code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig __A : Any = logging.getLogger(__name__) class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = "masked_bert" def __init__( self : Optional[int] , A : int=3_05_22 , A : int=7_68 , A : List[Any]=12 , A : Union[str, Any]=12 , A : List[str]=30_72 , A : Dict="gelu" , A : Any=0.1 , A : int=0.1 , A : Optional[Any]=5_12 , A : Union[str, Any]=2 , A : Any=0.02 , A : str=1e-12 , A : Optional[int]=0 , A : Union[str, Any]="topK" , A : Union[str, Any]="constant" , A : Optional[int]=0.0 , **A : List[str] , ) -> int: super().__init__(pad_token_id=A , **A ) lowercase_ : str = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : Union[str, Any] = hidden_act lowercase_ : Any = intermediate_size lowercase_ : Tuple = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Union[str, Any] = type_vocab_size lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = layer_norm_eps lowercase_ : Any = pruning_method lowercase_ : Dict = mask_init lowercase_ : Optional[Any] = mask_scale
33
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : int = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _lowerCAmelCase : Tuple = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _lowerCAmelCase : int = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[List[List[str]]] , snake_case :List[List[str]] , snake_case :int = 1 , snake_case :int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case , hypotheses=snake_case , min_len=snake_case , max_len=snake_case ) }
300
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class a__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_0000 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=2E-4 , metadata={'help': 'Learning rate fo training.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=750 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowerCAmelCase , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=5_0000 , metadata={'help': 'Maximum number of training steps.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1024 , metadata={'help': 'Sequence lengths used for training.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=1024 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCAmelCase , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field(default=__lowerCAmelCase , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1024 , metadata={'help': 'Length of sequences to be evaluated.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=__lowerCAmelCase , metadata={'help': 'Number of workers used for code evaluation.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowerCAmelCase , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowerCAmelCase , metadata={'help': 'Sample from the language model\'s output distribution.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=256 , metadata={'help': 'Maximum number of newly generated tokens.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=200 , metadata={'help': 'Number of completions to generate for each sample.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowerCAmelCase , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=10_0000 , metadata={'help': 'Number of files to save per JSON output file.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=1000 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=100 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowerCAmelCase , metadata={'help': 'If True, near-duplicate samples are removed.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=20_0000 , metadata={'help': 'Number of examples to train tokenizer on.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=3_2768 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field(default=__lowerCAmelCase , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=__lowerCAmelCase , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field(default=__lowerCAmelCase , metadata={'help': 'Push saved tokenizer to the hub.'} )
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Any = 'roc_bert' def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-1_2 , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=768 , _UpperCamelCase=910 , _UpperCamelCase=512 , _UpperCamelCase=24858 , _UpperCamelCase=True , **_UpperCamelCase , ): """simple docstring""" _lowercase : str = vocab_size _lowercase : List[str] = max_position_embeddings _lowercase : List[Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : int = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Dict = initializer_range _lowercase : List[Any] = type_vocab_size _lowercase : Tuple = layer_norm_eps _lowercase : Optional[int] = use_cache _lowercase : Tuple = enable_pronunciation _lowercase : Optional[int] = enable_shape _lowercase : int = pronunciation_embed_dim _lowercase : List[str] = pronunciation_vocab_size _lowercase : int = shape_embed_dim _lowercase : str = shape_vocab_size _lowercase : str = concat_input _lowercase : Dict = position_embedding_type _lowercase : Optional[Any] = classifier_dropout super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase )
199
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = '''▁''' lowerCamelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase_ = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } lowerCamelCase_ = { '''google/pegasus-xsum''': 5_12, } lowerCamelCase_ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple="<pad>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : str="<unk>" , __UpperCAmelCase : Dict="<mask_2>" , __UpperCAmelCase : Union[str, Any]="<mask_1>" , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Union[str, Any]=103 , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Tuple , ): '''simple docstring''' _A = offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is''' f''' {type(__UpperCAmelCase )}''' ) _A = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(__UpperCAmelCase ) , self.offset - 1 ) ] if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _A = additional_special_tokens_extended else: _A = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _A = mask_token_sent _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) # add special tokens to encoder dict _A = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _A = {v: k for k, v in self.encoder.items()} @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return len(self.sp_model ) + self.offset def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): '''simple docstring''' _A = self.__dict__.copy() _A = None return state def __setstate__( self : str , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : str ): '''simple docstring''' return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def lowerCAmelCase ( self : int , __UpperCAmelCase : str ): '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _A = self.sp_model.piece_to_id(__UpperCAmelCase ) return sp_id + self.offset def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : int ): '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _A = self.sp_model.IdToPiece(index - self.offset ) return token def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = [] _A = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCAmelCase ) + token _A = [] else: current_sub_tokens.append(__UpperCAmelCase ) out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple=False ): '''simple docstring''' return 1 def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List , __UpperCAmelCase : Optional[List] = None , __UpperCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Any=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
79
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
1
'''simple docstring''' def lowerCamelCase__ ( _A , _A , _A ): if exponent == 1: return base if exponent % 2 == 0: a : int = _modexpt(_A , exponent // 2 , _A ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_A , exponent - 1 , _A )) % modulo_value def lowerCamelCase__ ( _A = 1777 , _A = 1855 , _A = 8 ): a : str = base for _ in range(1 , _A ): a : List[str] = _modexpt(_A , _A , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
96
'''simple docstring''' import torch from transformers import AutoModel class a__( torch.nn.Module ): def __init__( self : Any , __snake_case : str="sayef/fsner-bert-base-uncased" ): super(__snake_case , self ).__init__() a : List[str] = AutoModel.from_pretrained(__snake_case , return_dict=__snake_case ) a : Optional[Any] = torch.nn.CosineSimilarity(3 , 1e-0_8 ) a : Tuple = torch.nn.Softmax(dim=1 ) def lowercase_ ( self : List[str] , **__snake_case : int ): return self.bert(**__snake_case ).last_hidden_state def lowercase_ ( self : Optional[int] , __snake_case : Union[str, Any] ): return token_embeddings.sum(2 , keepdim=__snake_case ) def lowercase_ ( self : str , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any]=1 ): return self.softmax(T * self.cos(__snake_case , __snake_case ) ) def lowercase_ ( self : int , __snake_case : int , __snake_case : Tuple ): a : List[Any] = W_supports['sizes'].tolist() a : Any = W_supports['start_token_id'].item() a : int = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a : Optional[Any] = self.BERT(**__snake_case ) a : Tuple = self.BERT(**__snake_case ) a : Dict = None a : Optional[Any] = None a : Union[str, Any] = W_supports['input_ids'] == start_token_id a : str = W_supports['input_ids'] == end_token_id for i, size in enumerate(__snake_case ): if i == 0: a : Optional[int] = 0 else: a : Tuple = support_sizes[i - 1] a : Tuple = S[s : s + size][start_token_masks[s : s + size]] a : int = S[s : s + size][end_token_masks[s : s + size]] a : Any = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a : List[str] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a : List[Any] = torch.vstack((p_starts, p_start) ) a : List[Any] = torch.vstack((p_ends, p_end) ) else: a : List[Any] = p_start a : Optional[int] = p_end return p_starts, p_ends
96
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Dict = ['''pixel_values'''] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = PILImageResampling.BICUBIC , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_5_5 , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 2_2_4, """width""": 2_2_4} __SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} __SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name="""crop_size""") __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = PILImageResampling.BILINEAR , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__) if "shortest_edge" in size: __SCREAMING_SNAKE_CASE = get_resize_output_image_size(lowerCAmelCase__ , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase__) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __SCREAMING_SNAKE_CASE = (size["""height"""], size["""width"""]) else: raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}") return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}") return center_crop(lowerCAmelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" , default_to_square=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__) if not is_batched(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [images] if not valid_images(lowerCAmelCase__): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] __SCREAMING_SNAKE_CASE = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__)
100
'''simple docstring''' import torch from torch import nn class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int]=1 ,lowercase__ : Optional[Any]=False ): super().__init__() __lowercase = n_token __lowercase = d_embed __lowercase = d_proj __lowercase = cutoffs + [n_token] __lowercase = [0] + self.cutoffs __lowercase = div_val __lowercase = self.cutoffs[0] __lowercase = len(self.cutoffs ) - 1 __lowercase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __lowercase = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) __lowercase = nn.Parameter(torch.zeros(self.n_clusters ) ) __lowercase = nn.ModuleList() __lowercase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) ) else: self.out_projs.append(lowercase__ ) self.out_layers.append(nn.Linear(lowercase__ ,lowercase__ ) ) else: for i in range(len(self.cutoffs ) ): __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) ) self.out_layers.append(nn.Linear(lowercase__ ,r_idx - l_idx ) ) __lowercase = keep_order def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Any ): if proj is None: __lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __lowercase = nn.functional.linear(lowercase__ ,proj.t().contiguous() ) __lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Any=None ,lowercase__ : List[str]=False ): if labels is not None: # Shift so that tokens < n predict n __lowercase = hidden[..., :-1, :].contiguous() __lowercase = labels[..., 1:].contiguous() __lowercase = hidden.view(-1 ,hidden.size(-1 ) ) __lowercase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: __lowercase = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: __lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: __lowercase = labels != -1_0_0 __lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device ) __lowercase = ( -nn.functional.log_softmax(lowercase__ ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __lowercase = nn.functional.log_softmax(lowercase__ ,dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowercase__ ) biases.append(lowercase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) if labels is None: __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device ) __lowercase = 0 __lowercase = [0] + self.cutoffs for i in range(len(lowercase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __lowercase = (labels >= l_idx) & (labels < r_idx) __lowercase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __lowercase = labels.index_select(0 ,lowercase__ ) - l_idx __lowercase = head_logprob.index_select(0 ,lowercase__ ) __lowercase = hidden.index_select(0 ,lowercase__ ) else: __lowercase = hidden if i == 0: if labels is not None: __lowercase = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __lowercase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __lowercase = logprob_i if labels is not None: if (hasattr(self ,'''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 ,lowercase__ ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Union[str, Any] ): if self.n_clusters == 0: __lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(lowercase__ ,dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowercase__ ) biases.append(lowercase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = [0] + self.cutoffs for i in range(len(lowercase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if i == 0: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = head_logprob[:, -i] + tail_logprob_i __lowercase = logprob_i return out
104
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Dict , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
70
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Union[str, Any] = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
1
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class A__ ( _snake_case , unittest.TestCase ): lowercase = CpmAntTokenizer lowercase = False def snake_case_ ( self ) -> str: '''simple docstring''' super().setUp() A_ = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) A_ = """今天天气真好!""" A_ = ["""今天""", """天气""", """真""", """好""", """!"""] A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = """今天天气真好!""" A_ = [tokenizer.bos_token] + tokens A_ = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) A_ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
162
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( _snake_case , unittest.TestCase ): lowercase = ShapEPipeline lowercase = ["prompt"] lowercase = ["prompt"] lowercase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return 8 @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } A_ = PriorTransformer(**UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } A_ = ShapERenderer(**UpperCamelCase__ ) return model def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_renderer A_ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase__ , clip_sample=UpperCamelCase__ , clip_sample_range=1.0 , ) A_ = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> List[str]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.images[0] A_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A_ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = 1 A_ = 2 A_ = self.get_dummy_inputs(UpperCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: A_ = batch_size * [inputs[key]] A_ = pipe(**UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> str: '''simple docstring''' A_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) A_ = ShapEPipeline.from_pretrained("""openai/shap-e""" ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A_ = pipe( """a shark""" , generator=UpperCamelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
162
1
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCAmelCase: Dict = """__DUMMY_TRANSFORMERS_USER__""" UpperCAmelCase: str = """Dummy User""" UpperCAmelCase: Optional[int] = """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""" UpperCAmelCase: Any = """https://hub-ci.huggingface.co""" UpperCAmelCase: Any = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" UpperCAmelCase: Optional[Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" UpperCAmelCase: Optional[Any] = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): HfFolder.save_token(__UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( ): return HfApi(endpoint=__UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = HfFolder.get_token() HfFolder.save_token(__UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): def _cleanup_repo(__UpperCAmelCase ): hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): @contextmanager def _temporary_repo(__UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(__UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = F"""repo_txt_data-{int(time.time() * 1_0E3 )}""" _lowercase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = F"""repo_zipped_txt_data-{int(time.time() * 1_0E3 )}""" _lowercase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[str] = F"""repo_zipped_img_data-{int(time.time() * 1_0E3 )}""" _lowercase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return hf_private_dataset_repo_zipped_img_data_
359
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Tuple=0 ): __lowercase = np.random.RandomState(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs['''prompt''']] # forward __lowercase = pipe(**lowercase__ ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop('''prompt''' )] __lowercase = pipe.tokenizer( lowercase__ ,padding='''max_length''' ,max_length=pipe.tokenizer.model_max_length ,truncation=lowercase__ ,return_tensors='''np''' ,) __lowercase = text_inputs['''input_ids'''] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**lowercase__ ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ['''this is a negative prompt'''] __lowercase = negative_prompt __lowercase = 3 * [inputs['''prompt''']] # forward __lowercase = pipe(**lowercase__ ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop('''prompt''' )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( lowercase__ ,padding='''max_length''' ,max_length=pipe.tokenizer.model_max_length ,truncation=lowercase__ ,return_tensors='''np''' ,) __lowercase = text_inputs['''input_ids'''] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**lowercase__ ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class lowercase_ (unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ort.SessionOptions() __lowercase = False return options def SCREAMING_SNAKE_CASE ( self : str ): # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''onnx''' ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''A painting of a squirrel eating a burger''' np.random.seed(0 ) __lowercase = sd_pipe([prompt] ,guidance_scale=6.0 ,num_inference_steps=1_0 ,output_type='''np''' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = DDIMScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,subfolder='''scheduler''' ,revision='''onnx''' ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,revision='''onnx''' ,scheduler=lowercase__ ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''open neural network exchange''' __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=1_0 ,generator=lowercase__ ,output_type='''np''' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,subfolder='''scheduler''' ,revision='''onnx''' ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,revision='''onnx''' ,scheduler=lowercase__ ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''open neural network exchange''' __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=1_0 ,generator=lowercase__ ,output_type='''np''' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = 0 def test_callback_fn(lowercase__ : int ,lowercase__ : int ,lowercase__ : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 6_4, 6_4) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 6_4, 6_4) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,revision='''onnx''' ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''Andromeda galaxy in a bottle''' __lowercase = np.random.RandomState(0 ) pipe( prompt=lowercase__ ,num_inference_steps=5 ,guidance_scale=7.5 ,generator=lowercase__ ,callback=lowercase__ ,callback_steps=1 ,) assert test_callback_fn.has_been_called assert number_of_steps == 6 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,revision='''onnx''' ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) assert isinstance(lowercase__ ,lowercase__ ) assert pipe.safety_checker is None __lowercase = pipe('''example prompt''' ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase__ ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(lowercase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe('''example prompt''' ,num_inference_steps=2 ).images[0] assert image is not None
104
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(lowerCAmelCase__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
181
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A : """simple docstring""" def __init__( self : Any,lowercase_ : Optional[int],lowercase_ : Optional[int]=1_3,lowercase_ : int=7,lowercase_ : List[str]=True,lowercase_ : str=True,lowercase_ : List[str]=True,lowercase_ : Optional[Any]=True,lowercase_ : Dict=9_9,lowercase_ : Dict=2_4,lowercase_ : Union[str, Any]=2,lowercase_ : str=6,lowercase_ : Dict=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : Any=0.1,lowercase_ : Any=0.1,lowercase_ : Any=5_1_2,lowercase_ : Dict=1_6,lowercase_ : List[str]=2,lowercase_ : Dict=0.02,lowercase_ : Any=3,lowercase_ : Dict=None,lowercase_ : List[str]=1_0_0_0,)-> Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = scope A__ = range_bbox def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = ids_tensor([self.batch_size, self.seq_length, 4],self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = t A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self : Dict )-> int: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,) def snake_case__ ( self : Optional[Any],lowercase_ : Tuple,lowercase_ : str,lowercase_ : Optional[int],lowercase_ : Optional[Any],lowercase_ : str,lowercase_ : List[str],lowercase_ : Tuple,)-> Optional[Any]: '''simple docstring''' A__ = LiltModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.hidden_size) ) def snake_case__ ( self : Any,lowercase_ : Dict,lowercase_ : List[Any],lowercase_ : List[str],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : List[Any],)-> List[str]: '''simple docstring''' A__ = self.num_labels A__ = LiltForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : int,lowercase_ : Union[str, Any],lowercase_ : int,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : Optional[int],lowercase_ : Tuple,lowercase_ : List[str],)-> Any: '''simple docstring''' A__ = LiltForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,start_positions=lowercase_,end_positions=lowercase_,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : List[str],lowercase_ : str,lowercase_ : Optional[Any],lowercase_ : Optional[Any] )-> Any: '''simple docstring''' return True def snake_case__ ( self : int )-> Tuple: '''simple docstring''' A__ = LiltModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def snake_case__ ( self : List[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = LiltModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @slow class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(lowercase_ ) A__ = torch.tensor([[1, 2]],device=lowercase_ ) A__ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]],device=lowercase_ ) # forward pass with torch.no_grad(): A__ = model(input_ids=lowercase_,bbox=lowercase_ ) A__ = torch.Size([1, 2, 7_6_8] ) A__ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]],device=lowercase_,) self.assertTrue(outputs.last_hidden_state.shape,lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3],lowercase_,atol=1E-3 ) )
282
0
'''simple docstring''' from importlib import import_module from .logging import get_logger UpperCAmelCase = get_logger(__name__) class lowerCAmelCase : def __init__( self : Tuple , __lowercase : Dict , __lowercase : Any=None ): """simple docstring""" __lowercase =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) __lowercase =module._original_module if isinstance(SCREAMING_SNAKE_CASE__ , _PatchedModuleObj ) else module class lowerCAmelCase : lowerCAmelCase_ = [] def __init__( self : Tuple , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : Tuple , __lowercase : Tuple=None ): """simple docstring""" __lowercase =obj __lowercase =target __lowercase =new __lowercase =target.split('.' )[0] __lowercase ={} __lowercase =attrs or [] def __enter__( self : Optional[Any] ): """simple docstring""" __lowercase =self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: __lowercase =import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __lowercase =getattr(self.obj , SCREAMING_SNAKE_CASE__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(SCREAMING_SNAKE_CASE__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __lowercase =obj_attr # patch at top level setattr(self.obj , SCREAMING_SNAKE_CASE__ , _PatchedModuleObj(SCREAMING_SNAKE_CASE__ , attrs=self.attrs ) ) __lowercase =getattr(self.obj , SCREAMING_SNAKE_CASE__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , _PatchedModuleObj(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , attrs=self.attrs ) ) __lowercase =getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # finally set the target attribute setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __lowercase =getattr(import_module('.'.join(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , SCREAMING_SNAKE_CASE__ ) is attr_value: __lowercase =getattr(self.obj , SCREAMING_SNAKE_CASE__ ) setattr(self.obj , SCREAMING_SNAKE_CASE__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __lowercase =globals()['''__builtins__'''][target_attr] setattr(self.obj , SCREAMING_SNAKE_CASE__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self : Union[str, Any] , *__lowercase : Union[str, Any] ): """simple docstring""" for attr in list(self.original ): setattr(self.obj , SCREAMING_SNAKE_CASE__ , self.original.pop(SCREAMING_SNAKE_CASE__ ) ) def snake_case ( self : Dict ): """simple docstring""" self.__enter__() self._active_patches.append(self ) def snake_case ( self : Union[str, Any] ): """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
141
from __future__ import annotations def __lowercase ( _UpperCamelCase ) ->float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(_UpperCamelCase ) / len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
337
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase (lowercase_: int ) -> Optional[int]: # A local function to see if a dot lands in the circle. def is_in_circle(lowercase_: float , lowercase_: float ) -> bool: A__ : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle A__ : List[str] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowercase_ ) ) # The ratio of the area for circle to square is pi/4. A__ : Dict = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def UpperCamelCase (lowercase_: int , lowercase_: Callable[[float], float] , lowercase_: float = 0.0 , lowercase_: float = 1.0 , ) -> float: return mean( function_to_integrate(uniform(lowercase_ , lowercase_ ) ) for _ in range(lowercase_ ) ) * (max_value - min_value) def UpperCamelCase (lowercase_: int , lowercase_: float = 0.0 , lowercase_: float = 1.0 ) -> None: def identity_function(lowercase_: float ) -> float: return x A__ : int = area_under_curve_estimator( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A__ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("""******************""" ) def UpperCamelCase (lowercase_: int ) -> None: def function_to_integrate(lowercase_: float ) -> float: return sqrt(4.0 - x * x ) A__ : List[Any] = area_under_curve_estimator( lowercase_ , lowercase_ , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
141
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase (lowercase_: str , lowercase_: Optional[int] ) -> str: A__ : Union[str, Any] = old_name if "patch_embed" in old_name: A__ , A__ , A__ : Any = old_name.split(""".""" ) if layer == "0": A__ : List[Any] = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": A__ : Optional[int] = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": A__ : int = old_name.replace("""3""" , """convolution2""" ) else: A__ : Dict = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , lowercase_ ): A__ : str = r"""\b\d{2}\b""" if bool(re.search(lowercase_ , lowercase_ ) ): A__ : Optional[Any] = re.search(r"""\d\.\d\d.""" , lowercase_ ).group() else: A__ : int = re.search(r"""\d\.\d.""" , lowercase_ ).group() if int(match[0] ) < 6: A__ : Optional[Any] = old_name.replace(lowercase_ , """""" ) A__ : Tuple = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) A__ : int = """intermediate_stages.""" + trimmed_name else: A__ : Dict = old_name.replace(lowercase_ , """""" ) if int(match[2] ) < num_meta4D_last_stage: A__ : Optional[int] = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: A__ : Optional[Any] = str(int(match[2] ) - num_meta4D_last_stage ) A__ : Dict = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: A__ : str = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: A__ : Optional[int] = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: A__ : List[Any] = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: A__ : Optional[Any] = trimmed_name.replace("""fc2""" , """linear_out""" ) A__ : str = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , lowercase_ ): A__ : List[str] = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: A__ : Optional[int] = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): A__ : Optional[int] = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): A__ : int = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: A__ : Tuple = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: A__ : Optional[int] = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: A__ : Optional[Any] = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: A__ : Optional[Any] = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": A__ : Union[str, Any] = new_name.replace("""norm""" , """layernorm""" ) A__ : Union[str, Any] = """efficientformer.""" + new_name else: A__ : int = """efficientformer.encoder.""" + new_name return new_name def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: Union[str, Any] ) -> Tuple: for key in checkpoint.copy().keys(): A__ : List[Any] = checkpoint.pop(lowercase_ ) A__ : Dict = val return checkpoint def UpperCamelCase () -> Optional[int]: A__ : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : List[str] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return image def UpperCamelCase (lowercase_: Path , lowercase_: Path , lowercase_: Path , lowercase_: bool ) -> Tuple: A__ : Any = torch.load(lowercase_ , map_location="""cpu""" )["""model"""] A__ : List[Any] = EfficientFormerConfig.from_json_file(lowercase_ ) A__ : Any = EfficientFormerForImageClassificationWithTeacher(lowercase_ ) A__ : List[str] = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) A__ : Union[str, Any] = config.depths[-1] - config.num_metaad_blocks + 1 A__ : Any = convert_torch_checkpoint(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() A__ : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image A__ : Optional[int] = prepare_img() A__ : Optional[Any] = 256 A__ : str = 224 A__ : List[str] = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) A__ : Tuple = processor(images=lowercase_ , return_tensors="""pt""" ).pixel_values # original processing pipeline A__ : List[Any] = Compose( [ Resize(lowercase_ , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(lowercase_ ), ToTensor(), Normalize(lowercase_ , lowercase_ ), ] ) A__ : Any = image_transforms(lowercase_ ).unsqueeze(0 ) assert torch.allclose(lowercase_ , lowercase_ ) A__ : Optional[int] = model(lowercase_ ) A__ : List[str] = outputs.logits A__ : Tuple = (1, 1000) if "l1" in model_name: A__ : List[str] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: A__ : Any = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: A__ : Union[str, Any] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowercase_ ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add model""" , use_temp_dir=lowercase_ , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add image processor""" , use_temp_dir=lowercase_ , ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) A_ : List[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
141
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
288
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCAmelCase__ = 'tiny-wmt19-en-ru' # Build # borrowed from a test UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(vocab, range(len(vocab)))) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = Path(tmpdirname) UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) UpperCAmelCase__ = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCAmelCase__ = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCAmelCase__ = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCAmelCase__ = tokenizer(['Making tiny model'], return_tensors='pt') UpperCAmelCase__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
288
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=64 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): a :Optional[Any] = parent a :Any = batch_size a :Any = seq_length a :Tuple = is_training a :Dict = use_input_mask a :Dict = use_token_type_ids a :int = use_labels a :str = vocab_size a :Optional[Any] = hidden_size a :str = num_hidden_layers a :int = num_attention_heads a :Tuple = intermediate_size a :Union[str, Any] = hidden_act a :List[str] = hidden_dropout_prob a :List[Any] = attention_probs_dropout_prob a :Union[str, Any] = max_position_embeddings a :Dict = type_vocab_size a :Optional[int] = type_sequence_label_size a :List[str] = initializer_range a :Union[str, Any] = num_labels a :Union[str, Any] = num_choices a :List[str] = scope a :Any = vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :List[Any] = None if self.use_input_mask: a :str = random_attention_mask([self.batch_size, self.seq_length] ) a :Tuple = None if self.use_labels: a :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a :Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE__ ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = self.prepare_config_and_inputs() a :Optional[Any] = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Dict = GPTNeoXModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) a :Any = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :str = True a :Dict = GPTNeoXModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :int = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[Any] = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :List[Any] = self.num_labels a :Union[str, Any] = GPTNeoXForQuestionAnswering(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Any = self.num_labels a :Optional[Any] = GPTNeoXForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a :Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = self.num_labels a :int = GPTNeoXForTokenClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :List[str] = True a :Dict = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass a :Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) a :int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a :int = ids_tensor((self.batch_size, 3) , config.vocab_size ) a :Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) a :Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) a :Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase ) a :Optional[int] = output_from_no_past["hidden_states"][0] a :List[str] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )["hidden_states"][0] # select random slice a :Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() a :str = output_from_no_past[:, -3:, random_slice_idx].detach() a :List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.prepare_config_and_inputs() a :Optional[Any] = config_and_inputs a :List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , a__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = (GPTNeoXForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): a :int = GPTNeoXModelTester(self ) a :Tuple = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=64 , num_attention_heads=8 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): # This regression test was failing with PyTorch < 1.3 a :Dict = self.model_tester.prepare_config_and_inputs_for_decoder() a :int = None self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = self.model_tester.prepare_config_and_inputs_for_common() a :int = ids_tensor([1, 10] , config.vocab_size ) a :Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a :Any = GPTNeoXModel(_lowerCamelCase ) original_model.to(_lowerCamelCase ) original_model.eval() a :Dict = original_model(_lowerCamelCase ).last_hidden_state a :Optional[int] = original_model(_lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a :str = {"type": scaling_type, "factor": 10.0} a :Optional[int] = GPTNeoXModel(_lowerCamelCase ) scaled_model.to(_lowerCamelCase ) scaled_model.eval() a :List[Any] = scaled_model(_lowerCamelCase ).last_hidden_state a :Tuple = scaled_model(_lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) @require_torch class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: a :Any = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_lowerCamelCase ) a :Tuple = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(_lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 a :Optional[int] = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" a :Dict = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=20 ) a :int = tokenizer.batch_decode(_lowerCamelCase )[0] self.assertEqual(_lowerCamelCase , _lowerCamelCase )
