerCamelCase_=None ): '''simple docstring''' lowercase__ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Directory in which to save tensorflow model''' ) lowercase__ = parser.parse_args(lowerCamelCase_ ) lowercase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCamelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
207
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : str ) -> Tuple: UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) UpperCAmelCase : Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) UpperCAmelCase : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCAmelCase : Dict = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCAmelCase : int = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : Optional[int] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) UpperCAmelCase : Dict = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ = Accelerator() lowercase__ = (accelerator.state.process_index + 2, 10) lowercase__ = torch.randint(0, 10, shape).to(accelerator.device) lowercase__ = "" lowercase__ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase__ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase__ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
280
'''simple docstring''' # Lint as: python3 import itertools import os import re lowercase__ = re.compile(r"([A-Z]+)([A-Z][a-z])") lowercase__ = re.compile(r"([a-z\d])([A-Z])") lowercase__ = re.compile(r"(?<!_)_(?!_)") lowercase__ = re.compile(r"(_{2,})") lowercase__ = r"^\w+(\.\w+)*$" lowercase__ = r"<>:/\|?*" def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _uppercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) UpperCAmelCase : str = _lowercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) return name.lower() def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _single_underscore_re.split(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = [_multiple_underscores_re.split(UpperCAmelCase_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCAmelCase_ ) if n != '' ) def UpperCamelCase( UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , UpperCAmelCase_ ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(UpperCAmelCase_ )}-{split}""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): UpperCAmelCase : Dict = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) if filetype_suffix: prefix += F""".{filetype_suffix}""" UpperCAmelCase : Optional[int] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) return F"""{filepath}*""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None ): UpperCAmelCase : Optional[int] = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if shard_lengths: UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) UpperCAmelCase : List[str] = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(UpperCAmelCase_ )] if filetype_suffix: UpperCAmelCase : Dict = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: UpperCAmelCase : Optional[Any] = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
280
1
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: snake_case : Any = False snake_case : List[Any] = logging.get_logger(__name__) snake_case : int = "ybelkada/fonts" def __lowercase ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): requires_backends(_lowercase , ['torch'] ) _check_torch_version() a__ = image_tensor.unsqueeze(0 ) a__ = torch.nn.functional.unfold(_lowercase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) a__ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , _lowercase , _lowercase , -1 ) a__ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : int = 3_6 , __lowerCAmelCase : str = "black" , __lowerCAmelCase : str = "white" , __lowerCAmelCase : int = 5 , __lowerCAmelCase : int = 5 , __lowerCAmelCase : int = 5 , __lowerCAmelCase : int = 5 , __lowerCAmelCase : Optional[bytes] = None , __lowerCAmelCase : Optional[str] = None , ): requires_backends(_lowercase , 'vision' ) # Add new lines so that each line is no more than 80 characters. a__ = textwrap.TextWrapper(width=8_0 ) a__ = wrapper.wrap(text=_lowercase ) a__ = """\n""".join(_lowercase ) if font_bytes is not None and font_path is None: a__ = io.BytesIO(_lowercase ) elif font_path is not None: a__ = font_path else: a__ = hf_hub_download(_lowercase , 'Arial.TTF' ) a__ = ImageFont.truetype(_lowercase , encoding='UTF-8' , size=_lowercase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. a__ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , _lowercase ) ) a__ = temp_draw.textbbox((0, 0) , _lowercase , _lowercase ) # Create the actual image with a bit of padding around the text. a__ = text_width + left_padding + right_padding a__ = text_height + top_padding + bottom_padding a__ = Image.new('RGB' , (image_width, image_height) , _lowercase ) a__ = ImageDraw.Draw(_lowercase ) draw.text(xy=(left_padding, top_padding) , text=_lowercase , fill=_lowercase , font=_lowercase ) return image def __lowercase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : str , **__lowerCAmelCase : List[Any] ): requires_backends(_lowercase , 'vision' ) # Convert to PIL image if necessary a__ = to_pil_image(_lowercase ) a__ = render_text(_lowercase , **_lowercase ) a__ = max(header_image.width , image.width ) a__ = int(image.height * (new_width / image.width) ) a__ = int(header_image.height * (new_width / header_image.width) ) a__ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary a__ = to_numpy_array(_lowercase ) if infer_channel_dimension_format(_lowercase ) == ChannelDimension.LAST: a__ = to_channel_dimension_format(_lowercase , ChannelDimension.LAST ) return new_image class snake_case_ (A__ ): UpperCAmelCase__ : int = ["flattened_patches"] def __init__( self :Tuple ,__snake_case :str = True ,__snake_case :Optional[int] = True ,__snake_case :Tuple = None ,__snake_case :Optional[int] = 20_48 ,__snake_case :int = False ,**__snake_case :List[Any] ,) -> None: super().__init__(**__lowercase ) a__ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} a__ = do_normalize a__ = do_convert_rgb a__ = max_patches a__ = is_vqa def lowerCamelCase__( self :str ,__snake_case :Dict ,__snake_case :Dict ,__snake_case :Dict ,**__snake_case :str ) -> np.ndarray: requires_backends(self.extract_flattened_patches ,'torch' ) _check_torch_version() # convert to torch a__ = to_channel_dimension_format(__lowercase ,ChannelDimension.FIRST ) a__ = torch.from_numpy(__lowercase ) a__ = patch_size["""height"""], patch_size["""width"""] a__ = get_image_size(__lowercase ) # maximize scale s.t. a__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) a__ = max(min(math.floor(scale * image_height / patch_height ) ,__lowercase ) ,1 ) a__ = max(min(math.floor(scale * image_width / patch_width ) ,__lowercase ) ,1 ) a__ = max(num_feasible_rows * patch_height ,1 ) a__ = max(num_feasible_cols * patch_width ,1 ) a__ = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='bilinear' ,align_corners=__lowercase ,antialias=__lowercase ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] a__ = torch_extract_patches(__lowercase ,__lowercase ,__lowercase ) a__ = patches.shape a__ = patches_shape[1] a__ = patches_shape[2] a__ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] a__ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] a__ = torch.arange(__lowercase ).reshape([rows, 1] ).repeat(1 ,__lowercase ).reshape([rows * columns, 1] ) a__ = torch.arange(__lowercase ).reshape([1, columns] ).repeat(__lowercase ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] a__ = row_ids.to(torch.floataa ) a__ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] a__ = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] a__ = torch.nn.functional.pad(__lowercase ,[0, 0, 0, max_patches - (rows * columns)] ).float() a__ = to_numpy_array(__lowercase ) return result def lowerCamelCase__( self :Optional[int] ,__snake_case :Any ,__snake_case :int = None ,**__snake_case :Dict ) -> np.ndarray: if image.dtype == np.uinta: a__ = image.astype(np.floataa ) # take mean across the whole `image` a__ = np.mean(__lowercase ) a__ = np.std(__lowercase ) a__ = max(__lowercase ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(__lowercase ,mean=__lowercase ,std=__lowercase ,**__lowercase ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Dict ,__snake_case :int = None ,__snake_case :str = None ,__snake_case :Union[str, Any] = None ,__snake_case :Any = None ,__snake_case :Optional[int] = None ,__snake_case :Dict = None ,__snake_case :List[Any] = ChannelDimension.FIRST ,**__snake_case :List[str] ,) -> ImageInput: a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a__ = patch_size if patch_size is not None else self.patch_size a__ = max_patches if max_patches is not None else self.max_patches a__ = self.is_vqa if kwargs.get('data_format' ,__lowercase ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) a__ = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: a__ = [convert_to_rgb(__lowercase ) for image in images] # All transformations expect numpy arrays. a__ = [to_numpy_array(__lowercase ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) a__ = kwargs.pop('font_bytes' ,__lowercase ) a__ = kwargs.pop('font_path' ,__lowercase ) if isinstance(__lowercase ,__lowercase ): a__ = [header_text] * len(__lowercase ) a__ = [ render_header(__lowercase ,header_text[i] ,font_bytes=__lowercase ,font_path=__lowercase ) for i, image in enumerate(__lowercase ) ] if do_normalize: a__ = [self.normalize(image=__lowercase ) for image in images] # convert to torch tensor and permute a__ = [ self.extract_flattened_patches(image=__lowercase ,max_patches=__lowercase ,patch_size=__lowercase ) for image in images ] # create attention mask in numpy a__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] a__ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} ,tensor_type=__lowercase ) return encoded_outputs
240
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCAmelCase_ ( _lowercase : Dict , _lowercase : str , _lowercase : str , _lowercase : Optional[Any]=1024) -> List[Any]: """simple docstring""" a__ , a__ : Optional[int] = [], [] a__ : Union[str, Any] = list(zip(_lowercase , _lowercase)) a__ , a__ : List[Any] = sorted_examples[0] def is_too_big(_lowercase : Tuple): return tok(_lowercase , return_tensors="""pt""").input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): a__ : Tuple = new_src + """ """ + src a__ : Any = new_tgt + """ """ + tgt if is_too_big(_lowercase) or is_too_big(_lowercase): # cant fit, finalize example finished_src.append(_lowercase) finished_tgt.append(_lowercase) a__ , a__ : List[Any] = src, tgt else: # can fit, keep adding a__ , a__ : Tuple = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_lowercase) finished_tgt.append(_lowercase) return finished_src, finished_tgt def lowerCAmelCase_ ( _lowercase : str , _lowercase : Path , _lowercase : Any , _lowercase : str) -> Tuple: """simple docstring""" a__ : Any = Path(_lowercase) save_path.mkdir(exist_ok=_lowercase) for split in ["train"]: a__ , a__ : List[Any] = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' a__ : Dict = [x.rstrip() for x in Path(_lowercase).open().readlines()] a__ : Optional[Any] = [x.rstrip() for x in Path(_lowercase).open().readlines()] a__ , a__ : List[Any] = pack_examples(_lowercase , _lowercase , _lowercase , _lowercase) print(F'''packed {split} split from {len(_lowercase)} examples -> {len(_lowercase)}.''') Path(save_path / F'''{split}.source''').open("""w""").write("""\n""".join(_lowercase)) Path(save_path / F'''{split}.target''').open("""w""").write("""\n""".join(_lowercase)) for split in ["val", "test"]: a__ , a__ : Any = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(_lowercase , save_path / F'''{split}.source''') shutil.copyfile(_lowercase , save_path / F'''{split}.target''') def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" a__ : Tuple = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=_lowercase , help="""like facebook/bart-large-cnn,t5-base, etc.""") parser.add_argument("""--max_seq_len""" , type=_lowercase , default=128) parser.add_argument("""--data_dir""" , type=_lowercase) parser.add_argument("""--save_path""" , type=_lowercase) a__ : List[Any] = parser.parse_args() a__ : List[Any] = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(_lowercase , Path(args.data_dir) , args.max_seq_len , args.save_path) if __name__ == "__main__": packer_cli()
170
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> List[int]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): return list(tensor.shape ) UpperCamelCase_ = tf.shape(SCREAMING_SNAKE_CASE_ ) if tensor.shape == tf.TensorShape(SCREAMING_SNAKE_CASE_ ): return dynamic UpperCamelCase_ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(SCREAMING_SNAKE_CASE_ )] def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None )-> tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=-1 )-> Any: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized UpperCamelCase_ , UpperCamelCase_ = tf.nn.moments(SCREAMING_SNAKE_CASE_ , axes=[axis] , keepdims=SCREAMING_SNAKE_CASE_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCamelCase_ = [1] * inputs.shape.rank UpperCamelCase_ = shape_list(SCREAMING_SNAKE_CASE_ )[axis] UpperCamelCase_ = tf.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = tf.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Compute layer normalization using the batch_normalization # function. UpperCamelCase_ = tf.nn.batch_normalization( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , offset=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , variance_epsilon=SCREAMING_SNAKE_CASE_ , ) return outputs def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=-1 )-> Tuple: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCamelCase_ = tf.shape(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCamelCase_ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> tf.Tensor: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , tf.Tensor ): UpperCamelCase_ = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCamelCase_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCamelCase_ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCamelCase_ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "input_ids" )-> None: """simple docstring""" tf.debugging.assert_less( SCREAMING_SNAKE_CASE_ , tf.cast(SCREAMING_SNAKE_CASE_ , dtype=tensor.dtype ) , message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(SCREAMING_SNAKE_CASE_ )}) must be smaller than the embedding " f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: """simple docstring""" UpperCamelCase_ = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCamelCase_ = [x for x in data if len(SCREAMING_SNAKE_CASE_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) UpperCamelCase_ = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = 1 UpperCamelCase_ = np.array_split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCamelCase_ = np.array_split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = chunk_data else: UpperCamelCase_ = data def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: """simple docstring""" if name in group.attrs: UpperCamelCase_ = [n.decode("utf8" ) if hasattr(SCREAMING_SNAKE_CASE_ , "decode" ) else n for n in group.attrs[name]] else: UpperCamelCase_ = [] UpperCamelCase_ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(SCREAMING_SNAKE_CASE_ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" def _expand_single_ad_tensor(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(SCREAMING_SNAKE_CASE_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , SCREAMING_SNAKE_CASE_ )
60
