code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = nn.functional.normalize(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = nn.functional.normalize(_UpperCAmelCase ) return torch.mm(_UpperCAmelCase , normalized_text_embeds.t() ) class __lowercase ( lowerCAmelCase__ ): """simple docstring""" _UpperCAmelCase : str = CLIPConfig _UpperCAmelCase : Tuple = ['''CLIPEncoderLayer'''] def __init__( self : Tuple , lowerCAmelCase__ : Dict): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPVisionModel(config.vision_config) SCREAMING_SNAKE_CASE_: str = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = nn.Parameter(torch.ones(17 , config.projection_dim) , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim) , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Parameter(torch.ones(17) , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = nn.Parameter(torch.ones(3) , requires_grad=lowerCAmelCase__) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.vision_model(lowerCAmelCase__)[1] # pooled_output SCREAMING_SNAKE_CASE_: Optional[int] = self.visual_projection(lowerCAmelCase__) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE_: Union[str, Any] = cosine_distance(lowerCAmelCase__ , self.special_care_embeds).cpu().float().numpy() SCREAMING_SNAKE_CASE_: Union[str, Any] = cosine_distance(lowerCAmelCase__ , self.concept_embeds).cpu().float().numpy() SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: Dict = image_embeds.shape[0] for i in range(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: List[Any] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE_: Dict = 0.0 for concept_idx in range(len(special_cos_dist[0])): SCREAMING_SNAKE_CASE_: Dict = special_cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE_: str = self.special_care_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE_: Any = round(concept_cos - concept_threshold + adjustment , 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) SCREAMING_SNAKE_CASE_: str = 0.01 for concept_idx in range(len(cos_dist[0])): SCREAMING_SNAKE_CASE_: List[Any] = cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE_: int = self.concept_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE_: Dict = round(concept_cos - concept_threshold + adjustment , 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__) result.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = [len(res["bad_concepts"]) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: int = self.vision_model(lowerCAmelCase__)[1] # pooled_output SCREAMING_SNAKE_CASE_: List[str] = self.visual_projection(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = cosine_distance(lowerCAmelCase__ , self.special_care_embeds) SCREAMING_SNAKE_CASE_: str = cosine_distance(lowerCAmelCase__ , self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE_: List[Any] = 0.0 SCREAMING_SNAKE_CASE_: Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) SCREAMING_SNAKE_CASE_: str = torch.any(special_scores > 0 , dim=1) SCREAMING_SNAKE_CASE_: List[str] = special_care * 0.01 SCREAMING_SNAKE_CASE_: Tuple = special_adjustment.unsqueeze(1).expand(-1 , cos_dist.shape[1]) SCREAMING_SNAKE_CASE_: int = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) SCREAMING_SNAKE_CASE_: Optional[int] = torch.any(concept_scores > 0 , dim=1) return images, has_nsfw_concepts
13
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis snake_case_ = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] snake_case_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCAmelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ = primes[:idx] break snake_case_ , snake_case_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ = False for r in range(UpperCAmelCase ): snake_case_ = pow(UpperCAmelCase , d * 2**r , UpperCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCAmelCase ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
69
0
from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase = 4 ): _SCREAMING_SNAKE_CASE : List[str] = abs(__lowerCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__lowerCamelCase )] for y in range(__lowerCamelCase )] def lowerCamelCase__ (__lowerCamelCase ): return reverse_row(transpose(__lowerCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def lowerCamelCase__ (__lowerCamelCase ): return reverse_row(reverse_column(__lowerCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCamelCase__ (__lowerCamelCase ): return reverse_column(transpose(__lowerCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = [list(__lowerCamelCase ) for x in zip(*__lowerCamelCase )] return matrix def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = matrix[::-1] return matrix def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = [x[::-1] for x in matrix] return matrix def lowerCamelCase__ (__lowerCamelCase ): for i in matrix: print(*__lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) UpperCamelCase__ =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) UpperCamelCase__ =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'spiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCamelCase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase__ ='▁' class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : List[Any] = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : str = keep_accents _SCREAMING_SNAKE_CASE : Optional[int] = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if self.remove_space: _SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = inputs _SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = "" _SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
325
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = AutoencoderKL A__ : Optional[int] = "sample" A__ : Tuple = 1E-2 @property def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Any = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def A__ ( self: List[str] ) -> Tuple: return (3, 32, 32) @property def A__ ( self: Optional[Any] ) -> Any: return (3, 32, 32) def A__ ( self: Any ) -> Tuple: UpperCAmelCase_ : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } UpperCAmelCase_ : int = self.dummy_input return init_dict, inputs_dict def A__ ( self: Optional[Any] ) -> int: pass def A__ ( self: str ) -> Any: pass @unittest.skipIf(torch_device == """mps""" ,"""Gradient checkpointing skipped on MPS""" ) def A__ ( self: Union[str, Any] ) -> Dict: # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ : Any = torch.randn_like(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ : str = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ : Optional[int] = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCAmelCase_ : Dict = dict(model.named_parameters() ) UpperCAmelCase_ : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def A__ ( self: Optional[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ,output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self: Optional[int] ) -> int: UpperCAmelCase_ : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) UpperCAmelCase_ : Tuple = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : str = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase_ : int = image.to(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample UpperCAmelCase_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ : List[str] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: UpperCAmelCase_ : List[str] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy''' def A__ ( self: Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: List[Any]=(4, 3, 512, 512) ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]: UpperCAmelCase_ : Tuple = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def A__ ( self: List[Any] ,lowerCamelCase_: List[str]="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_: Union[str, Any]=False ) -> Any: UpperCAmelCase_ : Optional[Any] = """fp16""" if fpaa else None UpperCAmelCase_ : str = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : int = AutoencoderKL.from_pretrained( lowerCamelCase_ ,subfolder="""vae""" ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,) model.to(lowerCamelCase_ ).eval() return model def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=0 ) -> Optional[int]: if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ) -> Tuple: UpperCAmelCase_ : List[Any] = self.get_sd_vae_model() UpperCAmelCase_ : int = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Tuple: UpperCAmelCase_ : List[str] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Dict: UpperCAmelCase_ : Optional[int] = self.get_sd_vae_model() UpperCAmelCase_ : Dict = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : str = model(lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Any = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.get_sd_vae_model() UpperCAmelCase_ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : str = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : Any = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> int: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.get_sd_vae_model() UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model() UpperCAmelCase_ : Optional[Any] = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : str = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : int = model.encode(lowerCamelCase_ ).latent_dist UpperCAmelCase_ : Optional[Any] = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ : Tuple = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
345
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _a : Dict ): '''simple docstring''' UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" ) UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCAmelCase_ : Optional[int] = checkpoint["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} UpperCAmelCase_ : int = XGLMConfig( vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a ) UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a ) print(_a ) UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
345
1
"""simple docstring""" from ....utils import logging _lowerCAmelCase :List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case_ ): '''simple docstring''' def __init__( self , A , A=None , A=2_0_4_8 ) -> Union[str, Any]: _UpperCAmelCase : Tuple = config.__dict__ _UpperCAmelCase : List[Any] = modal_hidden_size if num_labels: _UpperCAmelCase : str = num_labels
371
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowerCamelCase_ (): _UpperCAmelCase : int = HfArgumentParser(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase : Union[str, Any] = TensorFlowBenchmark(args=UpperCamelCase__ ) try: _UpperCAmelCase : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: _UpperCAmelCase : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' _UpperCAmelCase : Tuple = ''' '''.join(str(UpperCamelCase__ ).split(''' ''' )[:-1] ) _UpperCAmelCase : int = '''''' _UpperCAmelCase : List[Any] = eval(str(UpperCamelCase__ ).split(''' ''' )[-1] ) _UpperCAmelCase : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(UpperCamelCase__ ) raise ValueError(UpperCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
68
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : int =BarthezTokenizer UpperCamelCase__ : Union[str, Any] =BarthezTokenizerFast UpperCamelCase__ : List[str] =True UpperCamelCase__ : int =True def __lowercase ( self ): """simple docstring""" super().setUp() __UpperCamelCase : Any =BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCamelCase__ ) __UpperCamelCase : str =tokenizer def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] ='<pad>' __UpperCamelCase : Dict =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowerCamelCase__ ) , 101122 ) def __lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =['A long paragraph for summarization.', 'Another paragraph for summarization.'] __UpperCamelCase : int =[0, 57, 3018, 70307, 91, 2] __UpperCamelCase : Union[str, Any] =self.tokenizer( lowerCamelCase__ , max_length=len(lowerCamelCase__ ) , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='pt' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __UpperCamelCase : List[str] =batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return __UpperCamelCase : Union[str, Any] =self.get_tokenizer() __UpperCamelCase : int =self.get_rust_tokenizer() __UpperCamelCase : str ='I was born in 92000, and this is falsé.' __UpperCamelCase : Tuple =tokenizer.tokenize(lowerCamelCase__ ) __UpperCamelCase : List[str] =rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =self.get_rust_tokenizer() __UpperCamelCase : Tuple =tokenizer.encode(lowerCamelCase__ ) __UpperCamelCase : List[str] =rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict ={'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __UpperCamelCase : str =[ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=lowerCamelCase__ , )
71
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = """▁""" __SCREAMING_SNAKE_CASE : str = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE : int = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } __SCREAMING_SNAKE_CASE : str = { """google/pegasus-xsum""": 512, } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = VOCAB_FILES_NAMES __UpperCamelCase: Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase: List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase: Optional[int] = PegasusTokenizer __UpperCamelCase: Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Dict , A : List[str]=None , A : Union[str, Any]=None , A : Optional[int]="<pad>" , A : Tuple="</s>" , A : Union[str, Any]="<unk>" , A : Union[str, Any]="<mask_2>" , A : Dict="<mask_1>" , A : Union[str, Any]=None , A : int=103 , **A : Optional[Any] , ): _UpperCAmelCase : Dict = offset if additional_special_tokens is not None: if not isinstance(A , A ): raise TypeError( F"""additional_special_tokens should be of type {type(A )}, but is""" F""" {type(A )}""" ) _UpperCAmelCase : Optional[int] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(A ) , self.offset - 1 ) ] if len(set(A ) ) != len(A ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _UpperCAmelCase : Any = additional_special_tokens_extended else: _UpperCAmelCase : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( A , tokenizer_file=A , pad_token=A , eos_token=A , unk_token=A , mask_token=A , mask_token_sent=A , offset=A , additional_special_tokens=A , **A , ) _UpperCAmelCase : Optional[Any] = vocab_file _UpperCAmelCase : Optional[Any] = False if not self.vocab_file else True def _A ( self : List[str] , A : Optional[Any] ): _UpperCAmelCase : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : str , A : List , A : Optional[List] = None , A : bool = False ): if already_has_special_tokens: return self._special_token_mask(A ) elif token_ids_a is None: return self._special_token_mask(A ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : Optional[int] , A : Union[str, Any] , A : int=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : Union[str, Any] , A : str , A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : List[Any] = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
31
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase__ : Optional[Any] ='\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase__ : List[Any] ='\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase__ : List[Any] ='\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 4 , ): """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase__ , hypotheses=lowerCAmelCase__ , min_len=lowerCAmelCase__ , max_len=lowerCAmelCase__ ) }
358
from __future__ import annotations def a__ ( A__ ): return len(set(A__ ) ) == len(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
162
0
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] a = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] a = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) a = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) a = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _snake_case ( _snake_case : Dict , _snake_case : Dict ) -> str: '''simple docstring''' for tf_name, hf_name in patterns: _A = k.replace(_snake_case , _snake_case ) return k def _snake_case ( _snake_case : dict , _snake_case : dict ) -> BigBirdPegasusForConditionalGeneration: '''simple docstring''' _A = BigBirdPegasusConfig(**_snake_case ) _A = BigBirdPegasusForConditionalGeneration(_snake_case ) _A = torch_model.state_dict() _A = {} # separating decoder weights _A = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} _A = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): _A = [k.endswith(_snake_case ) for ending in KEYS_TO_IGNORE] if any(_snake_case ): continue _A = DECODER_PATTERNS _A = rename_state_dict_key(_snake_case , _snake_case ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _A = v.T _A = torch.from_numpy(_snake_case ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): _A = [k.endswith(_snake_case ) for ending in KEYS_TO_IGNORE] if any(_snake_case ): continue _A = REMAINING_PATTERNS _A = rename_state_dict_key(_snake_case , _snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _A = v.T _A = torch.from_numpy(_snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' _A = mapping['model.embed_positions.weight'] _A = mapping.pop('model.embed_positions.weight' ) _A , _A = torch_model.load_state_dict(_snake_case , strict=_snake_case ) _A = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _snake_case ( _snake_case : Any ) -> Dict: '''simple docstring''' _A = tf.train.list_variables(_snake_case ) _A = {} _A = ['global_step'] for name, shape in tqdm(_snake_case , desc='converting tf checkpoint to dict' ): _A = any(pat in name for pat in ignore_name ) if skip_key: continue _A = tf.train.load_variable(_snake_case , _snake_case ) _A = array return tf_weights def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : dict ) -> Optional[Any]: '''simple docstring''' _A = get_tf_weights_as_numpy(_snake_case ) _A = convert_bigbird_pegasus(_snake_case , _snake_case ) torch_model.save_pretrained(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a = parser.parse_args() a = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
315
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
1
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowercase__ = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , 'sklearn' ) return (preds == labels).mean() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , 'sklearn' ) UpperCAmelCase : Tuple = simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = fa_score(y_true=UpperCAmelCase_ , y_pred=UpperCAmelCase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , 'sklearn' ) UpperCAmelCase : Optional[int] = pearsonr(UpperCAmelCase_ , UpperCAmelCase_ )[0] UpperCAmelCase : int = spearmanr(UpperCAmelCase_ , UpperCAmelCase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , 'sklearn' ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ), F"""Predictions and labels have mismatched lengths {len(UpperCAmelCase_ )} and {len(UpperCAmelCase_ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "mrpc": return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ ) elif task_name == "sts-b": return pearson_and_spearman(UpperCAmelCase_ , UpperCAmelCase_ ) elif task_name == "qqp": return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "rte": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "hans": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} else: raise KeyError(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , 'sklearn' ) if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(UpperCAmelCase_ )} and {len(UpperCAmelCase_ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} else: raise KeyError(UpperCAmelCase_ )
280