370
import math def __lowerCamelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): """simple docstring""" return math.pow(UpperCAmelCase_ , 2 ) - a def __lowerCamelCase ( UpperCAmelCase_ : float ): """simple docstring""" return 2 * x def __lowerCamelCase ( UpperCAmelCase_ : float ): """simple docstring""" a :int = 2.0 while start <= a: a :int = math.pow(UpperCAmelCase_ , 2 ) return start def __lowerCamelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 9999 , UpperCAmelCase_ : float = 0.00000000000001 ): """simple docstring""" if a < 0: raise ValueError('''math domain error''' ) a :List[Any] = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): a :Optional[int] = value a :int = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
281
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": __UpperCAmelCase = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": __UpperCAmelCase = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): __UpperCAmelCase = f'''layers_{str(SCREAMING_SNAKE_CASE )}''' # Self-Attention __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __UpperCAmelCase = flax_model.params['''encoder''']['''block'''][str(SCREAMING_SNAKE_CASE )]['''layer'''] __UpperCAmelCase = tax_attention_key __UpperCAmelCase = tax_attention_out __UpperCAmelCase = tax_attention_query __UpperCAmelCase = tax_attention_value __UpperCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = tax_global_layer_norm if split_mlp_wi: __UpperCAmelCase = tax_mlp_wi_a __UpperCAmelCase = tax_mlp_wi_a else: __UpperCAmelCase = tax_mlp_wi __UpperCAmelCase = tax_mlp_wo __UpperCAmelCase = tax_mlp_layer_norm __UpperCAmelCase = flax_model_encoder_layer_block # Only for layer 0: __UpperCAmelCase = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T __UpperCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T __UpperCAmelCase = tax_encoder_global_rel_embedding # Assigning __UpperCAmelCase = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] __UpperCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __UpperCAmelCase = f'''layers_{str(SCREAMING_SNAKE_CASE )}''' # Self-Attention __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] __UpperCAmelCase = tax_enc_dec_attention_module['''key''']['''kernel'''] __UpperCAmelCase = tax_enc_dec_attention_module['''out''']['''kernel'''] __UpperCAmelCase = tax_enc_dec_attention_module['''query''']['''kernel'''] __UpperCAmelCase = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __UpperCAmelCase = flax_model.params['''decoder''']['''block'''][str(SCREAMING_SNAKE_CASE )]['''layer'''] __UpperCAmelCase = tax_attention_key __UpperCAmelCase = tax_attention_out __UpperCAmelCase = tax_attention_query __UpperCAmelCase = tax_attention_value __UpperCAmelCase = tax_pre_attention_layer_norm __UpperCAmelCase = tax_enc_dec_attention_key __UpperCAmelCase = tax_enc_dec_attention_out __UpperCAmelCase = tax_enc_dec_attention_query __UpperCAmelCase = tax_enc_dec_attention_value __UpperCAmelCase = tax_cross_layer_norm if split_mlp_wi: __UpperCAmelCase = tax_mlp_wi_a __UpperCAmelCase = tax_mlp_wi_a else: __UpperCAmelCase = tax_mlp_wi __UpperCAmelCase = tax_mlp_wo __UpperCAmelCase = txa_mlp_layer_norm __UpperCAmelCase = flax_model_decoder_layer_block # Decoder Normalization __UpperCAmelCase = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] __UpperCAmelCase = txa_decoder_norm # Only for layer 0: __UpperCAmelCase = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T __UpperCAmelCase = tax_decoder_rel_embedding # Token Embeddings __UpperCAmelCase = tax_model['''target''']['''token_embedder''']['''embedding'''] __UpperCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __UpperCAmelCase = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(SCREAMING_SNAKE_CASE ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) A_ : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : int = logging.get_logger(__name__) snake_case : Union[str, Any] = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case_ (a__ ): UpperCAmelCase__ : Tuple = '''levit''' def __init__( self :int ,__snake_case :List[Any]=2_24 ,__snake_case :Union[str, Any]=3 ,__snake_case :int=3 ,__snake_case :Tuple=2 ,__snake_case :Optional[int]=1 ,__snake_case :List[str]=16 ,__snake_case :Tuple=[1_28, 2_56, 3_84] ,__snake_case :List[str]=[4, 8, 12] ,__snake_case :Optional[int]=[4, 4, 4] ,__snake_case :Union[str, Any]=[16, 16, 16] ,__snake_case :int=0 ,__snake_case :Union[str, Any]=[2, 2, 2] ,__snake_case :Optional[Any]=[2, 2, 2] ,__snake_case :Optional[Any]=0.02 ,**__snake_case :List[Any] ,) -> str: super().__init__(**_lowerCamelCase ) a__ = image_size a__ = num_channels a__ = kernel_size a__ = stride a__ = padding a__ = hidden_sizes a__ = num_attention_heads a__ = depths a__ = key_dim a__ = drop_path_rate a__ = patch_size a__ = attention_ratio a__ = mlp_ratio a__ = initializer_range a__ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case_ (a__ ): UpperCAmelCase__ : Any = version.parse('''1.11''' ) @property def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__( self :int ) -> Tuple: return 1E-4
354
snake_case : str = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def __lowercase ( __lowerCAmelCase : float ): assert type(__lowerCAmelCase ) in (int, float) and decimal == int(__lowerCAmelCase ) a__ = int(__lowerCAmelCase ) a__ = '' a__ = False if decimal < 0: a__ = True decimal *= -1 while decimal > 0: a__ , a__ = divmod(__lowerCAmelCase , 1_6 ) a__ = values[remainder] + hexadecimal a__ = '0x' + hexadecimal if negative: a__ = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
109
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowercase_ = logging.get_logger(__name__) @dataclass class __lowerCAmelCase : _a = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) _a = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) _a = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def A__ ( self ) -> int: '''simple docstring''' _lowercase =self.task_name.lower() class __lowerCAmelCase ( UpperCamelCase__ ): _a = """train""" _a = """dev""" _a = """test""" class __lowerCAmelCase ( UpperCamelCase__ ): _a = 42 _a = 42 _a = 42 def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = Split.train , lowerCAmelCase = None , ) -> Tuple: '''simple docstring''' warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , lowercase_ , ) _lowercase =args _lowercase =glue_processors[args.task_name]() _lowercase =glue_output_modes[args.task_name] if isinstance(lowercase_ , lowercase_ ): try: _lowercase =Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file _lowercase =os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) _lowercase =self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowercase , _lowercase =label_list[2], label_list[1] _lowercase =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowercase =cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: _lowercase =time.time() _lowercase =torch.load(lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: _lowercase =self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _lowercase =self.processor.get_test_examples(args.data_dir ) else: _lowercase =self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _lowercase =examples[:limit_length] _lowercase =glue_convert_examples_to_features( lowercase_ , lowercase_ , max_length=args.max_seq_length , label_list=lowercase_ , output_mode=self.output_mode , ) _lowercase =time.time() torch.save(self.features , lowercase_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> int: '''simple docstring''' return len(self.features ) def __getitem__( self , lowerCAmelCase ) -> InputFeatures: '''simple docstring''' return self.features[i] def A__ ( self ) -> List[Any]: '''simple docstring''' return self.label_list
205
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class UpperCAmelCase : __lowercase = 42 __lowercase = None @staticmethod def UpperCAmelCase_ ( )-> Dict: raise NotImplementedError def UpperCAmelCase_ ( self :List[Any] , lowercase_ :str , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> str: raise NotImplementedError def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :int )-> Any: raise NotImplementedError def UpperCAmelCase_ ( self :List[Any] )-> Optional[Any]: if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def UpperCAmelCase_ ( cls :int )-> Any: return F"`pip install {cls.pip_package or cls.name}`" class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """optuna""" @staticmethod def UpperCAmelCase_ ( )-> int: return is_optuna_available() def UpperCAmelCase_ ( self :List[str] , lowercase_ :str , lowercase_ :int , lowercase_ :str , **lowercase_ :List[Any] )-> Tuple: return run_hp_search_optuna(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :str , lowercase_ :Optional[int] )-> Optional[Any]: return default_hp_space_optuna(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """ray""" __lowercase = """'ray[tune]'""" @staticmethod def UpperCAmelCase_ ( )-> str: return is_ray_available() def UpperCAmelCase_ ( self :int , lowercase_ :Dict , lowercase_ :int , lowercase_ :str , **lowercase_ :List[str] )-> int: return run_hp_search_ray(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Dict )-> int: return default_hp_space_ray(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """sigopt""" @staticmethod def UpperCAmelCase_ ( )-> Union[str, Any]: return is_sigopt_available() def UpperCAmelCase_ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> Dict: return run_hp_search_sigopt(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Optional[int] )-> List[str]: return default_hp_space_sigopt(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """wandb""" @staticmethod def UpperCAmelCase_ ( )-> List[str]: return is_wandb_available() def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> List[str]: return run_hp_search_wandb(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :str )-> Dict: return default_hp_space_wandb(lowercase_ ) __lowerCAmelCase : int ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase ( ): A__ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_lowerCamelCase ) > 0: A__ = available_backends[0].name if len(_lowerCamelCase ) > 1: logger.info( F"{len(_lowerCamelCase )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
237
0
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
1
'''simple docstring''' import random def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = num - 1 __SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: __SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): __SCREAMING_SNAKE_CASE = random.randrange(2 , num - 1 ) __SCREAMING_SNAKE_CASE = pow(a__ , a__ , a__ ) if v != 1: __SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: __SCREAMING_SNAKE_CASE = i + 1 __SCREAMING_SNAKE_CASE = (v**2) % num return True def a__ ( a__ ): """simple docstring""" if num < 2: return False __SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(a__ ) def a__ ( a__ = 10_24 ): """simple docstring""" while True: __SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(a__ ): return num if __name__ == "__main__": UpperCAmelCase : Tuple = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
267
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple , **__SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) __SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
267
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> float: '''simple docstring''' def get_matched_characters(_UpperCamelCase : str , _UpperCamelCase : str ) -> str: UpperCamelCase__ = [] UpperCamelCase__ = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCamelCase__ = int(max(0 , i - limit ) ) UpperCamelCase__ = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCamelCase ) UpperCamelCase__ = F'{_stra[0:_stra.index(_UpperCamelCase )]} {_stra[_stra.index(_UpperCamelCase ) + 1:]}' return "".join(_UpperCamelCase ) # matching characters UpperCamelCase__ = get_matched_characters(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = get_matched_characters(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = len(_UpperCamelCase ) # transposition UpperCamelCase__ = ( len([(ca, ca) for ca, ca in zip(_UpperCamelCase , _UpperCamelCase ) if ca != ca] ) // 2 ) if not match_count: UpperCamelCase__ = 0.0 else: UpperCamelCase__ = ( 1 / 3 * ( match_count / len(_UpperCamelCase ) + match_count / len(_UpperCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCamelCase__ = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
31
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
1
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ :Optional[int] = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :List[str] = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys A_ :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
245
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _a = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def __A ( __lowerCAmelCase = "mumbai" )-> Generator[tuple[str, str], None, None]: """simple docstring""" _UpperCAmelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): _UpperCAmelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() _UpperCAmelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
39
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ : Any = {'UserAgent': UserAgent().random} def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] ) -> dict: """simple docstring""" a_ : Tuple = script.contents[0] a_ : int = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: a_ : Tuple = F"""https://www.instagram.com/{username}/""" a_ : Optional[Any] = self.get_json() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> dict: a_ : Any = requests.get(self.url , headers=SCREAMING_SNAKE_CASE__ ).text a_ : Dict = BeautifulSoup(SCREAMING_SNAKE_CASE__ , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ) -> str: return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return self.user_data["username"] @property def SCREAMING_SNAKE_CASE ( self : str ) -> str: return self.user_data["full_name"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["biography"] @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["business_email"] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["external_url"] @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_followed_by"]["count"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self.user_data["edge_follow"]["count"] @property def SCREAMING_SNAKE_CASE ( self : str ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> bool: return self.user_data["is_verified"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> bool: return self.user_data["is_private"] def SCREAMING_SNAKE_CASE_ ( __A : str = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions a_ : int = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Union[str, Any] = InstagramUser('github') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
32
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : List[str] ) -> List[Any]: __snake_case = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __snake_case = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __snake_case = f"""{src_lang}-{tgt_lang}""" __snake_case = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(snake_case_ , exist_ok=snake_case_ ) __snake_case = os.path.join(snake_case_ , '''README.md''' ) print(f"""Generating {path}""" ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(snake_case_ ) # make sure we are under the root of the project snake_case_ = Path(__file__).resolve().parent.parent.parent snake_case_ = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: snake_case_ , snake_case_ , snake_case_ = model_name.split('-') snake_case_ = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
238
def lowerCamelCase__ ( snake_case_ : int = 1000 ) -> int: __snake_case = 2**power __snake_case = str(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = 0 for i in list_num: sum_of_num += int(snake_case_ ) return sum_of_num if __name__ == "__main__": snake_case_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case_ = solution(power) print('Sum of the digits is: ', result)
238
1
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" while second != 0: A : int = first & second first ^= second A : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_:int = int(input("""Enter the first number: """).strip()) SCREAMING_SNAKE_CASE_:Optional[int] = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
116
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_:str = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Union[str, Any] = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Any = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
116
1
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase : '''simple docstring''' pass
370
'''simple docstring''' def __UpperCamelCase ( ): lowercase__ : Any = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowercase__ : Any = 6 lowercase__ : Optional[Any] = 1 lowercase__ : int = 1901 lowercase__ : List[str] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowercase__ : Any = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] if month > 12: year += 1 lowercase__ : Dict = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
214
0
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = ['keras_nlp'] def __init__( self : str , *A : Dict , **A : Dict ): requires_backends(self , ["keras_nlp"] )
202
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : List[Any] ): _UpperCAmelCase : List[str] = tempfile.mkdtemp() # fmt: off _UpperCAmelCase : Union[str, Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : List[Any] = dict(zip(A , range(len(A ) ) ) ) _UpperCAmelCase : Union[str, Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _UpperCAmelCase : Optional[int] = {"unk_token": "<unk>"} _UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(A ) ) _UpperCAmelCase : List[str] = { "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _UpperCAmelCase : Any = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A , A ) def snake_case_ ( self : List[Any] , **A : Union[str, Any] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : int , **A : Any ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : List[str] , **A : Optional[Any] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : str ): _UpperCAmelCase : int = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _UpperCAmelCase : Dict = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : List[str] ): _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Dict = self.get_rust_tokenizer() _UpperCAmelCase : int = self.get_image_processor() _UpperCAmelCase : List[Any] = CLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) _UpperCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[str] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase : Any = self.get_image_processor(do_normalize=A , padding_value=1.0 ) _UpperCAmelCase : Any = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : str = self.get_image_processor() _UpperCAmelCase : List[str] = self.get_tokenizer() _UpperCAmelCase : Any = CLIPProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : Dict = self.prepare_image_inputs() _UpperCAmelCase : Optional[int] = image_processor(A , return_tensors="np" ) _UpperCAmelCase : Any = processor(images=A , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case_ ( self : str ): _UpperCAmelCase : Tuple = self.get_image_processor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : List[str] = CLIPProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : Optional[int] = "lower newer" _UpperCAmelCase : Union[str, Any] = processor(text=A ) _UpperCAmelCase : Optional[int] = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = self.get_image_processor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : str = CLIPProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : Tuple = "lower newer" _UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() _UpperCAmelCase : str = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def snake_case_ ( self : int ): _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : Dict = self.get_tokenizer() _UpperCAmelCase : List[Any] = CLIPProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : List[str] = processor.batch_decode(A ) _UpperCAmelCase : int = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Optional[Any] = self.get_image_processor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : int = CLIPProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : str = "lower newer" _UpperCAmelCase : int = self.prepare_image_inputs() _UpperCAmelCase : Optional[Any] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
202
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Any , __lowercase : Optional[int] , __lowercase : List[str]=7 , __lowercase : Dict=3 , __lowercase : Dict=18 , __lowercase : Union[str, Any]=30 , __lowercase : Optional[Any]=4_00 , __lowercase : Dict=True , __lowercase : Dict=None , __lowercase : Any=True , ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] =size if size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE__ : List[Any] =parent SCREAMING_SNAKE_CASE__ : List[str] =batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_channels SCREAMING_SNAKE_CASE__ : List[Any] =image_size SCREAMING_SNAKE_CASE__ : Optional[Any] =min_resolution SCREAMING_SNAKE_CASE__ : Dict =max_resolution SCREAMING_SNAKE_CASE__ : List[Any] =do_resize SCREAMING_SNAKE_CASE__ : Dict =size SCREAMING_SNAKE_CASE__ : Dict =apply_ocr def __magic_name__ ( self : int ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __magic_name__ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ : Union[str, Any] =LayoutLMvaImageProcessingTester(self ) @property def __magic_name__ ( self : Optional[Any] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''apply_ocr''' ) ) def __magic_name__ ( self : Any ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE__ : str =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __magic_name__ ( self : Dict ) -> Any: pass def __magic_name__ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : List[str] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : Any =image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(encoding.boxes , __SCREAMING_SNAKE_CASE ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] =image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Tuple =image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Dict ) -> int: # Initialize image_processing SCREAMING_SNAKE_CASE__ : Any =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Any =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Dict =image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Dict ) -> Any: # with apply_OCR = True SCREAMING_SNAKE_CASE__ : List[Any] =LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE__ : Any =load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : int =Image.open(ds[0]['''file'''] ).convert('''RGB''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE__ : Tuple =[['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 SCREAMING_SNAKE_CASE__ : Tuple =[[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertListEqual(encoding.boxes , __SCREAMING_SNAKE_CASE ) # with apply_OCR = False SCREAMING_SNAKE_CASE__ : Tuple =LayoutLMvaImageProcessor(apply_ocr=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ : Optional[Any] =image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
152
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _SCREAMING_SNAKE_CASE : List[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class a ( nn.Module ): def __init__( self : int , __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: super().__init__() lowerCamelCase_ = torchvision.models.resnetaaa(pretrained=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = list(model.children() )[:-2] lowerCamelCase_ = nn.Sequential(*__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Any: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowerCamelCase_ = self.pool(self.model(__SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = torch.flatten(__SCREAMING_SNAKE_CASE , start_dim=2 ) lowerCamelCase_ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class a ( __snake_case ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: lowerCamelCase_ = [json.loads(__SCREAMING_SNAKE_CASE ) for l in open(__SCREAMING_SNAKE_CASE )] lowerCamelCase_ = os.path.dirname(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer lowerCamelCase_ = labels lowerCamelCase_ = len(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = max_seq_length lowerCamelCase_ = transforms def __len__( self : Any ) -> Any: return len(self.data ) def __getitem__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: lowerCamelCase_ = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = sentence[0], sentence[1:-1], sentence[-1] lowerCamelCase_ = sentence[: self.max_seq_length] lowerCamelCase_ = torch.zeros(self.n_classes ) lowerCamelCase_ = 1 lowerCamelCase_ = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) lowerCamelCase_ = self.transforms(__SCREAMING_SNAKE_CASE ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCamelCase ( self : Dict ) -> Dict: lowerCamelCase_ = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] ) -> str: lowerCamelCase_ = [len(row['sentence'] ) for row in batch] lowerCamelCase_ , lowerCamelCase_ = len(_lowerCamelCase ), max(_lowerCamelCase ) lowerCamelCase_ = torch.zeros(_lowerCamelCase , _lowerCamelCase , dtype=torch.long ) lowerCamelCase_ = torch.zeros(_lowerCamelCase , _lowerCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowerCamelCase , _lowerCamelCase ) ): lowerCamelCase_ = input_row['sentence'] lowerCamelCase_ = 1 lowerCamelCase_ = torch.stack([row['image'] for row in batch] ) lowerCamelCase_ = torch.stack([row['label'] for row in batch] ) lowerCamelCase_ = torch.stack([row['image_start_token'] for row in batch] ) lowerCamelCase_ = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase__ ( ) -> List[str]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase__ ( ) -> Union[str, Any]: return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
183
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" for i in range(0, __snake_case ): for _ in range(0, n - i - 1 ): # printing spaces print(''' ''', end='''''' ) for _ in range(0, i + 1 ): # printing stars print('''* ''', end='''''' ) print() def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for i in range(__snake_case, 0, -1 ): for _ in range(__snake_case, 0, -1 ): # printing stars print('''* ''', end='''''' ) print() for _ in range(n - i + 1, 0, -1 ): # printing spaces print(''' ''', end='''''' ) def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(__snake_case ) # upper half reverse_floyd(__snake_case ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") _a = 1 while K: _a = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) _a = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _a = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> int: '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 while repunit: UpperCAmelCase_ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCAmelCase_ ( snake_case_ : List[Any] = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"{solution() = }")
1
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class UpperCAmelCase_ ( _a ): '''simple docstring''' _lowercase : List[Any] = """data2vec-text""" def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _a ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
368
'''simple docstring''' import logging from transformers import PretrainedConfig _lowercase = logging.getLogger(__name__) _lowercase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = '''bertabs''' def __init__( self , _lowercase=30_522 , _lowercase=512 , _lowercase=6 , _lowercase=512 , _lowercase=8 , _lowercase=512 , _lowercase=0.2 , _lowercase=6 , _lowercase=768 , _lowercase=8 , _lowercase=2_048 , _lowercase=0.2 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_pos _lowerCAmelCase = enc_layers _lowerCAmelCase = enc_hidden_size _lowerCAmelCase = enc_heads _lowerCAmelCase = enc_ff_size _lowerCAmelCase = enc_dropout _lowerCAmelCase = dec_layers _lowerCAmelCase = dec_hidden_size _lowerCAmelCase = dec_heads _lowerCAmelCase = dec_ff_size _lowerCAmelCase = dec_dropout
229
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] __UpperCamelCase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = {f'''funnel-transformer/{name}''': 512 for name in _model_names} __UpperCamelCase = {f'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : str = FunnelTokenizer SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : int = 2 def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<sep>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<cls>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__="##" , **lowerCAmelCase__ , ) -> Tuple: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , clean_text=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , wordpieces_prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase__ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = do_lower_case def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
113
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: SCREAMING_SNAKE_CASE = len(self ) if size == len(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self , lowerCAmelCase__ ) -> Vector: SCREAMING_SNAKE_CASE = len(self ) if size == len(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): SCREAMING_SNAKE_CASE = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = len(self ) SCREAMING_SNAKE_CASE = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception('invalid operand!' ) def __A ( self ) -> Vector: return Vector(self.__components ) def __A ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) SCREAMING_SNAKE_CASE = value def __A ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) SCREAMING_SNAKE_CASE = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: SCREAMING_SNAKE_CASE = self * other SCREAMING_SNAKE_CASE = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> Vector: assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return Vector([0] * dimension ) def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Vector: assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and (isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )) SCREAMING_SNAKE_CASE = [0] * dimension SCREAMING_SNAKE_CASE = 1 return Vector(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Vector , SCREAMING_SNAKE_CASE_ : Vector ) -> Vector: assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and (isinstance(SCREAMING_SNAKE_CASE_ , (int, float) )) ) return x * scalar + y def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Vector: random.seed(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = [random.randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )] return Vector(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = matrix SCREAMING_SNAKE_CASE = w SCREAMING_SNAKE_CASE = h def __str__( self ) -> str: SCREAMING_SNAKE_CASE = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): SCREAMING_SNAKE_CASE = [] for i in range(self.__height ): SCREAMING_SNAKE_CASE = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): SCREAMING_SNAKE_CASE = [] for i in range(self.__height ): SCREAMING_SNAKE_CASE = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: SCREAMING_SNAKE_CASE = zero_vector(self.__height ) for i in range(self.__height ): SCREAMING_SNAKE_CASE = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar SCREAMING_SNAKE_CASE = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __A ( self ) -> int: return self.__height def __A ( self ) -> int: return self.__width def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: SCREAMING_SNAKE_CASE = value else: raise Exception('change_component: indices out of bounds' ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) SCREAMING_SNAKE_CASE = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): SCREAMING_SNAKE_CASE = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception('Indices out of bounds' ) def __A ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: SCREAMING_SNAKE_CASE = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> Matrix: SCREAMING_SNAKE_CASE = [[0] * n for _ in range(SCREAMING_SNAKE_CASE_ )] return Matrix(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Matrix: random.seed(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = [ [random.randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ ) ] return Matrix(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
113
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] lowercase = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class __lowercase ( A ): '''simple docstring''' _A : int = '''align_text_model''' def __init__( self : Tuple , _a : Tuple=30_522 , _a : str=768 , _a : Tuple=12 , _a : Dict=12 , _a : Any=3_072 , _a : str="gelu" , _a : int=0.1 , _a : Optional[Any]=0.1 , _a : int=512 , _a : List[str]=2 , _a : Any=0.02 , _a : Dict=1E-12 , _a : Tuple=0 , _a : Optional[Any]="absolute" , _a : str=True , **_a : Union[str, Any] , ): super().__init__(**_a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = pad_token_id @classmethod def A_ ( cls : List[str] , _a : Union[str, os.PathLike] , **_a : Any ): cls._set_token_in_kwargs(_a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCamelCase__ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class __lowercase ( A ): '''simple docstring''' _A : List[Any] = '''align_vision_model''' def __init__( self : List[str] , _a : int = 3 , _a : int = 600 , _a : float = 2.0 , _a : float = 3.1 , _a : int = 8 , _a : List[int] = [3, 3, 5, 3, 5, 5, 3] , _a : List[int] = [32, 16, 24, 40, 80, 112, 192] , _a : List[int] = [16, 24, 40, 80, 112, 192, 320] , _a : List[int] = [] , _a : List[int] = [1, 2, 2, 2, 1, 2, 1] , _a : List[int] = [1, 2, 2, 3, 3, 4, 1] , _a : List[int] = [1, 6, 6, 6, 6, 6, 6] , _a : float = 0.25 , _a : str = "swish" , _a : int = 2_560 , _a : str = "mean" , _a : float = 0.02 , _a : float = 0.001 , _a : float = 0.99 , _a : float = 0.2 , **_a : List[Any] , ): super().__init__(**_a ) UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = width_coefficient UpperCamelCase__ = depth_coefficient UpperCamelCase__ = depth_divisor UpperCamelCase__ = kernel_sizes UpperCamelCase__ = in_channels UpperCamelCase__ = out_channels UpperCamelCase__ = depthwise_padding UpperCamelCase__ = strides UpperCamelCase__ = num_block_repeats UpperCamelCase__ = expand_ratios UpperCamelCase__ = squeeze_expansion_ratio UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dim UpperCamelCase__ = pooling_type UpperCamelCase__ = initializer_range UpperCamelCase__ = batch_norm_eps UpperCamelCase__ = batch_norm_momentum UpperCamelCase__ = drop_connect_rate UpperCamelCase__ = sum(_a ) * 4 @classmethod def A_ ( cls : Tuple , _a : Union[str, os.PathLike] , **_a : Union[str, Any] ): cls._set_token_in_kwargs(_a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCamelCase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class __lowercase ( A ): '''simple docstring''' _A : List[Any] = '''align''' _A : Optional[int] = True def __init__( self : Optional[int] , _a : Tuple=None , _a : int=None , _a : Any=640 , _a : Optional[Any]=1.0 , _a : Tuple=0.02 , **_a : List[Any] , ): super().__init__(**_a ) if text_config is None: UpperCamelCase__ = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: UpperCamelCase__ = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) UpperCamelCase__ = AlignTextConfig(**_a ) UpperCamelCase__ = AlignVisionConfig(**_a ) UpperCamelCase__ = projection_dim UpperCamelCase__ = temperature_init_value UpperCamelCase__ = initializer_range @classmethod def A_ ( cls : Optional[int] , _a : AlignTextConfig , _a : AlignVisionConfig , **_a : Optional[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def A_ ( self : Tuple ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.text_config.to_dict() UpperCamelCase__ = self.vision_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
35