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __magic_name__ : def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=4 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.1 , _lowercase=True , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , )-> str: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_multiple_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = weight_tying UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self )-> int: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ = GPTNeoXJapaneseModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase ) UpperCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Dict: UpperCamelCase_ = True UpperCamelCase_ = GPTNeoXJapaneseModel(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase )-> List[str]: UpperCamelCase_ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Dict: UpperCamelCase_ = True UpperCamelCase_ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , output_hidden_states=_lowercase ) UpperCamelCase_ = output_from_no_past["hidden_states"][0] UpperCamelCase_ = model( _lowercase , attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCamelCase_ :str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCamelCase_ :int = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCamelCase_ :int = False UpperCamelCase_ :Dict = False UpperCamelCase_ :List[str] = False UpperCamelCase_ :int = False def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = GPTNeoXJapaneseModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Any: # This regression test was failing with PyTorch < 1.3 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase_ = None self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowercase ) @slow def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = "abeja/gpt-neox-japanese-2.7b" UpperCamelCase_ = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] UpperCamelCase_ = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] UpperCamelCase_ = GPTNeoXJapaneseTokenizer.from_pretrained(_lowercase ) UpperCamelCase_ = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowercase ) UpperCamelCase_ = [] for prompt in prompts: UpperCamelCase_ = tokenizer(_lowercase , return_tensors="pt" ).input_ids UpperCamelCase_ = model.generate(_lowercase , max_length=50 ) UpperCamelCase_ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) predicted_outputs += generated_string self.assertListEqual(_lowercase , _lowercase )
60
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _a = logging.getLogger(__name__) if __name__ == "__main__": _a = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) _a = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: _a = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _a = Counter() for tk_ids in data: counter.update(tk_ids) _a = [0] * args.vocab_size for k, v in counter.items(): _a = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
39
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFResNetModel(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _UpperCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
39
1
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __UpperCamelCase = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None SCREAMING_SNAKE_CASE_ : str = "utf-8" SCREAMING_SNAKE_CASE_ : Optional[str] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None SCREAMING_SNAKE_CASE_ : bool = True # deprecated SCREAMING_SNAKE_CASE_ : Optional[int] = None # deprecated SCREAMING_SNAKE_CASE_ : int = 1_0 << 2_0 # 10MB SCREAMING_SNAKE_CASE_ : Optional[bool] = None class lowerCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = JsonConfig def __A ( self ) -> Any: if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) SCREAMING_SNAKE_CASE = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self , lowerCAmelCase__ ) -> List[Any]: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = [files] SCREAMING_SNAKE_CASE = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = [files] SCREAMING_SNAKE_CASE = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={'files': files} ) ) return splits def __A ( self , lowerCAmelCase__ ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE = self.config.features.arrow_schema.field(lowerCAmelCase__ ).type SCREAMING_SNAKE_CASE = pa_table.append_column(lowerCAmelCase__ , pa.array([None] * len(lowerCAmelCase__ ) , type=lowerCAmelCase__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE = table_cast(lowerCAmelCase__ , self.config.features.arrow_schema ) return pa_table def __A ( self , lowerCAmelCase__ ) -> Any: for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowerCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE = json.load(lowerCAmelCase__ ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowerCAmelCase__ , (list, tuple) ): SCREAMING_SNAKE_CASE = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE = {col: [row.get(lowerCAmelCase__ ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = pa.Table.from_pydict(lowerCAmelCase__ ) yield file_idx, self._cast_table(lowerCAmelCase__ ) # If the file has one json object per line else: with open(lowerCAmelCase__ , 'rb' ) as f: SCREAMING_SNAKE_CASE = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: SCREAMING_SNAKE_CASE = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowerCAmelCase__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE = batch.decode(self.config.encoding , errors=lowerCAmelCase__ ).encode('utf-8' ) try: while True: try: SCREAMING_SNAKE_CASE = paj.read_json( io.BytesIO(lowerCAmelCase__ ) , read_options=paj.ReadOptions(block_size=lowerCAmelCase__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowerCAmelCase__ , pa.ArrowInvalid ) and "straddling" not in str(lowerCAmelCase__ ) or block_size > len(lowerCAmelCase__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'Batch of {len(lowerCAmelCase__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowerCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE = json.load(lowerCAmelCase__ ) except json.JSONDecodeError: logger.error(F'Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE = {col: [row.get(lowerCAmelCase__ ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE = pa.Table.from_pydict(lowerCAmelCase__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}' ) raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(lowerCAmelCase__ ) break else: logger.error(F'Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}' ) raise ValueError( F'Not able to read records in the JSON file at {file}. ' F'You should probably indicate the field of the JSON file containing your records. ' F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) batch_idx += 1
38
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
1
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( lowercase__ : int , lowercase__ : Optional[Any] , lowercase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def _snake_case ( lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Union[str, Any] = None ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :Tuple = tesseract_config if tesseract_config is not None else """""" # apply OCR lowerCAmelCase_ :List[Any] = to_pil_image(snake_case__ ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = pil_image.size lowerCAmelCase_ :int = pytesseract.image_to_data(snake_case__ , lang=snake_case__ , output_type="""dict""" , config=snake_case__ ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates lowerCAmelCase_ :List[str] = [idx for idx, word in enumerate(snake_case__ ) if not word.strip()] lowerCAmelCase_ :List[str] = [word for idx, word in enumerate(snake_case__ ) if idx not in irrelevant_indices] lowerCAmelCase_ :Optional[int] = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] lowerCAmelCase_ :Union[str, Any] = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] lowerCAmelCase_ :Optional[Any] = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] lowerCAmelCase_ :Dict = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase_ :Optional[int] = [] for x, y, w, h in zip(snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase_ :Optional[int] = [x, y, x + w, y + h] actual_boxes.append(snake_case__ ) # finally, normalize the bounding boxes lowerCAmelCase_ :Tuple = [] for box in actual_boxes: normalized_boxes.append(normalize_box(snake_case__ , snake_case__ , snake_case__ ) ) assert len(snake_case__ ) == len(snake_case__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Optional[Any] = ['pixel_values'] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BILINEAR , __A = True , __A = None , __A = "" , **__A , ) -> None: super().__init__(**__UpperCAmelCase ) lowerCAmelCase_ :Optional[int] = size if size is not None else {"""height""": 224, """width""": 224} lowerCAmelCase_ :Any = get_size_dict(__UpperCAmelCase ) lowerCAmelCase_ :Dict = do_resize lowerCAmelCase_ :Optional[int] = size lowerCAmelCase_ :str = resample lowerCAmelCase_ :Tuple = apply_ocr lowerCAmelCase_ :List[Any] = ocr_lang lowerCAmelCase_ :int = tesseract_config def __lowerCAmelCase ( self , __A , __A , __A = PILImageResampling.BILINEAR , __A = None , **__A , ) -> np.ndarray: lowerCAmelCase_ :int = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase_ :Optional[int] = (size["""height"""], size["""width"""]) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> PIL.Image.Image: lowerCAmelCase_ :Any = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ :List[str] = size if size is not None else self.size lowerCAmelCase_ :List[str] = get_size_dict(__UpperCAmelCase ) lowerCAmelCase_ :int = resample if resample is not None else self.resample lowerCAmelCase_ :int = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase_ :Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase_ :List[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase_ :Optional[int] = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase_ :Tuple = [to_numpy_array(__UpperCAmelCase ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) lowerCAmelCase_ :Dict = [] lowerCAmelCase_ :Optional[int] = [] for image in images: lowerCAmelCase_ , lowerCAmelCase_ :Any = apply_tesseract(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) words_batch.append(__UpperCAmelCase ) boxes_batch.append(__UpperCAmelCase ) if do_resize: lowerCAmelCase_ :Optional[Any] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowerCAmelCase_ :Optional[int] = [flip_channel_order(__UpperCAmelCase ) for image in images] lowerCAmelCase_ :Tuple = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowerCAmelCase_ :Tuple = BatchFeature(data={"""pixel_values""": images} , tensor_type=__UpperCAmelCase ) if apply_ocr: lowerCAmelCase_ :Any = words_batch lowerCAmelCase_ :Optional[Any] = boxes_batch return data
84
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A_ : Dict = logging.get_logger(__name__) A_ : Any = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : Tuple = 'deberta-v2' def __init__( self : Any , __UpperCAmelCase : Optional[Any]=1_2_8_1_0_0 , __UpperCAmelCase : Optional[Any]=1_5_3_6 , __UpperCAmelCase : List[Any]=2_4 , __UpperCAmelCase : str=2_4 , __UpperCAmelCase : Optional[int]=6_1_4_4 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[Any]=5_1_2 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Any=1e-7 , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Union[str, Any]="gelu" , **__UpperCAmelCase : Any , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = relative_attention SCREAMING_SNAKE_CASE__ = max_relative_positions SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = position_biased_input # Backwards compatibility if type(__UpperCAmelCase ) == str: SCREAMING_SNAKE_CASE__ = [x.strip() for x in pos_att_type.lower().split("""|""" )] SCREAMING_SNAKE_CASE__ = pos_att_type SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kwargs.get("""pooler_hidden_size""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pooler_dropout SCREAMING_SNAKE_CASE__ = pooler_hidden_act class lowerCamelCase (A__ ): @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 1_2 def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs(preprocessor=__UpperCAmelCase , framework=__UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
165
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __magic_name__ ( A ) -> int: snake_case = R'\w+[.]\d+' snake_case = re.findall(A , A ) for pat in pats: snake_case = key.replace(A , '_'.join(pat.split('.' ) ) ) return key def __magic_name__ ( A , A , A ) -> Any: snake_case = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): snake_case = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: snake_case = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: snake_case = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer snake_case = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": snake_case = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __magic_name__ ( A , A , A=4_2 ) -> str: # Step 1: Convert pytorch tensor to numpy snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params snake_case = flax_model.init_weights(PRNGKey(A ) ) snake_case = flatten_dict(A ) snake_case = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case = rename_key(A ) snake_case = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters snake_case , snake_case = rename_key_and_reshape_tensor(A , A , A ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(A ) return unflatten_dict(A )
332
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase__ = datasets.utils.logging.get_logger(__name__) class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): UpperCamelCase = None UpperCamelCase = None class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): UpperCamelCase = datasets.Audio() UpperCamelCase = '''audio''' UpperCamelCase = AudioFolderConfig UpperCamelCase = 42 # definition at the bottom of the script UpperCamelCase = AudioClassification(audio_column='''audio''' , label_column='''label''' ) UpperCAmelCase__ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] UpperCAmelCase__ = AUDIO_EXTENSIONS
339
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any]=False ) -> str: '''simple docstring''' try: _UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase = strtobool(_UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value UpperCAmelCase__ = parse_flag_from_env("RUN_SLOW", default=False) def A ( _UpperCAmelCase : List[str] ) -> List[str]: '''simple docstring''' return unittest.skip('Test was skipped' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Dict ) -> str: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> str: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : str ) -> str: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Tuple ) -> int: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any=None , _UpperCAmelCase : List[Any]=None ) -> Dict: '''simple docstring''' if test_case is None: return partial(_UpperCAmelCase , version=_UpperCAmelCase ) return unittest.skipUnless(is_torch_version('>=' , _UpperCAmelCase ) , F"test requires torch version >= {version}" )(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> int: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_UpperCAmelCase ) UpperCAmelCase__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A ( _UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_UpperCAmelCase ) class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = True @classmethod def _lowerCamelCase ( cls : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() @classmethod def _lowerCamelCase ( cls : Union[str, Any]) -> str: """simple docstring""" if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir).glob('**/*'): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int] , A : Union[mock.Mock, List[mock.Mock]]) -> Tuple: """simple docstring""" _UpperCAmelCase = mocks if isinstance(A , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = AcceleratorState() _UpperCAmelCase = tensor[None].clone().to(state.device ) _UpperCAmelCase = gather(_UpperCAmelCase ).cpu() _UpperCAmelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCAmelCase ): return False return True class __lowerCAmelCase : def __init__( self : Optional[Any] , A : Union[str, Any] , A : Optional[int] , A : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = returncode _UpperCAmelCase = stdout _UpperCAmelCase = stderr async def A ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' while True: _UpperCAmelCase = await stream.readline() if line: callback(_UpperCAmelCase ) else: break async def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Union[str, Any]=False ) -> _RunOutput: '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(_UpperCAmelCase ) ) _UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase = [] _UpperCAmelCase = [] def tee(_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str="" ): _UpperCAmelCase = line.decode('utf-8' ).rstrip() sink.append(_UpperCAmelCase ) if not quiet: print(_UpperCAmelCase , _UpperCAmelCase , file=_UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCAmelCase : tee(_UpperCAmelCase , _UpperCAmelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCAmelCase : tee(_UpperCAmelCase , _UpperCAmelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=_UpperCAmelCase , ) return _RunOutput(await p.wait() , _UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Dict=None , _UpperCAmelCase : str=None , _UpperCAmelCase : str=180 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : List[Any]=True ) -> _RunOutput: '''simple docstring''' _UpperCAmelCase = asyncio.get_event_loop() _UpperCAmelCase = loop.run_until_complete( _stream_subprocess(_UpperCAmelCase , env=_UpperCAmelCase , stdin=_UpperCAmelCase , timeout=_UpperCAmelCase , quiet=_UpperCAmelCase , echo=_UpperCAmelCase ) ) _UpperCAmelCase = ' '.join(_UpperCAmelCase ) if result.returncode > 0: _UpperCAmelCase = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class __lowerCAmelCase ( A ): pass def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str=False ) -> Tuple: '''simple docstring''' try: _UpperCAmelCase = subprocess.check_output(_UpperCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCAmelCase , 'decode' ): _UpperCAmelCase = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(_UpperCAmelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