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=3 , lowercase_ : List[Any]=4 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[Any]=7 , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : List[str]=True , lowercase_ : Union[str, Any]=True , lowercase_ : str=99 , lowercase_ : str=36 , lowercase_ : int=3 , lowercase_ : int=4 , lowercase_ : Any=37 , lowercase_ : str="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : int=512 , lowercase_ : int=16 , lowercase_ : Dict=2 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=6 , lowercase_ : Tuple=6 , lowercase_ : Any=3 , lowercase_ : Dict=4 , lowercase_ : Any=None , lowercase_ : Tuple=1_000 , ) -> Tuple: UpperCAmelCase : List[Any] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : int = patch_size UpperCAmelCase : Tuple = text_seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Any = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : List[str] = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : int = initializer_range UpperCAmelCase : Optional[int] = coordinate_size UpperCAmelCase : Optional[int] = shape_size UpperCAmelCase : str = num_labels UpperCAmelCase : str = num_choices UpperCAmelCase : int = scope UpperCAmelCase : Tuple = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase : Any = text_seq_length UpperCAmelCase : int = (image_size // patch_size) ** 2 + 1 UpperCAmelCase : Optional[int] = self.text_seq_length + self.image_seq_length def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase : int = bbox[i, j, 3] UpperCAmelCase : List[Any] = bbox[i, j, 1] UpperCAmelCase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase : Tuple = bbox[i, j, 2] UpperCAmelCase : List[str] = bbox[i, j, 0] UpperCAmelCase : List[str] = t UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : int = None if self.use_input_mask: UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase : int = None if self.use_token_type_ids: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase : Dict = None UpperCAmelCase : Dict = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : int = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase : str = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase_ ( self : str , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Optional[Any] ) -> Any: UpperCAmelCase : Dict = LayoutLMvaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() # text + image UpperCAmelCase : Optional[Any] = model(lowercase_ , pixel_values=lowercase_ ) UpperCAmelCase : str = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase : Any = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase : str = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase : List[Any] = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase : Dict = model(pixel_values=lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any , lowercase_ : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : Union[str, Any] = LayoutLMvaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : int = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Any , lowercase_ : int , lowercase_ : str , lowercase_ : Any , lowercase_ : int , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int ) -> Any: UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : int = LayoutLMvaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Optional[Any] = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Optional[int] ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = LayoutLMvaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[str] = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Optional[int] = config_and_inputs UpperCAmelCase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Dict = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : List[str] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase_ : List[str] = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCAmelCase_ ( self : Any , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ) -> Union[str, Any]: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : Union[str, Any] = LayoutLMvaModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int , lowercase_ : Dict , lowercase_ : Any=False ) -> Optional[Any]: UpperCAmelCase : str = copy.deepcopy(lowercase_ ) if model_class in get_values(lowercase_ ): UpperCAmelCase : str = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowercase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase_ ): UpperCAmelCase : Dict = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in get_values(lowercase_ ): UpperCAmelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) UpperCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in [ *get_values(lowercase_ ), ]: UpperCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in [ *get_values(lowercase_ ), ]: UpperCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowercase_ , ) return inputs_dict def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : Optional[int] = type self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Any: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : int = LayoutLMvaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCamelCase( ): UpperCAmelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=lowercase_ ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : int = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(lowercase_ ) UpperCAmelCase : Dict = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=lowercase_ , return_tensors='pt' ).pixel_values.to(lowercase_ ) UpperCAmelCase : int = torch.tensor([[1, 2]] ) UpperCAmelCase : Tuple = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCAmelCase : Dict = model( input_ids=input_ids.to(lowercase_ ) , bbox=bbox.to(lowercase_ ) , pixel_values=pixel_values.to(lowercase_ ) , ) # verify the logits UpperCAmelCase : Optional[Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase_ ) UpperCAmelCase : List[str] = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1E-4 ) )
280
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) a : Dict = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""PerceiverFeatureExtractor"""] a : str = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
265
import functools def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: UpperCamelCase : Optional[int] = len(_lowerCAmelCase ) UpperCamelCase : List[str] = len(_lowerCAmelCase ) @functools.cache def min_distance(_lowerCAmelCase , _lowerCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCamelCase : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _lowerCAmelCase ) , 1 + min_distance(_lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
52
0
def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: List[str] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) UpperCAmelCase_: Optional[int] = hex_num[0] == "-" if is_negative: UpperCAmelCase_: Any = hex_num[1:] try: UpperCAmelCase_: List[str] = int(_SCREAMING_SNAKE_CASE , 1_6 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) UpperCAmelCase_: Dict = "" while int_num > 0: UpperCAmelCase_: str = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
351
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a : Optional[Any] = logging.getLogger(__name__) a : List[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : A = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(_lowerCAmelCase )} , ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _a : A = field( default=_lowerCAmelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) A = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) A = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) A = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) A = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) A = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase_ (lowerCAmelCase__: DataTrainingArguments , lowerCAmelCase__: PreTrainedTokenizer , lowerCAmelCase__: bool = False , lowerCAmelCase__: Optional[str] = None , ): """simple docstring""" def _dataset(lowerCAmelCase__: int , lowerCAmelCase__: Optional[Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCAmelCase__ , file_path=lowerCAmelCase__ , block_size=args.block_size , ref_path=lowerCAmelCase__ , ) return LineByLineTextDataset(tokenizer=lowerCAmelCase__ , file_path=lowerCAmelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCAmelCase__ , file_path=lowerCAmelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCAmelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCAmelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_: Dict = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_: Any = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_: int = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: UpperCAmelCase_: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_: List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: UpperCAmelCase_: int = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) UpperCAmelCase_: Union[str, Any] = AutoModelWithLMHead.from_config(lowerCAmelCase__ ) model.resize_token_embeddings(len(lowerCAmelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: UpperCAmelCase_: List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_: Any = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_: str = ( get_dataset(lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_: List[Any] = ( get_dataset(lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , evaluate=lowerCAmelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_: Dict = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCAmelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_: str = DataCollatorForWholeWordMask( tokenizer=lowerCAmelCase__ , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_: Optional[int] = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_: Union[str, Any] = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , prediction_loss_only=lowerCAmelCase__ , ) # Training if training_args.do_train: UpperCAmelCase_: Dict = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCAmelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_: Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase_: List[Any] = trainer.evaluate() UpperCAmelCase_: Optional[Any] = math.exp(eval_output["""eval_loss"""] ) UpperCAmelCase_: Optional[Any] = {"""perplexity""": perplexity} UpperCAmelCase_: Any = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCAmelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCAmelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCAmelCase__ ) return results def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" main() if __name__ == "__main__": main()
82
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: SCREAMING_SNAKE_CASE__ : str = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=7 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Tuple=18 , SCREAMING_SNAKE_CASE__ : int=30 , SCREAMING_SNAKE_CASE__ : Any=4_00 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCamelCase = size if size is not None else {'''height''': 20, '''width''': 20} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = do_convert_rgb __lowerCamelCase = [5_12, 10_24, 20_48, 40_96] __lowerCamelCase = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def __A ( self : Union[str, Any] ) -> Union[str, Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __A ( self : int ) -> Any: __lowerCamelCase = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' __lowerCamelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Dict = PixaStructImageProcessor if is_vision_available() else None def __A ( self : Optional[Any] ) -> List[Any]: __lowerCamelCase = PixaStructImageProcessingTester(self ) @property def __A ( self : Optional[int] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Tuple ) -> Dict: __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_convert_rgb''' ) ) def __A ( self : int ) -> str: __lowerCamelCase = self.image_processor_tester.prepare_dummy_image() __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCamelCase = 20_48 __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __A ( self : Union[str, Any] ) -> Dict: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Dict ) -> str: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 __lowerCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches __lowerCamelCase = '''Hello''' __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : List[str] ) -> Any: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Tuple ) -> List[str]: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Any = PixaStructImageProcessor if is_vision_available() else None def __A ( self : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) __lowerCamelCase = 3 @property def __A ( self : List[Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_convert_rgb''' ) ) def __A ( self : Optional[int] ) -> str: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
270
0
"""simple docstring""" lowercase__ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowercase__ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: a__: List[Any] = True a__: Dict = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) order.append(_SCREAMING_SNAKE_CASE ) return order def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: a__: int = True a__: str = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return component def __a ( _SCREAMING_SNAKE_CASE ) ->list[list[int]]: a__: Optional[int] = len(_SCREAMING_SNAKE_CASE ) * [False] a__: dict[int, list[int]] = {vert: [] for vert in range(len(_SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_SCREAMING_SNAKE_CASE ) a__: int = [] for i, was_visited in enumerate(_SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: int = [] a__: Optional[int] = len(_SCREAMING_SNAKE_CASE ) * [False] for i in range(len(_SCREAMING_SNAKE_CASE ) ): a__: Union[str, Any] = order[len(_SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: a__: Dict = find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) components_list.append(_SCREAMING_SNAKE_CASE ) return components_list
203
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self , lowercase , lowercase=12 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=5_12 , lowercase=0.02 , lowercase=0 , lowercase=None , ) -> Optional[int]: '''simple docstring''' a__: List[Any] = parent a__: Any = batch_size a__: int = seq_length a__: List[str] = is_training a__: Any = use_input_mask a__: Optional[Any] = use_labels a__: List[Any] = vocab_size a__: Optional[Any] = hidden_size a__: Any = projection_dim a__: List[str] = num_hidden_layers a__: Dict = num_attention_heads a__: int = intermediate_size a__: Tuple = dropout a__: Union[str, Any] = attention_dropout a__: str = max_position_embeddings a__: List[str] = initializer_range a__: Optional[int] = scope a__: List[Any] = bos_token_id def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__: str = None if self.use_input_mask: a__: List[str] = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: a__: str = input_mask.numpy() a__ , a__: Any = input_mask.shape a__: Tuple = np.random.randint(1 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(lowercase): a__: Tuple = 1 a__: Any = 0 a__: Any = self.get_config() return config, input_ids, tf.convert_to_tensor(lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__: Any = TFBlipTextModel(config=lowercase) a__: Union[str, Any] = model(lowercase , attention_mask=lowercase , training=lowercase) a__: List[Any] = model(lowercase , training=lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Tuple = self.prepare_config_and_inputs() a__ , a__ , a__: Optional[Any] = config_and_inputs a__: Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = (TFBlipTextModel,) if is_tf_available() else () a__ = False a__ = False a__ = False def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: List[Any] = BlipTextModelTester(self) a__: int = ConfigTester(self , config_class=lowercase , hidden_size=37) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' pass def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='Blip does not use inputs_embeds') def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING') def lowerCamelCase_ ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING') def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' pass @slow def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: Tuple = TFBlipTextModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def lowerCamelCase_ ( self , lowercase=True) -> str: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=lowercase)
203
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = '▁' __a = {'vocab_file': 'sentencepiece.bpe.model'} __a = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } __a = { 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off __a = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Optional[Any] = VOCAB_FILES_NAMES _A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : str = ['''input_ids''', '''attention_mask'''] _A : List[int] = [] _A : List[int] = [] def __init__( self: str , snake_case: str , snake_case: List[Any]="<s>" , snake_case: Tuple="</s>" , snake_case: int="</s>" , snake_case: Optional[Any]="<s>" , snake_case: Optional[int]="<unk>" , snake_case: List[str]="<pad>" , snake_case: Union[str, Any]="<mask>" , snake_case: List[Any]=None , snake_case: Union[str, Any]=None , snake_case: Dict=None , snake_case: Dict = None , snake_case: Tuple=None , snake_case: int=False , **snake_case: Dict , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ :Any = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token snake_case_ :List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ :List[str] = legacy_behaviour super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , tokenizer_file=A__ , src_lang=A__ , tgt_lang=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A__ , **A__ , ) snake_case_ :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) snake_case_ :List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ :str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ :str = 1 snake_case_ :Optional[int] = len(self.sp_model ) snake_case_ :List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A__ ) } snake_case_ :Tuple = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ :Dict = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case_ :Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ :int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) snake_case_ :int = src_lang if src_lang is not None else """eng_Latn""" snake_case_ :str = self.lang_code_to_id[self._src_lang] snake_case_ :Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self: Dict ) -> str: snake_case_ :Tuple = self.__dict__.copy() snake_case_ :List[Any] = None snake_case_ :Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self: int , snake_case: int ) -> Any: snake_case_ :str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ :Any = {} snake_case_ :List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCAmelCase_ ( self: Optional[Any] ) -> int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: return self._src_lang @src_lang.setter def lowerCAmelCase_ ( self: List[str] , snake_case: Optional[Any] ) -> str: snake_case_ :str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: Dict , snake_case: Tuple = None , snake_case: int = False ) -> List[str]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) snake_case_ :Dict = [1] * len(self.prefix_tokens ) snake_case_ :Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def lowerCAmelCase_ ( self: Dict , snake_case: str , snake_case: int = None ) -> str: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ ( self: Optional[Any] , snake_case: str , snake_case: List[str] = None ) -> str: snake_case_ :Dict = [self.sep_token_id] snake_case_ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self: int , snake_case: Optional[int] , snake_case: Union[str, Any] , snake_case: Union[str, Any] , snake_case: Union[str, Any] , **snake_case: Union[str, Any] ) -> int: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ :Optional[int] = src_lang snake_case_ :List[Any] = self(A__ , add_special_tokens=A__ , return_tensors=A__ , **A__ ) snake_case_ :Optional[int] = self.convert_tokens_to_ids(A__ ) snake_case_ :Optional[int] = tgt_lang_id return inputs def lowerCAmelCase_ ( self: List[str] ) -> Optional[int]: snake_case_ :List[str] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self: Optional[int] , snake_case: List[str] ) -> Optional[Any]: return self.sp_model.encode(A__ , out_type=A__ ) def lowerCAmelCase_ ( self: List[str] , snake_case: Optional[Any] ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ :List[str] = self.sp_model.PieceToId(A__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase_ ( self: Optional[int] , snake_case: Any ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase_ ( self: List[str] , snake_case: int ) -> List[Any]: snake_case_ :Optional[Any] = """""".join(A__ ).replace(A__ , """ """ ).strip() return out_string def lowerCAmelCase_ ( self: List[str] , snake_case: Any , snake_case: int = None ) -> Union[str, Any]: if not os.path.isdir(A__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ :Any = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: snake_case_ :str = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,) def lowerCAmelCase_ ( self: Tuple , snake_case: Dict , snake_case: Dict = "eng_Latn" , snake_case: Optional[int] = None , snake_case: int = "fra_Latn" , **snake_case: Dict , ) -> Optional[int]: snake_case_ :Any = src_lang snake_case_ :List[Any] = tgt_lang return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def lowerCAmelCase_ ( self: str ) -> Optional[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ ( self: str ) -> int: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ ( self: Optional[int] , snake_case: Optional[int] ) -> List[Any]: snake_case_ :List[str] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: snake_case_ :Dict = [] snake_case_ :str = [self.eos_token_id, self.cur_lang_code] else: snake_case_ :List[str] = [self.cur_lang_code] snake_case_ :Optional[Any] = [self.eos_token_id] def lowerCAmelCase_ ( self: List[Any] , snake_case: Optional[int] ) -> Optional[Any]: snake_case_ :Union[str, Any] = self.lang_code_to_id[lang] if self.legacy_behaviour: snake_case_ :Union[str, Any] = [] snake_case_ :int = [self.eos_token_id, self.cur_lang_code] else: snake_case_ :Dict = [self.cur_lang_code] snake_case_ :str = [self.eos_token_id]