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: if isinstance(_lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class UpperCAmelCase_ : """simple docstring""" def lowerCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] ): pass def lowerCamelCase ( self : Optional[int] ): pass def lowerCamelCase ( self : Optional[Any] ): pass def lowerCamelCase ( self : Dict , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Optional[Any]=None , **snake_case_ : List[Any] ): snake_case__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case_ , snake_case_ ) snake_case__ : Optional[Any] = TFVisionTextDualEncoderModel(snake_case_ ) snake_case__ : Tuple = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : List[Any]=None , **snake_case_ : Union[str, Any] ): snake_case__ , snake_case__ : List[str] = self.get_vision_text_model(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) snake_case__ : int = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : str=None , **snake_case_ : Union[str, Any] ): snake_case__ , snake_case__ : Dict = self.get_vision_text_model(snake_case_ , snake_case_ ) snake_case__ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} snake_case__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case_ ) snake_case__ : Dict = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase ( self : Any , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : int=None , **snake_case_ : str ): snake_case__ , snake_case__ : Union[str, Any] = self.get_vision_text_model(snake_case_ , snake_case_ ) snake_case__ : Any = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) snake_case__ : int = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) snake_case__ : int = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) snake_case__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ ) snake_case__ : Dict = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) snake_case__ : Tuple = after_output[0].numpy() snake_case__ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) def lowerCamelCase ( self : str , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[str]=None , **snake_case_ : List[str] ): snake_case__ , snake_case__ : Optional[int] = self.get_vision_text_model(snake_case_ , snake_case_ ) snake_case__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) snake_case__ : int = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) snake_case__ : List[Any] = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Optional[Any] = to_atuple(vision_model.config.image_size ) snake_case__ : str = to_atuple(vision_model.config.patch_size ) snake_case__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case__ : Union[str, Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) snake_case__ : Any = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase ( self : str , snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : float ): snake_case__ : List[Any] = np.abs((a - b) ).max() self.assertLessEqual(snake_case_ , snake_case_ , f"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCamelCase ( self : Any ): snake_case__ : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**snake_case_ ) def lowerCamelCase ( self : str ): snake_case__ : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**snake_case_ ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**snake_case_ ) def lowerCamelCase ( self : int ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**snake_case_ ) @slow def lowerCamelCase ( self : str ): snake_case__ , snake_case__ : Any = self.get_pretrained_model_and_inputs() snake_case__ : Union[str, Any] = model_a(**snake_case_ ) snake_case__ : Union[str, Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(snake_case_ ) snake_case__ : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ ) snake_case__ : int = model_a(**snake_case_ ) snake_case__ : Dict = after_outputs[0].numpy() snake_case__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) @require_tf class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Optional[int] ): snake_case__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) snake_case__ : Optional[int] = 13 snake_case__ : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case__ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case__ : Any = random_attention_mask([batch_size, 4] ) snake_case__ : Tuple = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : Optional[int] ): snake_case__ : Union[str, Any] = TFViTModel(snake_case_ , name="""vision_model""" ) snake_case__ : Any = TFBertModel(snake_case_ , name="""text_model""" ) return vision_model, text_model def lowerCamelCase ( self : str ): snake_case__ : Union[str, Any] = TFViTModelTester(self ) snake_case__ : str = TFBertModelTester(self ) snake_case__ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() snake_case__ : Any = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Optional[Any] = vision_config_and_inputs ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Dict ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. snake_case__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) snake_case__ : Any = 13 snake_case__ : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case__ : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case__ : Optional[Any] = random_attention_mask([batch_size, 4] ) snake_case__ : Dict = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase ( self : List[str] , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Optional[int]=None , **snake_case_ : Optional[Any] ): snake_case__ , snake_case__ : Any = self.get_vision_text_model(snake_case_ , snake_case_ ) snake_case__ : Tuple = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) snake_case__ : Union[str, Any] = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) snake_case__ : str = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) snake_case__ : Tuple = to_atuple(vision_model.config.image_size ) snake_case__ : List[Any] = to_atuple(vision_model.config.patch_size ) snake_case__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case__ : Dict = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) snake_case__ : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase ( self : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[int] ): snake_case__ : Union[str, Any] = TFDeiTModel(snake_case_ , name="""vision_model""" ) snake_case__ : Tuple = TFRobertaModel(snake_case_ , name="""text_model""" ) return vision_model, text_model def lowerCamelCase ( self : List[str] ): snake_case__ : int = TFDeiTModelTester(self ) snake_case__ : Union[str, Any] = TFRobertaModelTester(self ) snake_case__ : Optional[Any] = vit_model_tester.prepare_config_and_inputs() snake_case__ : str = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = vision_config_and_inputs ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Dict = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) snake_case__ : Tuple = 13 snake_case__ : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case__ : str = random_attention_mask([batch_size, 4] ) snake_case__ : Tuple = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : int ): snake_case__ : List[str] = TFCLIPVisionModel(snake_case_ , name="""vision_model""" ) snake_case__ : Optional[Any] = TFBertModel(snake_case_ , name="""text_model""" ) return vision_model, text_model def lowerCamelCase ( self : Dict ): snake_case__ : int = TFCLIPVisionModelTester(self ) snake_case__ : Optional[int] = TFBertModelTester(self ) snake_case__ : str = clip_model_tester.prepare_config_and_inputs() snake_case__ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ : List[Any] = vision_config_and_inputs ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=snake_case_ ) snake_case__ : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) snake_case__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case__ : List[str] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=snake_case_ , padding=snake_case_ , return_tensors="""np""" ) snake_case__ : int = model(**snake_case_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) snake_case__ : Optional[int] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , snake_case_ , atol=1E-3 ) )
35
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
0
'''simple docstring''' from timeit import timeit def a ( __a ) -> int: '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCamelCase__ :List[Any] = 0 while number: number &= number - 1 result += 1 return result def a ( __a ) -> int: '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCamelCase__ :Any = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a ( ) -> None: '''simple docstring''' def do_benchmark(__a ) -> None: UpperCamelCase__ :Tuple = '''import __main__ as z''' print(f'''Benchmark when {number = }:''' ) print(f'''{get_set_bits_count_using_modulo_operator(__a ) = }''' ) UpperCamelCase__ :Optional[Any] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__a ) print(f'''timeit() runs in {timing} seconds''' ) print(f'''{get_set_bits_count_using_brian_kernighans_algorithm(__a ) = }''' ) UpperCamelCase__ :List[Any] = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__a , ) print(f'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(__a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
219
'''simple docstring''' import socket def a ( ) -> Dict: '''simple docstring''' UpperCamelCase__ :int = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCamelCase__ :List[Any] = socket.gethostname() UpperCamelCase__ :List[str] = 12312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: UpperCamelCase__ :str = sock.recv(1024 ) if not data: break out_file.write(__a ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
219
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : Any = TransfoXLTokenizer __a : Optional[Any] = False __a : str = False def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __lowercase = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' __lowercase = '''<unk> UNwanted , running''' __lowercase = '''<unk> unwanted, running''' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __lowercase = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __lowercase = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __lowercase = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
210
import requests def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = {'''Content-Type''': '''application/json'''} __lowercase = requests.post(lowercase , json={'''text''': message_body} , headers=lowercase ) if response.status_code != 200: __lowercase = ( '''Request to slack returned an error ''' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
210
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration UpperCAmelCase__ = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def A ( _UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' _UpperCAmelCase = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def A ( _UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = list(s_dict.keys() ) for key in keys: _UpperCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: _UpperCAmelCase = new_key.replace(_UpperCAmelCase , _UpperCAmelCase ) print(F"{key} -> {new_key}" ) _UpperCAmelCase = s_dict.pop(_UpperCAmelCase ) return s_dict def A ( _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) _UpperCAmelCase = emb.weight.data return lin_layer def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> bytes: '''simple docstring''' os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _UpperCAmelCase = os.path.basename(_UpperCAmelCase ) _UpperCAmelCase = url.split('/' )[-2] _UpperCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.exists(_UpperCAmelCase ) and not os.path.isfile(_UpperCAmelCase ): raise RuntimeError(F"{download_target} exists and is not a regular file" ) if os.path.isfile(_UpperCAmelCase ): _UpperCAmelCase = open(_UpperCAmelCase , 'rb' ).read() if hashlib.shaaaa(_UpperCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(_UpperCAmelCase ) as source, open(_UpperCAmelCase , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=80 , unit='iB' , unit_scale=_UpperCAmelCase , unit_divisor=1_024 ) as loop: while True: _UpperCAmelCase = source.read(8_192 ) if not buffer: break output.write(_UpperCAmelCase ) loop.update(len(_UpperCAmelCase ) ) _UpperCAmelCase = open(_UpperCAmelCase , 'rb' ).read() if hashlib.shaaaa(_UpperCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' if ".pt" not in checkpoint_path: _UpperCAmelCase = _download(_MODELS[checkpoint_path] ) else: _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) _UpperCAmelCase = original_checkpoint['dims'] _UpperCAmelCase = original_checkpoint['model_state_dict'] _UpperCAmelCase = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(_UpperCAmelCase ) rename_keys(_UpperCAmelCase ) _UpperCAmelCase = True _UpperCAmelCase = state_dict['decoder.layers.0.fc1.weight'].shape[0] _UpperCAmelCase = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=_UpperCAmelCase , decoder_ffn_dim=_UpperCAmelCase , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) _UpperCAmelCase = WhisperForConditionalGeneration(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0 and not set(_UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F" but all the following weights are missing {missing}" ) if tie_embeds: _UpperCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCAmelCase = proj_out_weights model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
339
1
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def SCREAMING_SNAKE_CASE ( self , __A=0 ) -> Dict: a =floats_tensor((1, 3, 128, 128) , rng=random.Random(__A ) ) a =torch.manual_seed(__A ) a ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__A ) a =self.get_dummy_inputs() a =pipe(**__A ).images a =image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) a =np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self ) -> str: a =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) a =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__A ) pipe.set_progress_bar_config(disable=__A ) a =self.get_dummy_inputs() a =pipe(**__A ).images a =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a =np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) a =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) a =self.get_dummy_inputs() a =pipe(**__A ).images a =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a =np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self ) -> Any: a =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) a =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) a =self.get_dummy_inputs() a =pipe(**__A ).images a =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a =np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) a =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) a =self.get_dummy_inputs() a =pipe(**__A ).images a =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a =np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =ort.SessionOptions() a =False return options def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) a =init_image.resize((128, 128) ) # using the PNDM scheduler by default a =OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) a ='''A fantasy landscape, trending on artstation''' a =torch.manual_seed(0 ) a =pipe( prompt=__A , image=__A , guidance_scale=7.5 , num_inference_steps=10 , generator=__A , output_type='''np''' , ) a =output.images a =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) a =np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) a =init_image.resize((128, 128) ) a =LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) a =OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) a ='''A fantasy landscape, trending on artstation''' a =torch.manual_seed(0 ) a =pipe( prompt=__A , image=__A , guidance_scale=7.5 , num_inference_steps=20 , generator=__A , output_type='''np''' , ) a =output.images a =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) a =np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
351
"""simple docstring""" from __future__ import annotations def _A ( lowercase , lowercase , lowercase , ): """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
215
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""Input value must be a 'int' type""" ) return bin(_UpperCAmelCase ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
276
'''simple docstring''' A__: Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__: Any = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__: int = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> str: assert len(str(_UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _a : List[str] =year // 100 _a : List[str] =(5 * (century % 4) + 2) % 7 _a : Optional[int] =year % 100 _a : Any =centurian % 12 _a : int =( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _a : Optional[Any] =( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _a : str =(dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
276
1
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowercase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) lowercase_ = "sshleifer/student_marian_en_ro_6_1" lowercase_ = "sshleifer/tiny-mbart" @require_torch class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : List[Any],lowercase_ : List[str]=False,lowercase_ : Any=None,lowercase_ : Union[str, Any]=True,lowercase_ : List[str]=True,lowercase_ : Optional[Any]=True,lowercase_ : Dict=True,)-> Optional[int]: '''simple docstring''' A__ = self.run_trainer( eval_steps=1,max_len=1_2,model_name=lowercase_,num_train_epochs=1,distributed=lowercase_,extra_args_str=lowercase_,predict_with_generate=lowercase_,do_train=lowercase_,do_eval=lowercase_,do_predict=lowercase_,) A__ = TrainerState.load_from_json(os.path.join(lowercase_,'trainer_state.json' ) ).log_history if not do_eval: return A__ = [log for log in logs if 'eval_loss' in log.keys()] A__ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats A__ = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'],lowercase_ ) assert not math.isnan(float(last_step_stats['eval_loss'] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def snake_case__ ( self : int )-> Any: '''simple docstring''' self.run_seqaseq_quick() @require_torch_multi_gpu def snake_case__ ( self : Dict )-> Any: '''simple docstring''' self.run_seqaseq_quick(distributed=lowercase_ ) @require_torch_multi_gpu def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' self.run_seqaseq_quick(distributed=lowercase_ ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def snake_case__ ( self : List[Any] )-> Optional[Any]: '''simple docstring''' self.run_seqaseq_quick(distributed=lowercase_,extra_args_str='--sharded_ddp simple' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def snake_case__ ( self : Tuple )-> int: '''simple docstring''' self.run_seqaseq_quick(distributed=lowercase_,extra_args_str='--sharded_ddp simple --fp16' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def snake_case__ ( self : List[Any] )-> List[Any]: '''simple docstring''' self.run_seqaseq_quick(distributed=lowercase_,extra_args_str='--sharded_ddp zero_dp_2',predict_with_generate=lowercase_ ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def snake_case__ ( self : List[Any] )-> Optional[Any]: '''simple docstring''' self.run_seqaseq_quick( distributed=lowercase_,extra_args_str='--sharded_ddp zero_dp_2 --fp16',predict_with_generate=lowercase_ ) @require_apex @require_torch_gpu def snake_case__ ( self : Union[str, Any] )-> List[str]: '''simple docstring''' self.run_seqaseq_quick(distributed=lowercase_,extra_args_str='--fp16 --fp16_backend=apex' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=lowercase_,extra_args_str='--fp16 --fp16_backend=apex' ) @parameterized.expand(['base', 'low', 'high', 'mixed'] ) @require_torch_multi_gpu def snake_case__ ( self : List[Any],lowercase_ : List[Any] )-> List[str]: '''simple docstring''' A__ = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } A__ = experiments[experiment_id] A__ = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} A__ = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**lowercase_,extra_args_str=data['extra_args_str'] ) A__ = len(re.findall(lowercase_,cl.err ) ) self.assertEqual(lowercase_,data['n_matches'] ) @slow def snake_case__ ( self : Tuple )-> Union[str, Any]: '''simple docstring''' A__ = self.run_trainer( eval_steps=2,max_len=1_2_8,model_name=lowercase_,learning_rate=3E-4,num_train_epochs=1_0,distributed=lowercase_,) # Check metrics A__ = TrainerState.load_from_json(os.path.join(lowercase_,'trainer_state.json' ) ).log_history A__ = [log for log in logs if 'eval_loss' in log.keys()] A__ = eval_metrics[0] A__ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'],lowercase_ ) # test if do_predict saves generations and metrics A__ = os.listdir(lowercase_ ) A__ = {os.path.basename(lowercase_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def snake_case__ ( self : List[str] )-> Optional[int]: '''simple docstring''' from transformers.training_args import OptimizerNames def train_and_return_metrics(lowercase_ : str ) -> Tuple[int, float]: A__ = '--skip_memory_metrics 0' A__ = self.run_trainer( max_len=1_2_8,model_name=lowercase_,learning_rate=3E-4,num_train_epochs=1,optim=lowercase_,distributed=lowercase_,extra_args_str=lowercase_,do_eval=lowercase_,do_predict=lowercase_,n_gpus_to_use=1,) # Check metrics A__ = TrainerState.load_from_json(Path(lowercase_,'trainer_state.json' ) ).log_history A__ = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**2_0 ) A__ = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**2_0 ) A__ = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss A__ , A__ , A__ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) A__ , A__ , A__ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) A__ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb A__ = gpu_peak_mem_orig + gpu_alloc_mem_orig A__ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb A__ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings A__ = 1_2_0 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( lowercase_,lowercase_,'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' F' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and' F' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB',) self.assertGreater( lowercase_,lowercase_,'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' F' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and' F' gpu_total_mem_bnb={gpu_total_mem_bnb}MB',) self.assertEqual( lowercase_,lowercase_,F'loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}' ) def snake_case__ ( self : Any,lowercase_ : int,lowercase_ : str,lowercase_ : int,lowercase_ : float = 3E-3,lowercase_ : str = "adafactor",lowercase_ : bool = False,lowercase_ : str = None,lowercase_ : int = 0,lowercase_ : bool = True,lowercase_ : bool = True,lowercase_ : bool = True,lowercase_ : bool = True,lowercase_ : int = None,)-> Optional[int]: '''simple docstring''' A__ = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' A__ = self.get_auto_remove_tmp_dir() A__ = F'\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(lowercase_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(lowercase_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '.split() A__ = F'\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(lowercase_ )}\n '.split() A__ = '\n --do_predict\n '.split() A__ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'--optim {optim}'.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: A__ = get_gpu_count() A__ = get_torch_dist_unique_port() A__ = F'\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '.split() A__ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase_,env=self.get_env() ) else: A__ = ['run_translation.py'] + args with patch.object(lowercase_,'argv',lowercase_ ): main() return output_dir
356
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
282
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = '''dpt''' def __init__( self : str ,A_ : Tuple=768 ,A_ : int=12 ,A_ : Optional[int]=12 ,A_ : Optional[int]=3072 ,A_ : List[str]="gelu" ,A_ : str=0.0 ,A_ : int=0.0 ,A_ : str=0.02 ,A_ : str=1e-12 ,A_ : str=384 ,A_ : Dict=16 ,A_ : Union[str, Any]=3 ,A_ : Dict=False ,A_ : Any=True ,A_ : Optional[int]=[2, 5, 8, 11] ,A_ : Optional[Any]="project" ,A_ : Tuple=[4, 2, 1, 0.5] ,A_ : int=[96, 192, 384, 768] ,A_ : int=256 ,A_ : str=-1 ,A_ : Optional[int]=False ,A_ : Optional[int]=True ,A_ : Union[str, Any]=0.4 ,A_ : Union[str, Any]=255 ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=[1, 1024, 24, 24] ,A_ : List[str]=[0, 1] ,A_ : List[Any]=None ,**A_ : Tuple ,) -> Union[str, Any]: super().__init__(**A_ ) A = hidden_size A = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): logger.info('Initializing the config with a `BiT` backbone.' ) A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): A = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) A = backbone_featmap_shape A = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: A = None A = None A = [] A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) A = readout_type A = reassemble_factors A = neck_hidden_sizes A = fusion_hidden_size A = head_in_index A = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = semantic_loss_ignore_index A = semantic_classifier_dropout def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A = self.backbone_config.to_dict() A = self.__class__.model_type return output
74
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowercase (SCREAMING_SNAKE_CASE_ : BertModel , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Dict: SCREAMING_SNAKE_CASE = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') SCREAMING_SNAKE_CASE = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE_ : str ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return F'bert/{name}' def create_tf_var(SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : tf.Session ): SCREAMING_SNAKE_CASE = tf.dtypes.as_dtype(tensor.dtype ) SCREAMING_SNAKE_CASE = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: SCREAMING_SNAKE_CASE = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): SCREAMING_SNAKE_CASE = torch_tensor.T SCREAMING_SNAKE_CASE = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = session.run(SCREAMING_SNAKE_CASE_ ) print(F'Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}' ) SCREAMING_SNAKE_CASE = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ) -> Any: SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory in which to save tensorflow model' ) SCREAMING_SNAKE_CASE = parser.parse_args(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
113
0
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins UpperCamelCase_ : Optional[Any] = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def __a ( _UpperCamelCase: Dict , _UpperCamelCase: Dict ) -> Optional[int]: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def __a ( _UpperCamelCase: List[str] ) -> Tuple: """simple docstring""" config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=A__ ) def __a ( _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[Any] ) -> Dict: """simple docstring""" _snake_case = tmp_path_factory.getbasetemp() / """cache""" _snake_case = test_hf_cache_home / """datasets""" _snake_case = test_hf_cache_home / """metrics""" _snake_case = test_hf_cache_home / """modules""" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(A__ ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(A__ ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(A__ ) ) _snake_case = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(A__ ) ) _snake_case = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(A__ ) ) @pytest.fixture(autouse=A__ , scope="session" ) def __a ( ) -> Tuple: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=A__ ) def __a ( _UpperCamelCase: Union[str, Any] ) -> List[Any]: """simple docstring""" monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , A__ ) @pytest.fixture def __a ( _UpperCamelCase: Union[str, Any] ) -> int: """simple docstring""" monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , A__ )
351
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCamelCase_ : int = TypeVar('''T''') UpperCamelCase_ : Dict = TypeVar('''U''') class _a ( Generic[T, U] ): def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: _snake_case = key _snake_case = val _snake_case = None _snake_case = None def __repr__( self ) -> str: return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _a ( Generic[T, U] ): def __init__( self ) -> None: _snake_case = DoubleLinkedListNode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _snake_case = DoubleLinkedListNode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _snake_case , _snake_case = self.rear, self.head def __repr__( self ) -> str: _snake_case = ["DoubleLinkedList"] _snake_case = self.head while node.next is not None: rep.append(str(_SCREAMING_SNAKE_CASE ) ) _snake_case = node.next rep.append(str(self.rear ) ) return ",\n ".join(_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> None: _snake_case = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case = node _snake_case = previous _snake_case = node _snake_case = self.rear def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None _snake_case = node.next _snake_case = node.prev _snake_case = None _snake_case = None return node class _a ( Generic[T, U] ): SCREAMING_SNAKE_CASE_ : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self ,_SCREAMING_SNAKE_CASE ) -> str: _snake_case = DoubleLinkedList() _snake_case = capacity _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = {} def __repr__( self ) -> str: return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self ,_SCREAMING_SNAKE_CASE ) -> bool: return key in self.cache def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _snake_case = self.cache[key] _snake_case = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_SCREAMING_SNAKE_CASE ) return node.val self.miss += 1 return None def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_SCREAMING_SNAKE_CASE ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case = DoubleLinkedListNode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case = value self.list.add(_SCREAMING_SNAKE_CASE ) @classmethod def _lowercase ( cls ,_SCREAMING_SNAKE_CASE = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(_SCREAMING_SNAKE_CASE ) -> Callable[..., U]: def cache_decorator_wrapper(*_SCREAMING_SNAKE_CASE ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case = LRUCache(_SCREAMING_SNAKE_CASE ) _snake_case = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case = func(*_SCREAMING_SNAKE_CASE ) cls.decorator_function_to_instance_map[func].put(args[0] ,_SCREAMING_SNAKE_CASE ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_SCREAMING_SNAKE_CASE ,"cache_info" ,_SCREAMING_SNAKE_CASE ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
142
0
def lowerCamelCase__ ( __lowerCAmelCase : int = 1000 ): """simple docstring""" lowerCAmelCase_ = 2**power lowerCAmelCase_ = str(__lowerCAmelCase ) lowerCAmelCase_ = list(__lowerCAmelCase ) lowerCAmelCase_ = 0 for i in list_num: sum_of_num += int(__lowerCAmelCase ) return sum_of_num if __name__ == "__main__": _A = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) _A = solution(power) print("Sum of the digits is: ", result)
231
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =None _lowercase =BloomTokenizerFast _lowercase =BloomTokenizerFast _lowercase =True _lowercase =False _lowercase ='''tokenizer_file''' _lowercase ={'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def __a ( self ) -> Dict: super().setUp() lowerCAmelCase_ = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self , **_UpperCamelCase ) -> Tuple: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowerCAmelCase_ = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] lowerCAmelCase_ = tokenizer.batch_encode_plus(_UpperCamelCase )["input_ids"] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = tokenizer.batch_decode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self , _UpperCamelCase=6 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowerCAmelCase_ = "This is a simple input" lowerCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ = ("This is a simple input", "This is a pair") lowerCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.encode_plus(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.batch_encode_plus(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.encode(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.batch_encode_plus(_UpperCamelCase , max_length=_UpperCamelCase ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowerCAmelCase_ = None # Hotfixing padding = None self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = load_dataset("xnli" , "all_languages" , split="test" , streaming=_UpperCamelCase ) lowerCAmelCase_ = next(iter(_UpperCamelCase ) )["premise"] # pick up one data lowerCAmelCase_ = list(sample_data.values() ) lowerCAmelCase_ = list(map(tokenizer.encode , _UpperCamelCase ) ) lowerCAmelCase_ = [tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) for x in output_tokens] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> List[Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
231
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = ["""image_processor""", """tokenizer"""] UpperCAmelCase__ = """ViTImageProcessor""" UpperCAmelCase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=None , **UpperCAmelCase : Tuple ) -> int: lowerCamelCase__ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) lowerCamelCase__ : str = kwargs.pop('feature_extractor' ) lowerCamelCase__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[Any] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : int ) -> Optional[Any]: if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: lowerCamelCase__ : str = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if visual_prompt is not None: lowerCamelCase__ : Dict = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: lowerCamelCase__ : Dict = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if visual_prompt is not None and images is not None: lowerCamelCase__ : Optional[Any] = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCamelCase__ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCamelCase__ : Any = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def A_ ( self : Optional[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : List[str] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[int] ) -> Tuple: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A_ ( self : Optional[Any] ) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def A_ ( self : Dict ) -> List[str]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
362
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : List[str] = logging.get_logger() @dataclass class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = field(default_factory=__UpperCamelCase ) UpperCAmelCase__ = field(default_factory=__UpperCamelCase ) def A_ ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tensor , UpperCAmelCase : Tensor ) -> Any: lowerCamelCase__ : List[str] = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase , nn.Convad ) or isinstance(UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Tensor ) -> Dict: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def A_ ( self : List[str] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 0 UpperCAmelCase__ = field(default_factory=__UpperCamelCase ) UpperCAmelCase__ = field(default_factory=__UpperCamelCase ) def __call__( self : Any , UpperCAmelCase : Tensor ) -> int: lowerCamelCase__ : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase ).parametrized lowerCamelCase__ : List[Any] = Tracker(self.src )(UpperCAmelCase ).parametrized lowerCamelCase__ : Any = list(filter(lambda UpperCAmelCase : type(UpperCAmelCase ) not in self.src_skip , UpperCAmelCase ) ) lowerCamelCase__ : int = list(filter(lambda UpperCAmelCase : type(UpperCAmelCase ) not in self.dest_skip , UpperCAmelCase ) ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise Exception( F"""Numbers of operations are different. Source module has {len(UpperCAmelCase )} operations while""" F""" destination module has {len(UpperCAmelCase )}.""" ) for dest_m, src_m in zip(UpperCAmelCase , UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): lowerCamelCase__ : int = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval() lowerCamelCase__ : Union[str, Any] = ResNetForImageClassification(_UpperCAmelCase ).eval() lowerCamelCase__ : str = ModuleTransfer(src=_UpperCAmelCase , dest=_UpperCAmelCase ) lowerCamelCase__ : Optional[int] = torch.randn((1, 3, 224, 224) ) module_transfer(_UpperCAmelCase ) assert torch.allclose(from_model(_UpperCAmelCase ) , our_model(_UpperCAmelCase ).logits ), "The model logits don't match the original one." lowerCamelCase__ : Union[str, Any] = F"""resnet{"-".join(name.split("resnet" ) )}""" print(_UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) # we can use the convnext one lowerCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True ) -> List[str]: lowerCamelCase__ : Dict = 'imagenet-1k-id2label.json' lowerCamelCase__ : Optional[int] = 1000 lowerCamelCase__ : int = (1, num_labels) lowerCamelCase__ : Any = 'huggingface/label-files' lowerCamelCase__ : str = num_labels lowerCamelCase__ : Any = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Any = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : str = idalabel lowerCamelCase__ : Any = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Tuple = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_UpperCAmelCase , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
45
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Tuple = '''trocr''' _UpperCAmelCase : int = ['''past_key_values'''] _UpperCAmelCase : Any = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str=5_0_2_6_5 ,SCREAMING_SNAKE_CASE__ : int=1_0_2_4 ,SCREAMING_SNAKE_CASE__ : List[str]=1_2 ,SCREAMING_SNAKE_CASE__ : str=1_6 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=4_0_9_6 ,SCREAMING_SNAKE_CASE__ : str="gelu" ,SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 ,SCREAMING_SNAKE_CASE__ : Tuple=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : Any=2 ,SCREAMING_SNAKE_CASE__ : Any=0.02 ,SCREAMING_SNAKE_CASE__ : Tuple=0.0 ,SCREAMING_SNAKE_CASE__ : List[str]=True ,SCREAMING_SNAKE_CASE__ : Any=False ,SCREAMING_SNAKE_CASE__ : List[str]=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : int=1 ,SCREAMING_SNAKE_CASE__ : str=0 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,**SCREAMING_SNAKE_CASE__ : int ,): __lowerCamelCase : Optional[Any] = vocab_size __lowerCamelCase : Dict = d_model __lowerCamelCase : Union[str, Any] = decoder_layers __lowerCamelCase : Optional[int] = decoder_attention_heads __lowerCamelCase : str = decoder_ffn_dim __lowerCamelCase : Optional[Any] = activation_function __lowerCamelCase : List[Any] = max_position_embeddings __lowerCamelCase : Dict = dropout __lowerCamelCase : Any = attention_dropout __lowerCamelCase : List[str] = activation_dropout __lowerCamelCase : Optional[Any] = init_std __lowerCamelCase : Tuple = decoder_layerdrop __lowerCamelCase : Dict = use_cache __lowerCamelCase : Dict = scale_embedding __lowerCamelCase : List[str] = use_learned_position_embeddings __lowerCamelCase : int = layernorm_embedding super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,decoder_start_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,)
73
from __future__ import annotations def __lowercase ( _UpperCamelCase ) ->float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(_UpperCamelCase ) / len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
337