339
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class A ( __UpperCAmelCase ): __snake_case = 42 __snake_case = 42 __snake_case = None class A ( __UpperCAmelCase , __UpperCAmelCase ): __snake_case = 2 @register_to_config def __init__( self, UpperCamelCase__ = 0.02, UpperCamelCase__ = 100, UpperCamelCase__ = 1.007, UpperCamelCase__ = 80, UpperCamelCase__ = 0.05, UpperCamelCase__ = 50, ): """simple docstring""" lowerCAmelCase_ = sigma_max # setable values lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None # sigma(t_i) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" return sample def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = num_inference_steps lowerCAmelCase_ = np.arange(0, self.num_inference_steps )[::-1].copy() lowerCAmelCase_ = torch.from_numpy(__A ).to(__A ) lowerCAmelCase_ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ = torch.tensor(__A, dtype=torch.floataa, device=__A ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1 ) else: lowerCAmelCase_ = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ = self.config.s_noise * randn_tensor(sample.shape, generator=__A ).to(sample.device ) lowerCAmelCase_ = sigma + gamma * sigma lowerCAmelCase_ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = True, ): """simple docstring""" lowerCAmelCase_ = sample_hat + sigma_hat * model_output lowerCAmelCase_ = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__A, derivative=__A, pred_original_sample=__A ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = True, ): """simple docstring""" lowerCAmelCase_ = sample_prev + sigma_prev * model_output lowerCAmelCase_ = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__A, derivative=__A, pred_original_sample=__A ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" raise NotImplementedError()
359
from abc import ABC, abstractmethod from argparse import ArgumentParser class A ( __UpperCAmelCase ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): """simple docstring""" raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" raise NotImplementedError()
167
0
def A ( a_ ) -> list: if len(a_ ) <= 1: return [tuple(a_ )] __UpperCamelCase : Dict =[] def generate(a_ ,a_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 ,a_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __UpperCamelCase , __UpperCamelCase : Union[str, Any] =arr[k - 1], arr[i] else: # k is odd __UpperCamelCase , __UpperCamelCase : int =arr[k - 1], arr[0] generate(k - 1 ,a_ ) generate(len(a_ ) ,a_ ) return res if __name__ == "__main__": A_ :Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() A_ :Optional[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
71
import math class _snake_case : def __init__( self , _lowerCamelCase=0 ): # a graph with Node 0,1,...,N-1 a :Optional[int] = n a :Union[str, Any] = [ [math.inf for j in range(0 , _lowerCamelCase )] for i in range(0 , _lowerCamelCase ) ] # adjacency matrix for weight a :List[Any] = [ [math.inf for j in range(0 , _lowerCamelCase )] for i in range(0 , _lowerCamelCase ) ] # dp[i][j] stores minimum distance from i to j def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Tuple = w def SCREAMING_SNAKE_CASE__ ( self ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): a :Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return self.dp[u][v] if __name__ == "__main__": snake_case : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
94
0
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict=2_81_23 ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__UpperCamelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
204
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""google/mt5-small""" ) SCREAMING_SNAKE_CASE__ = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = model(input_ids.to(_lowercase ) , labels=labels.to(_lowercase ) ).loss SCREAMING_SNAKE_CASE__ = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE__ = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
204
1
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _lowercase : Optional[Any] = logging.getLogger(__name__) _lowercase : List[str] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _lowercase : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase__ : lowerCAmelCase_ = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) lowerCAmelCase_ = field( default=snake_case_ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowerCAmelCase_ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase_ = field( default=snake_case_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _snake_case ( self ): """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase__ : lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase_ = field(default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowerCAmelCase_ = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) lowerCAmelCase_ = field( default=snake_case_ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) lowerCAmelCase_ = field( default=snake_case_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCAmelCase_ = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) lowerCAmelCase_ = field( default=snake_case_ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def _snake_case ( self ): """simple docstring""" if self.train_file is not None: lowercase_ : Dict = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowercase_ : List[str] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowercase_ : List[str] = [json.loads(__SCREAMING_SNAKE_CASE ) for line in f.read().splitlines() if (len(__SCREAMING_SNAKE_CASE ) > 0 and not line.isspace())] assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) lowercase_ : str = {c: dataset[c] for c in dataset.column_names} lowercase_ : str = refs return Dataset.from_dict(__SCREAMING_SNAKE_CASE ) def snake_case_ ( ): """simple docstring""" lowercase_ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ : Tuple = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase_ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __SCREAMING_SNAKE_CASE ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ : Optional[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowercase_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[:{data_args.validation_split_percentage}%]''' , ) lowercase_ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[{data_args.validation_split_percentage}%:]''' , ) else: lowercase_ : Tuple = {} if data_args.train_file is not None: lowercase_ : Tuple = data_args.train_file if data_args.validation_file is not None: lowercase_ : Optional[int] = data_args.validation_file lowercase_ : Union[str, Any] = data_args.train_file.split('''.''' )[-1] if extension == "txt": lowercase_ : List[str] = '''text''' lowercase_ : Tuple = load_dataset(__SCREAMING_SNAKE_CASE , data_files=__SCREAMING_SNAKE_CASE ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ : List[str] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase_ : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name , **__SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowercase_ : str = AutoConfig.from_pretrained(model_args.model_name_or_path , **__SCREAMING_SNAKE_CASE ) else: lowercase_ : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) lowercase_ : Optional[int] = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowercase_ : Any = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowercase_ : List[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__SCREAMING_SNAKE_CASE ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: lowercase_ : Dict = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase_ : List[str] = AutoModelForMaskedLM.from_config(__SCREAMING_SNAKE_CASE ) model.resize_token_embeddings(len(__SCREAMING_SNAKE_CASE ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowercase_ : Any = datasets['''train'''].column_names else: lowercase_ : Optional[Any] = datasets['''validation'''].column_names lowercase_ : Any = '''text''' if '''text''' in column_names else column_names[0] lowercase_ : List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__SCREAMING_SNAKE_CASE : str ): # Remove empty lines lowercase_ : Optional[int] = [line for line in examples['''text'''] if len(__SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=data_args.max_seq_length ) lowercase_ : str = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowercase_ : List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowercase_ : Tuple = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowercase_ : int = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowercase_ : Optional[Any] = False # Data collator # This one will take care of randomly masking the tokens. lowercase_ : List[Any] = DataCollatorForWholeWordMask(tokenizer=__SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase_ : Union[str, Any] = Trainer( model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase_ : str = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowercase_ : Optional[Any] = model_args.model_name_or_path else: lowercase_ : Optional[Any] = None lowercase_ : Any = trainer.train(resume_from_checkpoint=__SCREAMING_SNAKE_CASE ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase_ : List[str] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__SCREAMING_SNAKE_CASE , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation lowercase_ : str = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase_ : Any = trainer.evaluate() lowercase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) lowercase_ : int = perplexity lowercase_ : Dict = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__SCREAMING_SNAKE_CASE , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) return results def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" main() if __name__ == "__main__": main()
93
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase( a , a , a , a="attention" ): __a = params[F"{prefix}/layers_{i}/{layer_name}/key/kernel"] __a = params[F"{prefix}/layers_{i}/{layer_name}/out/kernel"] __a = params[F"{prefix}/layers_{i}/{layer_name}/query/kernel"] __a = params[F"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def _lowerCamelCase( a , a , a , a=False ): if split_mlp_wi: __a = params[F"{prefix}/layers_{i}/mlp/wi_0/kernel"] __a = params[F"{prefix}/layers_{i}/mlp/wi_1/kernel"] __a = (wi_a, wi_a) else: __a = params[F"{prefix}/layers_{i}/mlp/wi/kernel"] __a = params[F"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def _lowerCamelCase( a , a , a , a ): return params[F"{prefix}/layers_{i}/{layer_name}/scale"] def _lowerCamelCase( a , *, a , a ): __a = traverse_util.flatten_dict(variables["target"] ) __a = {"/".join(a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __a = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , a ) __a = collections.OrderedDict() # Shared embeddings. __a = old["token_embedder/embedding"] # Encoder. for i in range(a ): # Block i, layer 0 (Self Attention). __a = tax_layer_norm_lookup(a , a , "encoder" , "pre_attention_layer_norm" ) __a , __a , __a , __a = tax_attention_lookup(a , a , "encoder" , "attention" ) __a = layer_norm __a = k.T __a = o.T __a = q.T __a = v.T # Block i, layer 1 (MLP). __a = tax_layer_norm_lookup(a , a , "encoder" , "pre_mlp_layer_norm" ) __a , __a = tax_mlp_lookup(a , a , "encoder" , a ) __a = layer_norm if split_mlp_wi: __a = wi[0].T __a = wi[1].T else: __a = wi.T __a = wo.T __a = old[ "encoder/relpos_bias/rel_embedding" ].T __a = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(a ): # Block i, layer 0 (Self Attention). __a = tax_layer_norm_lookup(a , a , "decoder" , "pre_self_attention_layer_norm" ) __a , __a , __a , __a = tax_attention_lookup(a , a , "decoder" , "self_attention" ) __a = layer_norm __a = k.T __a = o.T __a = q.T __a = v.T # Block i, layer 1 (Cross Attention). __a = tax_layer_norm_lookup(a , a , "decoder" , "pre_cross_attention_layer_norm" ) __a , __a , __a , __a = tax_attention_lookup(a , a , "decoder" , "encoder_decoder_attention" ) __a = layer_norm __a = k.T __a = o.T __a = q.T __a = v.T # Block i, layer 2 (MLP). __a = tax_layer_norm_lookup(a , a , "decoder" , "pre_mlp_layer_norm" ) __a , __a = tax_mlp_lookup(a , a , "decoder" , a ) __a = layer_norm if split_mlp_wi: __a = wi[0].T __a = wi[1].T else: __a = wi.T __a = wo.T __a = old["decoder/decoder_norm/scale"] __a = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __a = old["decoder/logits_dense/kernel"].T return new def _lowerCamelCase( a , a ): __a = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __a = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __a = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __a = state_dict["shared.weight"] return state_dict def _lowerCamelCase( a , a , a , a ): __a = checkpoints.load_tax_checkpoint(a ) __a = convert_tax_to_pytorch(a , num_layers=config.num_layers , is_encoder_only=a ) __a = make_state_dict(a , a ) model.load_state_dict(a , strict=a ) def _lowerCamelCase( a , a , a , a = False ): __a = TaConfig.from_json_file(a ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __a = TaEncoderModel(a ) else: __a = TaForConditionalGeneration(a ) # Load weights from tf checkpoint load_tax_weights_in_ta(a , a , a , a ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(a ) # Verify that we can load the checkpoint. model.from_pretrained(a ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Tuple = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) SCREAMING_SNAKE_CASE__:Tuple = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
261
0
from __future__ import annotations from math import pow, sqrt def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(_UpperCAmelCase , 2 ) - pow(_UpperCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_UpperCAmelCase , 2 ) - pow(_UpperCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_UpperCAmelCase , 2 ) + pow(_UpperCAmelCase , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
131
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case :Tuple = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[int] = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __snake_case :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
131