66
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[int] ) -> List[str]: A__ : Tuple = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) A__ : List[Any] = DatasetInfosDict.from_directory(lowercase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def UpperCamelCase (lowercase_: str , lowercase_: DatasetInfo ) -> List[Any]: A__ : Union[str, Any] = str(lowercase_ ) dataset_info.write_to_directory(lowercase_ ) A__ : List[Any] = DatasetInfo.from_directory(lowercase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowercase_ , """dataset_info.json""" ) ) def UpperCamelCase () -> List[Any]: A__ : Union[str, Any] = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) A__ : Dict = dataset_info._to_yaml_dict() assert sorted(lowercase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) A__ : Union[str, Any] = yaml.safe_dump(lowercase_ ) A__ : List[Any] = yaml.safe_load(lowercase_ ) assert dataset_info_yaml_dict == reloaded def UpperCamelCase () -> List[str]: A__ : Optional[int] = DatasetInfo() A__ : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCamelCase (lowercase_: Tuple , lowercase_: DatasetInfosDict ) -> Optional[Any]: A__ : List[Any] = str(lowercase_ ) dataset_infos_dict.write_to_directory(lowercase_ ) A__ : Dict = DatasetInfosDict.from_directory(lowercase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): A__ : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml A__ : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowercase_ , """README.md""" ) )
192
0
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __lowerCamelCase ( a_ : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :List[Any] = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def __lowerCamelCase ( a_ : Dict ) -> Dict: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Tuple = emb.weight.shape __SCREAMING_SNAKE_CASE :Optional[Any] = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) __SCREAMING_SNAKE_CASE :List[Any] = emb.weight.data return lin_layer def __lowerCamelCase ( a_ : List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :Optional[Any] = torch.load(snake_case_ , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = Namespace(**checkpoint['''cfg''']['''model'''] ) __SCREAMING_SNAKE_CASE :Tuple = checkpoint['''model'''] remove_ignore_keys_(snake_case_ ) __SCREAMING_SNAKE_CASE :Dict = state_dict['''decoder.embed_tokens.weight'''].shape[0] __SCREAMING_SNAKE_CASE :str = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} __SCREAMING_SNAKE_CASE :Optional[int] = XGLMConfig( vocab_size=snake_case_ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __SCREAMING_SNAKE_CASE :Any = XGLMForCausalLM(snake_case_ ) __SCREAMING_SNAKE_CASE :str = model.load_state_dict(snake_case_ , strict=snake_case_ ) print(snake_case_ ) __SCREAMING_SNAKE_CASE :Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") __A = parser.parse_args() __A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
368
"""simple docstring""" import math import random def __lowerCamelCase ( a_ : float , a_ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCamelCase_ = 0.02 def __lowerCamelCase ( a_ : int , a_ : int ) -> float: __SCREAMING_SNAKE_CASE :Any = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(a_ ): # Forward propagation __SCREAMING_SNAKE_CASE :Any = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE :Tuple = (expected / 1_00) - layer_a # Error delta __SCREAMING_SNAKE_CASE :Union[str, Any] = layer_1_error * sigmoid_function(a_ , a_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = int(input("Expected value: ")) lowerCamelCase_ = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
239
0
import requests a_ :Tuple = "YOUR API KEY" def lowercase_ (A : str , A : str = giphy_api_key ): snake_case__ : Optional[int] = '+'.join(query.split() ) snake_case__ : List[str] = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' snake_case__ : Any = requests.get(A ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
277
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case__ : """simple docstring""" def __init__( self : List[str], _snake_case : Any, _snake_case : int=1_3, _snake_case : Optional[int]=7, _snake_case : int=True, _snake_case : Optional[Any]=True, _snake_case : Optional[Any]=True, _snake_case : Union[str, Any]=9_9, _snake_case : Optional[Any]=3_2, _snake_case : Tuple=5, _snake_case : str=4, _snake_case : Any=3_7, _snake_case : int="gelu", _snake_case : Optional[Any]=0.1, _snake_case : str=0.1, _snake_case : str=5_1_2, _snake_case : Dict=1_6, _snake_case : str=2, _snake_case : Union[str, Any]=0.0_2, _snake_case : Optional[int]=3, _snake_case : Union[str, Any]=4, _snake_case : Tuple=None, ) ->Optional[Any]: snake_case__ : Optional[int] = parent snake_case__ : List[Any] = batch_size snake_case__ : Tuple = seq_length snake_case__ : str = is_training snake_case__ : Optional[int] = use_token_type_ids snake_case__ : Any = use_labels snake_case__ : Dict = vocab_size snake_case__ : str = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = num_choices snake_case__ : int = scope snake_case__ : List[str] = self.vocab_size - 1 def lowercase_ ( self : Union[str, Any] ) ->Tuple: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case__ : List[str] = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case__ : Tuple = None snake_case__ : str = None snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case__ : List[str] = ids_tensor([self.batch_size], self.num_choices ) snake_case__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) snake_case__ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase_ ( self : Any, _snake_case : List[str], _snake_case : Any, _snake_case : List[Any], _snake_case : Tuple, *_snake_case : Optional[Any] ) ->Tuple: snake_case__ : Union[str, Any] = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, token_type_ids=_snake_case, head_mask=_snake_case ) snake_case__ : Union[str, Any] = model(_snake_case, token_type_ids=_snake_case ) snake_case__ : Optional[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[int], _snake_case : Optional[Any], _snake_case : Union[str, Any], _snake_case : Optional[int], _snake_case : List[Any], *_snake_case : Dict ) ->Optional[int]: snake_case__ : Optional[Any] = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : int, _snake_case : Tuple, _snake_case : List[str], _snake_case : List[Any], _snake_case : List[Any], *_snake_case : List[Any] ) ->Optional[int]: snake_case__ : List[str] = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int], _snake_case : Tuple, _snake_case : Dict, _snake_case : List[str], _snake_case : Optional[Any], *_snake_case : Union[str, Any] ) ->str: snake_case__ : List[str] = self.num_labels snake_case__ : Dict = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : List[str] = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict ) ->int: snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Optional[Any] = config_and_inputs snake_case__ : str = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase_ ( self : Optional[int], _snake_case : Union[str, Any], _snake_case : int, _snake_case : Tuple, _snake_case : Tuple, _snake_case : List[str] ) ->Optional[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase_ ( self : Optional[Any], _snake_case : Union[str, Any], _snake_case : List[str], _snake_case : Any=False ) ->Tuple: snake_case__ : Optional[int] = super()._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=_snake_case, ) snake_case__ : List[Any] = inputs_dict['labels'] snake_case__ : List[Any] = inputs_dict['labels'] snake_case__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=_snake_case, ) snake_case__ : Tuple = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=_snake_case ) return inputs_dict def lowercase_ ( self : Union[str, Any] ) ->List[str]: snake_case__ : List[str] = OpenAIGPTModelTester(self ) snake_case__ : Any = ConfigTester(self, config_class=_snake_case, n_embd=3_7 ) def lowercase_ ( self : Optional[int] ) ->str: self.config_tester.run_common_tests() def lowercase_ ( self : int ) ->Tuple: snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def lowercase_ ( self : Tuple ) ->List[str]: snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def lowercase_ ( self : Dict ) ->int: snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def lowercase_ ( self : int ) ->str: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def lowercase_ ( self : Optional[Any] ) ->str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : Tuple ) ->Optional[int]: snake_case__ : Union[str, Any] = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) snake_case__ : Tuple = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=_snake_case ) # the president is snake_case__ : int = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case__ : Optional[int] = model.generate(_snake_case, do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist(), _snake_case )
277
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case : Tuple = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a_ ( lowerCAmelCase_ : Optional[Any] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False def a_ ( lowerCAmelCase_ : str ): # word like '180' or '身高' or '神' for char in word: __lowerCAmelCase = ord(lowerCAmelCase_ ) if not _is_chinese_char(lowerCAmelCase_ ): return 0 return 1 def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = set() for token in tokens: __lowerCAmelCase = len(lowerCAmelCase_ ) > 1 and is_chinese(lowerCAmelCase_ ) if chinese_word: word_set.add(lowerCAmelCase_ ) __lowerCAmelCase = list(lowerCAmelCase_ ) return word_list def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : set() ): if not chinese_word_set: return bert_tokens __lowerCAmelCase = max([len(lowerCAmelCase_ ) for w in chinese_word_set] ) __lowerCAmelCase = bert_tokens __lowerCAmelCase , __lowerCAmelCase = 0, len(lowerCAmelCase_ ) while start < end: __lowerCAmelCase = True if is_chinese(bert_word[start] ): __lowerCAmelCase = min(end - start, lowerCAmelCase_ ) for i in range(lowerCAmelCase_, 1, -1 ): __lowerCAmelCase = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): __lowerCAmelCase = '##' + bert_word[j] __lowerCAmelCase = start + i __lowerCAmelCase = False break if single_word: start += 1 return bert_word def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : LTP, lowerCAmelCase_ : BertTokenizer ): __lowerCAmelCase = [] for i in range(0, len(lowerCAmelCase_ ), 100 ): __lowerCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 100], tasks=['cws'] ).cws __lowerCAmelCase = [get_chinese_word(lowerCAmelCase_ ) for r in res] ltp_res.extend(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = [] for i in range(0, len(lowerCAmelCase_ ), 100 ): __lowerCAmelCase = bert_tokenizer(lines[i : i + 100], add_special_tokens=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = [] for input_ids, chinese_word in zip(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [] for id in input_ids: __lowerCAmelCase = bert_tokenizer._convert_id_to_token(lowerCAmelCase_ ) input_tokens.append(lowerCAmelCase_ ) __lowerCAmelCase = add_sub_symbol(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase_ ): if token[:2] == "##": __lowerCAmelCase = token[2:] # save chinese tokens' pos if len(lowerCAmelCase_ ) == 1 and _is_chinese_char(ord(lowerCAmelCase_ ) ): ref_id.append(lowerCAmelCase_ ) ref_ids.append(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) return ref_ids def a_ ( lowerCAmelCase_ : int ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [line.strip() for line in data if len(lowerCAmelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __lowerCAmelCase = LTP(args.ltp ) # faster in GPU device __lowerCAmelCase = BertTokenizer.from_pretrained(args.bert ) __lowerCAmelCase = prepare_ref(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) with open(args.save_path, 'w', encoding='utf-8' ) as f: __lowerCAmelCase = [json.dumps(lowerCAmelCase_ ) + '\n' for ref in ref_ids] f.writelines(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) _snake_case : List[str] = parser.parse_args() main(args)
207
0
"""simple docstring""" def __lowerCamelCase ( ) -> Tuple: """simple docstring""" lowerCAmelCase_ : Optional[Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowerCAmelCase_ : Tuple = 6 lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : Union[str, Any] = 1901 lowerCAmelCase_ : Union[str, Any] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowerCAmelCase_ : List[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowerCAmelCase_ : Tuple = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowerCAmelCase_ : Any = day - days_per_month[month - 2] if month > 12: year += 1 lowerCAmelCase_ : List[str] = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
241
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Union[str, Any] = ["""flax"""] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : List[str] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Union[str, Any] , **a_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : Union[str, Any] , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""flax"""] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Dict = ["""flax"""] def __init__( self : Any , *a_ : Optional[int] , **a_ : str ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Tuple , **a_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , *a_ : Any , **a_ : Union[str, Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""flax"""] def __init__( self : str , *a_ : Optional[int] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Dict , **a_ : str ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Optional[int] , **a_ : List[str] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""flax"""] def __init__( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Dict , **a_ : Any ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Tuple , *a_ : Optional[Any] , **a_ : Tuple ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[int] , *a_ : List[Any] , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : str , **a_ : Any ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Any , **a_ : Tuple ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Optional[int] , **a_ : str ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : int = ["""flax"""] def __init__( self : Dict , *a_ : str , **a_ : int ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : List[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : List[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""flax"""] def __init__( self : Any , *a_ : Any , **a_ : int ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Tuple , **a_ : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Dict , **a_ : Dict ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Any , **a_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : List[Any] , **a_ : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : List[Any] , **a_ : Tuple ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""flax"""] def __init__( self : Tuple , *a_ : Optional[int] , **a_ : Union[str, Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : List[str] , **a_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , *a_ : Any , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""flax"""] def __init__( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Dict ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : int , **a_ : List[str] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : int , **a_ : str ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""flax"""] def __init__( self : List[str] , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : Optional[int] , **a_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : Union[str, Any] , **a_ : Union[str, Any] ): requires_backends(cls , ["flax"] )
241