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Dict )-> int: '''simple docstring''' A__ = 'ylacombe/bark-small' A__ = tempfile.mkdtemp() A__ = 'en_speaker_1' A__ = 'This is a test string' A__ = 'speaker_embeddings_path.json' A__ = 'speaker_embeddings' def snake_case__ ( self : Tuple,**lowercase_ : str )-> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint,**__lowercase ) def snake_case__ ( self : Optional[int] )-> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Any )-> List[str]: '''simple docstring''' A__ = self.get_tokenizer() A__ = BarkProcessor(tokenizer=__lowercase ) processor.save_pretrained(self.tmpdirname ) A__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab(),tokenizer.get_vocab() ) @slow def snake_case__ ( self : Optional[int] )-> Dict: '''simple docstring''' A__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path,) processor.save_pretrained( self.tmpdirname,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path,speaker_embeddings_directory=self.speaker_embeddings_directory,) A__ = self.get_tokenizer(bos_token='(BOS)',eos_token='(EOS)' ) A__ = BarkProcessor.from_pretrained( self.tmpdirname,self.speaker_embeddings_dict_path,bos_token='(BOS)',eos_token='(EOS)',) self.assertEqual(processor.tokenizer.get_vocab(),tokenizer_add_kwargs.get_vocab() ) def snake_case__ ( self : Optional[Any] )-> List[str]: '''simple docstring''' A__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path,) A__ = 3_5 A__ = 2 A__ = 8 A__ = { 'semantic_prompt': np.ones(__lowercase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset A__ = processor(text=self.input_string,voice_preset=__lowercase ) A__ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist(),processed_voice_preset.get(__lowercase,np.array([] ) ).tolist() ) # test loading voice preset from npz file A__ = os.path.join(self.tmpdirname,'file.npz' ) np.savez(__lowercase,**__lowercase ) A__ = processor(text=self.input_string,voice_preset=__lowercase ) A__ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist(),processed_voice_preset.get(__lowercase,np.array([] ) ).tolist() ) # test loading voice preset from the hub A__ = processor(text=self.input_string,voice_preset=self.voice_preset ) def snake_case__ ( self : List[str] )-> int: '''simple docstring''' A__ = self.get_tokenizer() A__ = BarkProcessor(tokenizer=__lowercase ) A__ = processor(text=self.input_string ) A__ = tokenizer( self.input_string,padding='max_length',max_length=2_5_6,add_special_tokens=__lowercase,return_attention_mask=__lowercase,return_token_type_ids=__lowercase,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key],encoded_processor[key].squeeze().tolist() )
359
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase_ = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase_ = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} lowercase_ = "zero2" lowercase_ = "zero3" lowercase_ = [ZEROa, ZEROa] def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: '''simple docstring''' A__ = parameterized.to_safe_name('_'.join(str(SCREAMING_SNAKE_CASE__ ) for x in param.args ) ) return f'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test lowercase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class A ( _UpperCAmelCase ): """simple docstring""" @parameterized.expand(lowercase_,name_func=lowercase_ ) def snake_case__ ( self : int,lowercase_ : str,lowercase_ : Any )-> Optional[int]: '''simple docstring''' self.run_and_check( stage=lowercase_,model=lowercase_,distributed=lowercase_,fpaa=lowercase_,) @require_torch_multi_gpu @parameterized.expand(lowercase_,name_func=lowercase_ ) def snake_case__ ( self : Union[str, Any],lowercase_ : Optional[Any],lowercase_ : List[Any] )-> int: '''simple docstring''' self.run_and_check( stage=lowercase_,model=lowercase_,distributed=lowercase_,fpaa=lowercase_,) @parameterized.expand(lowercase_,name_func=lowercase_ ) def snake_case__ ( self : List[str],lowercase_ : List[str],lowercase_ : List[Any] )-> Any: '''simple docstring''' self.run_and_check( stage=lowercase_,model=lowercase_,distributed=lowercase_,fpaa=lowercase_,) @require_torch_multi_gpu @parameterized.expand(lowercase_,name_func=lowercase_ ) def snake_case__ ( self : Dict,lowercase_ : Optional[Any],lowercase_ : List[Any] )-> Optional[int]: '''simple docstring''' self.run_and_check( stage=lowercase_,model=lowercase_,distributed=lowercase_,fpaa=lowercase_,) def snake_case__ ( self : Tuple,lowercase_ : Any )-> Union[str, Any]: '''simple docstring''' pass def snake_case__ ( self : int,lowercase_ : str,lowercase_ : str,lowercase_ : int = 1_0,lowercase_ : bool = True,lowercase_ : bool = True,lowercase_ : bool = True,)-> Union[str, Any]: '''simple docstring''' A__ = models[model] A__ = self.run_trainer( stage=lowercase_,model_name=lowercase_,eval_steps=lowercase_,num_train_epochs=1,distributed=lowercase_,fpaa=lowercase_,) self.do_checks(lowercase_ ) return output_dir def snake_case__ ( self : Union[str, Any],lowercase_ : str,lowercase_ : str,lowercase_ : int = 1_0,lowercase_ : int = 1,lowercase_ : bool = True,lowercase_ : bool = True,)-> Any: '''simple docstring''' A__ = self.get_auto_remove_tmp_dir('./xxx',after=lowercase_ ) A__ = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowercase_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A__ = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() A__ = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] A__ = self.get_launcher(lowercase_ ) A__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase_,env=self.get_env() ) return output_dir def snake_case__ ( self : Any,lowercase_ : int=False )-> Tuple: '''simple docstring''' A__ = min(2,get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
282
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class snake_case ( lowercase ): """simple docstring""" def __init__( self ): """simple docstring""" # test for the above condition self.test() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = False while not completed: if counter == 1: self.reset() lowerCamelCase_ = self.advance() if not self.does_advance(UpperCamelCase ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = self.update(UpperCamelCase ) counter += 1 if counter > 1_0000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def snake_case ( self ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def snake_case ( self , UpperCamelCase ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def snake_case ( self , UpperCamelCase ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def snake_case ( self ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def snake_case ( self ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def snake_case ( self , UpperCamelCase=False ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class snake_case ( lowercase ): """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" super(UpperCamelCase , self ).__init__() if not isinstance(UpperCamelCase , UpperCamelCase ) or len(UpperCamelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(UpperCamelCase , UpperCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) lowerCamelCase_ = token_ids lowerCamelCase_ = len(self.token_ids ) lowerCamelCase_ = -1 # the index of the currently fulfilled step lowerCamelCase_ = False def snake_case ( self ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def snake_case ( self , UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def snake_case ( self , UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase )}''' ) lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False if self.does_advance(UpperCamelCase ): self.fulfilled_idx += 1 lowerCamelCase_ = True if self.fulfilled_idx == (self.seqlen - 1): lowerCamelCase_ = True lowerCamelCase_ = completed else: # failed to make progress. lowerCamelCase_ = True self.reset() return stepped, completed, reset def snake_case ( self ): """simple docstring""" lowerCamelCase_ = False lowerCamelCase_ = 0 def snake_case ( self ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def snake_case ( self , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = PhrasalConstraint(self.token_ids ) if stateful: lowerCamelCase_ = self.seqlen lowerCamelCase_ = self.fulfilled_idx lowerCamelCase_ = self.completed return new_constraint class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=True ): """simple docstring""" lowerCamelCase_ = max([len(UpperCamelCase ) for one in nested_token_ids] ) lowerCamelCase_ = {} for token_ids in nested_token_ids: lowerCamelCase_ = root for tidx, token_id in enumerate(UpperCamelCase ): if token_id not in level: lowerCamelCase_ = {} lowerCamelCase_ = level[token_id] if no_subsets and self.has_subsets(UpperCamelCase , UpperCamelCase ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f''' {nested_token_ids}.''' ) lowerCamelCase_ = root def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.trie for current_token in current_seq: lowerCamelCase_ = start[current_token] lowerCamelCase_ = list(start.keys() ) return next_tokens def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.next_tokens(UpperCamelCase ) return len(UpperCamelCase ) == 0 def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = list(root.values() ) if len(UpperCamelCase ) == 0: return 1 else: return sum([self.count_leaves(UpperCamelCase ) for nn in next_nodes] ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.count_leaves(UpperCamelCase ) return len(UpperCamelCase ) != leaf_count class snake_case ( lowercase ): """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" super(UpperCamelCase , self ).__init__() if not isinstance(UpperCamelCase , UpperCamelCase ) or len(UpperCamelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(UpperCamelCase , UpperCamelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(UpperCamelCase , UpperCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) lowerCamelCase_ = DisjunctiveTrie(UpperCamelCase ) lowerCamelCase_ = nested_token_ids lowerCamelCase_ = self.trie.max_height lowerCamelCase_ = [] lowerCamelCase_ = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.trie.next_tokens(self.current_seq ) if len(UpperCamelCase ) == 0: return None else: return token_list def snake_case ( self , UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase )}''' ) lowerCamelCase_ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def snake_case ( self , UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase )}''' ) lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False if self.does_advance(UpperCamelCase ): self.current_seq.append(UpperCamelCase ) lowerCamelCase_ = True else: lowerCamelCase_ = True self.reset() lowerCamelCase_ = self.trie.reached_leaf(self.current_seq ) lowerCamelCase_ = completed return stepped, completed, reset def snake_case ( self ): """simple docstring""" lowerCamelCase_ = False lowerCamelCase_ = [] def snake_case ( self ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def snake_case ( self , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCamelCase_ = self.seqlen lowerCamelCase_ = self.current_seq lowerCamelCase_ = self.completed return new_constraint class snake_case : """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = constraints # max # of steps required to fulfill a given constraint lowerCamelCase_ = max([c.seqlen for c in constraints] ) lowerCamelCase_ = len(UpperCamelCase ) lowerCamelCase_ = False self.init_state() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = None lowerCamelCase_ = [constraint.copy(stateful=UpperCamelCase ) for constraint in self.constraints] def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def snake_case ( self ): """simple docstring""" lowerCamelCase_ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCamelCase_ = constraint.advance() if isinstance(UpperCamelCase , UpperCamelCase ): token_list.append(UpperCamelCase ) elif isinstance(UpperCamelCase , UpperCamelCase ): token_list.extend(UpperCamelCase ) else: lowerCamelCase_ = self.inprogress_constraint.advance() if isinstance(UpperCamelCase , UpperCamelCase ): token_list.append(UpperCamelCase ) elif isinstance(UpperCamelCase , UpperCamelCase ): token_list.extend(UpperCamelCase ) if len(UpperCamelCase ) == 0: return None else: return token_list def snake_case ( self , UpperCamelCase ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCamelCase_ ,lowerCamelCase_ = self.add(UpperCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def snake_case ( self , UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) lowerCamelCase_ ,lowerCamelCase_ = False, False if self.completed: lowerCamelCase_ = True lowerCamelCase_ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = self.inprogress_constraint.update(UpperCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCamelCase ) ) lowerCamelCase_ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCamelCase_ = None if len(self.pending_constraints ) == 0: # we're done! lowerCamelCase_ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCamelCase ): lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = pending_constraint.update(UpperCamelCase ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(UpperCamelCase ) lowerCamelCase_ = None if not complete and stepped: lowerCamelCase_ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCamelCase_ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCamelCase_ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def snake_case ( self , UpperCamelCase=True ): """simple docstring""" lowerCamelCase_ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCamelCase_ = [ constraint.copy(stateful=UpperCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCamelCase_ = self.inprogress_constraint.copy(stateful=UpperCamelCase ) lowerCamelCase_ = [constraint.copy() for constraint in self.pending_constraints] return new_state
55
'''simple docstring''' from __future__ import annotations from fractions import Fraction def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int("1" + "0" * digit_len ) for num in range(UpperCAmelCase_ , UpperCAmelCase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(UpperCAmelCase_ , UpperCAmelCase_ ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def __snake_case ( UpperCAmelCase_ : int = 2 ): lowerCamelCase_ = 1.0 for fraction in fraction_list(UpperCAmelCase_ ): lowerCamelCase_ = Fraction(UpperCAmelCase_ ) result *= frac.denominator / frac.numerator return int(UpperCAmelCase_ ) if __name__ == "__main__": print(solution())
55
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" _snake_case : Optional[int] = [0 for i in range(r + 1 )] # nc0 = 1 _snake_case : Tuple = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _snake_case : int = min(a__ , a__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
369
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def UpperCAmelCase__ (snake_case__ : int = 3 ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(snake_case__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) _snake_case : Optional[int] = QuantumRegister(snake_case__ , """qr""" ) _snake_case : List[Any] = ClassicalRegister(snake_case__ , """cr""" ) _snake_case : Optional[int] = QuantumCircuit(snake_case__ , snake_case__ ) _snake_case : Dict = number_of_qubits for i in range(snake_case__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case__ , snake_case__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case__ , snake_case__ ) # simulate with 10000 shots _snake_case : Optional[int] = Aer.get_backend("""qasm_simulator""" ) _snake_case : Optional[int] = execute(snake_case__ , snake_case__ , shots=1_00_00 ) return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
132
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _lowercase : Tuple =models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _lowercase : List[str] =tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _lowercase : Optional[int] =tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _lowercase : List[Any] =train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) _lowercase : List[Any] =test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _lowercase : Tuple =tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) _lowercase : str =tf.keras.preprocessing.image.img_to_array(test_image) _lowercase : Dict =np.expand_dims(test_image, axis=0) _lowercase : Union[str, Any] =classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _lowercase : str ="Normal" if result[0][0] == 1: _lowercase : Tuple ="Abnormality detected"
170
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : List[str] = 1_6 _lowerCAmelCase : List[Any] = 3_2 def lowerCAmelCase ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ = 8 else: UpperCAmelCase__ = None return tokenizer.pad( _lowerCAmelCase , padding="longest" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCAmelCase ) == "1": UpperCAmelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["lr"] UpperCAmelCase__ = int(config["num_epochs"] ) UpperCAmelCase__ = int(config["seed"] ) UpperCAmelCase__ = int(config["batch_size"] ) set_seed(_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase__ = os.path.split(_lowerCAmelCase )[-1].split("." )[0] accelerator.init_trackers(_lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase__ = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) UpperCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCAmelCase ), "epoch": epoch, } , step=_lowerCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCAmelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
169
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def A ( a_ ) -> List[str]: if not is_accelerate_available(): return method __UpperCamelCase : List[Any] =version.parse(accelerate.__version__ ).base_version if version.parse(UpperCamelCase__ ) < version.parse('0.17.0' ): return method def wrapper(self ,*a_ ,**a_ ): if hasattr(self ,'_hf_hook' ) and hasattr(self._hf_hook ,'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self ,*UpperCamelCase__ ,**UpperCamelCase__ ) return wrapper
363
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __A : """simple docstring""" def __init__( self , lowerCamelCase__ = None ): """simple docstring""" if components is None: __UpperCamelCase : Dict =[] __UpperCamelCase : List[str] =list(lowerCamelCase__ ) def __len__( self ): """simple docstring""" return len(self.__components ) def __str__( self ): """simple docstring""" return "(" + ",".join(map(lowerCamelCase__ , self.__components ) ) + ")" def __add__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =len(self ) if size == len(lowerCamelCase__ ): __UpperCamelCase : Any =[self.__components[i] + other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =len(self ) if size == len(lowerCamelCase__ ): __UpperCamelCase : Union[str, Any] =[self.__components[i] - other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , lowerCamelCase__ ): """simple docstring""" ... @overload def __mul__( self , lowerCamelCase__ ): """simple docstring""" ... def __mul__( self , lowerCamelCase__ ): """simple docstring""" if isinstance(lowerCamelCase__ , (float, int) ): __UpperCamelCase : str =[c * other for c in self.__components] return Vector(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(self ) == len(lowerCamelCase__ ): __UpperCamelCase : Tuple =len(self ) __UpperCamelCase : Union[str, Any] =[self.__components[i] * other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return sum(lowerCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def __lowercase ( self ): """simple docstring""" return Vector(self.__components ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase : List[Any] =value def __lowercase ( self ): """simple docstring""" if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase : Tuple =[c**2 for c in self.__components] return math.sqrt(sum(lowerCamelCase__ ) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" __UpperCamelCase : List[Any] =self * other __UpperCamelCase : str =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def A ( a_ ) -> Vector: assert isinstance(a_ ,a_ ) return Vector([0] * dimension ) def A ( a_ ,a_ ) -> Vector: assert isinstance(a_ ,a_ ) and (isinstance(a_ ,a_ )) __UpperCamelCase : Tuple =[0] * dimension __UpperCamelCase : List[str] =1 return Vector(a_ ) def A ( a_ ,a_ ,a_ ) -> Vector: assert ( isinstance(a_ ,a_ ) and isinstance(a_ ,a_ ) and (isinstance(a_ ,(int, float) )) ) return x * scalar + y def A ( a_ ,a_ ,a_ ) -> Vector: random.seed(a_ ) __UpperCamelCase : List[Any] =[random.randint(a_ ,a_ ) for _ in range(a_ )] return Vector(a_ ) class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =matrix __UpperCamelCase : List[str] =w __UpperCamelCase : int =h def __str__( self ): """simple docstring""" __UpperCamelCase : Optional[Any] ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCamelCase__ ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase : int =[] for i in range(self.__height ): __UpperCamelCase : str =[ self.__matrix[i][j] + other.component(lowerCamelCase__ , lowerCamelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCamelCase__ ) return Matrix(lowerCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , lowerCamelCase__ ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase : str =[] for i in range(self.__height ): __UpperCamelCase : Optional[int] =[ self.__matrix[i][j] - other.component(lowerCamelCase__ , lowerCamelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCamelCase__ ) return Matrix(lowerCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , lowerCamelCase__ ): """simple docstring""" ... @overload def __mul__( self , lowerCamelCase__ ): """simple docstring""" ... def __mul__( self , lowerCamelCase__ ): """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # matrix-vector if len(lowerCamelCase__ ) == self.__width: __UpperCamelCase : Dict =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase : Optional[Any] =[ self.__matrix[i][j] * other.component(lowerCamelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCamelCase__ , sum(lowerCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(lowerCamelCase__ , (int, float) ): # matrix-scalar __UpperCamelCase : Any =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCamelCase__ , self.__width , self.__height ) return None def __lowercase ( self ): """simple docstring""" return self.__height def __lowercase ( self ): """simple docstring""" return self.__width def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase : Tuple =value else: raise Exception('change_component: indices out of bounds' ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase : Any =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCamelCase__ ) ): __UpperCamelCase : Optional[Any] =minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCamelCase__ , lowerCamelCase__ ) else: raise Exception('Indices out of bounds' ) def __lowercase ( self ): """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase : Tuple =[ self.__matrix[0][y] * self.cofactor(0 , lowerCamelCase__ ) for y in range(self.__width ) ] return sum(lowerCamelCase__ ) def A ( a_ ) -> Matrix: __UpperCamelCase : list[list[float]] =[[0] * n for _ in range(a_ )] return Matrix(a_ ,a_ ,a_ ) def A ( a_ ,a_ ,a_ ,a_ ) -> Matrix: random.seed(a_ ) __UpperCamelCase : list[list[float]] =[ [random.randint(a_ ,a_ ) for _ in range(a_ )] for _ in range(a_ ) ] return Matrix(a_ ,a_ ,a_ )
245
0
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : List[str] ) -> Tuple: super().__init__() self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Optional[Any] ,A_ : int = 1 ,A_ : Optional[torch.Generator] = None ,A_ : int = 50 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Tuple ,) -> Union[ImagePipelineOutput, Tuple]: A = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) ,generator=A_ ,) A = image.to(self.device ) # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A = self.unet(A_ ,A_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = (image / 2 + 0.5).clamp(0 ,1 ) A = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=A_ ), "This is a local test"
74
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowercase__ ( __lowercase : List[str] , __lowercase : Union[str, Any]=False ) -> Tuple: """simple docstring""" try: __UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCamelCase = default else: # KEY is set, convert it to True or False. try: __UpperCamelCase = strtobool(__lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value a__ : str =parse_flag_from_env('''RUN_SLOW''', default=False) a__ : Union[str, Any] =parse_flag_from_env('''RUN_REMOTE''', default=False) a__ : List[str] =parse_flag_from_env('''RUN_LOCAL''', default=True) a__ : Optional[int] =parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression a__ : Any =pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') a__ : Optional[int] =pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') a__ : List[str] =pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio a__ : Any =pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam a__ : Tuple =pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility a__ : Union[str, Any] =pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows a__ : int =pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def lowercase__ ( __lowercase : Optional[Any] ) -> Optional[int]: """simple docstring""" try: import faiss # noqa except ImportError: __UpperCamelCase = unittest.skip('test requires faiss' )(__lowercase ) return test_case def lowercase__ ( __lowercase : Union[str, Any] ) -> Any: """simple docstring""" try: import regex # noqa except ImportError: __UpperCamelCase = unittest.skip('test requires regex' )(__lowercase ) return test_case def lowercase__ ( __lowercase : Tuple ) -> List[Any]: """simple docstring""" try: import elasticsearch # noqa except ImportError: __UpperCamelCase = unittest.skip('test requires elasticsearch' )(__lowercase ) return test_case def lowercase__ ( __lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" try: import sqlalchemy # noqa except ImportError: __UpperCamelCase = unittest.skip('test requires sqlalchemy' )(__lowercase ) return test_case def lowercase__ ( __lowercase : List[str] ) -> List[str]: """simple docstring""" if not config.TORCH_AVAILABLE: __UpperCamelCase = unittest.skip('test requires PyTorch' )(__lowercase ) return test_case def lowercase__ ( __lowercase : Optional[Any] ) -> List[str]: """simple docstring""" if not config.TF_AVAILABLE: __UpperCamelCase = unittest.skip('test requires TensorFlow' )(__lowercase ) return test_case def lowercase__ ( __lowercase : int ) -> Union[str, Any]: """simple docstring""" if not config.JAX_AVAILABLE: __UpperCamelCase = unittest.skip('test requires JAX' )(__lowercase ) return test_case def lowercase__ ( __lowercase : str ) -> Optional[Any]: """simple docstring""" if not config.PIL_AVAILABLE: __UpperCamelCase = unittest.skip('test requires Pillow' )(__lowercase ) return test_case def lowercase__ ( __lowercase : Dict ) -> Any: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__lowercase ) else: return test_case def lowercase__ ( __lowercase : int ) -> int: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__lowercase ) else: return test_case def lowercase__ ( __lowercase : str ) -> int: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__lowercase ) else: return test_case def lowercase__ ( __lowercase : str ) -> Any: """simple docstring""" def _require_spacy_model(__lowercase : Any ): try: import spacy # noqa F401 spacy.load(__lowercase ) except ImportError: return unittest.skip('test requires spacy' )(__lowercase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__lowercase ) )(__lowercase ) else: return test_case return _require_spacy_model def lowercase__ ( __lowercase : Union[str, Any] ) -> str: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__lowercase ) else: return test_case def lowercase__ ( __lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__lowercase ) else: return test_case def lowercase__ ( __lowercase : List[Any] ) -> List[str]: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: __UpperCamelCase = unittest.skip('test is slow' )(__lowercase ) return test_case def lowercase__ ( __lowercase : List[Any] ) -> List[str]: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: __UpperCamelCase = unittest.skip('test is local' )(__lowercase ) return test_case def lowercase__ ( __lowercase : str ) -> List[str]: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCamelCase = unittest.skip('test is packaged' )(__lowercase ) return test_case def lowercase__ ( __lowercase : Optional[int] ) -> Any: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: __UpperCamelCase = unittest.skip('test requires remote' )(__lowercase ) return test_case def lowercase__ ( *__lowercase : Optional[Any] ) -> Tuple: """simple docstring""" def decorate(cls : int ): for name, fn in cls.__dict__.items(): if callable(__lowercase ) and name.startswith('test' ): for decorator in decorators: __UpperCamelCase = decorator(__lowercase ) setattr(cls , __lowercase , __lowercase ) return cls return decorate class snake_case ( __lowerCamelCase ): """simple docstring""" pass class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =0 SCREAMING_SNAKE_CASE_ : List[Any] =1 SCREAMING_SNAKE_CASE_ : Union[str, Any] =2 @contextmanager def lowercase__ ( __lowercase : List[str]=OfflineSimulationMode.CONNECTION_FAILS , __lowercase : Dict=1e-16 ) -> List[Any]: """simple docstring""" __UpperCamelCase = requests.Session().request def timeout_request(__lowercase : List[Any] , __lowercase : Tuple , __lowercase : List[Any] , **__lowercase : List[str] ): # Change the url to an invalid url so that the connection hangs __UpperCamelCase = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) __UpperCamelCase = timeout try: return online_request(__lowercase , __lowercase , **__lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCamelCase = url __UpperCamelCase = e.args[0] __UpperCamelCase = (max_retry_error.args[0].replace('10.255.255.1' , F'''OfflineMock[{url}]''' ),) __UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__lowercase : int , __lowercase : List[str] , **__lowercase : Union[str, Any] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __lowercase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def lowercase__ ( *__lowercase : Any , **__lowercase : Dict ) -> Dict: """simple docstring""" __UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__lowercase , **__lowercase ) as tmp_dir: try: os.chdir(__lowercase ) yield finally: os.chdir(__lowercase ) @contextmanager def lowercase__ ( ) -> Optional[Any]: """simple docstring""" import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowercase__ ( ) -> Optional[Any]: """simple docstring""" import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowercase__ ( __lowercase : List[str] , __lowercase : int ) -> Union[str, Any]: """simple docstring""" return deepcopy(__lowercase ).integers(0 , 100 , 10 ).tolist() == deepcopy(__lowercase ).integers(0 , 100 , 10 ).tolist() def lowercase__ ( __lowercase : str ) -> List[str]: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(__lowercase : List[Any] , *__lowercase : Tuple , **__lowercase : Union[str, Any] ): try: return func(*__lowercase , **__lowercase ) except HTTPError as err: if str(__lowercase ).startswith('500' ) or str(__lowercase ).startswith('502' ): pytest.xfail(str(__lowercase ) ) raise err return decorator.decorator(_wrapper , __lowercase ) class snake_case : """simple docstring""" def __init__( self : int , __A : Any , __A : str , __A : List[Any] ): __UpperCamelCase = returncode __UpperCamelCase = stdout __UpperCamelCase = stderr async def lowercase__ ( __lowercase : Any , __lowercase : Optional[int] ) -> str: """simple docstring""" while True: __UpperCamelCase = await stream.readline() if line: callback(__lowercase ) else: break async def lowercase__ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None , __lowercase : Any=None , __lowercase : Optional[Any]=None , __lowercase : int=False , __lowercase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('\nRunning: ' , ' '.join(__lowercase ) ) __UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowercase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCamelCase = [] __UpperCamelCase = [] def tee(__lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str] , __lowercase : Tuple="" ): __UpperCamelCase = line.decode('utf-8' ).rstrip() sink.append(__lowercase ) if not quiet: print(__lowercase , __lowercase , file=__lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __lowercase : tee(__lowercase , __lowercase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __lowercase : tee(__lowercase , __lowercase , sys.stderr , label='stderr:' ) ), ] , timeout=__lowercase , ) return _RunOutput(await p.wait() , __lowercase , __lowercase ) def lowercase__ ( __lowercase : Dict , __lowercase : Any=None , __lowercase : int=None , __lowercase : int=180 , __lowercase : int=False , __lowercase : str=True ) -> _RunOutput: """simple docstring""" __UpperCamelCase = asyncio.get_event_loop() __UpperCamelCase = loop.run_until_complete( _stream_subprocess(__lowercase , env=__lowercase , stdin=__lowercase , timeout=__lowercase , quiet=__lowercase , echo=__lowercase ) ) __UpperCamelCase = ' '.join(__lowercase ) if result.returncode > 0: __UpperCamelCase = '\n'.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' ) return result def lowercase__ ( ) -> List[str]: """simple docstring""" __UpperCamelCase = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __UpperCamelCase = re.sub(R'^gw' , '' , __lowercase , 0 , re.M ) return int(__lowercase ) def lowercase__ ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = 29500 __UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
53
0
'''simple docstring''' import cmath import math def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = math.radians(_lowerCamelCase ) UpperCAmelCase : Optional[int] = math.radians(_lowerCamelCase ) # Convert voltage and current to rectangular form UpperCAmelCase : Tuple = cmath.rect(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase : Optional[Any] = cmath.rect(_lowerCamelCase , _lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): while a != 0: UpperCAmelCase , UpperCAmelCase : Tuple = b % a, a return b def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: UpperCAmelCase : List[str] = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(UpperCAmelCase_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = 1, 0, a UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = 0, 1, m while va != 0: UpperCAmelCase : Tuple = ua // va UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
280
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _snake_case : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.0_2 , a__=3 , a__=None , a__=2 , ) -> List[str]: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 2 def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = TFDeiTModel(config=a__ ) snake_case_ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> str: '''simple docstring''' snake_case_ = TFDeiTForMaskedImageModeling(config=a__ ) snake_case_ = model(a__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = TFDeiTForMaskedImageModeling(a__ ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(a__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.type_sequence_label_size snake_case_ = TFDeiTForImageClassification(a__ ) snake_case_ = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = TFDeiTForImageClassification(a__ ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _snake_case ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCAmelCase_ : List[Any] = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : List[str] = False def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = TFDeiTModelTester(self ) snake_case_ = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , tf.keras.layers.Dense ) ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a__ ) snake_case_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__=False ) -> Optional[int]: '''simple docstring''' snake_case_ = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFDeiTModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=a__ , return_tensors="tf" ) # forward pass snake_case_ = model(**a__ ) # verify the logits snake_case_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , a__ ) snake_case_ = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
85
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = DistilBertTokenizer _snake_case = DistilBertTokenizerFast _snake_case = True @slow def UpperCAmelCase ( self ) -> str: snake_case : List[Any] = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) snake_case : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) snake_case : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(A ) snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
124
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase : Any = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowerCamelCase : int = parser.parse_args() if args.check_lib: lowerCamelCase : Optional[int] = importlib.import_module('transformers') lowerCamelCase : List[str] = Path(transformers_module.__file__).parent else: lowerCamelCase : Optional[int] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
124
1
from __future__ import annotations __snake_case = [] def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> bool: '''simple docstring''' for i in range(len(lowerCAmelCase__ ) ): if board[row][i] == 1: return False for i in range(len(lowerCAmelCase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCAmelCase__ , -1 , -1 ) , range(lowerCAmelCase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCAmelCase__ , -1 , -1 ) , range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) ): if board[i][j] == 1: return False return True def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> bool: '''simple docstring''' if row >= len(lowerCAmelCase__ ): solution.append(lowerCAmelCase__ ) printboard(lowerCAmelCase__ ) print() return True for i in range(len(lowerCAmelCase__ ) ): if is_safe(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase : Union[str, Any] =1 solve(lowerCAmelCase__ , row + 1 ) UpperCAmelCase : Optional[Any] =0 return False def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' for i in range(len(lowerCAmelCase__ ) ): for j in range(len(lowerCAmelCase__ ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) __snake_case = 8 __snake_case = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
360