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase__ ( __a, __a, unittest.TestCase ): _UpperCAmelCase :Union[str, Any] = StableDiffusionDiffEditPipeline _UpperCAmelCase :int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} _UpperCAmelCase :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} _UpperCAmelCase :int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _UpperCAmelCase :List[str] = frozenset([] ) def UpperCAmelCase__ ( self : List[str] ): torch.manual_seed(0 ) lowerCamelCase_ : Dict =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a_ , ) lowerCamelCase_ : str =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_one=a_ , ) lowerCamelCase_ : str =DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_zero=a_ , ) torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase_ : List[str] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) lowerCamelCase_ : Optional[int] =CLIPTextModel(a_ ) lowerCamelCase_ : int =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ : str ={ """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Any , snake_case__ : Any=0 ): lowerCamelCase_ : List[str] =floats_tensor((1, 16, 16) , rng=random.Random(a_ ) ).to(a_ ) lowerCamelCase_ : Dict =floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(a_ ) ).to(a_ ) if str(a_ ).startswith("mps" ): lowerCamelCase_ : Optional[int] =torch.manual_seed(a_ ) else: lowerCamelCase_ : List[Any] =torch.Generator(device=a_ ).manual_seed(a_ ) lowerCamelCase_ : Dict ={ """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Any , snake_case__ : Dict , snake_case__ : List[Any]=0 ): lowerCamelCase_ : str =floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCamelCase_ : str =image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ : Dict =Image.fromarray(np.uinta(a_ ) ).convert("RGB" ) if str(a_ ).startswith("mps" ): lowerCamelCase_ : str =torch.manual_seed(a_ ) else: lowerCamelCase_ : Dict =torch.Generator(device=a_ ).manual_seed(a_ ) lowerCamelCase_ : int ={ """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Any , snake_case__ : int , snake_case__ : Optional[Any]=0 ): lowerCamelCase_ : Tuple =floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCamelCase_ : Optional[Any] =image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ : List[str] =Image.fromarray(np.uinta(a_ ) ).convert("RGB" ) if str(a_ ).startswith("mps" ): lowerCamelCase_ : int =torch.manual_seed(a_ ) else: lowerCamelCase_ : Union[str, Any] =torch.Generator(device=a_ ).manual_seed(a_ ) lowerCamelCase_ : Dict ={ """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : str ): if not hasattr(self.pipeline_class , "_optional_components" ): return lowerCamelCase_ : Optional[int] =self.get_dummy_components() lowerCamelCase_ : Optional[int] =self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(a_ , a_ , a_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCamelCase_ : Optional[int] =self.get_dummy_inputs(a_ ) lowerCamelCase_ : Optional[Any] =pipe(**a_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a_ ) lowerCamelCase_ : int =self.pipeline_class.from_pretrained(a_ ) pipe_loaded.to(a_ ) pipe_loaded.set_progress_bar_config(disable=a_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(a_ , a_ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) lowerCamelCase_ : Tuple =self.get_dummy_inputs(a_ ) lowerCamelCase_ : Tuple =pipe_loaded(**a_ )[0] lowerCamelCase_ : List[str] =np.abs(output - output_loaded ).max() self.assertLess(a_ , 1E-4 ) def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : List[str] ="""cpu""" lowerCamelCase_ : Optional[int] =self.get_dummy_components() lowerCamelCase_ : Dict =self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : int =self.get_dummy_mask_inputs(a_ ) lowerCamelCase_ : Union[str, Any] =pipe.generate_mask(**a_ ) lowerCamelCase_ : Union[str, Any] =mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCamelCase_ : Tuple =np.array([0] * 9 ) lowerCamelCase_ : str =np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : int ="""cpu""" lowerCamelCase_ : Union[str, Any] =self.get_dummy_components() lowerCamelCase_ : Union[str, Any] =self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : List[str] =self.get_dummy_inversion_inputs(a_ ) lowerCamelCase_ : str =pipe.invert(**a_ ).images lowerCamelCase_ : List[str] =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase_ : List[Any] =np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowerCamelCase_ : Optional[Any] =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) def UpperCAmelCase__ ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : Any ="""cpu""" lowerCamelCase_ : List[Any] =self.get_dummy_components() lowerCamelCase_ : str ={"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowerCamelCase_ : Dict =DPMSolverMultistepScheduler(**a_ ) lowerCamelCase_ : Any =DPMSolverMultistepInverseScheduler(**a_ ) lowerCamelCase_ : Optional[Any] =self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : List[Any] =self.get_dummy_inversion_inputs(a_ ) lowerCamelCase_ : Union[str, Any] =pipe.invert(**a_ ).images lowerCamelCase_ : List[str] =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase_ : int =np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowerCamelCase_ : Tuple =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): lowerCamelCase_ : Dict =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) lowerCamelCase_ : Optional[Any] =raw_image.convert("RGB" ).resize((768, 768) ) lowerCamelCase_ : Optional[Any] =raw_image def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Tuple =torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] =StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=a_ , torch_dtype=torch.floataa ) lowerCamelCase_ : Any =DDIMScheduler.from_config(pipe.scheduler.config ) lowerCamelCase_ : Optional[Any] =DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : Optional[Any] ="""a bowl of fruit""" lowerCamelCase_ : Union[str, Any] ="""a bowl of pears""" lowerCamelCase_ : List[str] =pipe.generate_mask( image=self.raw_image , source_prompt=a_ , target_prompt=a_ , generator=a_ , ) lowerCamelCase_ : Optional[Any] =pipe.invert( prompt=a_ , image=self.raw_image , inpaint_strength=0.7 , generator=a_ ).latents lowerCamelCase_ : Dict =pipe( prompt=a_ , mask_image=a_ , image_latents=a_ , generator=a_ , negative_prompt=a_ , inpaint_strength=0.7 , output_type="numpy" , ).images[0] lowerCamelCase_ : Union[str, Any] =( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : Tuple =torch.manual_seed(0 ) lowerCamelCase_ : List[Any] =StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=a_ , torch_dtype=torch.floataa ) lowerCamelCase_ : Dict =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCamelCase_ : Any =DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : Tuple ="""a bowl of fruit""" lowerCamelCase_ : Optional[Any] ="""a bowl of pears""" lowerCamelCase_ : Any =pipe.generate_mask( image=self.raw_image , source_prompt=a_ , target_prompt=a_ , generator=a_ , ) lowerCamelCase_ : Optional[int] =pipe.invert( prompt=a_ , image=self.raw_image , inpaint_strength=0.7 , generator=a_ , num_inference_steps=25 , ).latents lowerCamelCase_ : Optional[Any] =pipe( prompt=a_ , mask_image=a_ , image_latents=a_ , generator=a_ , negative_prompt=a_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] lowerCamelCase_ : str =( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
144
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser A_ = re.compile(r'''\s+''') def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(snake_case__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def UpperCAmelCase__ (snake_case__ : Dict ): """simple docstring""" _snake_case : Any = [len(snake_case__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(snake_case__ ), "line_max": max(snake_case__ )} def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : List[Any] ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : List[str]=5 ): """simple docstring""" _snake_case : Any = ["""auto-generated""", """autogenerated""", """automatically generated"""] _snake_case : Tuple = example["""content"""].splitlines() for _, line in zip(range(snake_case__ ) , snake_case__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Union[str, Any]=5 , snake_case__ : Any=0.05 ): """simple docstring""" _snake_case : Optional[Any] = ["""unit tests""", """test file""", """configuration file"""] _snake_case : List[Any] = example["""content"""].splitlines() _snake_case : Dict = 0 _snake_case : str = 0 # first test for _, line in zip(range(snake_case__ ) , snake_case__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case : Optional[int] = example["""content"""].count("""\n""" ) _snake_case : Tuple = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : Optional[int] = ["""def """, """class """, """for """, """while """] _snake_case : str = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : List[str]=4 ): """simple docstring""" _snake_case : List[Any] = example["""content"""].splitlines() _snake_case : str = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCAmelCase__ (snake_case__ : List[str] ): """simple docstring""" _snake_case : Optional[Any] = tokenizer(example["""content"""] , truncation=snake_case__ )["""input_ids"""] _snake_case : Optional[Any] = len(example["""content"""] ) / len(snake_case__ ) return {"ratio": ratio} def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Optional[int] = {} results.update(get_hash(snake_case__ ) ) results.update(line_stats(snake_case__ ) ) results.update(alpha_stats(snake_case__ ) ) results.update(char_token_ratio(snake_case__ ) ) results.update(is_autogenerated(snake_case__ ) ) results.update(is_config_or_test(snake_case__ ) ) results.update(has_no_keywords(snake_case__ ) ) results.update(has_few_assignments(snake_case__ ) ) return results def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" if not check_uniques(snake_case__ , snake_case__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" with open(snake_case__ , """rb""" ) as f_in: with gzip.open(str(snake_case__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(snake_case__ , snake_case__ ) os.unlink(snake_case__ ) # Settings A_ = HfArgumentParser(PreprocessingArguments) A_ = parser.parse_args() if args.num_workers is None: A_ = multiprocessing.cpu_count() A_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset A_ = time.time() A_ = load_dataset(args.dataset_name, split='''train''') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing A_ = time.time() A_ = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes A_ = set(ds.unique('''hash''')) A_ = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics A_ = time.time() A_ = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: A_ = time.time() A_ , A_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file A_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) A_ = output_dir / '''data''' data_dir.mkdir(exist_ok=True) A_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): A_ = str(data_dir / F'''file-{file_number+1:012}.json''') A_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
64
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="resnet50" , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = out_indices if out_indices is not None else [4] __UpperCamelCase = stage_names __UpperCamelCase = out_features __UpperCamelCase = backbone __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = num_channels __UpperCamelCase = use_pretrained_backbone __UpperCamelCase = is_training def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = self.get_config() return config, pixel_values def UpperCAmelCase ( self ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = TimmBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (TimmBackbone,) if is_torch_available() else () lowercase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TimmBackboneModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'resnet18' __UpperCamelCase = 'microsoft/resnet-18' __UpperCamelCase = AutoBackbone.from_pretrained(__UpperCAmelCase , use_timm_backbone=__UpperCAmelCase ) __UpperCamelCase = AutoBackbone.from_pretrained(__UpperCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __UpperCamelCase = AutoBackbone.from_pretrained(__UpperCAmelCase , use_timm_backbone=__UpperCAmelCase , out_indices=[1, 2, 3] ) __UpperCamelCase = AutoBackbone.from_pretrained(__UpperCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('Safetensors is not supported by timm.' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True __UpperCamelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __UpperCamelCase = self.all_model_classes[0] __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs[0][-1] # Encoder-/Decoder-only models __UpperCamelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __UpperCamelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__UpperCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(**__UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __UpperCamelCase = copy.deepcopy(__UpperCAmelCase ) __UpperCamelCase = None __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(**__UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __UpperCamelCase = copy.deepcopy(__UpperCAmelCase ) __UpperCamelCase = False __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(**__UpperCAmelCase )
361
"""simple docstring""" UpperCamelCase : Union[str, Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def A ( snake_case :Dict , snake_case :Tuple , snake_case :str , snake_case :Optional[int] ) -> Union[str, Any]: # Return True if there is node that has not iterated. __UpperCamelCase = [False] * len(snake_case ) __UpperCamelCase = [s] __UpperCamelCase = True while queue: __UpperCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case ) __UpperCamelCase = True __UpperCamelCase = u return visited[t] def A ( snake_case :int , snake_case :Any , snake_case :Union[str, Any] ) -> Optional[int]: __UpperCamelCase = [-1] * (len(snake_case )) __UpperCamelCase = 0 __UpperCamelCase = [] __UpperCamelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case , snake_case , snake_case , snake_case ): __UpperCamelCase = float('Inf' ) __UpperCamelCase = sink while s != source: # Find the minimum value in select path __UpperCamelCase = min(snake_case , graph[parent[s]][s] ) __UpperCamelCase = parent[s] max_flow += path_flow __UpperCamelCase = sink while v != source: __UpperCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCamelCase = parent[v] for i in range(len(snake_case ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
263
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __A = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __A = { "RUCAIBox/mvp": 1_024, } class A ( __UpperCAmelCase ): lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = ["""input_ids""", """attention_mask"""] lowerCamelCase : Tuple = MvpTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowerCamelCase__ ) != add_prefix_space: lowercase__ = getattr(lowerCamelCase__ , pre_tok_state.pop("""type""" ) ) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCamelCase__ ) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = """post_processor""" lowercase__ = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state["""sep"""] ) if "cls" in state: lowercase__ = tuple(state["""cls"""] ) lowercase__ = False if state.get("""add_prefix_space""" , lowerCamelCase__ ) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get("""trim_offsets""" , lowerCamelCase__ ) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCamelCase__ , state.pop("""type""" ) ) lowercase__ = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' lowercase__ = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value lowercase__ = value def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__ = kwargs.get("""is_split_into_words""" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__ = kwargs.get("""is_split_into_words""" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> List[str]: '''simple docstring''' lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class a_ ( a_ ): '''simple docstring''' @slow @require_torch def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) lowerCAmelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCAmelCase_ = bertabert.config.encoder.vocab_size lowerCAmelCase_ = tokenizer.sep_token_id lowerCAmelCase_ = tokenizer.cls_token_id lowerCAmelCase_ = 1_2_8 lowerCAmelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) lowerCAmelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) lowerCAmelCase_ = train_dataset.select(range(3_2 ) ) lowerCAmelCase_ = val_dataset.select(range(1_6 ) ) lowerCAmelCase_ = 4 def _map_to_encoder_decoder_inputs(lowercase_ ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCAmelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=lowercase_ , max_length=5_1_2 ) lowerCAmelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=lowercase_ , max_length=1_2_8 ) lowerCAmelCase_ = inputs.input_ids lowerCAmelCase_ = inputs.attention_mask lowerCAmelCase_ = outputs.input_ids lowerCAmelCase_ = outputs.input_ids.copy() lowerCAmelCase_ = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] lowerCAmelCase_ = outputs.attention_mask assert all(len(lowercase_ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(lowercase_ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(lowercase_ ): lowerCAmelCase_ = pred.label_ids lowerCAmelCase_ = pred.predictions # all unnecessary tokens are removed lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowercase_ ) )] ) / len(lowercase_ ) return {"accuracy": accuracy} # map train dataset lowerCAmelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset lowerCAmelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) lowerCAmelCase_ = self.get_auto_remove_tmp_dir() lowerCAmelCase_ = SeqaSeqTrainingArguments( output_dir=lowercase_ , per_device_train_batch_size=lowercase_ , per_device_eval_batch_size=lowercase_ , predict_with_generate=lowercase_ , evaluation_strategy='steps' , do_train=lowercase_ , do_eval=lowercase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowerCAmelCase_ = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , compute_metrics=_compute_metrics , train_dataset=lowercase_ , eval_dataset=lowercase_ , tokenizer=lowercase_ , ) # start training trainer.train()
359