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class a_ : '''simple docstring''' lowerCamelCase__ : Any = PegasusConfig lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : int = 'gelu' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=9_9, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=4_0, lowerCamelCase_=2, lowerCamelCase_=1, lowerCamelCase_=0, ): '''simple docstring''' lowerCamelCase__ : Any = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Optional[int] = seq_length lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : Optional[int] = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : List[str] = eos_token_id lowerCamelCase__ : Dict = pad_token_id lowerCamelCase__ : Optional[Any] = bos_token_id def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) lowerCamelCase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) lowerCamelCase__ : Union[str, Any] = tf.concat([input_ids, eos_tensor], axis=1 ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Any = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) lowerCamelCase__ : List[str] = prepare_pegasus_inputs_dict(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return config, inputs_dict def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = TFPegasusModel(config=lowerCamelCase_ ).get_decoder() lowerCamelCase__ : Any = inputs_dict['input_ids'] lowerCamelCase__ : Tuple = input_ids[:1, :] lowerCamelCase__ : str = inputs_dict['attention_mask'][:1, :] lowerCamelCase__ : Optional[Any] = inputs_dict['head_mask'] lowerCamelCase__ : str = 1 # first forward pass lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, head_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : int = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and lowerCamelCase__ : Tuple = tf.concat([input_ids, next_tokens], axis=-1 ) lowerCamelCase__ : List[str] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ )[0] lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice lowerCamelCase__ : List[str] = int(ids_tensor((1,), output_from_past.shape[-1] ) ) lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase_, lowerCamelCase_, rtol=1e-3 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase__ : Any = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowerCamelCase__ : int = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ : Optional[int] = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ : int = True lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Tuple = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFPegasusModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self, config_class=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCamelCase__ : str = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowerCamelCase__ : int = 'google/pegasus-xsum' @cached_property def a__ (self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.translate_src_text(**lowerCamelCase_ ) assert self.expected_text == generated_words def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.tokenizer(self.src_text, **lowerCamelCase_, padding=lowerCamelCase_, return_tensors='tf' ) lowerCamelCase__ : Tuple = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=lowerCamelCase_, ) lowerCamelCase__ : Tuple = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=lowerCamelCase_ ) return generated_words @slow def a__ (self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __A = get_tests_dir("fixtures/dummy_feature_extractor_config.json") __A = get_tests_dir("fixtures/vocab.json") __A = get_tests_dir("fixtures") class UpperCAmelCase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _snake_case ( self ): lowercase__: List[str] = 0 def _snake_case ( self ): lowercase__: List[str] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase__: str = WavaVecaConfig() lowercase__: Union[str, Any] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) lowercase__: Optional[int] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''vocab.json''' ) ) lowercase__: str = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase__: Union[str, Any] = WavaVecaFeatureExtractor() lowercase__: List[str] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) lowercase__: Union[str, Any] = WavaVecaProcessor(_UpperCAmelCase , _UpperCAmelCase ) # save in new folder processor.save_pretrained(_UpperCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , '''r''' ) as f: lowercase__: Dict = json.load(_UpperCAmelCase ) config_dict.pop('''processor_class''' ) with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , '''w''' ) as f: f.write(json.dumps(_UpperCAmelCase ) ) lowercase__: str = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase__: Union[str, Any] = WavaVecaFeatureExtractor() lowercase__: Any = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) lowercase__: Optional[int] = WavaVecaProcessor(_UpperCAmelCase , _UpperCAmelCase ) # save in new folder processor.save_pretrained(_UpperCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , '''r''' ) as f: lowercase__: List[str] = json.load(_UpperCAmelCase ) config_dict.pop('''processor_class''' ) with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , '''w''' ) as f: f.write(json.dumps(_UpperCAmelCase ) ) lowercase__: Union[str, Any] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase__: Union[str, Any] = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(_UpperCAmelCase ) # copy relevant files copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , '''w''' ) as f: f.write('''{}''' ) lowercase__: List[str] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_UpperCAmelCase ): lowercase__: Any = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase ): lowercase__: Tuple = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_UpperCAmelCase ) lowercase__: str = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_UpperCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) lowercase__: List[str] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) lowercase__: Optional[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase__: Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase ) lowercase__: Tuple = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def _snake_case ( self ): try: AutoConfig.register('''custom''' , _UpperCAmelCase ) AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__: Union[str, Any] = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: List[str] = os.path.join(_UpperCAmelCase , '''vocab.txt''' ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase__: Tuple = CustomTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = CustomProcessor(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_UpperCAmelCase ) lowercase__: List[str] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ): class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = False class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = False class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = "AutoFeatureExtractor" _UpperCAmelCase :int = "AutoTokenizer" _UpperCAmelCase :Optional[int] = False try: AutoConfig.register('''custom''' , _UpperCAmelCase ) AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # If remote code is not set, the default is to use local classes. lowercase__: int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase__: Tuple = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase__: List[str] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ): lowercase__: str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def _snake_case ( self ): lowercase__: Any = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCAmelCase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _snake_case ( cls ): lowercase__: List[Any] = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def _snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def _snake_case ( self ): lowercase__: Optional[Any] = WavaVecaProcessor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_UpperCAmelCase , '''test-processor''' ) , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__: List[Any] = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(new_processor.feature_extractor , _UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _snake_case ( self ): lowercase__: Optional[Any] = WavaVecaProcessor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_UpperCAmelCase , '''test-processor-org''' ) , push_to_hub=_UpperCAmelCase , use_auth_token=self._token , organization='''valid_org''' , ) lowercase__: List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(new_processor.feature_extractor , _UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase__: Optional[Any] = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , '''vocab.txt''' ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase__: List[Any] = CustomTokenizer(_UpperCAmelCase ) lowercase__: Any = CustomProcessor(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token ) lowercase__: List[Any] = Repository(_UpperCAmelCase , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(_UpperCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_UpperCAmelCase , '''tokenizer_config.json''' ) ) as f: lowercase__: int = json.load(_UpperCAmelCase ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''custom_processing.py''' ) ) ) repo.push_to_hub() lowercase__: Any = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
177
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=True , _UpperCAmelCase=1 / 255 , _UpperCAmelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__: str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowercase__: Optional[Any] = parent lowercase__: List[Any] = batch_size lowercase__: Tuple = num_channels lowercase__: Optional[Any] = min_resolution lowercase__: Dict = max_resolution lowercase__: Optional[int] = do_resize lowercase__: Any = size lowercase__: Optional[Any] = do_normalize lowercase__: Union[str, Any] = image_mean lowercase__: Tuple = image_std lowercase__: str = do_rescale lowercase__: Any = rescale_factor lowercase__: List[Any] = do_pad def _snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False ): if not batched: lowercase__: Optional[Any] = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): lowercase__, lowercase__: Dict = image.size else: lowercase__, lowercase__: Optional[Any] = image.shape[1], image.shape[2] if w < h: lowercase__: List[str] = int(self.size['''shortest_edge'''] * h / w ) lowercase__: Union[str, Any] = self.size['''shortest_edge'''] elif w > h: lowercase__: int = self.size['''shortest_edge'''] lowercase__: int = int(self.size['''shortest_edge'''] * w / h ) else: lowercase__: Union[str, Any] = self.size['''shortest_edge'''] lowercase__: Union[str, Any] = self.size['''shortest_edge'''] else: lowercase__: Optional[int] = [] for image in image_inputs: lowercase__, lowercase__: int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__: Union[str, Any] = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0] lowercase__: Dict = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = YolosImageProcessor if is_vision_available() else None def _snake_case ( self ): lowercase__: int = YolosImageProcessingTester(self ) @property def _snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ): lowercase__: List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) def _snake_case ( self ): lowercase__: Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) lowercase__: Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) def _snake_case ( self ): pass def _snake_case ( self ): # Initialize image_processing lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__: Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input lowercase__: int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: Optional[int] = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__, lowercase__: Any = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) lowercase__: int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processing lowercase__: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input lowercase__: List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: str = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__: Dict = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: str = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processing lowercase__: Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase__: Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: int = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__: List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: List[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processings lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) lowercase__: Optional[Any] = self.image_processing_class(do_resize=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_rescale=_UpperCAmelCase ) # create random PyTorch tensors lowercase__: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase__: List[str] = image_processing_a.pad(_UpperCAmelCase , return_tensors='''pt''' ) lowercase__: Tuple = image_processing_a(_UpperCAmelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def _snake_case ( self ): # prepare image and target lowercase__: Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase__: Any = json.loads(f.read() ) lowercase__: Dict = {'''image_id''': 39769, '''annotations''': target} # encode them lowercase__: Dict = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) lowercase__: Any = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase__: Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _UpperCAmelCase ) lowercase__: Optional[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase__: Tuple = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _UpperCAmelCase ) ) # verify boxes lowercase__: str = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase__: Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _UpperCAmelCase ) ) # verify is_crowd lowercase__: Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _UpperCAmelCase ) ) # verify class_labels lowercase__: Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _UpperCAmelCase ) ) # verify orig_size lowercase__: List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _UpperCAmelCase ) ) # verify size lowercase__: List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _UpperCAmelCase ) ) @slow def _snake_case ( self ): # prepare image, target and masks_path lowercase__: str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase__: str = json.loads(f.read() ) lowercase__: List[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} lowercase__: Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase__: Union[str, Any] = YolosImageProcessor(format='''coco_panoptic''' ) lowercase__: Optional[Any] = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase__: Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _UpperCAmelCase ) lowercase__: Dict = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase__: str = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _UpperCAmelCase ) ) # verify boxes lowercase__: List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase__: int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _UpperCAmelCase ) ) # verify is_crowd lowercase__: int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _UpperCAmelCase ) ) # verify class_labels lowercase__: Dict = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _UpperCAmelCase ) ) # verify masks lowercase__: Union[str, Any] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _UpperCAmelCase ) # verify orig_size lowercase__: List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _UpperCAmelCase ) ) # verify size lowercase__: Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _UpperCAmelCase ) )
177
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __A = re.compile(r'''\s+''') def snake_case_(_UpperCamelCase ) -> str: """simple docstring""" return {"hash": hashlib.mda(re.sub(_UpperCamelCase , '''''' , example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def snake_case_(_UpperCamelCase ) -> List[str]: """simple docstring""" _snake_case = [len(_UpperCamelCase ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(_UpperCamelCase ), "line_max": max(_UpperCamelCase )} def snake_case_(_UpperCamelCase ) -> List[str]: """simple docstring""" _snake_case = np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def snake_case_(_UpperCamelCase , _UpperCamelCase=5 ) -> Union[str, Any]: """simple docstring""" _snake_case = ['''auto-generated''', '''autogenerated''', '''automatically generated'''] _snake_case = example['''content'''].splitlines() for _, line in zip(range(_UpperCamelCase ) , _UpperCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def snake_case_(_UpperCamelCase , _UpperCamelCase=5 , _UpperCamelCase=0.05 ) -> Any: """simple docstring""" _snake_case = ['''unit tests''', '''test file''', '''configuration file'''] _snake_case = example['''content'''].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(_UpperCamelCase ) , _UpperCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['''content'''].count('''\n''' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def snake_case_(_UpperCamelCase ) -> Optional[int]: """simple docstring""" _snake_case = ['''def ''', '''class ''', '''for ''', '''while '''] _snake_case = example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def snake_case_(_UpperCamelCase , _UpperCamelCase=4 ) -> str: """simple docstring""" _snake_case = example['''content'''].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def snake_case_(_UpperCamelCase ) -> int: """simple docstring""" _snake_case = tokenizer(example['''content'''] , truncation=_UpperCamelCase )['''input_ids'''] _snake_case = len(example['''content'''] ) / len(_UpperCamelCase ) return {"ratio": ratio} def snake_case_(_UpperCamelCase ) -> List[Any]: """simple docstring""" _snake_case = {} results.update(get_hash(_UpperCamelCase ) ) results.update(line_stats(_UpperCamelCase ) ) results.update(alpha_stats(_UpperCamelCase ) ) results.update(char_token_ratio(_UpperCamelCase ) ) results.update(is_autogenerated(_UpperCamelCase ) ) results.update(is_config_or_test(_UpperCamelCase ) ) results.update(has_no_keywords(_UpperCamelCase ) ) results.update(has_few_assignments(_UpperCamelCase ) ) return results def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" if not check_uniques(_UpperCamelCase , _UpperCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def snake_case_(_UpperCamelCase ) -> Tuple: """simple docstring""" with open(_UpperCamelCase , '''rb''' ) as f_in: with gzip.open(str(_UpperCamelCase ) + '''.gz''' , '''wb''' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) os.unlink(_UpperCamelCase ) # Settings __A = HfArgumentParser(PreprocessingArguments) __A = parser.parse_args() if args.num_workers is None: __A = multiprocessing.cpu_count() __A = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __A = time.time() __A = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __A = time.time() __A = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __A = set(ds.unique('''hash''')) __A = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __A = time.time() __A = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __A = time.time() __A , __A = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __A = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __A = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __A = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __A = str(data_dir / f'''file-{file_number+1:012}.json''') __A = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
278
from math import factorial def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(_UpperCamelCase ) // (factorial(_UpperCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( '''If a class of 40 students must be arranged into groups of''', f'''4 for group projects, there are {combinations(40, 4)} ways''', '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f'''are {combinations(10, 3)} ways that first, second and''', '''third place can be awarded.''', )
278
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 32 , __UpperCAmelCase=PILImageResampling.BILINEAR , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = do_resize __lowerCamelCase = do_rescale __lowerCamelCase = size_divisor __lowerCamelCase = resample super().__init__(**__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = get_image_size(__UpperCAmelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowerCamelCase = height // size_divisor * size_divisor __lowerCamelCase = width // size_divisor * size_divisor __lowerCamelCase = resize(__UpperCAmelCase , (new_h, new_w) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) return image def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = size_divisor if size_divisor is not None else self.size_divisor __lowerCamelCase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowerCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(__UpperCAmelCase ) for img in images] if do_resize: __lowerCamelCase = [self.resize(__UpperCAmelCase , size_divisor=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(__UpperCAmelCase , scale=1 / 255 ) for image in images] __lowerCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