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __snake_case ( unittest.TestCase ): __lowerCamelCase : Dict = MODEL_FOR_MASKED_LM_MAPPING __lowerCamelCase : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] =pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) UpperCAmelCase : List[Any] =unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 3_8015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 2_5506, '''token_str''': ''' accuser'''}, ] , ) UpperCAmelCase : Tuple =unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 3_8015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 2_5506, '''token_str''': ''' accuser''', }, ] , ) UpperCAmelCase : Dict =unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 1_3606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Any =pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) UpperCAmelCase : List[Any] =unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase : Union[str, Any] =unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase : int =unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 1_3606, '''token_str''': ''' Clara'''}, ] , ) UpperCAmelCase : List[str] =unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ [ { '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] =pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() UpperCAmelCase : Dict =pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(snake_case__ , snake_case__ ) @slow @require_torch def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : str =pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(snake_case__ ) @slow @require_tf def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ ) , [ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) UpperCAmelCase : int =unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(snake_case__ ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 1_2790, '''token_str''': ''' Lyon''', }, ] , ) UpperCAmelCase : int =unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 1_3606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Any =pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) UpperCAmelCase : List[str] =None UpperCAmelCase : str =None self.run_pipeline_test(snake_case__ , [] ) @require_tf def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) UpperCAmelCase : str =None UpperCAmelCase : Dict =None self.run_pipeline_test(snake_case__ , [] ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) UpperCAmelCase : Any =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase : int =[ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Any =fill_masker.tokenizer UpperCAmelCase : Optional[int] =fill_masker.model UpperCAmelCase : Dict =fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) UpperCAmelCase : int =fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) UpperCAmelCase : Optional[Any] =fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( snake_case__ , [ [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ], [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ], ] , ) with self.assertRaises(snake_case__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(snake_case__ ): fill_masker('''This is''' ) self.run_test_top_k(snake_case__ , snake_case__ ) self.run_test_targets(snake_case__ , snake_case__ ) self.run_test_top_k_targets(snake_case__ , snake_case__ ) self.fill_mask_with_duplicate_targets_and_top_k(snake_case__ , snake_case__ ) self.fill_mask_with_multiple_masks(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =tokenizer.get_vocab() UpperCAmelCase : List[str] =sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase : Any =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ , targets=snake_case__ ) UpperCAmelCase : Tuple =fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) UpperCAmelCase : int ={vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , snake_case__ ) UpperCAmelCase : Optional[Any] =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(snake_case__ ) ) # Call argument UpperCAmelCase : Union[str, Any] =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase : Optional[int] =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=snake_case__ ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) UpperCAmelCase : Any ={vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , snake_case__ ) UpperCAmelCase : Optional[int] =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(snake_case__ ) ) # Score equivalence UpperCAmelCase : Any =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=snake_case__ ) UpperCAmelCase : Union[str, Any] =[top_mask['''token_str'''] for top_mask in outputs] UpperCAmelCase : Optional[int] =[top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case__ ) == set(snake_case__ ): UpperCAmelCase : List[Any] =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=snake_case__ ) UpperCAmelCase : List[str] =[top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) # Raises with invalid with self.assertRaises(snake_case__ ): UpperCAmelCase : int =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(snake_case__ ): UpperCAmelCase : int =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(snake_case__ ): UpperCAmelCase : Any =fill_masker(f'''This is a {tokenizer.mask_token}''' , targets='''''' ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ , top_k=2 ) UpperCAmelCase : Optional[Any] =fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) UpperCAmelCase : Any =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase : List[Any] =fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ] , ) self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =tokenizer.get_vocab() UpperCAmelCase : int =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) # top_k=2, ntargets=3 UpperCAmelCase : Optional[Any] =sorted(vocab.keys() )[:3] UpperCAmelCase : str =fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=snake_case__ ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase : Tuple =[el['''token_str'''] for el in sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case__ ).issubset(snake_case__ ): UpperCAmelCase : str =fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=snake_case__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : str =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase : Union[str, Any] =tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase : List[Any] =sorted(vocab.keys() )[:3] UpperCAmelCase : Optional[int] =[targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase : str =fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=snake_case__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(snake_case__ ) , 3 ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase : Union[str, Any] =fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( snake_case__ , [ [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ], [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ], [ {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, {'''sequence''': ANY(snake_case__ ), '''score''': ANY(snake_case__ ), '''token''': ANY(snake_case__ ), '''token_str''': ANY(snake_case__ )}, ], ] , )
78
0
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(UpperCamelCase , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = _distribute_shards(**UpperCamelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = _split_gen_kwargs(UpperCamelCase , UpperCamelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if expected is RuntimeError: with pytest.raises(UpperCamelCase ): _number_of_shards_in_gen_kwargs(UpperCamelCase ) else: lowerCAmelCase__ : Union[str, Any] = _number_of_shards_in_gen_kwargs(UpperCamelCase ) assert out == expected
37
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a :Optional[int] = ["text", "image", "audio"] def _lowercase ( __lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): inputs.append(create_inputs(__lowerCAmelCase ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def _lowercase ( __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple = [] for output in outputs: if isinstance(__lowerCAmelCase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__lowerCAmelCase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__lowerCAmelCase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class __a : '''simple docstring''' def _a ( self ) -> str: """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE__ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , _a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE__ : Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tool(*_a ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE__ : List[Any] = [outputs] self.assertListEqual(output_types(_a ) , self.tool.outputs ) def _a ( self ) -> List[Any]: """simple docstring""" self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Dict = self.tool(*_a ) if not isinstance(_a , _a ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) ) for output, output_type in zip(_a , self.tool.outputs ): SCREAMING_SNAKE_CASE__ : Optional[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_a , _a ) ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : List[Any] = [] for _input, input_type in zip(_a , self.tool.inputs ): if isinstance(_a , _a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tool(*_a ) if not isinstance(_a , _a ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) )
132
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowercase: Any = logging.get_logger(__name__) _lowercase: List[Any] = {"vocab_file": "spiece.model"} _lowercase: List[str] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ): """simple docstring""" a = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) a = jieba a = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCamelCase_ (self ): """simple docstring""" return len(self.sp_model ) def UpperCamelCase_ (self ): """simple docstring""" a = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__(self , lowerCamelCase_ ): """simple docstring""" a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" if self.remove_space: a = " ".join(inputs.strip().split() ) else: a = inputs a = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: a = unicodedata.normalize("NFKD" , lowerCamelCase_ ) a = "".join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] ) if self.do_lower_case: a = outputs.lower() return outputs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.preprocess_text(lowerCamelCase_ ) a = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) a = [] for piece in pieces: if len(lowerCamelCase_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase_ ) else: new_pieces.append(lowerCamelCase_ ) return new_pieces def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return self.sp_model.PieceToId(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return self.sp_model.IdToPiece(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = "".join(lowerCamelCase_ ).replace(lowerCamelCase_ , " " ).strip() return out_string def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] return ([0] * len(lowerCamelCase_ )) + [1, 1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , "wb" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" a = super()._decode(*lowerCamelCase_ , **lowerCamelCase_ ) a = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
71
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _lowercase : """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=512 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ): """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def UpperCamelCase_ (self ): """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ (self ): """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = LlamaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) a = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = True a = LlamaModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) a = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , ) a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = True a = True a = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass a = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ , ) a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a = torch.cat([input_ids, next_tokens] , dim=-1 ) a = torch.cat([input_mask, next_mask] , dim=-1 ) a = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["hidden_states"][0] a = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["hidden_states"][0] # select random slice a = ids_tensor((1,) , output_from_past.shape[-1] ).item() a = output_from_no_past[:, -3:, random_slice_idx].detach() a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) ) def UpperCamelCase_ (self ): """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __A = (LlamaForCausalLM,) if is_torch_available() else () __A = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __A = False __A = False def UpperCamelCase_ (self ): """simple docstring""" a = LlamaModelTester(self ) a = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def UpperCamelCase_ (self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = input_dict["input_ids"] a = input_ids.ne(1 ).to(lowerCamelCase_ ) a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = "single_label_classification" a = input_dict["input_ids"] a = input_ids.ne(1 ).to(lowerCamelCase_ ) a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = "multi_label_classification" a = input_dict["input_ids"] a = input_ids.ne(1 ).to(lowerCamelCase_ ) a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def UpperCamelCase_ (self ): """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = ids_tensor([1, 10] , config.vocab_size ) a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = LlamaModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() a = original_model(lowerCamelCase_ ).last_hidden_state a = original_model(lowerCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = {"type": scaling_type, "factor": 10.0} a = LlamaModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() a = scaled_model(lowerCamelCase_ ).last_hidden_state a = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-5 ) ) @require_torch class _lowercase ( unittest.TestCase ): """simple docstring""" @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = [1, 306, 4658, 278, 6593, 310, 2834, 338] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) a = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 a = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = [1, 306, 4658, 278, 6593, 310, 2834, 338] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) a = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 a = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = [1, 306, 4658, 278, 6593, 310, 2834, 338] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) a = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 a = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = [1, 306, 4658, 278, 6593, 310, 2834, 338] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) a = model(torch.tensor(lowerCamelCase_ ) ) a = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off a = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" a = "Simply put, the theory of relativity states that " a = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) a = tokenizer.encode(lowerCamelCase_ , return_tensors="pt" ) a = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=lowerCamelCase_ ) # greedy generation outputs a = model.generate(lowerCamelCase_ , max_new_tokens=64 , top_p=lowerCamelCase_ , temperature=1 , do_sample=lowerCamelCase_ ) a = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
71
1
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = BartphoTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() snake_case_ = ['▁This', '▁is', '▁a', '▁t', 'est'] snake_case_ = dict(zip(lowerCAmelCase__, range(len(lowerCAmelCase__)))) snake_case_ = {'unk_token': '<unk>'} snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['monolingual_vocab_file']) with open(self.monolingual_vocab_file, 'w', encoding='utf-8') as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n') snake_case_ = BartphoTokenizer(lowerCAmelCase__, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, **lowerCAmelCase__) -> Union[str, Any]: kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = 'This is a là test' snake_case_ = 'This is a<unk><unk> test' return input_text, output_text def a_ ( self) -> Tuple: snake_case_ = BartphoTokenizer(lowerCAmelCase__, self.monolingual_vocab_file, **self.special_tokens_map) snake_case_ = 'This is a là test' snake_case_ = '▁This ▁is ▁a ▁l à ▁t est'.split() snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__), lowerCAmelCase__)
69
import random def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : List[Any] )->tuple: A__ , A__ , A__ = [], [], [] for element in data: if element < pivot: less.append(UpperCamelCase__ ) elif element > pivot: greater.append(UpperCamelCase__ ) else: equal.append(UpperCamelCase__ ) return less, equal, greater def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : int )->Optional[int]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(UpperCamelCase__ ) or index < 0: return None A__ = items[random.randint(0 , len(UpperCamelCase__ ) - 1 )] A__ = 0 A__ , A__ , A__ = _partition(UpperCamelCase__ , UpperCamelCase__ ) A__ = len(UpperCamelCase__ ) A__ = len(UpperCamelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCamelCase__ , UpperCamelCase__ ) # must be in larger else: return quick_select(UpperCamelCase__ , index - (m + count) )
193
0
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) __lowerCAmelCase = None __lowerCAmelCase = { '7B': 11_008, '13B': 13_824, '30B': 17_920, '65B': 22_016, '70B': 28_672, } __lowerCAmelCase = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): with open(lowerCAmelCase_ , """r""" ) as f: return json.load(lowerCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with open(lowerCAmelCase_ , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _snake_case = os.path.join(lowerCAmelCase_ , """tmp""" ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _snake_case = read_json(os.path.join(lowerCAmelCase_ , """params.json""" ) ) _snake_case = NUM_SHARDS[model_size] _snake_case = params['n_layers'] _snake_case = params['n_heads'] _snake_case = n_heads // num_shards _snake_case = params['dim'] _snake_case = dim // n_heads _snake_case = 1_0000.0 _snake_case = 1.0 / (base ** (torch.arange(0 , lowerCAmelCase_ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _snake_case = params['n_kv_heads'] # for GQA / MQA _snake_case = n_heads_per_shard // num_key_value_heads _snake_case = dim // num_key_value_heads else: # compatibility with other checkpoints _snake_case = n_heads _snake_case = n_heads_per_shard _snake_case = dim # permute for sliced rotary def permute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=n_heads , _SCREAMING_SNAKE_CASE=dim , _SCREAMING_SNAKE_CASE=dim ): return w.view(lowerCAmelCase_ , dima // n_heads // 2 , 2 , lowerCAmelCase_ ).transpose(1 , 2 ).reshape(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _snake_case = torch.load(os.path.join(lowerCAmelCase_ , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _snake_case = [ torch.load(os.path.join(lowerCAmelCase_ , f"""consolidated.{i:02d}.pth""" ) , map_location="""cpu""" ) for i in range(lowerCAmelCase_ ) ] _snake_case = 0 _snake_case = {'weight_map': {}} for layer_i in range(lowerCAmelCase_ ): _snake_case = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _snake_case = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _snake_case = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } _snake_case = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ) ] , dim=0 , ).reshape(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ) ] , dim=0 , ).reshape(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) _snake_case = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ) ] , dim=0 , ).reshape(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(lowerCAmelCase_ )] , dim=1 ) _snake_case = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(lowerCAmelCase_ )] , dim=0 ) _snake_case = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(lowerCAmelCase_ )] , dim=1 ) _snake_case = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(lowerCAmelCase_ )] , dim=0 ) _snake_case = inv_freq for k, v in state_dict.items(): _snake_case = filename param_count += v.numel() torch.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _snake_case = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _snake_case = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(lowerCAmelCase_ )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]["""output.weight"""] for i in range(lowerCAmelCase_ )] , dim=0 ), } for k, v in state_dict.items(): _snake_case = filename param_count += v.numel() torch.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Write configs _snake_case = {'total_size': param_count * 2} write_json(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , """pytorch_model.bin.index.json""" ) ) _snake_case = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _snake_case = params['multiple_of'] if 'multiple_of' in params else 256 _snake_case = LlamaConfig( hidden_size=lowerCAmelCase_ , intermediate_size=compute_intermediate_size(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=lowerCAmelCase_ , ) config.save_pretrained(lowerCAmelCase_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _snake_case = LlamaForCausalLM.from_pretrained(lowerCAmelCase_ , torch_dtype=torch.floataa , low_cpu_mem_usage=lowerCAmelCase_ ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(lowerCAmelCase_ , safe_serialization=lowerCAmelCase_ ) shutil.rmtree(lowerCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Initialize the tokenizer based on the `spm` model _snake_case = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) _snake_case = tokenizer_class(lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=lowerCAmelCase_ , help="""Whether or not to save using `safetensors`.""" ) _snake_case = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _snake_case = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , lowerCAmelCase_ ) if __name__ == "__main__": main()
369
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase (self ) -> Dict: _snake_case, _snake_case = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case, _snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case = controlnet_params _snake_case = """bird""" _snake_case = jax.device_count() _snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) _snake_case = pipe.prepare_image_inputs([canny_image] * num_samples ) _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(UpperCAmelCase , jax.device_count() ) _snake_case = replicate(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case = images[0, 253:256, 253:256, -1] _snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowercase (self ) -> Optional[int]: _snake_case, _snake_case = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case, _snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case = controlnet_params _snake_case = """Chef in the kitchen""" _snake_case = jax.device_count() _snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) _snake_case = pipe.prepare_image_inputs([pose_image] * num_samples ) _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(UpperCAmelCase , jax.device_count() ) _snake_case = replicate(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case = images[0, 253:256, 253:256, -1] _snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
270
0
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class UpperCAmelCase_ ( ctypes.Structure): # _fields is a specific attr expected by ctypes lowerCamelCase__ : Any = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ): '''simple docstring''' if os.name == "nt": lowercase__ : Any = CursorInfo() lowercase__ : Tuple = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowerCAmelCase , ctypes.byref(_lowerCAmelCase ) ) lowercase__ : List[Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowerCAmelCase , ctypes.byref(_lowerCAmelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ): '''simple docstring''' if os.name == "nt": lowercase__ : Dict = CursorInfo() lowercase__ : List[str] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowerCAmelCase , ctypes.byref(_lowerCAmelCase ) ) lowercase__ : int = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowerCAmelCase , ctypes.byref(_lowerCAmelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ): '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
77
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : List[Any] = tempfile.mkdtemp() # fmt: off __A : List[str] = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __A : Union[str, Any] = dict(zip(_A , range(len(_A ) ) ) ) __A : Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __A : int = {'unk_token': '<unk>'} __A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) __A : List[Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __A : Optional[int] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : Optional[int] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): __A : List[Any] = self.get_tokenizer() __A : str = self.get_rust_tokenizer() __A : List[str] = self.get_image_processor() __A : Optional[int] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __A : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __A : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __A : Optional[int] = self.get_image_processor(do_normalize=_A ) __A : Any = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Union[str, Any] = self.prepare_image_inputs() __A : int = image_processor(_A , return_tensors='np' ) __A : str = processor(images=_A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): __A : str = self.get_image_processor() __A : str = self.get_tokenizer() __A : Tuple = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : str = 'lower newer' __A : str = processor(text=_A , return_tensors='np' ) __A : List[str] = tokenizer(_A , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase_ ( self ): __A : int = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : List[str] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Any = 'lower newer' __A : Optional[Any] = self.prepare_image_inputs() __A : List[Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Any = 'google/owlvit-base-patch32' __A : int = OwlViTProcessor.from_pretrained(_A ) __A : Dict = ['cat', 'nasa badge'] __A : Optional[Any] = processor(text=_A ) __A : Optional[int] = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Tuple = 'google/owlvit-base-patch32' __A : Any = OwlViTProcessor.from_pretrained(_A ) __A : Dict = [['cat', 'nasa badge'], ['person']] __A : Dict = processor(text=_A ) __A : Optional[int] = 16 __A : Any = len(_A ) __A : Union[str, Any] = max([len(_A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : List[Any] = 'google/owlvit-base-patch32' __A : str = OwlViTProcessor.from_pretrained(_A ) __A : Union[str, Any] = ['cat', 'nasa badge'] __A : Tuple = processor(text=_A ) __A : str = 16 __A : int = inputs['input_ids'] __A : List[Any] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = processor(images=_A , query_images=_A ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : str = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Any = processor.batch_decode(_A ) __A : Tuple = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A )
280
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch.nn.Linear(2 , 4 ) _lowerCAmelCase : Union[str, Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) _lowerCAmelCase : Tuple = torch.optim.lr_scheduler.OneCycleLR(UpperCamelCase_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) _lowerCAmelCase : Any = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _lowerCAmelCase : List[str] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _UpperCAmelCase (UpperCamelCase_ : Tuple ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _UpperCAmelCase (UpperCamelCase_ : Tuple ): '''simple docstring''' _lowerCAmelCase : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(UpperCamelCase_ ) class __snake_case (_a ): @require_cuda def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: '''simple docstring''' _lowerCAmelCase : List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : Dict = Accelerator(cpu=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : List[str] = Accelerator() _lowerCAmelCase : int = GradientState() assert state.num_steps == 1 _lowerCAmelCase : List[str] = 4 assert state.num_steps == 4 assert state.sync_gradients is True _lowerCAmelCase : List[str] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: '''simple docstring''' _lowerCAmelCase : List[Any] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = create_components() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Optional[int] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = create_components() accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Dict ): pass with patch("""torch.cuda.set_device""" , _UpperCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): _lowerCAmelCase : Optional[int] = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: '''simple docstring''' _lowerCAmelCase : int = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = create_components() accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Any = get_signature(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCAmelCase ) # make sure random weights don't match load_random_weights(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = create_components() accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Tuple = get_signature(_UpperCAmelCase ) # saving hook def save_config(_UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ): _lowerCAmelCase : List[Any] = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(_UpperCAmelCase , """data.json""" ) , """w""" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # loading hook def load_config(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ): with open(os.path.join(_UpperCAmelCase , """data.json""" ) , """r""" ) as f: _lowerCAmelCase : int = json.load(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = config["""class_name"""] _lowerCAmelCase : int = accelerator.register_save_state_pre_hook(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = accelerator.register_load_state_pre_hook(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCAmelCase ) # make sure random weights don't match with hooks load_random_weights(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded _lowerCAmelCase : Dict = """random""" # make sure loaded weights match with hooks accelerator.load_state(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded _lowerCAmelCase : List[Any] = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Dict = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = create_components() _lowerCAmelCase : Any = None # This should work _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Dict = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = create_components() _lowerCAmelCase : Optional[Any] = [1, 2, 3] # This should work _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def SCREAMING_SNAKE_CASE ( self : str ) -> str: '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_UpperCAmelCase , device_map={"""""": 0} , ) _lowerCAmelCase : int = Accelerator() # This should work _lowerCAmelCase : List[str] = accelerator.prepare(_UpperCAmelCase ) @slow @require_bnb def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCAmelCase : Optional[Any] = Accelerator() with init_empty_weights(): _lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCAmelCase : Union[str, Any] = infer_auto_device_map(_UpperCAmelCase ) _lowerCAmelCase : int = """cpu""" _lowerCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , llm_inta_enable_fpaa_cpu_offload=_UpperCAmelCase ) # This should not work and get value error with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : str = accelerator.prepare(_UpperCAmelCase ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE ( self : Any ) -> int: '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCAmelCase : Dict = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): _lowerCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCAmelCase : Optional[int] = infer_auto_device_map(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = 1 _lowerCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_UpperCAmelCase , device_map=_UpperCAmelCase , ) _lowerCAmelCase : List[Any] = Accelerator() # This should not work and get value error with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : List[str] = accelerator.prepare(_UpperCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): _lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) _lowerCAmelCase : Tuple = infer_auto_device_map(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_UpperCAmelCase , device_map=_UpperCAmelCase , ) _lowerCAmelCase : Dict = Accelerator() # This should work _lowerCAmelCase : Optional[Any] = accelerator.prepare(_UpperCAmelCase ) @require_cuda def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: '''simple docstring''' _lowerCAmelCase : Tuple = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Any = torch.optim.SGD(model.parameters() , lr=0.01 ) _lowerCAmelCase : Any = Accelerator(cpu=_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = accelerator.prepare(_UpperCAmelCase )
159
import os from datetime import datetime as dt from github import Github _lowerCamelCase : List[Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase : Any = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase : Tuple = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase : Tuple = sorted(issue.get_comments() , key=lambda UpperCamelCase_ : i.created_at , reverse=UpperCamelCase_ ) _lowerCAmelCase : List[Any] = comments[0] if len(UpperCamelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
159
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,) __lowerCamelCase : List[str] = 10 def UpperCAmelCase__ ( self , **snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : int ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : str =self.dummy_model() UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Any =model(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : int =output.prev_sample UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : Any =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config() UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[int] =self.dummy_model() UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : str =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =output.prev_sample UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[Any] =self.scheduler_classes[0] UpperCAmelCase : Dict =self.get_scheduler_config() UpperCAmelCase : List[str] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) UpperCAmelCase : int =self.dummy_model() UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : int =model(snake_case__ , snake_case__ ) UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =output.prev_sample UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ : Dict = DistilBertTokenizer UpperCAmelCase__ : Any = DistilBertTokenizerFast UpperCAmelCase__ : int = True @slow def __lowercase ( self ) -> Any: _a : Union[str, Any] = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) _a : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) _a : Optional[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) _a : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_a ) _a : Optional[int] = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
361
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
0
'''simple docstring''' import datasets from .evaluate import evaluate lowercase_ = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ lowercase_ = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ lowercase_ = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def snake_case_( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def snake_case_( self , A , A ) -> List[str]: _SCREAMING_SNAKE_CASE = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _SCREAMING_SNAKE_CASE = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _SCREAMING_SNAKE_CASE = evaluate(dataset=A , predictions=A ) return score
58
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class a_ : '''simple docstring''' UpperCamelCase = PegasusConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=40 , A=2 , A=1 , A=0 , ) -> Optional[int]: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(A , A , A ) return config, inputs_dict def snake_case_( self , A , A ) -> int: _SCREAMING_SNAKE_CASE = TFPegasusModel(config=A ).get_decoder() _SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""] _SCREAMING_SNAKE_CASE = input_ids[:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""head_mask"""] _SCREAMING_SNAKE_CASE = 1 # first forward pass _SCREAMING_SNAKE_CASE = model(A , attention_mask=A , head_mask=A , use_cache=A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE = model(A , attention_mask=A )[0] _SCREAMING_SNAKE_CASE = model(A , attention_mask=A , past_key_values=A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A , A , rtol=1e-3 ) def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : int=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , ) ->int: if attention_mask is None: _SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCamelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = TFPegasusModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A ) def snake_case_( self ) -> List[str]: self.config_tester.run_common_tests() def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCamelCase = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCamelCase = '''google/pegasus-xsum''' @cached_property def snake_case_( self ) -> List[str]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def snake_case_( self , **A ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.translate_src_text(**A ) assert self.expected_text == generated_words def snake_case_( self , **A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **A , padding=A , return_tensors="""tf""" ) _SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A , ) _SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A ) return generated_words @slow def snake_case_( self ) -> Any: self._assert_generated_batch_equal_expected()
58
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'deit' def __init__(self , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=224 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=16 , **_lowerCamelCase , ): """simple docstring""" super().__init__(**_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : str = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : str = initializer_range UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : List[str] = patch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Union[str, Any] = qkv_bias UpperCAmelCase__ : Optional[Any] = encoder_stride class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def _a (self ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): """simple docstring""" return 1e-4
350