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class A : def __init__(self : Union[str, Any] , __UpperCAmelCase : int=None , **__UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) UpperCAmelCase__ = model UpperCAmelCase__ = kwargs.get("model_save_dir" , __UpperCAmelCase ) UpperCAmelCase__ = kwargs.get("latest_model_name" , __UpperCAmelCase ) def __call__(self : Tuple , **__UpperCAmelCase : int ) -> Any: """simple docstring""" UpperCAmelCase__ = {k: np.array(__UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(__UpperCAmelCase , __UpperCAmelCase ) @staticmethod def lowercase_ (__UpperCAmelCase : Union[str, Path] , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Dict=None ) -> List[str]: """simple docstring""" if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) UpperCAmelCase__ = "CPUExecutionProvider" return ort.InferenceSession(__UpperCAmelCase , providers=[provider] , sess_options=__UpperCAmelCase ) def lowercase_ (self : Dict , __UpperCAmelCase : Union[str, Path] , __UpperCAmelCase : Optional[str] = None , **__UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase__ = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase__ = Path(__UpperCAmelCase ).joinpath(__UpperCAmelCase ) try: shutil.copyfile(__UpperCAmelCase , __UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase__ = self.model_save_dir.joinpath(__UpperCAmelCase ) if src_path.exists(): UpperCAmelCase__ = Path(__UpperCAmelCase ).joinpath(__UpperCAmelCase ) try: shutil.copyfile(__UpperCAmelCase , __UpperCAmelCase ) except shutil.SameFileError: pass def lowercase_ (self : List[str] , __UpperCAmelCase : Union[str, os.PathLike] , **__UpperCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" if os.path.isfile(__UpperCAmelCase ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) # saving model weights/files self._save_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) @classmethod def lowercase_ (cls : List[Any] , __UpperCAmelCase : Union[str, Path] , __UpperCAmelCase : Optional[Union[bool, str, None]] = None , __UpperCAmelCase : Optional[Union[str, None]] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional["ort.SessionOptions"] = None , **__UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__UpperCAmelCase ): UpperCAmelCase__ = OnnxRuntimeModel.load_model( os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , provider=__UpperCAmelCase , sess_options=__UpperCAmelCase ) UpperCAmelCase__ = Path(__UpperCAmelCase ) # load model from hub else: # download model UpperCAmelCase__ = hf_hub_download( repo_id=__UpperCAmelCase , filename=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , ) UpperCAmelCase__ = Path(__UpperCAmelCase ).parent UpperCAmelCase__ = Path(__UpperCAmelCase ).name UpperCAmelCase__ = OnnxRuntimeModel.load_model(__UpperCAmelCase , provider=__UpperCAmelCase , sess_options=__UpperCAmelCase ) return cls(model=__UpperCAmelCase , **__UpperCAmelCase ) @classmethod def lowercase_ (cls : Union[str, Any] , __UpperCAmelCase : Union[str, Path] , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[str] = None , **__UpperCAmelCase : int , ) -> int: """simple docstring""" UpperCAmelCase__ = None if len(str(__UpperCAmelCase ).split("@" ) ) == 2: UpperCAmelCase__ , UpperCAmelCase__ = model_id.split("@" ) return cls._from_pretrained( model_id=__UpperCAmelCase , revision=__UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , **__UpperCAmelCase , )
65
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
194
0
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
352
from collections.abc import Generator from math import sin def UpperCAmelCase ( _lowerCamelCase ): if len(_lowerCamelCase ) != 32: raise ValueError("Input must be of length 32" ) A : Any = B"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase ( _lowerCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) A : List[Any] = format(_lowerCamelCase , "08x" )[-8:] A : List[str] = B"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def UpperCAmelCase ( _lowerCamelCase ): A : Optional[Any] = B"" for char in message: bit_string += format(_lowerCamelCase , "08b" ).encode("utf-8" ) A : int = format(len(_lowerCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowerCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase ( _lowerCamelCase ): if len(_lowerCamelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(_lowerCamelCase ) , 512 ): A : Optional[int] = bit_string[pos : pos + 512] A : List[str] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase ( _lowerCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) A : Union[str, Any] = format(_lowerCamelCase , "032b" ) A : List[str] = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowerCamelCase , 2 ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): return (a + b) % 2**32 def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase ( _lowerCamelCase ): A : Union[str, Any] = preprocess(_lowerCamelCase ) A : Any = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states A : Optional[int] = 0X67452301 A : Any = 0Xefcdab89 A : Tuple = 0X98badcfe A : Union[str, Any] = 0X10325476 A : Optional[Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowerCamelCase ): A : Optional[Any] = aa A : Optional[Any] = ba A : List[Any] = ca A : Optional[int] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A : Dict = d ^ (b & (c ^ d)) A : Optional[Any] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A : Optional[int] = c ^ (d & (b ^ c)) A : List[Any] = (5 * i + 1) % 16 elif i <= 47: A : Tuple = b ^ c ^ d A : str = (3 * i + 5) % 16 else: A : Union[str, Any] = c ^ (b | not_aa(_lowerCamelCase )) A : Any = (7 * i) % 16 A : Union[str, Any] = (f + a + added_consts[i] + block_words[g]) % 2**32 A : Dict = d A : Optional[int] = c A : Optional[int] = b A : Any = sum_aa(_lowerCamelCase , left_rotate_aa(_lowerCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total A : Dict = sum_aa(_lowerCamelCase , _lowerCamelCase ) A : Any = sum_aa(_lowerCamelCase , _lowerCamelCase ) A : Dict = sum_aa(_lowerCamelCase , _lowerCamelCase ) A : Union[str, Any] = sum_aa(_lowerCamelCase , _lowerCamelCase ) A : Optional[Any] = reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
256
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str]="shi-labs/oneformer_demo" ) -> Union[str, Any]: """simple docstring""" with open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) as f: __lowerCamelCase = json.load(UpperCamelCase__ ) __lowerCamelCase = {} __lowerCamelCase = [] __lowerCamelCase = [] for key, info in class_info.items(): __lowerCamelCase = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(UpperCamelCase__ ) ) __lowerCamelCase = thing_ids __lowerCamelCase = class_names return metadata class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=[0.5, 0.5, 0.5] , lowerCamelCase__=[0.5, 0.5, 0.5] , lowerCamelCase__=10 , lowerCamelCase__=False , lowerCamelCase__=255 , lowerCamelCase__="shi-labs/oneformer_demo" , lowerCamelCase__="ade20k_panoptic.json" , lowerCamelCase__=10 , ) -> str: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = {'shortest_edge': 32, 'longest_edge': 1_333} if size is None else size __lowerCamelCase = do_normalize __lowerCamelCase = image_mean __lowerCamelCase = image_std __lowerCamelCase = class_info_file __lowerCamelCase = prepare_metadata(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = num_text __lowerCamelCase = repo_path # for the post_process_functions __lowerCamelCase = 2 __lowerCamelCase = 10 __lowerCamelCase = 10 __lowerCamelCase = 3 __lowerCamelCase = 4 __lowerCamelCase = num_labels __lowerCamelCase = do_reduce_labels __lowerCamelCase = ignore_index def lowercase_ ( self ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False ) -> int: '''simple docstring''' if not batched: __lowerCamelCase = image_inputs[0] if isinstance(lowerCamelCase__ , Image.Image ): __lowerCamelCase , __lowerCamelCase = image.size else: __lowerCamelCase , __lowerCamelCase = image.shape[1], image.shape[2] if w < h: __lowerCamelCase = int(self.size['shortest_edge'] * h / w ) __lowerCamelCase = self.size['shortest_edge'] elif w > h: __lowerCamelCase = self.size['shortest_edge'] __lowerCamelCase = int(self.size['shortest_edge'] * w / h ) else: __lowerCamelCase = self.size['shortest_edge'] __lowerCamelCase = self.size['shortest_edge'] else: __lowerCamelCase = [] for image in image_inputs: __lowerCamelCase , __lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase = max(lowerCamelCase__ , key=lambda lowerCamelCase__ : item[0] )[0] __lowerCamelCase = max(lowerCamelCase__ , key=lambda lowerCamelCase__ : item[1] )[1] return expected_height, expected_width def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string snake_case_ = image_processing_class def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = OneFormerImageProcessorTester(self ) @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'ignore_index' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'class_info_file' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'num_text' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'repo_path' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'metadata' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_reduce_labels' ) ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input __lowerCamelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processing_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase , __lowerCamelCase = self.image_processing_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) __lowerCamelCase = image_processor( lowerCamelCase__ , ['semantic'] * len(lowerCamelCase__ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ) -> Any: '''simple docstring''' # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input __lowerCamelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processing_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase , __lowerCamelCase = self.image_processing_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) __lowerCamelCase = image_processor( lowerCamelCase__ , ['semantic'] * len(lowerCamelCase__ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input __lowerCamelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processing_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase , __lowerCamelCase = self.image_processing_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) __lowerCamelCase = image_processor( lowerCamelCase__ , ['semantic'] * len(lowerCamelCase__ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__="np" ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCamelCase = self.image_processing_tester.num_labels __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase__ ) if with_segmentation_maps: __lowerCamelCase = num_labels if is_instance_map: __lowerCamelCase = list(range(lowerCamelCase__ ) ) * 2 __lowerCamelCase = dict(enumerate(lowerCamelCase__ ) ) __lowerCamelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCamelCase = [Image.fromarray(lowerCamelCase__ ) for annotation in annotations] __lowerCamelCase = image_processor( lowerCamelCase__ , ['semantic'] * len(lowerCamelCase__ ) , lowerCamelCase__ , return_tensors='pt' , instance_id_to_semantic_id=lowerCamelCase__ , pad_and_return_pixel_mask=lowerCamelCase__ , ) return inputs def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass def lowercase_ ( self ) -> Any: '''simple docstring''' def common(lowerCamelCase__=False , lowerCamelCase__=None ): __lowerCamelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=lowerCamelCase__ , is_instance_map=lowerCamelCase__ , segmentation_type=lowerCamelCase__ ) __lowerCamelCase = inputs['mask_labels'] __lowerCamelCase = inputs['class_labels'] __lowerCamelCase = inputs['pixel_values'] __lowerCamelCase = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowerCamelCase__ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowerCamelCase__ ) common(is_instance_map=lowerCamelCase__ , segmentation_type='pil' ) common(is_instance_map=lowerCamelCase__ , segmentation_type='pil' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = np.zeros((20, 50) ) __lowerCamelCase = 1 __lowerCamelCase = 1 __lowerCamelCase = 1 __lowerCamelCase = binary_mask_to_rle(lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __lowerCamelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCamelCase = fature_extractor.post_process_semantic_segmentation(lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCamelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCamelCase = fature_extractor.post_process_semantic_segmentation(lowerCamelCase__ , target_sizes=lowerCamelCase__ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __lowerCamelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCamelCase = image_processor.post_process_instance_segmentation(lowerCamelCase__ , threshold=0 ) self.assertTrue(len(lowerCamelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , lowerCamelCase__ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __lowerCamelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCamelCase = image_processor.post_process_panoptic_segmentation(lowerCamelCase__ , threshold=0 ) self.assertTrue(len(lowerCamelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , lowerCamelCase__ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
90
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 20_48, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> int: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCamelCase = add_prefix_space def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
90
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowerCAmelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" def UpperCAmelCase_ (__a : str , __a : int=1_0_0 , __a : Tuple=" " ): """simple docstring""" _a : int = text.split(__a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__a ) , __a )] def UpperCAmelCase_ (__a : dict ): """simple docstring""" _a, _a : Dict = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(__a ): titles.append(title if title is not None else '' ) texts.append(__a ) return {"title": titles, "text": texts} def UpperCAmelCase_ (__a : dict , __a : DPRContextEncoder , __a : DPRContextEncoderTokenizerFast ): """simple docstring""" _a : Dict = ctx_tokenizer( documents['title'] , documents['text'] , truncation=__a , padding='longest' , return_tensors='pt' )['input_ids'] _a : Optional[int] = ctx_encoder(input_ids.to(device=__a ) , return_dict=__a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase_ (__a : "RagExampleArguments" , __a : "ProcessingArguments" , __a : "IndexHnswArguments" , ): """simple docstring""" logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _a : Any = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _a : List[str] = dataset.map(__a , batched=__a , num_proc=processing_args.num_proc ) # And compute the embeddings _a : Optional[int] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__a ) _a : int = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _a : str = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space _a : Optional[Any] = dataset.map( partial(__a , ctx_encoder=__a , ctx_tokenizer=__a ) , batched=__a , batch_size=processing_args.batch_size , features=__a , ) # And finally save your dataset _a : str = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(__a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _a : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=__a ) # And save the index _a : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(__a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = field( default=str(Path(lowercase__ ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) __UpperCAmelCase : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) __UpperCAmelCase : str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) __UpperCAmelCase : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) __UpperCAmelCase : Optional[str] = field( default=str(Path(lowercase__ ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : Optional[int] = field( default=lowercase__ , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) __UpperCAmelCase : int = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : int = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) __UpperCAmelCase : int = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowerCAmelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowerCAmelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
5
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
1