330
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class snake_case__ : A__ = 42 A__ = None A__ = None A__ : List[str] = namedtuple('''CoinsDistribResult''', '''moves excess''') def a_ ( _UpperCAmelCase : TreeNode | None ) -> int: if root is None: return 0 # Validation def count_nodes(_UpperCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_UpperCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_UpperCAmelCase ) != count_coins(_UpperCAmelCase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(_UpperCAmelCase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 ,1 ) __snake_case , __snake_case : Tuple = get_distrib(node.left ) __snake_case , __snake_case : List[Any] = get_distrib(node.right ) __snake_case : List[Any] = 1 - left_distrib_excess __snake_case : Any = 1 - right_distrib_excess __snake_case : Union[str, Any] = ( left_distrib_moves + right_distrib_moves + abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) ) __snake_case : Optional[Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_UpperCAmelCase ,_UpperCAmelCase ) return get_distrib(_UpperCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[Any] = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __lowercase : Dict = False try: __lowercase : Union[str, Any] = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class __UpperCamelCase : def __init__( self , __a = None , __a = [] ): '''simple docstring''' __a : Optional[int] = 0 __a : Optional[int] = choices __a : List[Any] = prompt if sys.platform == "win32": __a : List[Any] = '*' else: __a : Union[str, Any] = '➔ ' def __UpperCAmelCase ( self , __a , __a = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , __a ) else: forceWrite(self.choices[index] , __a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(__a ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def __UpperCAmelCase ( self , __a , __a = 1 ): '''simple docstring''' __a : List[Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a ) move_cursor(__a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def __UpperCAmelCase ( self ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def __UpperCAmelCase ( self ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def __UpperCAmelCase ( self ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def __UpperCAmelCase ( self ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a )] for number in range(10 )] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = int(chr(self.current_selection ) ) __a : Any = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __a ) else: return else: return def __UpperCAmelCase ( self , __a = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) __a : str = default_choice for i in range(len(self.choices ) ): self.print_choice(__a ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: __a : List[Any] = int(builtins.input() ) except ValueError: __a : Any = default_choice else: __a : List[Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(__a , '\n' ) return choice
27
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase ( UpperCamelCase__ ): def __get__( self :Optional[int] , lowercase_ :Tuple , lowercase_ :Tuple=None )-> Optional[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) A__ = "__cached_" + self.fget.__name__ A__ = getattr(lowercase_ , lowercase_ , lowercase_ ) if cached is None: A__ = self.fget(lowercase_ ) setattr(lowercase_ , lowercase_ , lowercase_ ) return cached def UpperCamelCase ( _lowerCamelCase : Dict ): A__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def UpperCamelCase ( _lowerCamelCase : Any ): if is_torch_fx_proxy(_lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCamelCase , np.ndarray ) def UpperCamelCase ( _lowerCamelCase : str ): return isinstance(_lowerCamelCase , np.ndarray ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): return _is_numpy(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Dict ): import torch return isinstance(_lowerCamelCase , torch.Tensor ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): return False if not is_torch_available() else _is_torch(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Any ): import torch return isinstance(_lowerCamelCase , torch.device ) def UpperCamelCase ( _lowerCamelCase : int ): return False if not is_torch_available() else _is_torch_device(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): import torch if isinstance(_lowerCamelCase , _lowerCamelCase ): if hasattr(_lowerCamelCase , _lowerCamelCase ): A__ = getattr(_lowerCamelCase , _lowerCamelCase ) else: return False return isinstance(_lowerCamelCase , torch.dtype ) def UpperCamelCase ( _lowerCamelCase : Any ): return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : List[Any] ): import tensorflow as tf return isinstance(_lowerCamelCase , tf.Tensor ) def UpperCamelCase ( _lowerCamelCase : List[str] ): return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCamelCase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(_lowerCamelCase ) return type(_lowerCamelCase ) == tf.Tensor def UpperCamelCase ( _lowerCamelCase : str ): return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : str ): import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCamelCase , jnp.ndarray ) def UpperCamelCase ( _lowerCamelCase : Tuple ): return False if not is_flax_available() else _is_jax(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Optional[int] ): if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return [to_py_obj(_lowerCamelCase ) for o in obj] elif is_tf_tensor(_lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ).tolist() elif isinstance(_lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def UpperCamelCase ( _lowerCamelCase : int ): if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return np.array(_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): return obj.numpy() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ) else: return obj class UpperCAmelCase ( UpperCamelCase__ ): def UpperCAmelCase_ ( self :int )-> Any: A__ = fields(self ) # Safety and consistency checks if not len(lowercase_ ): raise ValueError(F"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"{self.__class__.__name__} should not have more than one required field." ) A__ = getattr(self , class_fields[0].name ) A__ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowercase_ ): if isinstance(lowercase_ , lowercase_ ): A__ = first_field.items() A__ = True else: try: A__ = iter(lowercase_ ) A__ = True except TypeError: A__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowercase_ ): if ( not isinstance(lowercase_ , (list, tuple) ) or not len(lowercase_ ) == 2 or not isinstance(element[0] , lowercase_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute A__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: A__ = element[1] elif first_field is not None: A__ = first_field else: for field in class_fields: A__ = getattr(self , field.name ) if v is not None: A__ = v def __delitem__( self :List[Any] , *lowercase_ :List[Any] , **lowercase_ :Optional[Any] )-> Union[str, Any]: raise Exception(F"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase_ ( self :Tuple , *lowercase_ :int , **lowercase_ :int )-> Union[str, Any]: raise Exception(F"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase_ ( self :List[Any] , *lowercase_ :Optional[int] , **lowercase_ :Tuple )-> List[Any]: raise Exception(F"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase_ ( self :Dict , *lowercase_ :Optional[int] , **lowercase_ :Any )-> Any: raise Exception(F"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self :Optional[Any] , lowercase_ :Optional[Any] )-> Any: if isinstance(lowercase_ , lowercase_ ): A__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self :Optional[Any] , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any] )-> Tuple: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowercase_ , lowercase_ ) super().__setattr__(lowercase_ , lowercase_ ) def __setitem__( self :Tuple , lowercase_ :Optional[int] , lowercase_ :Tuple )-> List[Any]: # Will raise a KeyException if needed super().__setitem__(lowercase_ , lowercase_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): @classmethod def UpperCAmelCase_ ( cls :Any , lowercase_ :int )-> List[str]: raise ValueError( F"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """longest""" __lowercase = """max_length""" __lowercase = """do_not_pad""" class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """pt""" __lowercase = """tf""" __lowercase = """np""" __lowercase = """jax""" class UpperCAmelCase : def __init__( self :List[str] , lowercase_ :List[ContextManager] )-> str: A__ = context_managers A__ = ExitStack() def __enter__( self :Dict )-> Any: for context_manager in self.context_managers: self.stack.enter_context(lowercase_ ) def __exit__( self :List[Any] , *lowercase_ :Optional[Any] , **lowercase_ :str )-> Union[str, Any]: self.stack.__exit__(*lowercase_ , **lowercase_ ) def UpperCamelCase ( _lowerCamelCase : Dict ): A__ = infer_framework(_lowerCamelCase ) if framework == "tf": A__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ = inspect.signature(model_class.forward ) # PyTorch models else: A__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def UpperCamelCase ( _lowerCamelCase : List[str] ): A__ = model_class.__name__ A__ = infer_framework(_lowerCamelCase ) if framework == "tf": A__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ = inspect.signature(model_class.forward ) # PyTorch models else: A__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def UpperCamelCase ( _lowerCamelCase : MutableMapping , _lowerCamelCase : str = "" , _lowerCamelCase : str = "." ): def _flatten_dict(_lowerCamelCase : List[Any] , _lowerCamelCase : int="" , _lowerCamelCase : Any="." ): for k, v in d.items(): A__ = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k if v and isinstance(_lowerCamelCase , _lowerCamelCase ): yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) @contextmanager def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Optional[Any]=None ): if is_numpy_array(_lowerCamelCase ): return np.transpose(_lowerCamelCase , axes=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.T if axes is None else array.permute(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase ) else: raise ValueError(F"Type not supported for transpose: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Any ): if is_numpy_array(_lowerCamelCase ): return np.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.reshape(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.reshape(_lowerCamelCase , _lowerCamelCase ) else: raise ValueError(F"Type not supported for reshape: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any]=None ): if is_numpy_array(_lowerCamelCase ): return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for squeeze: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict ): if is_numpy_array(_lowerCamelCase ): return np.expand_dims(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.unsqueeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] ): if is_numpy_array(_lowerCamelCase ): return np.size(_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.numel() elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.size(_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): for key, value in auto_map.items(): if isinstance(_lowerCamelCase , (tuple, list) ): A__ = [F"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: A__ = F"{repo_id}--{value}" return auto_map def UpperCamelCase ( _lowerCamelCase : Dict ): for base_class in inspect.getmro(_lowerCamelCase ): A__ = base_class.__module__ A__ = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
237
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ : int = logging.get_logger(__name__) lowerCAmelCase__ : Tuple = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''focalnet''' def __init__( self : str , UpperCAmelCase_ : Dict=224 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Optional[int]=96 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Any=[192, 384, 768, 768] , UpperCAmelCase_ : List[Any]=[2, 2, 6, 2] , UpperCAmelCase_ : int=[2, 2, 2, 2] , UpperCAmelCase_ : Dict=[3, 3, 3, 3] , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=4.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : int=1e-4 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1e-5 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Any , ): """simple docstring""" super().__init__(**UpperCAmelCase_ ) __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Any = embed_dim __UpperCAmelCase : Tuple = use_conv_embed __UpperCAmelCase : int = hidden_sizes __UpperCAmelCase : Union[str, Any] = depths __UpperCAmelCase : List[str] = focal_levels __UpperCAmelCase : Optional[Any] = focal_windows __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : str = mlp_ratio __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Tuple = drop_path_rate __UpperCAmelCase : List[Any] = use_layerscale __UpperCAmelCase : Tuple = layerscale_value __UpperCAmelCase : List[Any] = use_post_layernorm __UpperCAmelCase : int = use_post_layernorm_in_modulation __UpperCAmelCase : List[str] = normalize_modulator __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : str = encoder_stride __UpperCAmelCase : Optional[int] = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] __UpperCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
357
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __UpperCamelCase ( *_UpperCAmelCase ): with open(_UpperCAmelCase, "r" ) as fh: fcntl.flock(_UpperCAmelCase, fcntl.LOCK_EX ) try: print(*_UpperCAmelCase ) finally: fcntl.flock(_UpperCAmelCase, fcntl.LOCK_UN ) lowerCAmelCase__ : Dict = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) lowerCAmelCase__ : Optional[int] = torch.device("cuda", local_rank) lowerCAmelCase__ : List[str] = socket.gethostname() lowerCAmelCase__ : Optional[Any] = f"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCAmelCase__ : Tuple = dist.get_rank() lowerCAmelCase__ : Optional[int] = dist.get_world_size() printflock(f"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(f"{gpu} is broken") raise
37
0
__lowerCAmelCase : Dict = "Input must be a string of 8 numbers plus letter" __lowerCAmelCase : List[str] = "TRWAGMYFPDXBNJZSQVHLCKE" def __magic_name__ ( A : str ): '''simple docstring''' if not isinstance(A, A ): a = F"""Expected string as input, found {type(A ).__name__}""" raise TypeError(A ) a = spanish_id.replace("-", "" ).upper() if len(A ) != 9: raise ValueError(A ) try: a = int(spanish_id_clean[0:8] ) a = spanish_id_clean[8] except ValueError as ex: raise ValueError(A ) from ex if letter.isdigit(): raise ValueError(A ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
107
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: str = logging.get_logger(__name__) _lowercase: List[str] = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = "trocr" __A = ["past_key_values"] __A = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__(self , lowerCamelCase_=50265 , lowerCamelCase_=1024 , lowerCamelCase_=12 , lowerCamelCase_=16 , lowerCamelCase_=4096 , lowerCamelCase_="gelu" , lowerCamelCase_=512 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=0.0 , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , **lowerCamelCase_ , ): """simple docstring""" a = vocab_size a = d_model a = decoder_layers a = decoder_attention_heads a = decoder_ffn_dim a = activation_function a = max_position_embeddings a = dropout a = attention_dropout a = activation_dropout a = init_std a = decoder_layerdrop a = use_cache a = scale_embedding a = use_learned_position_embeddings a = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
227
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[Any] = IFInpaintingPipeline _UpperCAmelCase :List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} _UpperCAmelCase :Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCAmelCase :Any = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ): return self._get_dummy_components() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('''mps''' ): lowercase__: Dict = torch.manual_seed(_UpperCAmelCase ) else: lowercase__: Optional[int] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__: Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__: List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__: str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ): self._test_save_load_local() def _snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
2
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __lowerCAmelCase : str =[ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] __lowerCAmelCase : Tuple =[ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def UpperCamelCase ( ): A__ = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , bootstrap_aggregation=UpperCamelCase__ , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , bootstrap_aggregation=UpperCamelCase__ , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def UpperCamelCase ( ): A__ = "rougeLsum" A__ = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , newline_sep=UpperCamelCase__ , rouge_keys=[k] )[k] A__ = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , newline_sep=UpperCamelCase__ , rouge_keys=[k] )[k] assert score > score_no_sep def UpperCamelCase ( ): A__ = ["rouge1", "rouge2", "rougeL"] A__ = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , newline_sep=UpperCamelCase__ , rouge_keys=UpperCamelCase__ ) A__ = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , newline_sep=UpperCamelCase__ , rouge_keys=UpperCamelCase__ ) assert score_sep == score_no_sep def UpperCamelCase ( ): A__ = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] A__ = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , newline_sep=UpperCamelCase__ ) == calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , newline_sep=UpperCamelCase__ ) def UpperCamelCase ( ): A__ = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] A__ = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] A__ = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , rouge_keys=["rougeLsum"] , newline_sep=UpperCamelCase__ )["rougeLsum"] A__ = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def UpperCamelCase ( ): A__ = Path("examples/seq2seq/test_data/wmt_en_ro" ) A__ = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ )
237