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = (DDIMParallelScheduler,) SCREAMING_SNAKE_CASE = (('eta', 0.0), ('num_inference_steps', 5_0)) def _a (self , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**_lowerCamelCase ) return config def _a (self , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = self.scheduler_classes[0] UpperCAmelCase__ : List[str] = self.get_scheduler_config(**_lowerCamelCase ) UpperCAmelCase__ : Tuple = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : str = 10, 0.0 UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(_lowerCamelCase ) for t in scheduler.timesteps: UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : str = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample return sample def _a (self ): """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def _a (self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCamelCase ) UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _a (self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def _a (self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def _a (self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def _a (self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def _a (self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCamelCase ) def _a (self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCamelCase ) def _a (self ): """simple docstring""" self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def _a (self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCamelCase ) def _a (self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_lowerCamelCase , num_inference_steps=_lowerCamelCase ) def _a (self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCamelCase , eta=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.scheduler_classes[0] UpperCAmelCase__ : Dict = self.get_scheduler_config() UpperCAmelCase__ : Any = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : str = self.get_scheduler_config() UpperCAmelCase__ : int = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = 10, 0.0 scheduler.set_timesteps(_lowerCamelCase ) UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter UpperCAmelCase__ : str = self.dummy_sample_deter + 0.1 UpperCAmelCase__ : Any = self.dummy_sample_deter - 0.1 UpperCAmelCase__ : Tuple = samplea.shape[0] UpperCAmelCase__ : Dict = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase__ : int = torch.arange(_lowerCamelCase )[0:3, None].repeat(1 , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase__ : int = scheduler.batch_step_no_noise(_lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.full_loop() UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase__ : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 ) UpperCAmelCase__ : List[str] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 ) UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
166
0
def A ( a_ ) -> bool: if num < 0: return False __UpperCamelCase : int =num __UpperCamelCase : int =0 while num > 0: __UpperCamelCase : Any =rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
71
A_ :Optional[int] = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' A_ :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A_ :Optional[Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
71
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ :Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ :Dict = json.load(f) @require_torch class lowercase ( unittest.TestCase ): def A__ ( self ,A__): return FSMTTokenizer.from_pretrained(A__) def A__ ( self ,A__): lowercase = FSMTForConditionalGeneration.from_pretrained(A__).to(A__) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 2_6.0], ['''ru-en''', 2_2.0], ['''en-de''', 2_2.0], ['''de-en''', 2_9.0], ]) @slow def A__ ( self ,A__ ,A__): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase = f'facebook/wmt19-{pair}' lowercase = self.get_tokenizer(A__) lowercase = self.get_model(A__) lowercase = bleu_data[pair]['''src'''] lowercase = bleu_data[pair]['''tgt'''] lowercase = tokenizer(A__ ,return_tensors='''pt''' ,truncation=A__ ,padding='''longest''').to(A__) lowercase = model.generate( input_ids=batch.input_ids ,num_beams=8 ,) lowercase = tokenizer.batch_decode( A__ ,skip_special_tokens=A__ ,clean_up_tokenization_spaces=A__) lowercase = calculate_bleu(A__ ,A__) print(A__) self.assertGreaterEqual(scores['''bleu'''] ,A__)
365
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ :Dict = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :List[str] = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowercase__ :Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
97
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): if n_term == "": return [] __UpperCamelCase =[] for temp in range(int(SCREAMING_SNAKE_CASE__ ) ): series.append(F'1/{temp + 1}' if series else '1' ) return series if __name__ == "__main__": _A = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
62
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
'''simple docstring''' import datasets from .evaluate import evaluate _lowerCAmelCase = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' _lowerCAmelCase = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' _lowerCAmelCase = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) ,codebase_urls=["""https://www.atticusprojectai.org/cuad"""] ,reference_urls=["""https://www.atticusprojectai.org/cuad"""] ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowerCAmelCase__ : List[str] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowerCAmelCase__ : Union[str, Any] = evaluate(dataset=__UpperCAmelCase ,predictions=__UpperCAmelCase ) return score
371
'''simple docstring''' from PIL import Image def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = image.size lowerCAmelCase__ : int = 0 lowerCAmelCase__ : int = image.load() for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): lowerCAmelCase__ : int = pixels[j, i] mean += pixel mean //= width * height for j in range(UpperCamelCase ): for i in range(UpperCamelCase ): lowerCAmelCase__ : Dict = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _lowerCAmelCase = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
184
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _lowerCamelCase( lowercase__ , lowercase__=False ) -> Any: '''simple docstring''' __lowercase= [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowercase= [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __lowercase= '' else: __lowercase= 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase= state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) __lowercase= state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase= in_proj_weight[ : config.hidden_size, : ] __lowercase= in_proj_bias[: config.hidden_size] __lowercase= in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase= in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase= in_proj_weight[ -config.hidden_size :, : ] __lowercase= in_proj_bias[-config.hidden_size :] def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' __lowercase= ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Dict: '''simple docstring''' __lowercase= dct.pop(lowercase__ ) __lowercase= val def _lowerCamelCase( ) -> str: '''simple docstring''' __lowercase= 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=False ) -> List[str]: '''simple docstring''' __lowercase= BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=lowercase__ , ) __lowercase= ViTHybridConfig(backbone_config=lowercase__ , image_size=3_8_4 , num_labels=1_0_0_0 ) __lowercase= False # load original model from timm __lowercase= timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowercase= timm_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) __lowercase= create_rename_keys(lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) __lowercase= 'huggingface/label-files' __lowercase= 'imagenet-1k-id2label.json' __lowercase= json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) __lowercase= {int(lowercase__ ): v for k, v in idalabel.items()} __lowercase= idalabel __lowercase= {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": __lowercase= ViTHybridModel(lowercase__ ).eval() else: __lowercase= ViTHybridForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # create image processor __lowercase= create_transform(**resolve_data_config({} , model=lowercase__ ) ) __lowercase= transform.transforms __lowercase= { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } __lowercase= ViTHybridImageProcessor( do_resize=lowercase__ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __lowercase= prepare_img() __lowercase= transform(lowercase__ ).unsqueeze(0 ) __lowercase= processor(lowercase__ , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): __lowercase= model(lowercase__ ) __lowercase= outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: __lowercase= timm_model.forward_features(lowercase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase__ , outputs.pooler_output , atol=1E-3 ) else: __lowercase= timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(F'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(F'ybelkada/{vit_name}' ) processor.push_to_hub(F'ybelkada/{vit_name}' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) lowerCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
295
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class A ( nn.Module ): def __init__(self ): super().__init__() __lowercase= nn.Linear(3 , 4 ) __lowercase= nn.BatchNormad(4 ) __lowercase= nn.Linear(4 , 5 ) def _A (self , lowerCAmelCase ): return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase ) ) ) class A ( A_ ): def _A (self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ): return (args[0] + 1,) + args[1:], kwargs class A ( A_ ): def _A (self , lowerCAmelCase , lowerCAmelCase ): return output + 1 class A ( unittest.TestCase ): def _A (self ): __lowercase= ModelForTest() __lowercase= ModelHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(test_model._hf_hook , lowerCAmelCase ) self.assertTrue(hasattr(lowerCAmelCase , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(lowerCAmelCase ) self.assertFalse(hasattr(lowerCAmelCase , '_hf_hook' ) ) self.assertFalse(hasattr(lowerCAmelCase , '_old_forward' ) ) def _A (self ): __lowercase= ModelForTest() __lowercase= ModelHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) add_hook_to_module(lowerCAmelCase , lowerCAmelCase , append=lowerCAmelCase ) self.assertEqual(isinstance(test_model._hf_hook , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(lowerCAmelCase , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(lowerCAmelCase ) self.assertFalse(hasattr(lowerCAmelCase , '_hf_hook' ) ) self.assertFalse(hasattr(lowerCAmelCase , '_old_forward' ) ) def _A (self ): __lowercase= ModelForTest() __lowercase= torch.randn(2 , 3 ) __lowercase= test_model(x + 1 ) __lowercase= test_model(x + 2 ) __lowercase= PreForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) __lowercase= test_model(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __lowercase= PreForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) __lowercase= test_model(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __lowercase= SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) __lowercase= test_model(lowerCAmelCase ) assert torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) def _A (self ): __lowercase= ModelForTest() __lowercase= torch.randn(2 , 3 ) __lowercase= test_model(lowerCAmelCase ) __lowercase= PostForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) __lowercase= test_model(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __lowercase= PostForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) __lowercase= test_model(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __lowercase= SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) __lowercase= test_model(lowerCAmelCase ) assert torch.allclose(lowerCAmelCase , output + 2 , atol=1E-5 ) def _A (self ): __lowercase= ModelForTest() __lowercase= torch.randn(2 , 3 ) __lowercase= test_model(lowerCAmelCase ) __lowercase= PostForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase ) __lowercase= test_model(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __lowercase= True __lowercase= test_model(lowerCAmelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _A (self ): __lowercase= ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __lowercase= torch.randn(2 , 3 ) __lowercase= model(lowerCAmelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowerCAmelCase , AlignDevicesHook(io_same_device=lowerCAmelCase ) ) __lowercase= torch.randn(2 , 3 ).to(0 ) __lowercase= model(lowerCAmelCase ) self.assertEqual(output.device , torch.device(0 ) ) def _A (self ): __lowercase= ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices __lowercase= {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device __lowercase= torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase ) __lowercase= torch.randn(2 , 3 ) __lowercase= model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload __lowercase= { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) __lowercase= torch.randn(2 , 3 ) __lowercase= model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def _A (self ): __lowercase= ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices __lowercase= 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device __lowercase= torch.device(lowerCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase ) __lowercase= torch.randn(2 , 3 ) __lowercase= model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , offload_buffers=lowerCAmelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) __lowercase= torch.randn(2 , 3 ) __lowercase= model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def _A (self ): __lowercase= ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices __lowercase= 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device __lowercase= torch.device(lowerCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase ) __lowercase= torch.randn(2 , 3 ) __lowercase= model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , weights_map=model.state_dict() , offload_buffers=lowerCAmelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) __lowercase= torch.randn(2 , 3 ) __lowercase= model(lowerCAmelCase ) self.assertEqual(output.device , lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
295
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""ConditionalDetrFeatureExtractor"""] lowerCamelCase__ = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): _A : List[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A , _A : List[str] = emb.weight.shape _A : Union[str, Any] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) _A : Dict = emb.weight.data return lin_layer def _UpperCAmelCase (UpperCamelCase__ : int ): _A : Tuple = torch.load(UpperCamelCase__ , map_location="cpu" ) _A : int = mam_aaa["args"] or mam_aaa["cfg"]["model"] _A : int = mam_aaa["model"] remove_ignore_keys_(UpperCamelCase__ ) _A : Union[str, Any] = state_dict["encoder.embed_tokens.weight"].shape[0] _A : List[str] = MaMaaaConfig( vocab_size=UpperCamelCase__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) _A : Optional[Any] = state_dict["decoder.embed_tokens.weight"] _A : int = MaMaaaForConditionalGeneration(UpperCamelCase__ ) model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _A : Any = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
11
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Dict = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE :Optional[Any] = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,A : Optional[Any] ,A : Optional[int]=False ,A : int=False ,A : Union[str, Any]=False ,A : int=None ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Dict[str, Any]] = None ,**A : Tuple ,): __A = {} if sp_model_kwargs is None else sp_model_kwargs __A = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) __A = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __A = "<|endoftext|>" if eos_token is None else eos_token __A = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __A = unk_token if pad_token is None else pad_token __A = eos_token if bos_token is None else bos_token else: __A = "<pad>" if pad_token is None else pad_token __A = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=A ,remove_space=A ,keep_accents=A ,bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = do_lower_case __A = remove_space __A = keep_accents __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off __A = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __A = re.compile( f'''[{''.join(map(A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(1_27 ,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' ) def __getstate__( self : Optional[int] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Optional[Any] ,A : Union[str, Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase_ ( self : List[str] ): return len(self.sp_model ) def UpperCamelCase_ ( self : int ,A : str ): __A = self.non_printing_characters_re.sub("" ,A ) # Normalize whitespaces __A = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization __A = unicodedata.normalize("NFC" ,A ) return text def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,**A : Optional[int] ): __A = self.preprocess_text(A ) return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : int ): return self.sp_model.IdToPiece(A ) @staticmethod def UpperCamelCase_ ( A : str ): return out_string def UpperCamelCase_ ( self : str ,A : List[str] ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string def UpperCamelCase_ ( self : str ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[str, bool] = False ): if isinstance(A ,A ): __A = self.preprocess_text(A ) __A = self.sp_model.encode(A ) else: __A = [self.preprocess_text(A ) for t in text] __A = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": __A = torch.tensor(A ) return token_ids def UpperCamelCase_ ( self : List[Any] ,A : Union[int, List[int]] ): return self.sp_model.decode(A ) def UpperCamelCase_ ( self : List[str] ,A : "Conversation" ): __A = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] __A = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=A )
15
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : List[str] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['''DeiTFeatureExtractor'''] UpperCAmelCase_ : List[Any] = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
62
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Union[str, Any] = """char""" snake_case__ : Optional[int] = """bpe""" snake_case__ : Dict = """wp""" UpperCAmelCase_ : List[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : List[Any] = ["""image_processor""", """char_tokenizer"""] snake_case__ : Dict = """ViTImageProcessor""" snake_case__ : List[str] = """MgpstrTokenizer""" def __init__( self : Optional[int] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : Any ): UpperCamelCase :Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowerCamelCase , ) UpperCamelCase :Optional[int] = kwargs.pop("""feature_extractor""" ) UpperCamelCase :List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) UpperCamelCase :Optional[int] = tokenizer UpperCamelCase :int = AutoTokenizer.from_pretrained("""gpt2""" ) UpperCamelCase :int = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : str , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : str=None , **__lowerCamelCase : Dict ): if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: UpperCamelCase :Tuple = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None: UpperCamelCase :Any = self.char_tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: UpperCamelCase :Dict = encodings["""input_ids"""] return inputs def _A ( self : Tuple , __lowerCamelCase : str ): UpperCamelCase , UpperCamelCase , UpperCamelCase :int = sequences UpperCamelCase :Tuple = char_preds.size(0 ) UpperCamelCase , UpperCamelCase :str = self._decode_helper(__lowerCamelCase , """char""" ) UpperCamelCase , UpperCamelCase :List[Any] = self._decode_helper(__lowerCamelCase , """bpe""" ) UpperCamelCase , UpperCamelCase :List[Any] = self._decode_helper(__lowerCamelCase , """wp""" ) UpperCamelCase :Any = [] UpperCamelCase :str = [] for i in range(__lowerCamelCase ): UpperCamelCase :Union[str, Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCamelCase :Any = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCamelCase :str = scores.index(max(__lowerCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCamelCase :Optional[Any] = {} UpperCamelCase :Dict = final_strs UpperCamelCase :Union[str, Any] = final_scores UpperCamelCase :List[str] = char_strs UpperCamelCase :Tuple = bpe_strs UpperCamelCase :Optional[Any] = wp_strs return out def _A ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): if format == DecodeType.CHARACTER: UpperCamelCase :List[str] = self.char_decode UpperCamelCase :Union[str, Any] = 1 UpperCamelCase :Optional[Any] = """[s]""" elif format == DecodeType.BPE: UpperCamelCase :Union[str, Any] = self.bpe_decode UpperCamelCase :str = 2 UpperCamelCase :int = """#""" elif format == DecodeType.WORDPIECE: UpperCamelCase :int = self.wp_decode UpperCamelCase :Any = 102 UpperCamelCase :int = """[SEP]""" else: raise ValueError(F"""Format {format} is not supported.""" ) UpperCamelCase , UpperCamelCase :int = [], [] UpperCamelCase :Any = pred_logits.size(0 ) UpperCamelCase :List[Any] = pred_logits.size(1 ) UpperCamelCase , UpperCamelCase :Optional[int] = pred_logits.topk(1 , dim=-1 , largest=__lowerCamelCase , sorted=__lowerCamelCase ) UpperCamelCase :Optional[Any] = preds_index.view(-1 , __lowerCamelCase )[:, 1:] UpperCamelCase :int = decoder(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[int] = torch.nn.functional.softmax(__lowerCamelCase , dim=2 ).max(dim=2 ) UpperCamelCase :Tuple = preds_max_prob[:, 1:] for index in range(__lowerCamelCase ): UpperCamelCase :Tuple = preds_str[index].find(__lowerCamelCase ) UpperCamelCase :List[Any] = preds_str[index][:pred_eos] UpperCamelCase :List[Any] = preds_index[index].cpu().tolist() UpperCamelCase :Optional[Any] = pred_index.index(__lowerCamelCase ) if eos_token in pred_index else -1 UpperCamelCase :List[str] = preds_max_prob[index][: pred_eos_index + 1] UpperCamelCase :List[str] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCamelCase ) conf_scores.append(__lowerCamelCase ) return dec_strs, conf_scores def _A ( self : Optional[Any] , __lowerCamelCase : str ): UpperCamelCase :Dict = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(__lowerCamelCase )] return decode_strs def _A ( self : Union[str, Any] , __lowerCamelCase : str ): return self.bpe_tokenizer.batch_decode(__lowerCamelCase ) def _A ( self : int , __lowerCamelCase : Optional[int] ): UpperCamelCase :Any = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(__lowerCamelCase )] return decode_strs
62
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' _enforce_args(UpperCAmelCase_ , UpperCAmelCase_ ) if n == 0: return 0 _lowerCAmelCase = float("-inf" ) for i in range(1 , n + 1 ): _lowerCAmelCase = max( UpperCAmelCase_ , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCAmelCase_ ) ) return max_revue def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' _enforce_args(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCAmelCase = float("-inf" ) for i in range(1 , n + 1 ): _lowerCAmelCase = max( UpperCAmelCase_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCAmelCase_ , UpperCAmelCase_ ) , ) _lowerCAmelCase = max_revenue return max_rev[n] def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' _enforce_args(UpperCAmelCase_ , UpperCAmelCase_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCAmelCase = [float("-inf" ) for _ in range(n + 1 )] _lowerCAmelCase = 0 for i in range(1 , n + 1 ): _lowerCAmelCase = max_rev[i] for j in range(1 , i + 1 ): _lowerCAmelCase = max(UpperCAmelCase_ , prices[j - 1] + max_rev[i - j] ) _lowerCAmelCase = max_revenue_i return max_rev[n] def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' if n < 0: _lowerCAmelCase = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(UpperCAmelCase_ ) if n > len(UpperCAmelCase_ ): _lowerCAmelCase = ( "Each integral piece of rod must have a corresponding price. " F'''Got n = {n} but length of prices = {len(UpperCAmelCase_ )}''' ) raise ValueError(UpperCAmelCase_ ) def __a(): '''simple docstring''' _lowerCAmelCase = [6, 10, 12, 15, 20, 23] _lowerCAmelCase = len(UpperCAmelCase_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCAmelCase = 36 _lowerCAmelCase = top_down_cut_rod(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = bottom_up_cut_rod(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = naive_cut_rod_recursive(UpperCAmelCase_ , UpperCAmelCase_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
158
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE_ : str = parse(importlib.metadata.version('torch')) def _snake_case ( UpperCAmelCase_ : Union[str, Version] , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) A__ = STR_OPERATION_TO_FUNC[operation] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): A__ = parse(importlib.metadata.version(UpperCAmelCase_ ) ) return operation(UpperCAmelCase_ , parse(UpperCAmelCase_ ) ) def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return compare_versions(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
335
0
"""simple docstring""" __lowercase = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def lowercase ( A_ )-> str: '''simple docstring''' assert type(A_ ) in (int, float) and decimal == int(A_ ) a : int = int(A_ ) a : Optional[int] = "" a : str = False if decimal < 0: a : Any = True decimal *= -1 while decimal > 0: a , a : List[Any] = divmod(A_ , 16 ) a : Optional[int] = values[remainder] + hexadecimal a : Tuple = "0x" + hexadecimal if negative: a : Tuple = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
226
"""simple docstring""" __lowercase = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __lowercase = frozenset(["""prompt""", """negative_prompt"""]) __lowercase = frozenset([]) __lowercase = frozenset(["""image"""]) __lowercase = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""image"""]) __lowercase = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __lowercase = frozenset(["""prompt""", """image""", """negative_prompt"""]) __lowercase = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __lowercase = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) __lowercase = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""image""", """mask_image"""]) __lowercase = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""example_image""", """image""", """mask_image"""]) __lowercase = frozenset(["""class_labels"""]) __lowercase = frozenset(["""class_labels"""]) __lowercase = frozenset(["""batch_size"""]) __lowercase = frozenset([]) __lowercase = frozenset(["""batch_size"""]) __lowercase = frozenset([]) __lowercase = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __lowercase = frozenset(["""prompt""", """negative_prompt"""]) __lowercase = frozenset(["""input_tokens"""]) __lowercase = frozenset(["""input_tokens"""])
226
1
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class _UpperCAmelCase ( unittest.TestCase): def __init__( self : str , lowercase_ : Any , lowercase_ : Optional[Any]=13 , lowercase_ : int=7 , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=True , lowercase_ : Optional[int]=True , lowercase_ : int=99 , lowercase_ : Dict=32 , lowercase_ : List[Any]=5 , lowercase_ : Dict=4 , lowercase_ : Any=37 , lowercase_ : Any="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : str=512 , lowercase_ : Dict=16 , lowercase_ : List[str]=2 , lowercase_ : int=0.02 , lowercase_ : Union[str, Any]=4 , ): snake_case_ : Any = parent snake_case_ : str = batch_size snake_case_ : Any = seq_length snake_case_ : List[Any] = is_training snake_case_ : Tuple = use_attention_mask snake_case_ : Optional[int] = use_token_type_ids snake_case_ : List[str] = use_labels snake_case_ : Any = vocab_size snake_case_ : Optional[int] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : int = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Dict = hidden_dropout_prob snake_case_ : int = attention_probs_dropout_prob snake_case_ : Tuple = max_position_embeddings snake_case_ : Tuple = type_vocab_size snake_case_ : int = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : Any = num_choices def _snake_case ( self : Dict ): snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Any = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[Any] = None if self.use_token_type_ids: snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Optional[int] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self : Union[str, Any] ): snake_case_ : int = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ : Optional[Any] = config_and_inputs snake_case_ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _snake_case ( self : Dict ): snake_case_ : Optional[Any] = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ : Optional[int] = config_and_inputs snake_case_ : str = True snake_case_ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : List[str] = True _lowerCAmelCase : Optional[int] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self : int ): snake_case_ : str = FlaxBertModelTester(self ) @slow def _snake_case ( self : List[Any] ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. snake_case_ : List[Any] = FlaxBertModel.from_pretrained('''bert-base-cased''' ) snake_case_ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ )
264
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
264
1
"""simple docstring""" import os import numpy import onnx def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = a.name _a : str = b.name _a : Optional[int] = """""" _a : Any = """""" _a : List[str] = a == b _a : str = name_a _a : str = name_b return res def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCamelCase__ , UpperCamelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCamelCase__ , UpperCamelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = list(model.graph.initializer ) _a : Tuple = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _a : Tuple = inits[i].name _a : Union[str, Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = os.path.dirname(UpperCamelCase__ ) _a : Optional[Any] = os.path.basename(UpperCamelCase__ ) _a : Tuple = onnx.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) _a : List[Any] = list(model.graph.initializer ) _a : Dict = set() _a : Optional[int] = {} _a : str = [] _a : Optional[int] = 0 for i in range(len(UpperCamelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCamelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCamelCase__ ) dup_set.add(UpperCamelCase__ ) _a : Union[str, Any] = inits[j].data_type _a : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("""unexpected data type: """ , UpperCamelCase__ ) total_reduced_size += mem_size _a : Any = inits[i].name _a : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCamelCase__ ) else: _a : List[Any] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , """GB""" ) _a : Dict = sorted(UpperCamelCase__ ) _remove_dup_initializers_from_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _a : Optional[Any] = """optimized_""" + model_file_name _a : Optional[int] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) onnx.save(UpperCamelCase__ , UpperCamelCase__ ) return new_model
324
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> list[int]: if length <= 0 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(UpperCAmelCase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
185
'''simple docstring''' A__ : Any = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
185
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A_ :int = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def A ( a_ ,a_ ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,) -> Any: if attention_mask is None: __UpperCamelCase : Tuple =np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: __UpperCamelCase : Dict =np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: __UpperCamelCase : Tuple =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase : Union[str, Any] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase : Union[str, Any] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=0.02 , ): """simple docstring""" __UpperCamelCase : Dict =parent __UpperCamelCase : Any =batch_size __UpperCamelCase : str =seq_length __UpperCamelCase : str =is_training __UpperCamelCase : Dict =use_labels __UpperCamelCase : Optional[int] =vocab_size __UpperCamelCase : Tuple =hidden_size __UpperCamelCase : Union[str, Any] =num_hidden_layers __UpperCamelCase : Dict =num_attention_heads __UpperCamelCase : int =intermediate_size __UpperCamelCase : Union[str, Any] =hidden_act __UpperCamelCase : List[str] =hidden_dropout_prob __UpperCamelCase : Any =attention_probs_dropout_prob __UpperCamelCase : List[Any] =max_position_embeddings __UpperCamelCase : int =eos_token_id __UpperCamelCase : Dict =pad_token_id __UpperCamelCase : Tuple =bos_token_id __UpperCamelCase : Optional[int] =initializer_range def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCamelCase : List[Any] =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCamelCase : Optional[Any] =shift_tokens_right(lowerCamelCase__ , 1 , 2 ) __UpperCamelCase : List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , ) __UpperCamelCase : Dict =prepare_blenderbot_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, inputs_dict def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =self.prepare_config_and_inputs() return config, inputs_dict def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =20 __UpperCamelCase : List[Any] =model_class_name(lowerCamelCase__ ) __UpperCamelCase : List[Any] =model.encode(inputs_dict['input_ids'] ) __UpperCamelCase : List[str] =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCamelCase : int =model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase : Optional[Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase : int =model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) __UpperCamelCase : Any =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase : Optional[int] =model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase__ , ) __UpperCamelCase : int =model.decode(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =20 __UpperCamelCase : List[str] =model_class_name(lowerCamelCase__ ) __UpperCamelCase : Dict =model.encode(inputs_dict['input_ids'] ) __UpperCamelCase : Any =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCamelCase : Dict =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase : str =model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase : int =model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) __UpperCamelCase : List[Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase : int =model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) __UpperCamelCase : str =model.decode(lowerCamelCase__ , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ ) __UpperCamelCase : int =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) @require_flax class __A ( unittest.TestCase ): """simple docstring""" UpperCamelCase__ : List[Any] =9_9 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __UpperCamelCase : List[str] =input_ids.shape[0] __UpperCamelCase : Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =self._get_config_and_data() __UpperCamelCase : Optional[int] =FlaxBlenderbotForConditionalGeneration(lowerCamelCase__ ) __UpperCamelCase : Dict =lm_model(input_ids=lowerCamelCase__ ) __UpperCamelCase : Tuple =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __UpperCamelCase : Any =FlaxBlenderbotForConditionalGeneration(lowerCamelCase__ ) __UpperCamelCase : List[Any] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __UpperCamelCase : Dict =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __UpperCamelCase : List[str] =lm_model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =(*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __UpperCamelCase : Union[str, Any] =shift_tokens_right(lowerCamelCase__ , 1 , 2 ) __UpperCamelCase : int =np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() __UpperCamelCase : Optional[Any] =np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __A ( a , unittest.TestCase , a ): """simple docstring""" UpperCamelCase__ : Optional[Any] =True UpperCamelCase__ : Tuple =( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase__ : List[Any] =(FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =FlaxBlenderbotModelTester(self ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase : Tuple =self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =model_class(lowerCamelCase__ ) @jax.jit def encode_jitted(lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ): return model.encode(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) with self.subTest('JIT Enabled' ): __UpperCamelCase : List[Any] =encode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase : Any =encode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase : Tuple =model_class(lowerCamelCase__ ) __UpperCamelCase : List[Any] =model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __UpperCamelCase : List[Any] ={ 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return model.decode( decoder_input_ids=lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , encoder_outputs=lowerCamelCase__ , ) with self.subTest('JIT Enabled' ): __UpperCamelCase : Any =decode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase : Dict =decode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowercase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: __UpperCamelCase : List[str] =model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCamelCase : Dict =np.ones((1, 1) ) * model.config.eos_token_id __UpperCamelCase : int =model(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] ={'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} __UpperCamelCase : Optional[Any] ={'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} __UpperCamelCase : int =FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=lowerCamelCase__ ) __UpperCamelCase : Tuple =BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) __UpperCamelCase : Optional[int] =['Sam'] __UpperCamelCase : Optional[int] =tokenizer(lowerCamelCase__ , return_tensors='jax' ) __UpperCamelCase : Tuple =model.generate(**lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Optional[Any] ='Sam is a great name. It means "sun" in Gaelic.' __UpperCamelCase : Optional[int] =tokenizer.batch_decode(lowerCamelCase__ , **lowerCamelCase__ ) assert generated_txt[0].strip() == tgt_text