"""simple docstring""" from __future__ import annotations import queue class snake_case : """simple docstring""" def __init__( self : int ,lowerCamelCase__ : List[str] ): UpperCAmelCase__ = data UpperCAmelCase__ = None UpperCAmelCase__ = None def a_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) UpperCAmelCase__ = input('Enter the value of the root node: ' ).strip().lower() UpperCAmelCase__ = queue.Queue() UpperCAmelCase__ = TreeNode(int(lowerCamelCase ) ) q.put(lowerCamelCase ) while not q.empty(): UpperCAmelCase__ = q.get() UpperCAmelCase__ = f'''Enter the left node of {node_found.data}: ''' UpperCAmelCase__ = input(lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node UpperCAmelCase__ = TreeNode(int(lowerCamelCase ) ) UpperCAmelCase__ = left_node q.put(lowerCamelCase ) UpperCAmelCase__ = f'''Enter the right node of {node_found.data}: ''' UpperCAmelCase__ = input(lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node UpperCAmelCase__ = TreeNode(int(lowerCamelCase ) ) UpperCAmelCase__ = right_node q.put(lowerCamelCase ) raise def a_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def a_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def a_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def a_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ) or not node: return UpperCAmelCase__ = queue.Queue() q.put(lowerCamelCase ) while not q.empty(): UpperCAmelCase__ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ) or not node: return UpperCAmelCase__ = queue.Queue() q.put(lowerCamelCase ) while not q.empty(): UpperCAmelCase__ = [] while not q.empty(): UpperCAmelCase__ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowerCamelCase ) def a_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ) or not node: return UpperCAmelCase__ = [] UpperCAmelCase__ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(lowerCamelCase ) UpperCAmelCase__ = n.left # end of while means current node doesn't have left child UpperCAmelCase__ = stack.pop() # start to traverse its right child UpperCAmelCase__ = n.right def a_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ) or not node: return UpperCAmelCase__ = [] UpperCAmelCase__ = node while n or stack: while n: stack.append(lowerCamelCase ) UpperCAmelCase__ = n.left UpperCAmelCase__ = stack.pop() print(n.data , end=',' ) UpperCAmelCase__ = n.right def a_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ) or not node: return UpperCAmelCase__ , UpperCAmelCase__ = [], [] UpperCAmelCase__ = node stacka.append(lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase__ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def a_ ( lowerCamelCase = "" , lowerCamelCase=5_0 , lowerCamelCase="*" ): if not s: return "\n" + width * char UpperCAmelCase__ , UpperCAmelCase__ = divmod(width - len(lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) lowerCAmelCase__ : TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
98
"""simple docstring""" import os import sys import unittest lowerCAmelCase__ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase__ : Tuple = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowerCAmelCase__ : Optional[Any] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = get_test_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_test_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = {'BertModelTest': 'BertModelTester'} UpperCAmelCase__ = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = get_model_to_test_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_model_to_test_mapping(lowerCamelCase__ ) UpperCAmelCase__ = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } UpperCAmelCase__ = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = get_model_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_model_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } UpperCAmelCase__ = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ )
98
1
def _a ( lowerCamelCase: int , lowerCamelCase: int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
360
from __future__ import annotations from math import pi, sqrt def _a ( lowerCamelCase: float , lowerCamelCase: float ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
250
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = '''unispeech''' def __init__( self ,__UpperCAmelCase=32 ,__UpperCAmelCase=768 ,__UpperCAmelCase=12 ,__UpperCAmelCase=12 ,__UpperCAmelCase=3072 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-5 ,__UpperCAmelCase="group" ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) ,__UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) ,__UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) ,__UpperCAmelCase=False ,__UpperCAmelCase=128 ,__UpperCAmelCase=16 ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,__UpperCAmelCase=0.0_5 ,__UpperCAmelCase=10 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=10 ,__UpperCAmelCase=0 ,__UpperCAmelCase=320 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=100 ,__UpperCAmelCase=256 ,__UpperCAmelCase=256 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase="mean" ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=256 ,__UpperCAmelCase=80 ,__UpperCAmelCase=0 ,__UpperCAmelCase=1 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.5 ,**__UpperCAmelCase ,) -> List[Any]: super().__init__(**__UpperCAmelCase ,pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ) lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : Optional[int] = feat_extract_norm lowerCAmelCase__ : Tuple = feat_extract_activation lowerCAmelCase__ : Optional[int] = list(__UpperCAmelCase ) lowerCAmelCase__ : Any = list(__UpperCAmelCase ) lowerCAmelCase__ : str = list(__UpperCAmelCase ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Optional[int] = num_conv_pos_embedding_groups lowerCAmelCase__ : int = len(self.conv_dim ) lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Optional[int] = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : List[str] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : Union[str, Any] = activation_dropout lowerCAmelCase__ : List[Any] = feat_proj_dropout lowerCAmelCase__ : Optional[Any] = final_dropout lowerCAmelCase__ : Optional[Any] = layerdrop lowerCAmelCase__ : Optional[Any] = layer_norm_eps lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : str = num_ctc_classes lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Optional[int] = do_stable_layer_norm lowerCAmelCase__ : Tuple = use_weighted_layer_sum lowerCAmelCase__ : Tuple = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Any = apply_spec_augment lowerCAmelCase__ : Dict = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Union[str, Any] = mask_time_min_masks lowerCAmelCase__ : Optional[Any] = mask_feature_prob lowerCAmelCase__ : List[str] = mask_feature_length lowerCAmelCase__ : Optional[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : str = num_codevectors_per_group lowerCAmelCase__ : Optional[int] = num_codevector_groups lowerCAmelCase__ : Dict = contrastive_logits_temperature lowerCAmelCase__ : Tuple = feat_quantizer_dropout lowerCAmelCase__ : Tuple = num_negatives lowerCAmelCase__ : Union[str, Any] = codevector_dim lowerCAmelCase__ : str = proj_codevector_dim lowerCAmelCase__ : Optional[Any] = diversity_loss_weight # ctc loss lowerCAmelCase__ : str = ctc_loss_reduction lowerCAmelCase__ : Tuple = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def UpperCAmelCase_ ( self ) -> Any: return functools.reduce(operator.mul ,self.conv_stride ,1 )
37
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: str ={ 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __A ( UpperCamelCase__ ): a__ : str = """efficientnet""" def __init__(self : str , __a : int = 3 , __a : int = 600 , __a : float = 2.0 , __a : float = 3.1 , __a : int = 8 , __a : List[int] = [3, 3, 5, 3, 5, 5, 3] , __a : List[int] = [32, 16, 24, 40, 80, 112, 192] , __a : List[int] = [16, 24, 40, 80, 112, 192, 320] , __a : List[int] = [] , __a : List[int] = [1, 2, 2, 2, 1, 2, 1] , __a : List[int] = [1, 2, 2, 3, 3, 4, 1] , __a : List[int] = [1, 6, 6, 6, 6, 6, 6] , __a : float = 0.25 , __a : str = "swish" , __a : int = 2560 , __a : str = "mean" , __a : float = 0.02 , __a : float = 0.0_01 , __a : float = 0.99 , __a : float = 0.5 , __a : float = 0.2 , **__a : List[Any] , ): super().__init__(**__a ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = width_coefficient UpperCAmelCase_ = depth_coefficient UpperCAmelCase_ = depth_divisor UpperCAmelCase_ = kernel_sizes UpperCAmelCase_ = in_channels UpperCAmelCase_ = out_channels UpperCAmelCase_ = depthwise_padding UpperCAmelCase_ = strides UpperCAmelCase_ = num_block_repeats UpperCAmelCase_ = expand_ratios UpperCAmelCase_ = squeeze_expansion_ratio UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dim UpperCAmelCase_ = pooling_type UpperCAmelCase_ = initializer_range UpperCAmelCase_ = batch_norm_eps UpperCAmelCase_ = batch_norm_momentum UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = drop_connect_rate UpperCAmelCase_ = sum(__a ) * 4 class __A ( UpperCamelCase__ ): a__ : Any = version.parse("""1.11""" ) @property def _lowercase (self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase (self : Optional[Any] ): return 1E-5
106
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = MobileBertTokenizer a__ : str = MobileBertTokenizerFast a__ : List[str] = True a__ : Dict = True a__ : Optional[int] = filter_non_english a__ : int = """google/mobilebert-uncased""" def _lowercase (self : List[str] ): super().setUp() UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _lowercase (self : Tuple , __a : str ): UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = "unwanted, running" return input_text, output_text def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def _lowercase (self : Dict ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # With lower casing UpperCAmelCase_ = self.get_tokenizer(do_lower_case=__a ) UpperCAmelCase_ = self.get_rust_tokenizer(do_lower_case=__a ) UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def _lowercase (self : Dict ): UpperCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Any ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Tuple ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Tuple ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _lowercase (self : Any ): UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase_ = {} for i, token in enumerate(__a ): UpperCAmelCase_ = i UpperCAmelCase_ = WordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _lowercase (self : Optional[int] ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _lowercase (self : str ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _lowercase (self : Any ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _lowercase (self : Any ): UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _lowercase (self : Dict ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _lowercase (self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase_ = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) UpperCAmelCase_ = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False UpperCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = ["的", "人", "有"] UpperCAmelCase_ = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = tokenizer_p.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(__a ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = False UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = tokenizer_r.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_p.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(__a ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a )
106
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : List[Any] = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCAmelCase_ : Dict ="luke" def __init__( self , _lowerCamelCase=5_0_2_6_7 , _lowerCamelCase=5_0_0_0_0_0 , _lowerCamelCase=7_6_8 , _lowerCamelCase=2_5_6 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , **_lowerCamelCase , ): super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase = vocab_size lowercase = entity_vocab_size lowercase = hidden_size lowercase = entity_emb_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = use_entity_aware_attention lowercase = classifier_dropout
220
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Union[List[PIL.Image.Image], np.ndarray] __lowercase : Optional[List[bool]] __lowercase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
18
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
1
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""audio_values""", """audio_mask"""] def __init__( self :List[str] , lowerCamelCase_ :List[str]=2_048 , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :int=[16, 16] , lowerCamelCase_ :str=128 , lowerCamelCase_ :Union[str, Any]=44_100 , lowerCamelCase_ :Optional[Any]=86 , lowerCamelCase_ :Dict=2_048 , lowerCamelCase_ :Union[str, Any]=0.0 , **lowerCamelCase_ :Tuple , ): """simple docstring""" super().__init__( feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : List[str] =spectrogram_length lowerCamelCase__ : Dict =num_channels lowerCamelCase__ : List[Any] =patch_size lowerCamelCase__ : Union[str, Any] =feature_size // self.patch_size[1] lowerCamelCase__ : int =n_fft lowerCamelCase__ : List[str] =sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ : str =sampling_rate lowerCamelCase__ : int =padding_value lowerCamelCase__ : Dict =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCamelCase_ , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCamelCase_ , norm='slaney' , mel_scale='slaney' , ).T def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :np.array ): """simple docstring""" lowerCamelCase__ : List[Any] =spectrogram( lowerCamelCase_ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) lowerCamelCase__ : Any =log_spec[:, :-1] lowerCamelCase__ : Tuple =log_spec - 20.0 lowerCamelCase__ : List[str] =np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self :Optional[Any] , lowerCamelCase_ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = True , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = False , **lowerCamelCase_ :Tuple , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCamelCase__ : Dict =isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowerCamelCase__ : Union[str, Any] =is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : Optional[Any] =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): lowerCamelCase__ : Optional[Any] =np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : Union[str, Any] =raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : List[str] =[np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ : Any =[ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCamelCase_ ): lowerCamelCase__ : Dict =[np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ : Optional[Any] =max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ : Any =[ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ : Union[str, Any] =np.array(lowerCamelCase_ ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ : Tuple =max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ : str =np.ones([len(lowerCamelCase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ : Dict =padded_audio_features * self.padding_value for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ : Union[str, Any] =audio_features[i] lowerCamelCase__ : Union[str, Any] =feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ : int ={'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowerCamelCase__ : Tuple ={'audio_values': padded_audio_features} lowerCamelCase__ : Union[str, Any] =BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ ) return encoded_inputs
126
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ = None def __init__( self :Dict , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :Any=None , lowerCamelCase_ :int=None , lowerCamelCase_ :List[str]="<unk>" , lowerCamelCase_ :List[Any]="<s>" , lowerCamelCase_ :str="</s>" , lowerCamelCase_ :Union[str, Any]="<pad>" , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :Dict=False , **lowerCamelCase_ :List[Any] , ): """simple docstring""" super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase_ ) != add_prefix_space: lowerCamelCase__ : str =getattr(lowerCamelCase_ , pre_tok_state.pop('type' ) ) lowerCamelCase__ : List[Any] =add_prefix_space lowerCamelCase__ : Optional[Any] =pre_tok_class(**lowerCamelCase_ ) lowerCamelCase__ : Any =add_prefix_space def UpperCAmelCase__ ( self :Optional[int] , *lowerCamelCase_ :List[str] , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._batch_encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :int , *lowerCamelCase_ :Optional[Any] , **lowerCamelCase_ :Any ): """simple docstring""" lowerCamelCase__ : Optional[Any] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ): """simple docstring""" lowerCamelCase__ : Optional[Any] =self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :"Conversation" ): """simple docstring""" lowerCamelCase__ : Optional[int] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) + [self.eos_token_id] ) if len(lowerCamelCase_ ) > self.model_max_length: lowerCamelCase__ : List[str] =input_ids[-self.model_max_length :] return input_ids
126