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = (DDIMParallelScheduler,) __SCREAMING_SNAKE_CASE = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def UpperCamelCase ( self,**__lowerCamelCase ): A__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**__lowerCamelCase ) return config def UpperCamelCase ( self,**__lowerCamelCase ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) A__ , A__ = 10, 0.0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: A__ = model(__lowerCamelCase,__lowerCamelCase ) A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ).prev_sample return sample def UpperCamelCase ( self ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCamelCase ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(steps_offset=1 ) A__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps,torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1],[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase,beta_end=__lowerCamelCase ) def UpperCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCamelCase ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCamelCase ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCamelCase ( self ): self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase,prediction_type=__lowerCamelCase,sample_max_value=__lowerCamelCase,) def UpperCamelCase ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCamelCase ( self ): for t, num_inference_steps in zip([1, 10, 50],[10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase,num_inference_steps=__lowerCamelCase ) def UpperCamelCase ( self ): for t, eta in zip([1, 10, 49],[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase,eta=__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420,400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980,960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487,486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999,998 ) - 0.02 ) ) < 1E-5 def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) A__ , A__ = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = self.dummy_sample_deter + 0.1 A__ = self.dummy_sample_deter - 0.1 A__ = samplea.shape[0] A__ = torch.stack([samplea, samplea, samplea],dim=0 ) A__ = torch.arange(__lowerCamelCase )[0:3, None].repeat(1,__lowerCamelCase ) A__ = model(samples.flatten(0,1 ),timesteps.flatten(0,1 ) ) A__ = scheduler.batch_step_no_noise(__lowerCamelCase,timesteps.flatten(0,1 ),samples.flatten(0,1 ),__lowerCamelCase ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop() A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop(prediction_type='''v_prediction''' ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def UpperCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=__lowerCamelCase,beta_start=0.01 ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def UpperCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=__lowerCamelCase,beta_start=0.01 ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
193
0
lowerCamelCase__ = range(2, 20 + 1) lowerCamelCase__ = [10**k for k in range(ks[-1] + 1)] lowerCamelCase__ = {} def A(__a: Any , __a: Dict , __a: Any , __a: Dict ): lowerCAmelCase_ = sum(a_i[j] for j in range(__a , len(__a ) ) ) lowerCAmelCase_ = sum(a_i[j] * base[j] for j in range(min(len(__a ) , __a ) ) ) lowerCAmelCase_ , lowerCAmelCase_ = 0, 0 lowerCAmelCase_ = n - i lowerCAmelCase_ = memo.get(__a ) if sub_memo is not None: lowerCAmelCase_ = sub_memo.get(__a ) if jumps is not None and len(__a ) > 0: # find and make the largest jump without going over lowerCAmelCase_ = -1 for _k in range(len(__a ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCAmelCase_ = _k break if max_jump >= 0: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = jumps[max_jump] # since the difference between jumps is cached, add c lowerCAmelCase_ = diff + c for j in range(min(__a , len(__a ) ) ): lowerCAmelCase_ , lowerCAmelCase_ = divmod(__a , 10 ) if new_c > 0: add(__a , __a , __a ) else: lowerCAmelCase_ = [] else: lowerCAmelCase_ = {c: []} lowerCAmelCase_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCAmelCase_ , lowerCAmelCase_ = next_term(__a , k - 1 , i + dn , __a ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCAmelCase_ , lowerCAmelCase_ = compute(__a , __a , i + dn , __a ) diff += _diff dn += terms_jumped lowerCAmelCase_ = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCAmelCase_ = 0 while j < len(__a ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__a , (diff, dn, k) ) return (diff, dn) def A(__a: Dict , __a: List[Any] , __a: Tuple , __a: Tuple ): if i >= n: return 0, i if k > len(__a ): a_i.extend([0 for _ in range(k - len(__a ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCAmelCase_ = i lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0, 0, 0 for j in range(len(__a ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCAmelCase_ = ds_c + ds_b diff += addend lowerCAmelCase_ = 0 for j in range(__a ): lowerCAmelCase_ = a_i[j] + addend lowerCAmelCase_ , lowerCAmelCase_ = divmod(__a , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__a , __a , __a ) return diff, i - start_i def A(__a: str , __a: int , __a: Union[str, Any] ): for j in range(__a , len(__a ) ): lowerCAmelCase_ = digits[j] + addend if s >= 10: lowerCAmelCase_ , lowerCAmelCase_ = divmod(__a , 10 ) lowerCAmelCase_ = addend // 10 + quotient else: lowerCAmelCase_ = s lowerCAmelCase_ = addend // 10 if addend == 0: break while addend > 0: lowerCAmelCase_ , lowerCAmelCase_ = divmod(__a , 10 ) digits.append(__a ) def A(__a: int = 10**15 ): lowerCAmelCase_ = [1] lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 while True: lowerCAmelCase_ , lowerCAmelCase_ = next_term(__a , 20 , i + dn , __a ) dn += terms_jumped if dn == n - i: break lowerCAmelCase_ = 0 for j in range(len(__a ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
22
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ) -> Optional[int]: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=SCREAMING_SNAKE_CASE_ , ) assert hasattr(self , '''env''' ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: lowercase_ = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings lowercase_ = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=SCREAMING_SNAKE_CASE_ , instance_count=SCREAMING_SNAKE_CASE_ , instance_type=self.instance_type , debugger_hook_config=SCREAMING_SNAKE_CASE_ , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=SCREAMING_SNAKE_CASE_ , py_version='''py36''' , ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: TrainingJobAnalytics(SCREAMING_SNAKE_CASE_ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: # create estimator lowercase_ = self.create_estimator(SCREAMING_SNAKE_CASE_ ) # run training estimator.fit() # result dataframe lowercase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowercase_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , SCREAMING_SNAKE_CASE_ )
30
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : str =DebertaVaTokenizer A__ : List[str] =DebertaVaTokenizerFast A__ : Any =True A__ : str =True def A_ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE__ = 'this is a test' SCREAMING_SNAKE_CASE__ = 'this is a test' return input_text, output_text def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = '<pad>' SCREAMING_SNAKE_CASE__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(UpperCAmelCase_ ) , 30001 ) def A_ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def A_ ( self : Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = ' \tHeLLo!how \n Are yoU? ' SCREAMING_SNAKE_CASE__ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def A_ ( self : Any ): pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def A_ ( self : Tuple ): pass def A_ ( self : List[str] ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : List[str] ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : int ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Tuple ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE__ = ' \tHeLLo!how \n Are yoU? ' SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = 'This is a test' SCREAMING_SNAKE_CASE__ = [13, 1, 4398, 25, 21, 1289] SCREAMING_SNAKE_CASE__ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] SCREAMING_SNAKE_CASE__ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('sequence builders' ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('multi-sequence build' ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCAmelCase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCAmelCase_ , ) @slow def A_ ( self : Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = {'input_ids': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
176
0
def a__ ( UpperCAmelCase : str ) -> list[int]: UpperCAmelCase : Union[str, Any] = [0 for i in range(len(_UpperCAmelCase ) )] # initialize interval's left pointer and right pointer UpperCAmelCase : Optional[int] = 0, 0 for i in range(1 , len(_UpperCAmelCase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCAmelCase : Any = min(right_pointer - i + 1 , z_result[i - left_pointer] ) UpperCAmelCase : Union[str, Any] = min_edge while go_next(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCAmelCase : Any = i, i + z_result[i] - 1 return z_result def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> bool: return i + z_result[i] < len(_UpperCAmelCase ) and s[z_result[i]] == s[i + z_result[i]] def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : str ) -> int: UpperCAmelCase : Any = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCAmelCase : List[str] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_UpperCAmelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
351
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCamelCase : List[str] = True from torch.cuda.amp import autocast _lowerCamelCase : Any = logging.getLogger(__name__) @dataclass class __UpperCAmelCase : UpperCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to log verbose messages or not."""} , ) UpperCamelCase = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) UpperCamelCase = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) UpperCamelCase = field( default=0.9_9_9_9_9_5 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def a__ ( UpperCAmelCase : ModelArguments , UpperCAmelCase : TrainingArguments ) -> Any: logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase : Any = logging.WARNING if model_args.verbose_logging: UpperCAmelCase : Any = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): UpperCAmelCase : Any = logging.INFO logger.setLevel(UpperCAmelCase ) @dataclass class __UpperCAmelCase : UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) UpperCamelCase = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) UpperCamelCase = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) UpperCamelCase = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase = field( default=2_0.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class __UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = "longest" UpperCamelCase = None UpperCamelCase = None def __call__( self : int, __A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format UpperCAmelCase : List[Any] = self.feature_extractor.pad( __A, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='''pt''', ) UpperCAmelCase : int = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) UpperCAmelCase : Tuple = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula UpperCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) UpperCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to UpperCAmelCase : Tuple = 1 UpperCAmelCase : int = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices UpperCAmelCase : Dict = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__A, min_masks=2, ) return batch class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Union[str, Any], *__A : int, __A : Dict=1, __A : Any=0, __A : Optional[Any]=1.0, **__A : Any ): super().__init__(*__A, **__A ) UpperCAmelCase : Any = 0 UpperCAmelCase : Any = max_gumbel_temp UpperCAmelCase : Optional[Any] = min_gumbel_temp UpperCAmelCase : str = gumbel_temp_decay def __magic_name__ ( self : Dict, __A : nn.Module, __A : Dict[str, Union[torch.Tensor, Any]] ): model.train() UpperCAmelCase : List[Any] = self._prepare_inputs(__A ) if self.use_amp: with autocast(): UpperCAmelCase : Optional[Any] = self.compute_loss(__A, __A ) else: UpperCAmelCase : Optional[int] = self.compute_loss(__A, __A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase : str = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__A ).backward() elif self.use_apex: with amp.scale_loss(__A, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) return loss.detach() def a__ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses() configure_logger(UpperCAmelCase , UpperCAmelCase ) # Downloading and loading a dataset from the hub. UpperCAmelCase : int = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" UpperCAmelCase : Union[str, Any] = DatasetDict() UpperCAmelCase : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) UpperCAmelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" UpperCAmelCase : Optional[Any] = DatasetDict() UpperCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) UpperCAmelCase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=UpperCAmelCase ) def prepare_dataset(UpperCAmelCase : Dict ): # check that all files have the correct sampling rate UpperCAmelCase , UpperCAmelCase : Optional[Any] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays UpperCAmelCase : str = datasets.map( UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long UpperCAmelCase : int = vectorized_datasets.filter( lambda UpperCAmelCase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(UpperCAmelCase : Dict ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` UpperCAmelCase : Any = vectorized_datasets.map( UpperCAmelCase , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 UpperCAmelCase : Optional[int] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) UpperCAmelCase : Any = WavaVecaForPreTraining(UpperCAmelCase ) UpperCAmelCase : int = DataCollatorForWavaVecaPretraining(model=UpperCAmelCase , feature_extractor=UpperCAmelCase ) UpperCAmelCase : Any = WavaVecaPreTrainer( model=UpperCAmelCase , data_collator=UpperCAmelCase , args=UpperCAmelCase , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=UpperCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
99
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowercase_ : '''simple docstring''' __snake_case = 42 __snake_case = None __snake_case = None UpperCAmelCase__ = namedtuple("CoinsDistribResult", "moves excess") def _a ( a :TreeNode | None ) -> int: if root is None: return 0 # Validation def count_nodes(a :TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a :TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a ) != count_coins(a ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(a :TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) a , a = get_distrib(node.left ) a , a = get_distrib(node.right ) a = 1 - left_distrib_excess a = 1 - right_distrib_excess a = ( left_distrib_moves + right_distrib_moves + abs(a ) + abs(a ) ) a = node.data - coins_to_left - coins_to_right return CoinsDistribResult(a , a ) return get_distrib(a )[0] if __name__ == "__main__": import doctest doctest.testmod()
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __UpperCamelCase ( _A , _A ): SCREAMING_SNAKE_CASE = "pixel_values" SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = TimmBackboneConfig def __init__(self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Any): requires_backends(self , "timm") super().__init__(__SCREAMING_SNAKE_CASE) A = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""") if hasattr(__SCREAMING_SNAKE_CASE , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") A = getattr(__SCREAMING_SNAKE_CASE , "use_pretrained_backbone" , __SCREAMING_SNAKE_CASE) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. A = config.out_indices if getattr(__SCREAMING_SNAKE_CASE , "out_indices" , __SCREAMING_SNAKE_CASE) is not None else (-1,) A = timm.create_model( config.backbone , pretrained=__SCREAMING_SNAKE_CASE , features_only=config.features_only , in_chans=config.num_channels , out_indices=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. A = self._backbone.return_layers A = {layer["module"]: str(__SCREAMING_SNAKE_CASE) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(__SCREAMING_SNAKE_CASE) @classmethod def SCREAMING_SNAKE_CASE__ (cls : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : Dict): requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig A = kwargs.pop("config" , TimmBackboneConfig()) A = kwargs.pop("use_timm_backbone" , __SCREAMING_SNAKE_CASE) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") A = kwargs.pop("num_channels" , config.num_channels) A = kwargs.pop("features_only" , config.features_only) A = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) A = kwargs.pop("out_indices" , config.out_indices) A = TimmBackboneConfig( backbone=__SCREAMING_SNAKE_CASE , num_channels=__SCREAMING_SNAKE_CASE , features_only=__SCREAMING_SNAKE_CASE , use_pretrained_backbone=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , ) return super()._from_config(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Dict , __SCREAMING_SNAKE_CASE : str): pass def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : Dict): A = return_dict if return_dict is not None else self.config.use_return_dict A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone A = self._all_layers A = self._backbone(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) A = self._return_layers A = tuple(hidden_states[i] for i in self.out_indices) else: A = self._backbone(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) A = None A = tuple(__SCREAMING_SNAKE_CASE) A = tuple(__SCREAMING_SNAKE_CASE) if hidden_states is not None else None if not return_dict: A = (feature_maps,) if output_hidden_states: A = output + (hidden_states,) return output return BackboneOutput(feature_maps=__SCREAMING_SNAKE_CASE , hidden_states=__SCREAMING_SNAKE_CASE , attentions=__SCREAMING_SNAKE_CASE)
57