362
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def A ( a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[int]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __UpperCamelCase : Optional[int] =TapasConfig.from_json_file(a_ ) # set absolute/relative position embeddings parameter __UpperCamelCase : str =reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __UpperCamelCase : Optional[Any] =TapasForQuestionAnswering(config=a_ ) elif task == "WTQ": # run_task_main.py hparams __UpperCamelCase : Optional[int] =4 __UpperCamelCase : Optional[Any] =True # hparam_utils.py hparams __UpperCamelCase : int =0.664_694 __UpperCamelCase : Any =0.207_951 __UpperCamelCase : Tuple =0.121_194 __UpperCamelCase : List[str] =True __UpperCamelCase : Dict =True __UpperCamelCase : Optional[Any] =False __UpperCamelCase : Optional[int] =0.0_352_513 __UpperCamelCase : Optional[Any] =TapasForQuestionAnswering(config=a_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __UpperCamelCase : List[Any] =4 __UpperCamelCase : List[str] =False # hparam_utils.py hparams __UpperCamelCase : List[str] =36.4_519 __UpperCamelCase : Dict =0.903_421 __UpperCamelCase : List[Any] =222.088 __UpperCamelCase : Optional[Any] =True __UpperCamelCase : Optional[int] =True __UpperCamelCase : Dict =True __UpperCamelCase : Dict =0.763_141 __UpperCamelCase : Union[str, Any] =TapasForQuestionAnswering(config=a_ ) elif task == "TABFACT": __UpperCamelCase : List[Any] =TapasForSequenceClassification(config=a_ ) elif task == "MLM": __UpperCamelCase : Optional[Any] =TapasForMaskedLM(config=a_ ) elif task == "INTERMEDIATE_PRETRAINING": __UpperCamelCase : Optional[Any] =TapasModel(config=a_ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(a_ ,a_ ,a_ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(a_ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) __UpperCamelCase : Optional[Any] =TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' ,model_max_length=512 ) tokenizer.save_pretrained(a_ ) print('Used relative position embeddings:' ,model.config.reset_position_index_per_cell ) if __name__ == "__main__": A_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A_ :Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
245
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _snake_case : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Any=13 ,SCREAMING_SNAKE_CASE__ : List[Any]=10 ,SCREAMING_SNAKE_CASE__ : Tuple=3 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,SCREAMING_SNAKE_CASE__ : Tuple=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : List[Any]=True ,SCREAMING_SNAKE_CASE__ : List[Any]=32 ,SCREAMING_SNAKE_CASE__ : List[Any]=5 ,SCREAMING_SNAKE_CASE__ : Optional[int]=4 ,SCREAMING_SNAKE_CASE__ : str=37 ,SCREAMING_SNAKE_CASE__ : List[str]="gelu" ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=10 ,SCREAMING_SNAKE_CASE__ : str=0.02 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.9 ,SCREAMING_SNAKE_CASE__ : int=None ,): SCREAMING_SNAKE_CASE:List[str] = parent SCREAMING_SNAKE_CASE:Tuple = batch_size SCREAMING_SNAKE_CASE:Tuple = image_size SCREAMING_SNAKE_CASE:Any = num_channels SCREAMING_SNAKE_CASE:Tuple = patch_size SCREAMING_SNAKE_CASE:Union[str, Any] = tubelet_size SCREAMING_SNAKE_CASE:str = num_frames SCREAMING_SNAKE_CASE:Any = is_training SCREAMING_SNAKE_CASE:Tuple = use_labels SCREAMING_SNAKE_CASE:List[Any] = hidden_size SCREAMING_SNAKE_CASE:int = num_hidden_layers SCREAMING_SNAKE_CASE:Tuple = num_attention_heads SCREAMING_SNAKE_CASE:int = intermediate_size SCREAMING_SNAKE_CASE:Optional[int] = hidden_act SCREAMING_SNAKE_CASE:Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE:Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE:Optional[Any] = initializer_range SCREAMING_SNAKE_CASE:int = mask_ratio SCREAMING_SNAKE_CASE:Union[str, Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame SCREAMING_SNAKE_CASE:List[str] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE:Optional[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos SCREAMING_SNAKE_CASE:str = int(mask_ratio * self.seq_length ) def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE:Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE:Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE:Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Optional[Any] ): return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_UpperCamelCase ,initializer_range=self.initializer_range ,) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:Dict = VideoMAEModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE:Dict = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:Dict = VideoMAEForPreTraining(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE:Optional[int] = torch.ones((self.num_masks,) ) SCREAMING_SNAKE_CASE:List[Any] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) SCREAMING_SNAKE_CASE:Tuple = mask.expand(self.batch_size ,-1 ).bool() SCREAMING_SNAKE_CASE:Tuple = model(_UpperCamelCase ,_UpperCamelCase ) # model only returns predictions for masked patches SCREAMING_SNAKE_CASE:Tuple = mask.sum().item() SCREAMING_SNAKE_CASE:Optional[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def __UpperCamelCase ( self : str ): SCREAMING_SNAKE_CASE:List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE:List[Any] = config_and_inputs SCREAMING_SNAKE_CASE:str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _A : List[str] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _A : List[Any] = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) _A : Tuple = False _A : Dict = False _A : Optional[int] = False _A : Optional[Any] = False def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:int = VideoMAEModelTester(self ) SCREAMING_SNAKE_CASE:Union[str, Any] = ConfigTester(self ,config_class=_UpperCamelCase ,has_text_modality=_UpperCamelCase ,hidden_size=37 ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Any=False ): SCREAMING_SNAKE_CASE:Any = copy.deepcopy(_UpperCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE:Union[str, Any] = torch.ones((self.model_tester.num_masks,) ) SCREAMING_SNAKE_CASE:Dict = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) SCREAMING_SNAKE_CASE:List[str] = mask.expand(self.model_tester.batch_size ,-1 ).bool() SCREAMING_SNAKE_CASE:Any = bool_masked_pos.to(_UpperCamelCase ) if return_labels: if model_class in [ *get_values(_UpperCamelCase ), ]: SCREAMING_SNAKE_CASE:Any = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_UpperCamelCase ) return inputs_dict def __UpperCamelCase ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def __UpperCamelCase ( self : List[str] ): pass def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE:List[str] = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE:Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase ,nn.Linear ) ) def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE:List[Any] = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE:Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE:str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE:List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,_UpperCamelCase ) def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCamelCase ) @slow def __UpperCamelCase ( self : Any ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE:int = VideoMAEModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __UpperCamelCase ( self : Any ): if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE:Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE:Optional[int] = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE:List[str] = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE:List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) SCREAMING_SNAKE_CASE:int = True SCREAMING_SNAKE_CASE:str = False SCREAMING_SNAKE_CASE:Any = True SCREAMING_SNAKE_CASE:Optional[Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE:Union[str, Any] = model(**self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ) ) SCREAMING_SNAKE_CASE:List[str] = outputs.attentions self.assertEqual(len(_UpperCamelCase ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE:Tuple = True SCREAMING_SNAKE_CASE:Optional[Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE:Dict = model(**self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ) ) SCREAMING_SNAKE_CASE:Tuple = outputs.attentions self.assertEqual(len(_UpperCamelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) SCREAMING_SNAKE_CASE:str = len(_UpperCamelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE:List[Any] = True SCREAMING_SNAKE_CASE:List[str] = True SCREAMING_SNAKE_CASE:Any = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[int] = model(**self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ) ) self.assertEqual(out_len + 1 ,len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE:Optional[int] = outputs.attentions self.assertEqual(len(_UpperCamelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def __UpperCamelCase ( self : List[Any] ): def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:Optional[int] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE:Tuple = model(**self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ) ) SCREAMING_SNAKE_CASE:List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE:List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_UpperCamelCase ) ,_UpperCamelCase ) SCREAMING_SNAKE_CASE:List[str] = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE:Optional[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) SCREAMING_SNAKE_CASE:Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE:Dict = True check_hidden_states_output(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE:List[str] = True check_hidden_states_output(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCamelCase ( self : Tuple ): pass def A_ ( ): SCREAMING_SNAKE_CASE:Tuple = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) SCREAMING_SNAKE_CASE:int = np.load(snake_case ) return list(snake_case ) @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Tuple ): return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Tuple = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE:Dict = self.default_image_processor SCREAMING_SNAKE_CASE:Optional[Any] = prepare_video() SCREAMING_SNAKE_CASE:Union[str, Any] = image_processor(_UpperCamelCase ,return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE:str = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE:List[Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,_UpperCamelCase ) SCREAMING_SNAKE_CASE:int = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_UpperCamelCase ,atol=1e-4 ) ) @slow def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE:Dict = self.default_image_processor SCREAMING_SNAKE_CASE:Optional[Any] = prepare_video() SCREAMING_SNAKE_CASE:List[Any] = image_processor(_UpperCamelCase ,return_tensors="pt" ).to(_UpperCamelCase ) # add boolean mask, indicating which patches to mask SCREAMING_SNAKE_CASE:int = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" ,filename="bool_masked_pos.pt" ) SCREAMING_SNAKE_CASE:Any = torch.load(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE:List[Any] = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE:Dict = torch.Size([1, 1_408, 1_536] ) SCREAMING_SNAKE_CASE:Tuple = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] ,device=_UpperCamelCase ) self.assertEqual(outputs.logits.shape ,_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,_UpperCamelCase ,atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) SCREAMING_SNAKE_CASE:Tuple = torch.tensor([0.5_142] ,device=_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss ,_UpperCamelCase ,atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) SCREAMING_SNAKE_CASE:Dict = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ,norm_pix_loss=_UpperCamelCase ).to( _UpperCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[int] = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE:List[str] = torch.tensor(torch.tensor([0.6_469] ) ,device=_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss ,_UpperCamelCase ,atol=1e-4 ) )
139
'''simple docstring''' from __future__ import annotations import requests def _A ( snake_case ) -> dict: _lowercase : Dict = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(snake_case ).json() def _A ( snake_case = 10 ) -> list[dict]: _lowercase : List[Any] = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" _lowercase : List[str] = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def _A ( snake_case = 10 ) -> str: _lowercase : Union[str, Any] = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
250
0
def A ( _UpperCAmelCase : int ) -> bool: '''simple docstring''' _UpperCAmelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
290
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(A , 'hidden_sizes')) self.parent.assertTrue(hasattr(A , 'neck_hidden_sizes')) self.parent.assertTrue(hasattr(A , 'num_attention_heads')) class __lowerCAmelCase : def __init__( self : int , A : Tuple , A : List[str]=13 , A : List[str]=32 , A : List[str]=2 , A : List[str]=3 , A : List[Any]=6_40 , A : Any=4 , A : int="silu" , A : int=3 , A : Dict=32 , A : List[Any]=0.1 , A : Optional[Any]=0.1 , A : Optional[int]=0.1 , A : List[str]=0.0_2 , A : int=True , A : Any=True , A : List[str]=10 , A : Tuple=None , ) -> Dict: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = last_hidden_size _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = conv_kernel_size _UpperCAmelCase = output_stride _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = use_labels _UpperCAmelCase = is_training _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range _UpperCAmelCase = scope def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCamelCase ( self : str) -> int: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : List[Any] , A : Dict , A : Tuple , A : int , A : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MobileViTModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : int , A : Any , A : List[Any] , A : List[Any] , A : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileViTForImageClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : int , A : Tuple , A : Optional[Any] , A : Union[str, Any] , A : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileViTForSemanticSegmentation(A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : int) -> Any: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = MobileViTModelTester(self) _UpperCAmelCase = MobileViTConfigTester(self , config_class=A , has_text_modality=A) def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds') def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" pass @unittest.skip(reason='MobileViT does not support input and output embeddings') def _lowerCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViT does not output attentions') def _lowerCamelCase ( self : Any) -> Optional[Any]: """simple docstring""" pass def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" pass def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" def check_hidden_states_output(A : List[str] , A : Union[str, Any] , A : int): _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = 5 self.assertEqual(len(A) , A) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _UpperCAmelCase = 2 for i in range(len(A)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(A , A , A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(A , A , A) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A) def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A) @slow def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = MobileViTModel.from_pretrained(A) self.assertIsNotNone(A) def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small') if is_vision_available() else None @slow def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small').to(A) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) # verify the logits _UpperCAmelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4)) @slow def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = model.to(A) _UpperCAmelCase = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) _UpperCAmelCase = outputs.logits # verify the logits _UpperCAmelCase = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , A) _UpperCAmelCase = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4)) @slow def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = model.to(A) _UpperCAmelCase = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) _UpperCAmelCase = outputs.logits.detach().cpu() _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(50, 60)]) _UpperCAmelCase = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , A) _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A) _UpperCAmelCase = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , A)
290
1
def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = 0 for ch in input_str: __lowerCAmelCase = ord(lowerCAmelCase_ ) __lowerCAmelCase = pow(2, lowerCAmelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
284
def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int ): return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
284
1
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Any: snake_case = mock.Mock() snake_case = 500 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request', return_value=__a ) as mock_head: snake_case = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCamelCase ( self ) -> List[str]: snake_case = mock.Mock() snake_case = 500 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request', return_value=__a ) as mock_head: snake_case = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self ) -> str: # This test is for deprecated behavior and can be removed in v5 try: snake_case = tempfile.mktemp() with open(__a, 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model', __a ) snake_case = AlbertTokenizer.from_pretrained(__a ) finally: os.remove(__a ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json', 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json', __a ) snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size, 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCamelCase ( self ) -> Any: snake_case = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowerCamelCase ( unittest.TestCase ): snake_case_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _lowerCamelCase ( cls ) -> Dict: snake_case = TOKEN HfFolder.save_token(__a ) @classmethod def _lowerCamelCase ( cls ) -> Dict: try: delete_repo(token=cls._token, repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCamelCase ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__a, 'vocab.txt' ) with open(__a, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case = BertTokenizer(__a ) tokenizer.push_to_hub('test-tokenizer', use_auth_token=self._token ) snake_case = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a, repo_id='test-tokenizer', push_to_hub=__a, use_auth_token=self._token ) snake_case = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) def _lowerCamelCase ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__a, 'vocab.txt' ) with open(__a, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case = BertTokenizer(__a ) tokenizer.push_to_hub('valid_org/test-tokenizer-org', use_auth_token=self._token ) snake_case = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __a, repo_id='valid_org/test-tokenizer-org', push_to_hub=__a, use_auth_token=self._token ) snake_case = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) @require_tokenizers def _lowerCamelCase ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__a, 'vocab.txt' ) with open(__a, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__a ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer', use_auth_token=self._token ) snake_case = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__a, 'vocab.txt' ) with open(__a, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case = BertTokenizerFast.from_pretrained(__a ) bert_tokenizer.save_pretrained(__a ) snake_case = CustomTokenizerFast.from_pretrained(__a ) tokenizer.push_to_hub('test-dynamic-tokenizer', use_auth_token=self._token ) snake_case = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, 'CustomTokenizerFast' ) snake_case = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''', use_fast=__a, trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, 'CustomTokenizer' ) class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data, {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data, {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCamelCase ( self ) -> List[str]: snake_case = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ), ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ), ['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ), ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ), ['BC', 'A'] ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ), ['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ), ['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ), ['AB', 'C'] ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ), ['ABC', 'D'] ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = Trie() snake_case = trie.cut_text('ABC', [0, 0, 2, 1, 2, 3] ) self.assertEqual(__a, ['AB', 'C'] )
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
"""simple docstring""" import math def _UpperCAmelCase ( __lowerCamelCase : int ) -> Any: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCAmelCase ( __lowerCamelCase : int = 1_00_01 ) -> Optional[Any]: try: _snake_case = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) _snake_case = [] _snake_case = 2 while len(_lowerCamelCase ) < nth: if is_prime(_lowerCamelCase ): primes.append(_lowerCamelCase ) num += 1 else: num += 1 return primes[len(_lowerCamelCase ) - 1] if __name__ == "__main__": print(F"{solution() = }")
288
'''simple docstring''' UpperCamelCase__ : Optional[Any] = [ (10_00, '''M'''), (9_00, '''CM'''), (5_00, '''D'''), (4_00, '''CD'''), (1_00, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : List[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : str = 0 while place < len(_lowerCamelCase ): if (place + 1 < len(_lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Any = [] for arabic, roman in ROMAN: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : str = divmod(_lowerCamelCase , _lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
112
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=A_ , ) assert hasattr(self , 'env' ) def __UpperCamelCase ( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = F'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings UpperCamelCase = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A_ , instance_count=A_ , instance_type=self.instance_type , debugger_hook_config=A_ , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A_ , py_version='py36' , ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" TrainingJobAnalytics(A_ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" # create estimator UpperCamelCase = self.create_estimator(A_ ) # run training estimator.fit() # result dataframe UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A_ )
110
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = LlamaModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ ) UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> List[Any]: """simple docstring""" UpperCamelCase = True UpperCamelCase = LlamaModel(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) UpperCamelCase = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> str: """simple docstring""" UpperCamelCase = LlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: """simple docstring""" UpperCamelCase = True UpperCamelCase = True UpperCamelCase = LlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0] UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : str = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __lowercase : str = (LlamaForCausalLM,) if is_torch_available() else () __lowercase : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : int = False __lowercase : Optional[int] = False def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = LlamaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'single_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'multi_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = LlamaModel(A_ ) original_model.to(A_ ) original_model.eval() UpperCamelCase = original_model(A_ ).last_hidden_state UpperCamelCase = original_model(A_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = {'type': scaling_type, 'factor': 10.0} UpperCamelCase = LlamaModel(A_ ) scaled_model.to(A_ ) scaled_model.eval() UpperCamelCase = scaled_model(A_ ).last_hidden_state UpperCamelCase = scaled_model(A_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A_ , A_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) ) @require_torch class lowercase ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) UpperCamelCase = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # fmt: off UpperCamelCase = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' UpperCamelCase = 'Simply put, the theory of relativity states that ' UpperCamelCase = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) UpperCamelCase = tokenizer.encode(A_ , return_tensors='pt' ) UpperCamelCase = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=A_ ) # greedy generation outputs UpperCamelCase = model.generate(A_ , max_new_tokens=64 , top_p=A_ , temperature=1 , do_sample=A_ ) UpperCamelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ )
110
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a__ ( unittest.TestCase ): """simple docstring""" __lowerCamelCase = JukeboxTokenizer __lowerCamelCase = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' import torch A__ = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) A__ = tokenizer(**self.metas )["input_ids"] # fmt: off A__ = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' import torch A__ = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) A__ = tokenizer(**self.metas )["input_ids"] # fmt: off A__ = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
68
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int ) -> List[str]: '''simple docstring''' A__ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] A__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } A__ = F'{src_lang}-{tgt_lang}' A__ = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) A__ = os.path.join(SCREAMING_SNAKE_CASE_ , "README.md" ) print(F'Generating {path}' ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # make sure we are under the root of the project lowerCAmelCase__ = Path(__file__).resolve().parent.parent.parent lowerCAmelCase__ = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = model_name.split("""-""") lowerCAmelCase__ = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
68
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = KandinskyVaaControlnetPipeline __snake_case = ['image_embeds', 'negative_image_embeds', 'hint'] __snake_case = ['image_embeds', 'negative_image_embeds', 'hint'] __snake_case = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __snake_case = False @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 100 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCAmelCase_ = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.dummy_unet lowerCAmelCase_ = self.dummy_movq lowerCAmelCase_ = DDIMScheduler( num_train_timesteps=1000, beta_schedule='''linear''', beta_start=0.00_085, beta_end=0.012, clip_sample=UpperCamelCase__, set_alpha_to_one=UpperCamelCase__, steps_offset=1, prediction_type='''epsilon''', thresholding=UpperCamelCase__, ) lowerCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=0 ): """simple docstring""" lowerCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) # create hint lowerCAmelCase_ = floats_tensor((1, 3, 64, 64), rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith('''mps''' ): lowerCAmelCase_ = torch.manual_seed(UpperCamelCase__ ) else: lowerCAmelCase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowerCAmelCase_ = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**UpperCamelCase__ ) lowerCAmelCase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) lowerCAmelCase_ = output.images lowerCAmelCase_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ), return_dict=UpperCamelCase__, )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) lowerCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowerCAmelCase_ = torch.from_numpy(np.array(UpperCamelCase__ ) ).float() / 255.0 lowerCAmelCase_ = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCAmelCase_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''', torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) lowerCAmelCase_ = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''', torch_dtype=torch.floataa ) lowerCAmelCase_ = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = '''A robot, 4k photo''' lowerCAmelCase_ = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCAmelCase_ , lowerCAmelCase_ = pipe_prior( UpperCamelCase__, generator=UpperCamelCase__, num_inference_steps=5, negative_prompt='''''', ).to_tuple() lowerCAmelCase_ = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCAmelCase_ = pipeline( image_embeds=UpperCamelCase__, negative_image_embeds=UpperCamelCase__, hint=UpperCamelCase__, generator=UpperCamelCase__, num_inference_steps=100, output_type='''np''', ) lowerCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCamelCase__, UpperCamelCase__ )
167
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase_ = dict(zip(UpperCamelCase__, range(len(UpperCamelCase__ ) ) ) ) lowerCAmelCase_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowerCAmelCase_ = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) lowerCAmelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase_ = os.path.join(self.tmpdirname, UpperCamelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(UpperCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=UpperCamelCase__ ) lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowerCAmelCase_ = self.get_image_processor(do_normalize=UpperCamelCase__, padding_value=1.0 ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=UpperCamelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(images=UpperCamelCase__, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = processor(text=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(images=UpperCamelCase__, visual_prompt=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ )
167
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer a :Optional[int] = logging.get_logger(__name__) a :Optional[int] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} a :Any = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } a :Optional[int] = { "junnyu/roformer_chinese_small": 1_536, "junnyu/roformer_chinese_base": 1_536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } a :Dict = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE :str = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE :Any = RoFormerTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ) -> str: """simple docstring""" super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE__ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , lowerCAmelCase__ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , lowerCAmelCase__ ) != strip_accents ): SCREAMING_SNAKE_CASE__ : Any = getattr(lowerCAmelCase__ , pre_tok_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE__ : str = do_lower_case SCREAMING_SNAKE_CASE__ : Any = strip_accents SCREAMING_SNAKE_CASE__ : Any = pre_tok_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE__ : Any = do_lower_case def __getstate__( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : Dict = BertPreTokenizer() return state def __setstate__( self , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = d SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE__ : int = PreTokenizer.custom(JiebaPreTokenizer(lowerCAmelCase__ ) ) def _a ( self , _a , _a=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _a , _a = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def _a ( self , _a , _a=None , _a=None , _a=False , **_a , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = BertPreTokenizer() return super().save_pretrained(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
132
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : List[Any] = self.delimiter if self.column_names is not None: _UpperCAmelCase : Union[str, Any] = self.column_names @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : Tuple = CsvConfig def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : Tuple = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : Union[str, Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Tuple = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[Any] = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Tuple = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
145
0
"""simple docstring""" import qiskit def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int ) ->qiskit.result.counts.Counts: '''simple docstring''' a : Any = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register a : List[Any] = qiskit.QuantumCircuit(_snake_case , _snake_case ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator a : Optional[int] = qiskit.execute(_snake_case , _snake_case , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_snake_case ) if __name__ == "__main__": a : Union[str, Any] = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
352
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Union[str, Any]: '''simple docstring''' if isinstance(_lowercase , collections.abc.Iterable ): return x return (x, x) @require_flax class __UpperCamelCase : def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: pass def __a ( self ) -> List[Any]: pass def __a ( self ) -> str: pass def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: a : Dict = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Dict: a : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[str] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : int = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[Any]: a, a : Optional[int] = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = {"vision_model": vision_model, "text_model": text_model} a : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : List[str] = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Union[str, Any]: a, a : Dict = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = {"vision_model": vision_model, "text_model": text_model} a : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : List[str] = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) a : str = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) a : Dict = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : List[Any] = after_output[0] a : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> List[Any]: a, a : Union[str, Any] = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[Any] = {"vision_model": vision_model, "text_model": text_model} a : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : Tuple = model( input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) a : int = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[int] = to_atuple(vision_model.config.image_size ) a : Tuple = to_atuple(vision_model.config.patch_size ) a : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) a : str = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: pt_model.to(lowerCAmelCase__ ) pt_model.eval() # prepare inputs a : List[Any] = inputs_dict a : Any = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): a : int = pt_model(**lowerCAmelCase__ ).to_tuple() a : Union[str, Any] = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) a : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) a : Optional[int] = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) a : Optional[int] = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) pt_model_loaded.to(lowerCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): a : int = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4E-2 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: a : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = VisionTextDualEncoderModel(lowerCAmelCase__ ) a : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : Dict = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) a : List[str] = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[int] = VisionTextDualEncoderModel(lowerCAmelCase__ ) a : List[Any] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : int = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__ ) def __a ( self ) -> Dict: a : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : int = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__ ) @is_pt_flax_cross_test def __a ( self ) -> Any: a : List[Any] = self.prepare_config_and_inputs() a : Tuple = config_inputs_dict.pop("vision_config" ) a : int = config_inputs_dict.pop("text_config" ) a : List[str] = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __a ( self ) -> List[Any]: a, a : Optional[int] = self.get_pretrained_model_and_inputs() a : Optional[int] = model_a(**lowerCAmelCase__ ) a : Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__ ) a : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) a : str = model_a(**lowerCAmelCase__ ) a : Dict = after_outputs[0] a : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1E-5 ) @require_flax class __UpperCamelCase ( a__ , unittest.TestCase ): def __a ( self ) -> List[Any]: a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) a : Any = 13 a : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) a : str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) a : Optional[Any] = random_attention_mask([batch_size, 4] ) a : Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Dict = FlaxViTModel(lowerCAmelCase__ ) a : Dict = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def __a ( self ) -> str: a : Union[str, Any] = FlaxViTModelTester(self ) a : Dict = FlaxBertModelTester(self ) a : str = vit_model_tester.prepare_config_and_inputs() a : Any = bert_model_tester.prepare_config_and_inputs() a, a : Optional[int] = vision_config_and_inputs a, a, a, a : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __UpperCamelCase ( a__ , unittest.TestCase ): def __a ( self ) -> List[Any]: a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) a : Tuple = 13 a : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) a : Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) a : Tuple = random_attention_mask([batch_size, 4] ) a : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : List[Any] = FlaxCLIPVisionModel(lowerCAmelCase__ ) a : Tuple = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def __a ( self ) -> List[Any]: a : Tuple = FlaxCLIPVisionModelTester(self ) a : Union[str, Any] = FlaxBertModelTester(self ) a : Dict = clip_model_tester.prepare_config_and_inputs() a : Optional[int] = bert_model_tester.prepare_config_and_inputs() a, a : Dict = vision_config_and_inputs a, a, a, a : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> Dict: a : str = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) a : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) a : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ) a : Optional[Any] = model(**lowerCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) a : List[str] = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1E-3 ) )