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Optional[int] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *_lowercase ): with open(_lowercase , '''r''' ) as fh: fcntl.flock(_lowercase , fcntl.LOCK_EX ) try: print(*_lowercase ) finally: fcntl.flock(_lowercase , fcntl.LOCK_UN ) __UpperCamelCase : Union[str, Any] = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) __UpperCamelCase : Any = torch.device('cuda', local_rank) __UpperCamelCase : Union[str, Any] = socket.gethostname() __UpperCamelCase : Tuple = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __UpperCamelCase : List[Any] = dist.get_rank() __UpperCamelCase : List[Any] = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
258
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCAmelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def UpperCAmelCase_ ( __snake_case , __snake_case=100 , __snake_case=" " ) -> List[str]: """simple docstring""" _lowercase =text.split(__snake_case ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__snake_case ) , __snake_case )] def UpperCAmelCase_ ( __snake_case ) -> dict: """simple docstring""" _lowercase , _lowercase =[], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__snake_case ): titles.append(title if title is not None else '''''' ) texts.append(__snake_case ) return {"title": titles, "text": texts} def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> dict: """simple docstring""" _lowercase =ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__snake_case , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] _lowercase =ctx_encoder(input_ids.to(device=__snake_case ) , return_dict=__snake_case ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> Dict: """simple docstring""" logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _lowercase =load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _lowercase =dataset.map(__snake_case , batched=__snake_case , num_proc=processing_args.num_proc ) # And compute the embeddings _lowercase =DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__snake_case ) _lowercase =DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _lowercase =Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space _lowercase =dataset.map( partial(__snake_case , ctx_encoder=__snake_case , ctx_tokenizer=__snake_case ) , batched=__snake_case , batch_size=processing_args.batch_size , features=__snake_case , ) # And finally save your dataset _lowercase =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__snake_case ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _lowercase =faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__snake_case ) # And save the index _lowercase =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__snake_case ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = field( default=str(Path(lowerCAmelCase).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''') , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) SCREAMING_SNAKE_CASE__ = field( default=lowerCAmelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) SCREAMING_SNAKE_CASE__ = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) SCREAMING_SNAKE_CASE__ = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) SCREAMING_SNAKE_CASE__ = field( default=str(Path(lowerCAmelCase).parent / '''test_run''' / '''dummy-kb''') , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = field( default=lowerCAmelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) SCREAMING_SNAKE_CASE__ = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) SCREAMING_SNAKE_CASE__ = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCAmelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
5
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
1
import random def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : bool = False) -> dict: '''simple docstring''' __UpperCamelCase : dict = {i: [] for i in range(_lowerCamelCase)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowerCamelCase) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowerCamelCase): for j in range(i + 1 , _lowerCamelCase): if random.random() < probability: graph[i].append(_lowerCamelCase) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowerCamelCase) return graph def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> dict: '''simple docstring''' return { i: [j for j in range(_lowerCamelCase) if i != j] for i in range(_lowerCamelCase) } if __name__ == "__main__": import doctest doctest.testmod()
151
lowercase : Optional[int] = 9.8_0_6_6_5 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float = g) -> float: '''simple docstring''' if fluid_density <= 0: raise ValueError("Impossible fluid density") if volume < 0: raise ValueError("Impossible Object volume") if gravity <= 0: raise ValueError("Impossible Gravity") return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
151
1
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowercase : Dict = "__DUMMY_TRANSFORMERS_USER__" lowercase : Union[str, Any] = "Dummy User" lowercase : List[Any] = "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" lowercase : List[str] = "https://hub-ci.huggingface.co" lowercase : Optional[Any] = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" lowercase : str = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" lowercase : str = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def SCREAMING_SNAKE_CASE__ ( __A ) -> Any: monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , __A ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( __A ) -> int: monkeypatch.setattr('datasets.config.HF_ENDPOINT' , __A ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , __A ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( __A ) -> Tuple: monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , __A ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Tuple: HfFolder.save_token(__A ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: return HfApi(endpoint=__A ) @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> int: _snake_case = HfFolder.get_token() HfFolder.save_token(__A ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__A ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: def _cleanup_repo(__A ): hf_api.delete_repo(__A , token=__A , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def SCREAMING_SNAKE_CASE__ ( __A ) -> List[str]: @contextmanager def _temporary_repo(__A ): try: yield repo_id finally: cleanup_repo(__A ) return _temporary_repo @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Any: _snake_case = F'repo_txt_data-{int(time.time() * 10e3 )}' _snake_case = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(__A , token=__A , repo_type='dataset' , private=__A ) hf_api.upload_file( token=__A , path_or_fileobj=str(__A ) , path_in_repo='data/text_data.txt' , repo_id=__A , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__A , token=__A , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Union[str, Any]: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> str: _snake_case = F'repo_zipped_txt_data-{int(time.time() * 10e3 )}' _snake_case = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(__A , token=__A , repo_type='dataset' , private=__A ) hf_api.upload_file( token=__A , path_or_fileobj=str(__A ) , path_in_repo='data.zip' , repo_id=__A , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__A , token=__A , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Tuple: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> str: _snake_case = F'repo_zipped_img_data-{int(time.time() * 10e3 )}' _snake_case = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(__A , token=__A , repo_type='dataset' , private=__A ) hf_api.upload_file( token=__A , path_or_fileobj=str(__A ) , path_in_repo='data.zip' , repo_id=__A , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__A , token=__A , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Optional[int]: return hf_private_dataset_repo_zipped_img_data_
42
'''simple docstring''' _snake_case = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) _snake_case = frozenset(['prompt', 'negative_prompt']) _snake_case = frozenset([]) _snake_case = frozenset(['image']) _snake_case = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) _snake_case = frozenset(['image']) _snake_case = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) _snake_case = frozenset(['prompt', 'image', 'negative_prompt']) _snake_case = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) _snake_case = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) _snake_case = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) _snake_case = frozenset(['image', 'mask_image']) _snake_case = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) _snake_case = frozenset(['example_image', 'image', 'mask_image']) _snake_case = frozenset(['class_labels']) _snake_case = frozenset(['class_labels']) _snake_case = frozenset(['batch_size']) _snake_case = frozenset([]) _snake_case = frozenset(['batch_size']) _snake_case = frozenset([]) _snake_case = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) _snake_case = frozenset(['prompt', 'negative_prompt']) _snake_case = frozenset(['input_tokens']) _snake_case = frozenset(['input_tokens'])
250
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : str = "roformer" def __init__( self: str , UpperCAmelCase_: Tuple=50_000 , UpperCAmelCase_: int=None , UpperCAmelCase_: List[str]=768 , UpperCAmelCase_: Optional[Any]=12 , UpperCAmelCase_: Optional[Any]=12 , UpperCAmelCase_: Optional[int]=3_072 , UpperCAmelCase_: Dict="gelu" , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=0.1 , UpperCAmelCase_: Tuple=1_536 , UpperCAmelCase_: int=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Dict=1E-12 , UpperCAmelCase_: Optional[int]=0 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: Any=True , **UpperCAmelCase_: List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size if embedding_size is None else embedding_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = rotary_value _SCREAMING_SNAKE_CASE = use_cache class __UpperCAmelCase (_UpperCAmelCase ): @property def UpperCamelCase ( self: Tuple ): '''simple docstring''' if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
125
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCamelCase = get_logger(__name__) class __UpperCAmelCase : __snake_case : Tuple = "dummy_data" __snake_case : List[Any] = "datasets" __snake_case : List[Any] = False def __init__( self: Any , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Union[Version, str] , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: bool = False , UpperCAmelCase_: bool = True , UpperCAmelCase_: Optional[List[Callable]] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = dataset_name _SCREAMING_SNAKE_CASE = cache_dir _SCREAMING_SNAKE_CASE = use_local_dummy_data _SCREAMING_SNAKE_CASE = config # download_callbacks take a single url as input _SCREAMING_SNAKE_CASE = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _SCREAMING_SNAKE_CASE = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _SCREAMING_SNAKE_CASE = str(UpperCAmelCase_ ) # to be downloaded _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' if self._dummy_file is None: _SCREAMING_SNAKE_CASE = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _SCREAMING_SNAKE_CASE = cached_path( UpperCAmelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCAmelCase_ , force_extract=UpperCAmelCase_ ) return os.path.join(UpperCAmelCase_ , self.dummy_file_name ) @property def UpperCamelCase ( self: Any ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' if self._bucket_url is None: _SCREAMING_SNAKE_CASE = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def UpperCamelCase ( self: str , UpperCAmelCase_: str , *UpperCAmelCase_: Dict ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _SCREAMING_SNAKE_CASE = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _SCREAMING_SNAKE_CASE = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return self.create_dummy_data_dict(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCAmelCase_ , UpperCAmelCase_ ) else: return self.create_dummy_data_single(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: int , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Any ): '''simple docstring''' return self.download_and_extract(UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' return self.download_and_extract(UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Dict , *UpperCAmelCase_: Tuple , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' return path def UpperCamelCase ( self: str ): '''simple docstring''' return {} def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for single_url in single_urls: download_callback(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = single_urls download_callback(UpperCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = [os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(Path(UpperCAmelCase_ ).name ) ) for x in single_urls] else: _SCREAMING_SNAKE_CASE = single_urls _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(Path(UpperCAmelCase_ ).name ) ) _SCREAMING_SNAKE_CASE = value # make sure that values are unique if all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _SCREAMING_SNAKE_CASE = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _SCREAMING_SNAKE_CASE = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCAmelCase_ ) ) for url in data_url ) _SCREAMING_SNAKE_CASE = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _SCREAMING_SNAKE_CASE = [data_url[0]] * len(UpperCAmelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCAmelCase_ ) return dummy_data_list def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(UpperCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCAmelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' def _iter_archive_members(UpperCAmelCase_: Any ): # this preserves the order of the members inside the ZIP archive _SCREAMING_SNAKE_CASE = Path(self.dummy_file ).parent _SCREAMING_SNAKE_CASE = path.relative_to(UpperCAmelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _SCREAMING_SNAKE_CASE = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = Path(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = _iter_archive_members(UpperCAmelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCAmelCase_ ).as_posix(), file_path.open("""rb""" ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[Any] ): '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = [paths] for path in paths: if os.path.isfile(UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCAmelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
125
1