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __UpperCamelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = WavaVecaPhonemeCTCTokenizer SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ (self : Tuple): super().setUp() A = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" ") A = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE)))) A = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE) + "\n") def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[Any]=2_0 , __SCREAMING_SNAKE_CASE : Any=5): A = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE)) for i in range(len(__SCREAMING_SNAKE_CASE))] A = list(filter(lambda __SCREAMING_SNAKE_CASE: [t[0]] == tokenizer.encode(t[1] , do_phonemize=__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE)) if max_length is not None and len(__SCREAMING_SNAKE_CASE) > max_length: A = toks[:max_length] if min_length is not None and len(__SCREAMING_SNAKE_CASE) < min_length and len(__SCREAMING_SNAKE_CASE) > 0: while len(__SCREAMING_SNAKE_CASE) < min_length: A = toks + toks # toks_str = [t[1] for t in toks] A = [t[0] for t in toks] # Ensure consistency A = tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) if " " not in output_txt and len(__SCREAMING_SNAKE_CASE) > 1: A = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) ) if with_prefix_space: A = " " + output_txt A = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE) return output_txt, output_ids def SCREAMING_SNAKE_CASE__ (self : List[Any] , **__SCREAMING_SNAKE_CASE : Any): kwargs.update(self.special_tokens_map) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") # check adding a single token tokenizer.add_tokens("xxx") A = tokenizer("m xxx ɪ" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [1_3, 3_9_2, 1_7]) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"]) A = tokenizer("m aaa ɪ ccc" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [1_3, 3_9_3, 1_7, 3_9_5]) # aaa and ccc should be after xxx and 2 after aaa A = tokenizer("maɪ c" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [3, 2_0_0]) # mai should be <unk> (=3) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ h aʊ ɑːɹ j uː") def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , tokenizer(__SCREAMING_SNAKE_CASE , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids) def SCREAMING_SNAKE_CASE__ (self : Any): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : str): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7], ] A = tokenizer.decode(sample_ids[0]) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ | h aʊ | ɑːɹ | j uː |") def SCREAMING_SNAKE_CASE__ (self : str): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , tokenizer(__SCREAMING_SNAKE_CASE , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8], [tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7], ] # fmt: on # decode with word_del_token filter A = tokenizer.decode(sample_ids[0]) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) # decode with no word_del_token filter A = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"]) def SCREAMING_SNAKE_CASE__ (self : Dict): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |")]).strip() , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Dict): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=__SCREAMING_SNAKE_CASE) A = "Hello how are you" A = tokenizer(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us").input_ids A = tokenizer(__SCREAMING_SNAKE_CASE , phonemizer_lang="fr-fr").input_ids self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = tokenizer.decode(__SCREAMING_SNAKE_CASE) A = tokenizer.decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ h aʊ ɑːɹ j uː") self.assertEqual(__SCREAMING_SNAKE_CASE , "ɛ l o h aʊ a ʁ j u") def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how Are you" A = "hello how are you" A = tokenizer(__SCREAMING_SNAKE_CASE).input_ids A = tokenizer(__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") tokenizer.add_tokens(["!", "?"]) tokenizer.add_special_tokens({"cls_token": "$$$"}) # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4], ] # fmt: on A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"]) @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]): A = [d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.get_tokenizer(word_delimiter_token="|") tokenizer.add_tokens("|") # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8] # fmt: on A = tokenizer.decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys()) , 2) self.assertTrue("text" in outputs) self.assertTrue("char_offsets" in outputs) self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char")) , outputs.text) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "char") , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"]) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "start_offset") , [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6]) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "end_offset") , [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7]) def SCREAMING_SNAKE_CASE__ (self : Any): A = self.get_tokenizer(word_delimiter_token="|") def check_list_tuples_equal(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any]): self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) self.assertTrue(isinstance(outputs_list[0] , __SCREAMING_SNAKE_CASE)) # transform list to ModelOutput A = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]}) self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"]) def recursive_check(__SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): [recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for la, la in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"]) # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4], [2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE) A = [tokenizer.decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE) for ids in sample_ids] check_list_tuples_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes") def SCREAMING_SNAKE_CASE__ (self : Optional[int]): pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes") def SCREAMING_SNAKE_CASE__ (self : Dict): pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency") def SCREAMING_SNAKE_CASE__ (self : str): pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing") def SCREAMING_SNAKE_CASE__ (self : Optional[int]): pass def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.get_tokenizers(do_lower_case=__SCREAMING_SNAKE_CASE) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A = ["aaaaa bbbbbb", "cccccccccdddddddd"] A = tokenizer.add_tokens(__SCREAMING_SNAKE_CASE) A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE)) self.assertEqual(__SCREAMING_SNAKE_CASE , all_size + len(__SCREAMING_SNAKE_CASE)) A = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__SCREAMING_SNAKE_CASE) self.assertGreaterEqual(len(__SCREAMING_SNAKE_CASE) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) A = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} A = tokenizer.add_special_tokens(__SCREAMING_SNAKE_CASE) A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE)) self.assertEqual(__SCREAMING_SNAKE_CASE , all_size_a + len(__SCREAMING_SNAKE_CASE)) A = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__SCREAMING_SNAKE_CASE) self.assertGreaterEqual(len(__SCREAMING_SNAKE_CASE) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def SCREAMING_SNAKE_CASE__ (self : List[str]): pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def SCREAMING_SNAKE_CASE__ (self : List[Any]): pass def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. A = self.get_tokenizers(fast=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): A = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] A = tokenizer.convert_tokens_to_string(__SCREAMING_SNAKE_CASE) self.assertIsInstance(output["text"] , __SCREAMING_SNAKE_CASE)
57
1
"""simple docstring""" def _snake_case ( lowerCamelCase__ : str ) -> str: if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) lowerCamelCase_ : Optional[Any] ="" while len(lowerCamelCase__ ) % 3 != 0: lowerCamelCase_ : Any ="0" + bin_string lowerCamelCase_ : int =[ bin_string[index : index + 3] for index in range(len(lowerCamelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCamelCase_ : int =0 for index, val in enumerate(lowerCamelCase__ ): oct_val += int(2 ** (2 - index) * int(lowerCamelCase__ ) ) oct_string += str(lowerCamelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
144
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification A__ : Optional[Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co A__ : Tuple = 'main' # Default branch name A__ : Optional[Any] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) A__ : Tuple = 'aaaaaaa' # This commit does not exist, so we should 404. A__ : Tuple = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes A__ : Any = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def _snake_case ( ) -> str: print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def _snake_case ( ) -> List[str]: print("Bonjour!" ) yield print("Au revoir!" ) class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[int] ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class lowercase__ ( unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : int ): with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[int] ): with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[str] ): with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def UpperCAmelCase__ ( self : int ): self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) self.assertEqual(find_labels(snake_case__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(snake_case__ ) , ["start_positions", "end_positions"] ) class lowercase__ ( snake_case__ ): pass self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) @require_tf def UpperCAmelCase__ ( self : int ): self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) self.assertEqual(find_labels(snake_case__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(snake_case__ ) , ["start_positions", "end_positions"] ) class lowercase__ ( snake_case__ ): pass self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) @require_flax def UpperCAmelCase__ ( self : Tuple ): # Flax models don't have labels self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) class lowercase__ ( snake_case__ ): pass self.assertEqual(find_labels(snake_case__ ) , [] )
144
1
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase :Optional[int] = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase :List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _a ( _lowercase : str ): '''simple docstring''' if "://" in dataset_path: __UpperCAmelCase : Union[str, Any] = dataset_path.split('''://''' )[1] return dataset_path def _a ( _lowercase : List[Any] ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def _a ( _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = not is_remote_filesystem(a__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(a__ ) , fs._strip_protocol(a__ ) ) else: fs.mv(a__ , a__ , recursive=a__ ) def _a ( ): '''simple docstring''' if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = threading.Lock()
369
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionXLImgaImgPipeline SCREAMING_SNAKE_CASE : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} SCREAMING_SNAKE_CASE : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self : Any ) -> Any: torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=snake_case , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __UpperCAmelCase : int = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __UpperCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) __UpperCAmelCase : Tuple = CLIPTextModel(snake_case ) __UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=snake_case ) __UpperCAmelCase : Optional[Any] = CLIPTextModelWithProjection(snake_case ) __UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=snake_case ) __UpperCAmelCase : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase__ ( self : Dict , snake_case : Optional[int] , snake_case : List[str]=0 ) -> List[str]: __UpperCAmelCase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) __UpperCAmelCase : Optional[Any] = image / 2 + 0.5 if str(snake_case ).startswith('''mps''' ): __UpperCAmelCase : List[str] = torch.manual_seed(snake_case ) else: __UpperCAmelCase : Any = torch.Generator(device=snake_case ).manual_seed(snake_case ) __UpperCAmelCase : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Optional[Any] = self.get_dummy_components() __UpperCAmelCase : Any = StableDiffusionXLImgaImgPipeline(**snake_case ) __UpperCAmelCase : Union[str, Any] = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) __UpperCAmelCase : Optional[int] = self.get_dummy_inputs(snake_case ) __UpperCAmelCase : int = sd_pipe(**snake_case ).images __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Any = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Any ) -> int: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: pass def lowerCamelCase__ ( self : Optional[int] ) -> int: __UpperCAmelCase : Union[str, Any] = self.get_dummy_components() __UpperCAmelCase : List[Any] = StableDiffusionXLImgaImgPipeline(**snake_case ) __UpperCAmelCase : Tuple = sd_pipe.to(snake_case ) __UpperCAmelCase : Tuple = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) # forward without prompt embeds __UpperCAmelCase : Tuple = self.get_dummy_inputs(snake_case ) __UpperCAmelCase : Optional[Any] = 3 * ['''this is a negative prompt'''] __UpperCAmelCase : Optional[int] = negative_prompt __UpperCAmelCase : Tuple = 3 * [inputs['''prompt''']] __UpperCAmelCase : Optional[Any] = sd_pipe(**snake_case ) __UpperCAmelCase : int = output.images[0, -3:, -3:, -1] # forward with prompt embeds __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(snake_case ) __UpperCAmelCase : Tuple = 3 * ['''this is a negative prompt'''] __UpperCAmelCase : str = 3 * [inputs.pop('''prompt''' )] ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = sd_pipe.encode_prompt(snake_case , negative_prompt=snake_case ) __UpperCAmelCase : Dict = sd_pipe( **snake_case , prompt_embeds=snake_case , negative_prompt_embeds=snake_case , pooled_prompt_embeds=snake_case , negative_pooled_prompt_embeds=snake_case , ) __UpperCAmelCase : List[str] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : int , snake_case : Any , snake_case : str="cpu" , snake_case : Tuple=torch.floataa , snake_case : List[str]=0 ) -> Tuple: __UpperCAmelCase : Optional[Any] = torch.Generator(device=snake_case ).manual_seed(snake_case ) __UpperCAmelCase : int = np.random.RandomState(snake_case ).standard_normal((1, 4, 64, 64) ) __UpperCAmelCase : str = torch.from_numpy(snake_case ).to(device=snake_case , dtype=snake_case ) __UpperCAmelCase : str = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase : str = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) __UpperCAmelCase : str = self.get_inputs(snake_case ) __UpperCAmelCase : Dict = pipe(**snake_case ).images __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Tuple = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
240
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase (lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = IFInpaintingPipeline lowerCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} lowerCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return self._get_dummy_components() def UpperCamelCase__ (self : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=0 ): '''simple docstring''' if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_save_load_local() def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
2
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
1
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): if radian_mode: return [magnitude * cos(__lowerCamelCase ), magnitude * sin(__lowerCamelCase )] return [magnitude * cos(radians(__lowerCamelCase ) ), magnitude * sin(radians(__lowerCamelCase ) )] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 10**-1 ): UpperCAmelCase_ : NDArray[floataa] = cross(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : float = sum(__lowerCamelCase ) return abs(__lowerCamelCase ) < eps if __name__ == "__main__": # Test to check if it works _a = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) _a = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _a = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) _a = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _a = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) _a = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
23
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : """simple docstring""" def __init__( self :int , snake_case :Optional[int] , snake_case :Union[str, Any]=13 , snake_case :Optional[int]=7 , snake_case :int=True , snake_case :Any=True , snake_case :Union[str, Any]=True , snake_case :List[Any]=True , snake_case :int=99 , snake_case :Tuple=24 , snake_case :Any=2 , snake_case :Tuple=6 , snake_case :int=37 , snake_case :Optional[Any]="gelu" , snake_case :Optional[Any]=0.1 , snake_case :List[str]=0.1 , snake_case :str=512 , snake_case :List[str]=16 , snake_case :int=2 , snake_case :List[str]=0.02 , snake_case :int=3 , snake_case :Optional[Any]=None , snake_case :str=1_000 , ): '''simple docstring''' A_ : List[str] = parent A_ : Union[str, Any] = batch_size A_ : Tuple = seq_length A_ : Any = is_training A_ : Optional[int] = use_input_mask A_ : Any = use_token_type_ids A_ : int = use_labels A_ : str = vocab_size A_ : int = hidden_size A_ : Dict = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : str = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : int = type_sequence_label_size A_ : str = initializer_range A_ : List[Any] = num_labels A_ : List[str] = scope A_ : str = range_bbox def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : Union[str, Any] = bbox[i, j, 3] A_ : List[str] = bbox[i, j, 1] A_ : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Optional[int] = bbox[i, j, 2] A_ : str = bbox[i, j, 0] A_ : str = t A_ : Any = None if self.use_input_mask: A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Optional[int] = None A_ : List[str] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Tuple = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Optional[Any] , snake_case :str , snake_case :Union[str, Any] , snake_case :Any , snake_case :Any , snake_case :List[str] , snake_case :Any , ): '''simple docstring''' A_ : str = LiltModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : str = model(snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : int = model(snake_case , bbox=snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , bbox=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :str , snake_case :List[Any] , snake_case :Union[str, Any] , snake_case :Union[str, Any] , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , ): '''simple docstring''' A_ : Tuple = self.num_labels A_ : List[str] = LiltForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() A_ : Dict = model( snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :int , snake_case :Optional[Any] , snake_case :List[str] , snake_case :str , snake_case :str , snake_case :Any , snake_case :Union[str, Any] , ): '''simple docstring''' A_ : Optional[int] = LiltForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() A_ : Optional[int] = model( snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Tuple = self.prepare_config_and_inputs() ( A_ ) : Optional[int] = config_and_inputs A_ : Any = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __magic_name__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :str , snake_case :List[str] ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : int = LiltModelTester(self ) A_ : Tuple = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Union[str, Any] = type self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[int] = LiltModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch @slow class __magic_name__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(snake_case ) A_ : List[Any] = torch.tensor([[1, 2]] , device=snake_case ) A_ : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case ) # forward pass with torch.no_grad(): A_ : str = model(input_ids=snake_case , bbox=snake_case ) A_ : List[str] = torch.Size([1, 2, 768] ) A_ : Any = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=snake_case , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case , atol=1e-3 ) )
300
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : list[int] ) -> list[int]: _SCREAMING_SNAKE_CASE = len(__A ) for i in range(__A ): for j in range(i + 1 , __A ): if numbers[j] < numbers[i]: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCamelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase_ = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
111
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: _SCREAMING_SNAKE_CASE = len(__A ) _SCREAMING_SNAKE_CASE = len(__A ) _SCREAMING_SNAKE_CASE = ( first_str_length if first_str_length > second_str_length else second_str_length ) _SCREAMING_SNAKE_CASE = [] for char_count in range(__A ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__A ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
111
1
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants snake_case__ : Optional[Any] = 300 # TEMPERATURE (unit = K) def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float , ): if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
60