79
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) @dataclass class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Any ,**A : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __A = deprecated_arg[3:] __A = not kwargs.pop(A ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) __A = kwargs.pop("tpu_name" ,self.tpu_name ) __A = kwargs.pop("device_idx" ,self.device_idx ) __A = kwargs.pop("eager_mode" ,self.eager_mode ) __A = kwargs.pop("use_xla" ,self.use_xla ) super().__init__(**A ) snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Name of TPU"} , ) snake_case_ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) snake_case_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Benchmark models in eager model."} ) snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def UpperCamelCase_ ( self : Dict ): requires_backends(self ,["tf"] ) __A = None if self.tpu: try: if self.tpu_name: __A = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __A = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __A = None return tpu @cached_property def UpperCamelCase_ ( self : Tuple ): requires_backends(self ,["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __A = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,"GPU" ) __A = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] ,"GPU" ) # disable GPU __A = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def UpperCamelCase_ ( self : List[Any] ): requires_backends(self ,["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase_ ( self : Any ): requires_backends(self ,["tf"] ) return self._setup_strategy @property def UpperCamelCase_ ( self : int ): requires_backends(self ,["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase_ ( self : Tuple ): requires_backends(self ,["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase_ ( self : Union[str, Any] ): return self.n_gpu > 0
15
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = DPTConfig() if "large" in checkpoint_url: _UpperCAmelCase : List[str] = 1_024 _UpperCAmelCase : Optional[int] = 4_096 _UpperCAmelCase : Union[str, Any] = 24 _UpperCAmelCase : List[Any] = 16 _UpperCAmelCase : List[Any] = [5, 11, 17, 23] _UpperCAmelCase : int = [256, 512, 1_024, 1_024] _UpperCAmelCase : Optional[Any] = (1, 384, 384) if "ade" in checkpoint_url: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : List[Any] = 150 _UpperCAmelCase : Optional[Any] = "huggingface/label-files" _UpperCAmelCase : Optional[int] = "ade20k-id2label.json" _UpperCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) ) , "r" ) ) _UpperCAmelCase : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : int = idalabel _UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : int = [1, 150, 480, 480] return config, expected_shape def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCAmelCase : str = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: _UpperCAmelCase : List[str] = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: _UpperCAmelCase : Dict = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: _UpperCAmelCase : int = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: _UpperCAmelCase : int = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: _UpperCAmelCase : int = name.replace("proj" , "projection" ) if "blocks" in name: _UpperCAmelCase : Tuple = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: _UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: _UpperCAmelCase : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase : int = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: _UpperCAmelCase : List[Any] = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: _UpperCAmelCase : List[str] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: _UpperCAmelCase : Union[str, Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: _UpperCAmelCase : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: _UpperCAmelCase : int = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: _UpperCAmelCase : Tuple = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: _UpperCAmelCase : Optional[Any] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCAmelCase : List[str] = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _UpperCAmelCase : Tuple = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: _UpperCAmelCase : Optional[int] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: _UpperCAmelCase : Optional[int] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: _UpperCAmelCase : Optional[Any] = name.replace("conv1" , "convolution1" ) if "conv2" in name: _UpperCAmelCase : Optional[Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCAmelCase : Optional[Any] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: _UpperCAmelCase : Tuple = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: _UpperCAmelCase : Optional[int] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: _UpperCAmelCase : List[str] = name.replace("pretrained" , "dpt" ) if "bn" in name: _UpperCAmelCase : Dict = name.replace("bn" , "batch_norm" ) if "head" in name: _UpperCAmelCase : Tuple = name.replace("head" , "head.head" ) if "encoder.norm" in name: _UpperCAmelCase : Optional[Any] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: _UpperCAmelCase : Dict = name.replace("auxlayer" , "auxiliary_head.head" ) return name def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : int = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _UpperCAmelCase : str = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCAmelCase : Dict = in_proj_bias[: config.hidden_size] _UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : str = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase (): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL _UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase : Tuple = state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model _UpperCAmelCase : Any = DPTForSemanticSegmentation(__lowerCAmelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image _UpperCAmelCase : Any = 480 if "ade" in checkpoint_url else 384 _UpperCAmelCase : List[str] = DPTImageProcessor(size=__lowerCAmelCase ) _UpperCAmelCase : Any = prepare_img() _UpperCAmelCase : Dict = image_processor(__lowerCAmelCase , return_tensors="pt" ) # forward pass _UpperCAmelCase : Tuple = model(**__lowerCAmelCase ).logits if "ade" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth # Assert logits _UpperCAmelCase : Dict = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _UpperCAmelCase : str = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __lowerCAmelCase ) ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCamelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
234
0
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = False ) -> list[float]: if radian_mode: return [magnitude * cos(lowercase_ ), magnitude * sin(lowercase_ )] return [magnitude * cos(radians(lowercase_ ) ), magnitude * sin(radians(lowercase_ ) )] def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 10**-1 ) -> bool: A__ = cross(lowercase_ , lowercase_ ) A__ = sum(lowercase_ ) return abs(lowercase_ ) < eps if __name__ == "__main__": # Test to check if it works SCREAMING_SNAKE_CASE = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) SCREAMING_SNAKE_CASE = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg SCREAMING_SNAKE_CASE = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) SCREAMING_SNAKE_CASE = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg SCREAMING_SNAKE_CASE = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) SCREAMING_SNAKE_CASE = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
368
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: A__ = model.config A__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) A__ = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: if "encoder.model" in name: A__ = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: A__ = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: A__ = "encoder." + name if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": A__ = "encoder.layernorm.weight" if name == "encoder.norm.bias": A__ = "encoder.layernorm.bias" return name def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[3] ) A__ = int(key_split[5] ) A__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: A__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> Dict: # load original model A__ = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model A__, A__ = get_configs(lowercase_ ) A__ = DonutSwinModel(lowercase_ ) A__ = MBartForCausalLM(lowercase_ ) A__ = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() A__ = original_model.state_dict() A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document A__ = load_dataset("hf-internal-testing/example-documents" ) A__ = dataset["test"][0]["image"].convert("RGB" ) A__ = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) A__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) A__ = DonutProcessor(lowercase_ , lowercase_ ) A__ = processor(lowercase_ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": A__ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" A__ = "When is the coffee break?" A__ = task_prompt.replace("{user_input}" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": A__ = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: A__ = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": A__ = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": A__ = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt A__ = "hello world" else: raise ValueError("Model name not supported" ) A__ = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="pt" )[ "input_ids" ] A__ = original_model.encoder.model.patch_embed(lowercase_ ) A__, A__ = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states A__ = original_model.encoder(lowercase_ ) A__ = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states A__ = original_model(lowercase_ , lowercase_ , lowercase_ ).logits A__ = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
230
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = int(snake_case_ ) if decimal in (0, 1): # Exit cases for the recursion return str(snake_case_ ) lowerCAmelCase__ : List[str] = divmod(snake_case_ , 2 ) return binary_recursive(snake_case_ ) + str(snake_case_ ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = str(snake_case_ ).strip() if not number: raise ValueError("""No input value was provided""" ) lowerCAmelCase__ : List[Any] = '''-''' if number.startswith("""-""" ) else '''''' lowerCAmelCase__ : Optional[Any] = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return f"""{negative}0b{binary_recursive(int(snake_case_ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
37
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __lowercase ( snake_case_ : int ) ->Tuple: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def __lowercase ( snake_case_ : str ) ->Dict: '''simple docstring''' for char in word: __A : int = ord(snake_case_ ) if not _is_chinese_char(snake_case_ ): return 0 return 1 def __lowercase ( snake_case_ : List[str] ) ->List[Any]: '''simple docstring''' __A : str = set() for token in tokens: __A : List[Any] = len(snake_case_ ) > 1 and is_chinese(snake_case_ ) if chinese_word: word_set.add(snake_case_ ) __A : Any = list(snake_case_ ) return word_list def __lowercase ( snake_case_ : List[str] ,snake_case_ : set() ) ->Any: '''simple docstring''' if not chinese_word_set: return bert_tokens __A : List[Any] = max([len(snake_case_ ) for w in chinese_word_set] ) __A : List[str] = bert_tokens __A , __A : Any = 0, len(snake_case_ ) while start < end: __A : str = True if is_chinese(bert_word[start] ): __A : int = min(end - start ,snake_case_ ) for i in range(snake_case_ ,1 ,-1 ): __A : Any = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): __A : Any = '''##''' + bert_word[j] __A : Optional[int] = start + i __A : str = False break if single_word: start += 1 return bert_word def __lowercase ( snake_case_ : List[str] ,snake_case_ : LTP ,snake_case_ : BertTokenizer ) ->Dict: '''simple docstring''' __A : Optional[Any] = [] for i in range(0 ,len(snake_case_ ) ,100 ): __A : int = ltp_tokenizer.seg(lines[i : i + 100] )[0] __A : List[Any] = [get_chinese_word(snake_case_ ) for r in res] ltp_res.extend(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) __A : Any = [] for i in range(0 ,len(snake_case_ ) ,100 ): __A : Tuple = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=snake_case_ ,truncation=snake_case_ ,max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(snake_case_ ) == len(snake_case_ ) __A : Optional[int] = [] for input_ids, chinese_word in zip(snake_case_ ,snake_case_ ): __A : List[str] = [] for id in input_ids: __A : Tuple = bert_tokenizer._convert_id_to_token(snake_case_ ) input_tokens.append(snake_case_ ) __A : Optional[int] = add_sub_symbol(snake_case_ ,snake_case_ ) __A : Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case_ ): if token[:2] == "##": __A : Optional[Any] = token[2:] # save chinese tokens' pos if len(snake_case_ ) == 1 and _is_chinese_char(ord(snake_case_ ) ): ref_id.append(snake_case_ ) ref_ids.append(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) return ref_ids def __lowercase ( snake_case_ : int ) ->List[Any]: '''simple docstring''' with open(args.file_name ,'''r''' ,encoding='''utf-8''' ) as f: __A : List[str] = f.readlines() __A : Optional[Any] = [line.strip() for line in data if len(snake_case_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __A : str = LTP(args.ltp ) # faster in GPU device __A : Optional[int] = BertTokenizer.from_pretrained(args.bert ) __A : Optional[Any] = prepare_ref(snake_case_ ,snake_case_ ,snake_case_ ) with open(args.save_path ,'''w''' ,encoding='''utf-8''' ) as f: __A : int = [json.dumps(snake_case_ ) + '''\n''' for ref in ref_ids] f.writelines(snake_case_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") a_ = parser.parse_args() main(args)
179
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowerCAmelCase: int = 'src/transformers' lowerCAmelCase: Dict = 'docs/source/en/tasks' def lowerCamelCase__ ( _A , _A , _A ): with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : int = f.readlines() # Find the start prompt. a : str = 0 while not lines[start_index].startswith(_A ): start_index += 1 start_index += 1 a : Tuple = start_index while not lines[end_index].startswith(_A ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase: Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) lowerCAmelCase: int = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowerCAmelCase: str = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowerCamelCase__ ( _A ): a : Dict = TASK_GUIDE_TO_MODELS[task_guide] a : List[Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_A , set() ) a : Dict = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowerCamelCase__ ( _A , _A=False ): a , a , a , a : List[Any] = _find_text_in_file( filename=os.path.join(_A , _A ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) a : str = get_model_list_for_task(_A ) if current_list != new_list: if overwrite: with open(os.path.join(_A , _A ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": lowerCAmelCase: Optional[int] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase: Optional[int] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
96
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase: Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[str] = ['PoolFormerFeatureExtractor'] lowerCAmelCase: Tuple = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: str = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase: Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
96
1
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( _A: List[str] , _A: Any , _A: Tuple ) -> Any: '''simple docstring''' lowerCAmelCase = RemBertConfig.from_json_file(_A ) print("""Building PyTorch model from configuration: {}""".format(str(_A ) ) ) lowerCAmelCase = RemBertModel(_A ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_A , _A , _A ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_A ) ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
272
'''simple docstring''' from math import sqrt def snake_case__ ( _A: int = 1000000 ) -> int: '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'{solution() = }')
272
1
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class snake_case : def __init__( self : int , a__ : Tuple , a__ : Optional[Any]=13 , a__ : int=32 , a__ : Tuple=2 , a__ : Union[str, Any]=3 , a__ : Optional[Any]=16 , a__ : Any=[1, 2, 1] , a__ : Tuple=[2, 2, 4] , a__ : Optional[Any]=2 , a__ : List[Any]=2.0 , a__ : Dict=True , a__ : Union[str, Any]=0.0 , a__ : Optional[int]=0.0 , a__ : Union[str, Any]=0.1 , a__ : Tuple="gelu" , a__ : Tuple=False , a__ : Tuple=True , a__ : Dict=0.0_2 , a__ : Dict=1E-5 , a__ : int=True , a__ : Dict=None , a__ : Tuple=True , a__ : Optional[Any]=10 , a__ : Optional[int]=8 , a__ : Union[str, Any]=["stage1", "stage2", "stage3"] , a__ : Union[str, Any]=[1, 2, 3] , ) -> Dict: '''simple docstring''' _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = embed_dim _A = depths _A = num_heads _A = window_size _A = mlp_ratio _A = qkv_bias _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = drop_path_rate _A = hidden_act _A = use_absolute_embeddings _A = patch_norm _A = layer_norm_eps _A = initializer_range _A = is_training _A = scope _A = use_labels _A = type_sequence_label_size _A = encoder_stride _A = out_features _A = out_indices def a_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def a_ ( self : int ) -> Union[str, Any]: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a_ ( self : Any , a__ : Tuple , a__ : int , a__ : Any ) -> int: '''simple docstring''' _A = MaskFormerSwinModel(config=a__ ) model.to(a__ ) model.eval() _A = model(a__ ) _A = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _A = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a_ ( self : Dict , a__ : List[str] , a__ : Optional[Any] , a__ : Tuple ) -> str: '''simple docstring''' _A = MaskFormerSwinBackbone(config=a__ ) model.to(a__ ) model.eval() _A = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(a__ ): _A = ["stem"] _A = MaskFormerSwinBackbone(config=a__ ) def a_ ( self : Any ) -> Any: '''simple docstring''' _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( a_ , a_ , unittest.TestCase): __UpperCamelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __UpperCamelCase = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def a_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _A = MaskFormerSwinModelTester(self ) _A = ConfigTester(self , config_class=a__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self : Optional[int] ) -> Dict: '''simple docstring''' return def a_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a_ ( self : Tuple ) -> str: '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) @unittest.skip("Swin does not use inputs_embeds" ) def a_ ( self : List[Any] ) -> str: '''simple docstring''' pass @unittest.skip("Swin does not support feedforward chunking" ) def a_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass def a_ ( self : str ) -> Optional[Any]: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def a_ ( self : int ) -> Union[str, Any]: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(a__ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def a_ ( self : Tuple ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def a_ ( self : Optional[int] ) -> Any: '''simple docstring''' pass def a_ ( self : Optional[Any] , a__ : Tuple , a__ : Any , a__ : Tuple , a__ : List[str] ) -> List[str]: '''simple docstring''' _A = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(a__ , a__ ) ) _A = outputs.hidden_states _A = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a__ ) , a__ ) # Swin has a different seq_length _A = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a_ ( self : Tuple ) -> str: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) def a_ ( self : str ) -> str: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = 3 _A = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _A = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _A = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def a_ ( self : str ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def a_ ( self : Any ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def a_ ( self : str ) -> str: '''simple docstring''' pass def a_ ( self : Optional[Any] ) -> str: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a__ : str ): _A = 0 return t def check_equivalence(a__ : str , a__ : List[Any] , a__ : Optional[Any] , a__ : Tuple={} ): with torch.no_grad(): _A = model(**a__ , return_dict=a__ , **a__ ) _A = model(**a__ , return_dict=a__ , **a__ ).to_tuple() def recursive_check(a__ : Any , a__ : List[str] ): if isinstance(a__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a__ , a__ ): recursive_check(a__ , a__ ) elif isinstance(a__ , a__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a__ , a__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a__ ) , set_nan_tensor_to_zero(a__ ) , atol=1E-5 ) , msg=( "Tuple and dict output are not equal. Difference:" F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(a__ ).any()} and `inf`: {torch.isinf(a__ )}. Dict has""" F""" `nan`: {torch.isnan(a__ ).any()} and `inf`: {torch.isinf(a__ )}.""" ) , ) recursive_check(a__ , a__ ) for model_class in self.all_model_classes: _A = model_class(a__ ) model.to(a__ ) model.eval() _A = self._prepare_for_class(a__ , a__ ) _A = self._prepare_for_class(a__ , a__ ) check_equivalence(a__ , a__ , a__ ) _A = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _A = self._prepare_for_class(a__ , a__ , return_labels=a__ ) check_equivalence(a__ , a__ , a__ ) _A = self._prepare_for_class(a__ , a__ ) _A = self._prepare_for_class(a__ , a__ ) check_equivalence(a__ , a__ , a__ , {"output_hidden_states": True} ) _A = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _A = self._prepare_for_class(a__ , a__ , return_labels=a__ ) check_equivalence(a__ , a__ , a__ , {"output_hidden_states": True} ) @require_torch class snake_case ( unittest.TestCase , a_): __UpperCamelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () __UpperCamelCase = MaskFormerSwinConfig def a_ ( self : Dict ) -> str: '''simple docstring''' _A = MaskFormerSwinModelTester(self ) def a_ ( self : Any ) -> int: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A = backbone_class(a__ ) backbone.to(a__ ) backbone.eval() _A = backbone(**a__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _A = backbone(**a__ , output_hidden_states=a__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _A = backbone(**a__ , output_attentions=a__ ) self.assertIsNotNone(outputs.attentions )
350
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def a__ ( __lowercase , __lowercase , __lowercase = 1_6000 ) -> List[str]: _A = int(round(sample_rate * max_length ) ) if len(__lowercase ) <= sample_length: return wav _A = randint(0 , len(__lowercase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class snake_case : __UpperCamelCase = field(default=_UpperCamelCase , metadata={'help': 'Name of a dataset from the datasets package'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'A file containing the training audio paths and labels.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'A file containing the validation audio paths and labels.'}) __UpperCamelCase = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) __UpperCamelCase = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) __UpperCamelCase = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) __UpperCamelCase = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __UpperCamelCase = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class snake_case : __UpperCamelCase = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) __UpperCamelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def a_ ( self : List[str] ) -> List[str]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , a__ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def a__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _A = DatasetDict() _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ "Make sure to set `--audio_column_name` to the correct audio column - one of " f"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ "Make sure to set `--label_column_name` to the correct text column - one of " f"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _A = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _A = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _A = feature_extractor.model_input_names[0] def train_transforms(__lowercase ): _A = [] for audio in batch[data_args.audio_column_name]: _A = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowercase ) _A = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) _A = {model_input_name: inputs.get(__lowercase )} _A = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__lowercase ): _A = [audio["array"] for audio in batch[data_args.audio_column_name]] _A = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) _A = {model_input_name: inputs.get(__lowercase )} _A = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _A = raw_datasets["train"].features[data_args.label_column_name].names _A , _A = {}, {} for i, label in enumerate(__lowercase ): _A = str(__lowercase ) _A = label # Load the accuracy metric from the datasets package _A = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__lowercase ): _A = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__lowercase , references=eval_pred.label_ids ) _A = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowercase ) , labelaid=__lowercase , idalabel=__lowercase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _A = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowercase , output_all_columns=__lowercase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _A = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowercase , output_all_columns=__lowercase ) # Initialize our trainer _A = Trainer( model=__lowercase , args=__lowercase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=__lowercase , tokenizer=__lowercase , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics("eval" , __lowercase ) trainer.save_metrics("eval" , __lowercase ) # Write model card and (optionally) push to hub _A = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
163
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = [False] * len(__snake_case ) UpperCAmelCase_ : Dict = [-1] * len(__snake_case ) def dfs(__snake_case : Dict , __snake_case : Tuple ): UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Dict = c for u in graph[v]: if not visited[u]: dfs(__snake_case , 1 - c ) for i in range(len(__snake_case ) ): if not visited[i]: dfs(__snake_case , 0 ) for i in range(len(__snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __UpperCAmelCase = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
29
"""simple docstring""" from __future__ import annotations import math def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [n] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if len(str(_SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(_SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(_SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def lowercase ( _SCREAMING_SNAKE_CASE : int = 11 ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 13 while len(_SCREAMING_SNAKE_CASE ) != count: if validate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = list_truncated_nums(_SCREAMING_SNAKE_CASE ) if all(is_prime(_SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(_SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def lowercase ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(11)) = }''')
260
0
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {"""vocab_file""": """spiece.model"""} UpperCAmelCase : int = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } UpperCAmelCase : str = { """AI-Sweden/gpt-sw3-126m""": 2048, """AI-Sweden/gpt-sw3-350m""": 2048, """AI-Sweden/gpt-sw3-1.6b""": 2048, """AI-Sweden/gpt-sw3-6.7b""": 2048, """AI-Sweden/gpt-sw3-20b""": 2048, } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : int = VOCAB_FILES_NAMES _lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: '''simple docstring''' a__ : str ={} if sp_model_kwargs is None else sp_model_kwargs a__ : Any =kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) a__ : int ="None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing a__ : Dict ="<|endoftext|>" if eos_token is None else eos_token a__ : Any ="<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: a__ : Optional[int] =unk_token if pad_token is None else pad_token a__ : List[str] =eos_token if bos_token is None else bos_token else: a__ : Optional[int] ="<pad>" if pad_token is None else pad_token a__ : Any ="<s>" if bos_token is None else bos_token super().__init__( do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) a__ : List[str] =do_lower_case a__ : Union[str, Any] =remove_space a__ : Union[str, Any] =keep_accents a__ : int =vocab_file a__ : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) # Used for whitespace normalization in input texts # fmt : off a__ : List[Any] ={" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing a__ : Optional[Any] =re.compile( F'''[{"".join(map(lowerCAmelCase__ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]''' ) def __getstate__( self ) -> str: '''simple docstring''' a__ : Dict =self.__dict__.copy() a__ : Optional[int] =None return state def __setstate__( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : str ={} a__ : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _lowercase ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : List[str] =self.non_printing_characters_re.sub("" , lowerCAmelCase__ ) # Normalize whitespaces a__ : Optional[int] ="".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization a__ : Optional[Any] =unicodedata.normalize("NFC" , lowerCAmelCase__ ) return text def _lowercase ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' a__ : Dict =self.preprocess_text(lowerCAmelCase__ ) return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' return self.sp_model.PieceToId(lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' return self.sp_model.IdToPiece(lowerCAmelCase__ ) @staticmethod def _lowercase ( lowerCAmelCase__ ) -> str: '''simple docstring''' return out_string def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : int =[] a__ : List[Any] ="" a__ : Tuple =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token a__ : Tuple =True a__ : Any =[] else: current_sub_tokens.append(lowerCAmelCase__ ) a__ : List[str] =False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string def _lowercase ( self ) -> Dict[str, int]: '''simple docstring''' a__ : List[str] ={self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : List[Any] =os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , "wb" ) as fi: a__ : List[str] =self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Tuple =self.preprocess_text(lowerCAmelCase__ ) a__ : str =self.sp_model.encode(lowerCAmelCase__ ) else: a__ : List[str] =[self.preprocess_text(lowerCAmelCase__ ) for t in text] a__ : int =self.sp_model.encode(lowerCAmelCase__ ) if return_tensors is True or return_tensors == "pt": a__ : Optional[int] =torch.tensor(lowerCAmelCase__ ) return token_ids def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' return self.sp_model.decode(lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> List[int]: '''simple docstring''' a__ : Tuple =[F'''User: {text}''' if is_user else F'''Bot: {text}''' for is_user, text in conversation.iter_texts()] a__ : Tuple =( F'''{self.eos_token}{self.bos_token}''' + F'''{self.bos_token}'''.join(lowerCAmelCase__ ) + F'''{self.bos_token}Bot:''' ) return self.encode(text=lowerCAmelCase__ )
350
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = (PNDMScheduler,) _lowercase : str = (("""num_inference_steps""", 50),) def _lowercase ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Dict ={ "num_train_timesteps": 1_0_0_0, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowercase ( self , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : Optional[int] =dict(self.forward_default_kwargs ) a__ : Tuple =kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) a__ : List[str] =self.dummy_sample a__ : List[str] =0.1 * sample a__ : str =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a__ : int =self.get_scheduler_config(**lowerCAmelCase__ ) a__ : Union[str, Any] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals a__ : Any =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) a__ : List[Any] =scheduler_class.from_pretrained(lowerCAmelCase__ ) new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals a__ : str =dummy_past_residuals[:] a__ : Any =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Dict =new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a__ : Optional[int] =scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Union[str, Any] =new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowercase ( self ) -> int: '''simple docstring''' pass def _lowercase ( self , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ : Optional[int] =dict(self.forward_default_kwargs ) a__ : List[str] =kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) a__ : List[str] =self.dummy_sample a__ : int =0.1 * sample a__ : Tuple =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a__ : Dict =self.get_scheduler_config() a__ : List[str] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) a__ : Dict =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) a__ : Dict =scheduler_class.from_pretrained(lowerCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) a__ : Optional[int] =dummy_past_residuals[:] a__ : Optional[Any] =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : List[Any] =new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a__ : List[str] =scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Any =new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowercase ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Union[str, Any] =self.scheduler_classes[0] a__ : Optional[Any] =self.get_scheduler_config(**lowerCAmelCase__ ) a__ : Any =scheduler_class(**lowerCAmelCase__ ) a__ : int =1_0 a__ : Union[str, Any] =self.dummy_model() a__ : Optional[int] =self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): a__ : List[Any] =model(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[Any] =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): a__ : int =model(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int =scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample return sample def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : str =dict(self.forward_default_kwargs ) a__ : Tuple =kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) for scheduler_class in self.scheduler_classes: a__ : Union[str, Any] =self.get_scheduler_config() a__ : List[str] =scheduler_class(**lowerCAmelCase__ ) a__ : List[Any] =self.dummy_sample a__ : Dict =0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase__ , "set_timesteps" ): scheduler.set_timesteps(lowerCAmelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase__ , "set_timesteps" ): a__ : int =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a__ : Tuple =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a__ : str =dummy_past_residuals[:] a__ : List[Any] =scheduler.step_prk(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : int =scheduler.step_prk(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) a__ : List[str] =scheduler.step_plms(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Dict =scheduler.step_plms(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase ( self ) -> Tuple: '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase__ ) a__ : Optional[Any] =self.scheduler_classes[0] a__ : Tuple =self.get_scheduler_config(steps_offset=1 ) a__ : Optional[Any] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def _lowercase ( self ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' for t in [1, 5, 1_0]: self.check_over_forward(time_step=lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=lowerCAmelCase__ ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Dict =2_7 for scheduler_class in self.scheduler_classes: a__ : Tuple =self.dummy_sample a__ : Dict =0.1 * sample a__ : Dict =self.get_scheduler_config() a__ : int =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): a__ : Any =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): a__ : List[Any] =self.scheduler_classes[0] a__ : Dict =self.get_scheduler_config() a__ : Tuple =scheduler_class(**lowerCAmelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =self.full_loop() a__ : str =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Optional[Any] =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =self.full_loop(prediction_type="v_prediction" ) a__ : int =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Optional[int] =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Tuple =self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) a__ : str =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Dict =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Dict =self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) a__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Union[str, Any] =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
148
0