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A_ : Any = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=8 )-> Tuple: '''simple docstring''' _UpperCAmelCase : int = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 _UpperCAmelCase : List[Any] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Optional[Any]: super().__init__() self.register_modules( text_encoder=a_ ,tokenizer=a_ ,unet=a_ ,scheduler=a_ ,movq=a_ ,) _UpperCAmelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[int]: if latents is None: _UpperCAmelCase : Optional[int] = randn_tensor(a_ ,generator=a_ ,device=a_ ,dtype=a_ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _UpperCAmelCase : Optional[int] = latents.to(a_ ) _UpperCAmelCase : int = latents * scheduler.init_noise_sigma return latents def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_=None ,) -> List[Any]: _UpperCAmelCase : Union[str, Any] = len(a_ ) if isinstance(a_ ,a_ ) else 1 # get prompt text embeddings _UpperCAmelCase : Optional[int] = self.tokenizer( a_ ,padding="""max_length""" ,truncation=a_ ,max_length=77 ,return_attention_mask=a_ ,add_special_tokens=a_ ,return_tensors="""pt""" ,) _UpperCAmelCase : Union[str, Any] = text_inputs.input_ids _UpperCAmelCase : Union[str, Any] = self.tokenizer(a_ ,padding="""longest""" ,return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(a_ ,a_ ): _UpperCAmelCase : Union[str, Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _UpperCAmelCase : Optional[Any] = text_input_ids.to(a_ ) _UpperCAmelCase : List[str] = text_inputs.attention_mask.to(a_ ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = self.text_encoder( input_ids=a_ ,attention_mask=a_ ) _UpperCAmelCase : Any = prompt_embeds.repeat_interleave(a_ ,dim=0 ) _UpperCAmelCase : List[str] = text_encoder_hidden_states.repeat_interleave(a_ ,dim=0 ) _UpperCAmelCase : Tuple = text_mask.repeat_interleave(a_ ,dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase : List[str] if negative_prompt is None: _UpperCAmelCase : Tuple = [""""""] * batch_size elif type(a_ ) is not type(a_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(a_ )} !=''' f''' {type(a_ )}.''' ) elif isinstance(a_ ,a_ ): _UpperCAmelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(a_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(a_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: _UpperCAmelCase : Dict = negative_prompt _UpperCAmelCase : List[Any] = self.tokenizer( a_ ,padding="""max_length""" ,max_length=77 ,truncation=a_ ,return_attention_mask=a_ ,add_special_tokens=a_ ,return_tensors="""pt""" ,) _UpperCAmelCase : Union[str, Any] = uncond_input.input_ids.to(a_ ) _UpperCAmelCase : Any = uncond_input.attention_mask.to(a_ ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = self.text_encoder( input_ids=a_ ,attention_mask=a_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase : List[Any] = negative_prompt_embeds.shape[1] _UpperCAmelCase : Dict = negative_prompt_embeds.repeat(1 ,a_ ) _UpperCAmelCase : Optional[int] = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,a_ ) _UpperCAmelCase : int = uncond_text_encoder_hidden_states.shape[1] _UpperCAmelCase : Dict = uncond_text_encoder_hidden_states.repeat(1 ,a_ ,1 ) _UpperCAmelCase : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,a_ ,-1 ) _UpperCAmelCase : str = uncond_text_mask.repeat_interleave(a_ ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) _UpperCAmelCase : Optional[int] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) _UpperCAmelCase : Optional[int] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def _snake_case ( self ,a_=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _UpperCAmelCase : Any = torch.device(f'''cuda:{gpu_id}''' ) _UpperCAmelCase : Any = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a_ ,a_ ) def _snake_case ( self ,a_=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version(""">=""" ,"""0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _UpperCAmelCase : Dict = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" ,silence_dtype_warnings=a_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase : Union[str, Any] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: _UpperCAmelCase ,_UpperCAmelCase : Tuple = cpu_offload_with_hook(a_ ,a_ ,prev_module_hook=a_ ) if self.safety_checker is not None: _UpperCAmelCase ,_UpperCAmelCase : Any = cpu_offload_with_hook(self.safety_checker ,a_ ,prev_module_hook=a_ ) # We'll offload the last model manually. _UpperCAmelCase : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self ) -> Tuple: if not hasattr(self.unet ,"""_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a_ ,"""_hf_hook""" ) and hasattr(module._hf_hook ,"""execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a_ ) def __call__( self ,a_ ,a_ ,a_ ,a_ = None ,a_ = 512 ,a_ = 512 ,a_ = 100 ,a_ = 4.0 ,a_ = 1 ,a_ = None ,a_ = None ,a_ = "pil" ,a_ = True ,) -> Optional[int]: if isinstance(a_ ,a_ ): _UpperCAmelCase : List[str] = 1 elif isinstance(a_ ,a_ ): _UpperCAmelCase : str = len(a_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(a_ )}''' ) _UpperCAmelCase : List[Any] = self._execution_device _UpperCAmelCase : List[Any] = batch_size * num_images_per_prompt _UpperCAmelCase : Optional[Any] = guidance_scale > 1.0 _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[int] = self._encode_prompt( a_ ,a_ ,a_ ,a_ ,a_ ) if isinstance(a_ ,a_ ): _UpperCAmelCase : Union[str, Any] = torch.cat(a_ ,dim=0 ) if isinstance(a_ ,a_ ): _UpperCAmelCase : Union[str, Any] = torch.cat(a_ ,dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase : List[str] = image_embeds.repeat_interleave(a_ ,dim=0 ) _UpperCAmelCase : Any = negative_image_embeds.repeat_interleave(a_ ,dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=a_ ) self.scheduler.set_timesteps(a_ ,device=a_ ) _UpperCAmelCase : int = self.scheduler.timesteps _UpperCAmelCase : Optional[int] = self.unet.config.in_channels _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_new_h_w(a_ ,a_ ,self.movq_scale_factor ) # create initial latent _UpperCAmelCase : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,a_ ,a_ ,a_ ,self.scheduler ,) for i, t in enumerate(self.progress_bar(a_ ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : List[Any] = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} _UpperCAmelCase : List[str] = self.unet( sample=a_ ,timestep=a_ ,encoder_hidden_states=a_ ,added_cond_kwargs=a_ ,return_dict=a_ ,)[0] if do_classifier_free_guidance: _UpperCAmelCase ,_UpperCAmelCase : List[str] = noise_pred.split(latents.shape[1] ,dim=1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = noise_pred.chunk(2 ) _UpperCAmelCase ,_UpperCAmelCase : Dict = variance_pred.chunk(2 ) _UpperCAmelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase : str = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"""variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase ,_UpperCAmelCase : List[str] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[str] = self.scheduler.step( a_ ,a_ ,a_ ,generator=a_ ,).prev_sample # post-processing _UpperCAmelCase : Dict = self.movq.decode(a_ ,force_not_quantize=a_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _UpperCAmelCase : int = image * 0.5 + 0.5 _UpperCAmelCase : Optional[Any] = image.clamp(0 ,1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _UpperCAmelCase : List[str] = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
215
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self ) -> List[str]: _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[int] = {} def _snake_case ( self ,a_ ) -> Optional[Any]: if vertex not in self.adjacency: _UpperCAmelCase : int = {} self.num_vertices += 1 def _snake_case ( self ,a_ ,a_ ,a_ ) -> int: self.add_vertex(a_ ) self.add_vertex(a_ ) if head == tail: return _UpperCAmelCase : List[Any] = weight _UpperCAmelCase : Dict = weight def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = self.get_edges() for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = edge edges.remove((tail, head, weight) ) for i in range(len(a_ ) ): _UpperCAmelCase : str = list(edges[i] ) edges.sort(key=lambda a_ : e[2] ) for i in range(len(a_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _UpperCAmelCase : Optional[Any] = edges[i][2] + 1 for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = edge _UpperCAmelCase : str = weight _UpperCAmelCase : List[str] = weight def __str__( self ) -> Any: _UpperCAmelCase : List[Any] = """""" for tail in self.adjacency: for head in self.adjacency[tail]: _UpperCAmelCase : List[str] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _snake_case ( self ) -> Optional[int]: return self.adjacency.keys() @staticmethod def _snake_case ( a_=None ,a_=None ) -> Tuple: _UpperCAmelCase : List[Any] = Graph() if vertices is None: _UpperCAmelCase : List[str] = [] if edges is None: _UpperCAmelCase : Optional[Any] = [] for vertex in vertices: g.add_vertex(a_ ) for edge in edges: g.add_edge(*a_ ) return g class lowercase : """simple docstring""" def __init__( self ) -> int: _UpperCAmelCase : List[str] = {} _UpperCAmelCase : int = {} def __len__( self ) -> Tuple: return len(self.parent ) def _snake_case ( self ,a_ ) -> str: if item in self.parent: return self.find(a_ ) _UpperCAmelCase : Optional[Any] = item _UpperCAmelCase : List[Any] = 0 return item def _snake_case ( self ,a_ ) -> List[str]: if item not in self.parent: return self.make_set(a_ ) if item != self.parent[item]: _UpperCAmelCase : List[Any] = self.find(self.parent[item] ) return self.parent[item] def _snake_case ( self ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Any = self.find(a_ ) _UpperCAmelCase : List[str] = self.find(a_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _UpperCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _UpperCAmelCase : Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _UpperCAmelCase : List[str] = roota return roota return None @staticmethod def _snake_case ( a_ ) -> List[Any]: _UpperCAmelCase : int = graph.num_vertices _UpperCAmelCase : int = Graph.UnionFind() _UpperCAmelCase : Optional[int] = [] while num_components > 1: _UpperCAmelCase : int = {} for vertex in graph.get_vertices(): _UpperCAmelCase : Union[str, Any] = -1 _UpperCAmelCase : Tuple = graph.get_edges() for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = edge edges.remove((tail, head, weight) ) for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = edge _UpperCAmelCase : Any = union_find.find(a_ ) _UpperCAmelCase : Any = union_find.find(a_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : Tuple = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = cheap_edge[vertex] if union_find.find(a_ ) != union_find.find(a_ ): union_find.union(a_ ,a_ ) mst_edges.append(cheap_edge[vertex] ) _UpperCAmelCase : Tuple = num_components - 1 _UpperCAmelCase : Optional[int] = Graph.build(edges=a_ ) return mst
215
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case : def __init__( self) ->Optional[int]: a_ = WATERMARK_BITS a_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images a_ = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a_ = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a_ = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0) return images
303
0
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = generate_pascal_triangle(lowerCAmelCase ) for row_idx in range(lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) SCREAMING_SNAKE_CASE_ : list[list[int]] = [] for current_row_idx in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = populate_current_row(lowerCAmelCase , lowerCAmelCase ) triangle.append(lowerCAmelCase ) return triangle def _snake_case ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = 1, 1 for current_col_idx in range(1 , lowerCAmelCase ): calculate_current_element( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return current_row def _snake_case ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : list[int] , lowerCAmelCase : int , lowerCAmelCase : int , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = triangle[current_row_idx - 1][current_col_idx - 1] SCREAMING_SNAKE_CASE_ : List[Any] = triangle[current_row_idx - 1][current_col_idx] SCREAMING_SNAKE_CASE_ : Union[str, Any] = above_to_left_elt + above_to_right_elt def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) SCREAMING_SNAKE_CASE_ : list[list[int]] = [[1]] for row_index in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = [0] + result[-1] + [0] SCREAMING_SNAKE_CASE_ : List[str] = row_index + 1 # Calculate the number of distinct elements in a row SCREAMING_SNAKE_CASE_ : Optional[Any] = sum(divmod(lowerCAmelCase , 2 ) ) SCREAMING_SNAKE_CASE_ : List[Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] SCREAMING_SNAKE_CASE_ : Optional[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() SCREAMING_SNAKE_CASE_ : Tuple = row_first_half + row_second_half result.append(lowerCAmelCase ) return result def _snake_case ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase : Callable , lowerCAmelCase : int ) -> None: SCREAMING_SNAKE_CASE_ : Optional[int] = f'{func.__name__}({value})' SCREAMING_SNAKE_CASE_ : str = timeit(f'__main__.{call}' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase , lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
18
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _UpperCAmelCase: lowercase__ = BlenderbotConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> str: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_blenderbot_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = TFBlenderbotModel(config=__a).get_decoder() _UpperCamelCase = inputs_dict['''input_ids'''] _UpperCamelCase = input_ids[:1, :] _UpperCamelCase = inputs_dict['''attention_mask'''][:1, :] _UpperCamelCase = inputs_dict['''head_mask'''] _UpperCamelCase = 1 # first forward pass _UpperCamelCase = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and _UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1) _UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1) _UpperCamelCase = model(__a , attention_mask=__a)[0] _UpperCamelCase = model(__a , attention_mask=__a , past_key_values=__a)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice _UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1])) _UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, __snake_case=None, __snake_case=None, __snake_case=None, ) -> Optional[Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowercase__ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowercase__ = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = TFBlenderbotModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a) @require_tokenizers @require_tf class _UpperCAmelCase( unittest.TestCase ): lowercase__ = ['My friends are cool but they eat too many carbs.'] lowercase__ = 'facebook/blenderbot-400M-distill' @cached_property def UpperCAmelCase ( self) -> Any: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name) @cached_property def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , return_tensors='''tf''') _UpperCamelCase = self.model.generate( model_inputs.input_ids , ) _UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__a)[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
366
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" if len(__snake_case ) <= 1 or n <= 1: return insert_next(__snake_case, n - 1 ) rec_insertion_sort(__snake_case, n - 1 ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Dict: """simple docstring""" if index >= len(__snake_case ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _UpperCamelCase , _UpperCamelCase = ( collection[index], collection[index - 1], ) insert_next(__snake_case, index + 1 ) if __name__ == "__main__": _a = input("""Enter integers separated by spaces: """) _a = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
100
0
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , UpperCAmelCase ) A = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: A = dataset_size < in_memory_max_size else: A = False A = is_small_dataset(UpperCAmelCase ) assert result == expected
258
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __a ( ) ->None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
258
1
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __A : Any = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" __A : Dict = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" __A : int = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): """simple docstring""" def __lowercase ( self : List[Any] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def __lowercase ( self : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Optional[int]=4 , lowerCamelCase : List[Any]=False ) -> List[str]: lowerCAmelCase_ : Optional[Any] = compute_bleu( reference_corpus=lowerCamelCase , translation_corpus=lowerCamelCase , max_order=lowerCamelCase , smooth=lowerCamelCase ) ((lowerCAmelCase_), (lowerCAmelCase_), (lowerCAmelCase_), (lowerCAmelCase_), (lowerCAmelCase_), (lowerCAmelCase_)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
181
_SCREAMING_SNAKE_CASE : Optional[Any] = tuple[float, float, float] _SCREAMING_SNAKE_CASE : Optional[Any] = tuple[float, float, float] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = end_pointa[0] - end_pointa[0] snake_case = end_pointa[1] - end_pointa[1] snake_case = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = ab[1] * ac[2] - ab[2] * ac[1] # *i snake_case = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j snake_case = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" return tuple(round(UpperCamelCase_ ,UpperCamelCase_ ) for x in vector ) == (0, 0, 0) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = 10 ): """simple docstring""" snake_case = create_vector(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = create_vector(UpperCamelCase_ ,UpperCamelCase_ ) return is_zero_vector(get_ad_vectors_cross(UpperCamelCase_ ,UpperCamelCase_ ) ,UpperCamelCase_ )
127
0
def __A ( _lowercase ): '''simple docstring''' _A = len(_lowercase ) while cur > 1: # Find the maximum number in arr _A = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _A = arr[mi::-1] + arr[mi + 1 : len(_lowercase )] # Reverse whole list _A = arr[cur - 1 :: -1] + arr[cur : len(_lowercase )] cur -= 1 return arr if __name__ == "__main__": __A = input('Enter numbers separated by a comma:\n').strip() __A = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
75
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __A = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __A = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __A ( _lowercase ): '''simple docstring''' if "://" in dataset_path: _A = dataset_path.split('''://''' )[1] return dataset_path def __A ( _lowercase ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = not is_remote_filesystem(_lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowercase ) , fs._strip_protocol(_lowercase ) ) else: fs.mv(_lowercase , _lowercase , recursive=_lowercase ) def __A ( ): '''simple docstring''' if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _A = None _A = None _A = threading.Lock()
75
1