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=None , ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = parent a__ : List[str] = batch_size a__ : List[str] = image_size a__ : Dict = patch_size a__ : Optional[Any] = num_channels a__ : List[Any] = is_training a__ : str = use_labels a__ : Dict = hidden_size a__ : Tuple = num_hidden_layers a__ : Tuple = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : List[str] = hidden_act a__ : List[str] = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : Dict = type_sequence_label_size a__ : Tuple = initializer_range a__ : Optional[int] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : List[str] = (image_size // patch_size) ** 2 a__ : Any = num_patches + 1 def __lowercase ( self) -> int: '''simple docstring''' a__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : Tuple = None if self.use_labels: a__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Optional[int]: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : int = ViTMSNModel(config=lowercase) model.to(lowercase) model.eval() a__ : int = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Tuple: '''simple docstring''' a__ : Optional[Any] = self.type_sequence_label_size a__ : List[str] = ViTMSNForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : int = model(lowercase , labels=lowercase) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}') print('Labels: {labels}') self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a__ : List[str] = 1 a__ : Optional[int] = ViTMSNForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a__ : Dict = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() a__ , a__ , a__ : Optional[Any] = config_and_inputs a__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Any = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __A : Tuple = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __A : List[str] = False __A : Optional[Any] = False __A : Union[str, Any] = False __A : Any = False def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[int] = ViTMSNModelTester(self) a__ : Union[str, Any] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds') def __lowercase ( self) -> Any: '''simple docstring''' pass def __lowercase ( self) -> Tuple: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Union[str, Any] = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ , a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowercase) a__ : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : str = [*signature.parameters.keys()] a__ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = ViTMSNModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> Dict: a__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small') if is_vision_available() else None @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' torch.manual_seed(2) a__ : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small').to(lowercase) a__ : Any = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Optional[Any] = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__ : Tuple = model(**lowercase) # verify the logits a__ : Union[str, Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Any = torch.tensor([-0.08_03, -0.44_54, -0.23_75]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4))
99
0
"""simple docstring""" class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__): # we need a list not a string, so do something to change the type __SCREAMING_SNAKE_CASE = arr.split(""",""") def snake_case_ ( self): __SCREAMING_SNAKE_CASE = [int(self.array[0])] * len(self.array) __SCREAMING_SNAKE_CASE = [int(self.array[0])] * len(self.array) for i in range(1 , len(self.array)): __SCREAMING_SNAKE_CASE = max( int(self.array[i]) + sum_value[i - 1] , int(self.array[i])) __SCREAMING_SNAKE_CASE = max(sum_value[i] , rear[i - 1]) return rear[len(self.array) - 1] if __name__ == "__main__": __magic_name__ = input("please input some numbers:") __magic_name__ = SubArray(whole_array) __magic_name__ = array.solve_sub_array() print(("the results is:", re))
255
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _lowerCAmelCase ( *UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_=True , UpperCamelCase_=2 ): from .. import __version__ __SCREAMING_SNAKE_CASE = take_from __SCREAMING_SNAKE_CASE = () if not isinstance(args[0] , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCamelCase_ ).base_version ) >= version.parse(UpperCamelCase_ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) __SCREAMING_SNAKE_CASE = None if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCamelCase_ ),) __SCREAMING_SNAKE_CASE = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCamelCase_ , UpperCamelCase_ ): values += (getattr(UpperCamelCase_ , UpperCamelCase_ ),) __SCREAMING_SNAKE_CASE = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: __SCREAMING_SNAKE_CASE = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: __SCREAMING_SNAKE_CASE = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , UpperCamelCase_ , stacklevel=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) > 0: __SCREAMING_SNAKE_CASE = inspect.getouterframes(inspect.currentframe() )[1] __SCREAMING_SNAKE_CASE = call_frame.filename __SCREAMING_SNAKE_CASE = call_frame.lineno __SCREAMING_SNAKE_CASE = call_frame.function __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCamelCase_ ) == 0: return elif len(UpperCamelCase_ ) == 1: return values[0] return values
255
1
from __future__ import annotations import math def lowerCAmelCase_ ( __A, __A ) -> float: '''simple docstring''' UpperCAmelCase__ = u for i in range(1, __A ): UpperCAmelCase__ = temp * (u - i) return temp def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase__ = int(input("enter the numbers of values: " ) ) UpperCAmelCase__ = [] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) UpperCAmelCase__ = 0 print("enter the values of parameters in a list: " ) UpperCAmelCase__ = list(map(__A, input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(__A ): UpperCAmelCase__ = float(input() ) UpperCAmelCase__ = int(input("enter the value to interpolate: " ) ) UpperCAmelCase__ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, __A ): for j in range(n - i ): UpperCAmelCase__ = y[j + 1][i - 1] - y[j][i - 1] UpperCAmelCase__ = y[0][0] for i in range(1, __A ): summ += (ucal(__A, __A ) * y[0][i]) / math.factorial(__A ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
65
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCAmelCase : int = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ['''pixel_values'''] def __init__( self : Dict , _snake_case : bool = True , _snake_case : Optional[Dict[str, int]] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : bool = True , _snake_case : Union[int, float] = 1 / 255 , _snake_case : bool = True , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , **_snake_case : Tuple , ): super().__init__(**_snake_case ) __lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 256} __lowercase : Dict = get_size_dict(_snake_case , default_to_square=_snake_case ) __lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowercase : Any = get_size_dict(_snake_case , param_name='''crop_size''' ) __lowercase : int = do_resize __lowercase : Union[str, Any] = size __lowercase : Optional[int] = resample __lowercase : str = do_center_crop __lowercase : str = crop_size __lowercase : Optional[int] = do_rescale __lowercase : str = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_ ( self : List[str] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BICUBIC , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Any , ): __lowercase : Union[str, Any] = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __lowercase : Dict = get_resize_output_image_size(_snake_case , size=size['''shortest_edge'''] , default_to_square=_snake_case ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : Union[str, Any] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): __lowercase : str = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : str , _snake_case : np.ndarray , _snake_case : float , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Any ): return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : Any , _snake_case : np.ndarray , _snake_case : Union[float, List[float]] , _snake_case : Union[float, List[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : Optional[Any] , _snake_case : ImageInput , _snake_case : Optional[bool] = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[float] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_snake_case : int , ): __lowercase : List[str] = do_resize if do_resize is not None else self.do_resize __lowercase : str = size if size is not None else self.size __lowercase : Any = get_size_dict(_snake_case , default_to_square=_snake_case ) __lowercase : str = resample if resample is not None else self.resample __lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[str] = crop_size if crop_size is not None else self.crop_size __lowercase : int = get_size_dict(_snake_case , param_name='''crop_size''' ) __lowercase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Any = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __lowercase : Dict = image_std if image_std is not None else self.image_std __lowercase : Any = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowercase : List[str] = [to_numpy_array(_snake_case ) for image in images] if do_resize: __lowercase : str = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: __lowercase : Dict = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: __lowercase : List[str] = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: __lowercase : str = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] __lowercase : Dict = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] __lowercase : List[str] = {'''pixel_values''': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case ) def snake_case_ ( self : Optional[int] , _snake_case : str , _snake_case : List[Tuple] = None ): __lowercase : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_snake_case ) != len(_snake_case ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_snake_case ): __lowercase : str = target_sizes.numpy() __lowercase : Union[str, Any] = [] for idx in range(len(_snake_case ) ): __lowercase : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_snake_case ) __lowercase : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_snake_case ) else: __lowercase : str = logits.argmax(dim=1 ) __lowercase : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
156
0
"""simple docstring""" import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = False ) -> Dict: _a = scheduler _a = optimizers if isinstance(__UpperCAmelCase , (list, tuple) ) else [optimizers] _a = split_batches _a = step_with_optimizer _a = GradientState() def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _a = AcceleratorState().num_processes for _ in range(__UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) else: self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: return self.scheduler.get_last_lr() def _UpperCAmelCase ( self ) -> List[Any]: return self.scheduler.state_dict() def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: self.scheduler.load_state_dict(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: return self.scheduler.get_lr() def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: return self.scheduler.print_lr(*__UpperCAmelCase , **__UpperCAmelCase )
365
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : List[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = DepthEstimationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: _a = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , __UpperCAmelCase ) import datasets _a = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) _a = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , __UpperCAmelCase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def _UpperCAmelCase ( self ) -> Tuple: pass @slow @require_torch def _UpperCAmelCase ( self ) -> List[str]: _a = '''Intel/dpt-large''' _a = pipeline('''depth-estimation''' , model=__UpperCAmelCase ) _a = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) _a = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
153
0
from __future__ import annotations import os from collections.abc import Mapping _lowercase : Any =tuple[int, int] class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> None: """simple docstring""" a__ : set[int] = vertices a__ : dict[EdgeT, int] = { (min(__lowercase ), max(__lowercase )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> None: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a__ : List[str] = weight def SCREAMING_SNAKE_CASE__( self ) -> Graph: """simple docstring""" a__ : Graph = Graph({min(self.vertices )} , {} ) a__ : EdgeT a__ : int a__ : EdgeT a__ : int while len(subgraph.vertices ) < len(self.vertices ): a__ : str = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a__ : Optional[Any] = edge a__ : List[Any] = weight subgraph.add_edge(__lowercase , __lowercase ) return subgraph def lowerCAmelCase_ ( _lowercase : str = "p107_network.txt") -> int: """simple docstring""" a__ : str = os.path.abspath(os.path.dirname(_lowercase)) a__ : str = os.path.join(_lowercase , _lowercase) a__ : dict[EdgeT, int] = {} a__ : list[str] a__ : int a__ : int with open(_lowercase) as f: a__ : Union[str, Any] = f.read().strip().split("""\n""") a__ : int = [line.split(""",""") for line in data] for edgea in range(1 , len(_lowercase)): for edgea in range(_lowercase): if adjaceny_matrix[edgea][edgea] != "-": a__ : List[str] = int(adjaceny_matrix[edgea][edgea]) a__ : Graph = Graph(set(range(len(_lowercase))) , _lowercase) a__ : Graph = graph.prims_algorithm() a__ : int = sum(graph.edges.values()) a__ : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(f'{solution() = }')
170
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class snake_case__ (datasets.BuilderConfig ): """simple docstring""" __lowerCAmelCase :Optional[datasets.Features] = None class snake_case__ (datasets.ArrowBasedBuilder ): """simple docstring""" __lowerCAmelCase :Dict = PandasConfig def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) a__ : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowercase , (str, list, tuple) ): a__ : Optional[int] = data_files if isinstance(__lowercase , __lowercase ): a__ : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a__ : str = [dl_manager.iter_files(__lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] a__ : List[str] = [] for split_name, files in data_files.items(): if isinstance(__lowercase , __lowercase ): a__ : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a__ : Dict = [dl_manager.iter_files(__lowercase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowercase , gen_kwargs={"""files""": files} ) ) return splits def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> pa.Table: """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a__ : Tuple = table_cast(__lowercase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(__lowercase ) ): with open(__lowercase , """rb""" ) as f: a__ : str = pa.Table.from_pandas(pd.read_pickle(__lowercase ) ) yield i, self._cast_table(__lowercase )
170
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowerCAmelCase__ : Optional[Any] ='src/transformers' lowerCAmelCase__ : int ='docs/source/en/tasks' def a__ ( A__, A__, A__ ): with open(A__, 'r', encoding='utf-8', newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE_ : Any = 0 while not lines[start_index].startswith(A__ ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : int = start_index while not lines[end_index].startswith(A__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ : Any =direct_transformers_import(TRANSFORMERS_PATH) lowerCAmelCase__ : Dict ={ 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowerCAmelCase__ : Union[str, Any] ={ 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = TASK_GUIDE_TO_MODELS[task_guide] SCREAMING_SNAKE_CASE_ : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(A__, set() ) SCREAMING_SNAKE_CASE_ : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def a__ ( A__, A__=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = _find_text_in_file( filename=os.path.join(A__, A__ ), start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->', end_prompt='<!--End of the generated tip-->', ) SCREAMING_SNAKE_CASE_ : str = get_model_list_for_task(A__ ) if current_list != new_list: if overwrite: with open(os.path.join(A__, A__ ), 'w', encoding='utf-8', newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ : int =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ : Union[str, Any] =parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
162
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = size if size is not None else {'shortest_edge': 1_8} SCREAMING_SNAKE_CASE_ : Optional[Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : str = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = image_size SCREAMING_SNAKE_CASE_ : str = min_resolution SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_resolution SCREAMING_SNAKE_CASE_ : int = do_resize SCREAMING_SNAKE_CASE_ : List[Any] = size SCREAMING_SNAKE_CASE_ : Optional[int] = do_center_crop SCREAMING_SNAKE_CASE_ : Any = crop_size SCREAMING_SNAKE_CASE_ : List[Any] = do_normalize SCREAMING_SNAKE_CASE_ : List[str] = image_mean SCREAMING_SNAKE_CASE_ : Optional[int] = image_std def UpperCamelCase__ ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = LevitImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : str = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
162
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING A__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __lowerCAmelCase ( lowerCamelCase__ ): def __init__( self , **_snake_case ): """simple docstring""" super().__init__(**lowerCamelCase__ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(lowerCamelCase__ ) def snake_case ( self , **_snake_case ): """simple docstring""" _lowerCAmelCase = {} _lowerCAmelCase = {} _lowerCAmelCase = {} # preprocess args if "points_per_batch" in kwargs: _lowerCAmelCase = kwargs['points_per_batch'] if "points_per_crop" in kwargs: _lowerCAmelCase = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: _lowerCAmelCase = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: _lowerCAmelCase = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: _lowerCAmelCase = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: _lowerCAmelCase = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: _lowerCAmelCase = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: _lowerCAmelCase = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: _lowerCAmelCase = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: _lowerCAmelCase = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: _lowerCAmelCase = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: _lowerCAmelCase = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , _snake_case , *_snake_case , _snake_case=None , _snake_case=None , **_snake_case ): """simple docstring""" return super().__call__(lowerCamelCase__ , *lowerCamelCase__ , num_workers=lowerCamelCase__ , batch_size=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case ( self , _snake_case , _snake_case=64 , _snake_case = 0 , _snake_case = 512 / 1500 , _snake_case = 32 , _snake_case = 1 , ): """simple docstring""" _lowerCAmelCase = load_image(lowerCamelCase__ ) _lowerCAmelCase = self.image_processor.size['longest_edge'] _lowerCAmelCase = self.image_processor.generate_crop_boxes( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _lowerCAmelCase = self.image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _lowerCAmelCase = self.get_inference_context() with inference_context(): _lowerCAmelCase = self._ensure_tensor_on_device(lowerCamelCase__ , device=self.device ) _lowerCAmelCase = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _lowerCAmelCase = image_embeddings _lowerCAmelCase = grid_points.shape[1] _lowerCAmelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , lowerCamelCase__ , lowerCamelCase__ ): _lowerCAmelCase = grid_points[:, i : i + points_per_batch, :, :] _lowerCAmelCase = input_labels[:, i : i + points_per_batch] _lowerCAmelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case ( self , _snake_case , _snake_case=0.88 , _snake_case=0.95 , _snake_case=0 , _snake_case=1 , ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""input_boxes""" ) _lowerCAmelCase = model_inputs.pop("""is_last""" ) _lowerCAmelCase = model_inputs.pop("""original_sizes""" ).tolist() _lowerCAmelCase = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _lowerCAmelCase = self.model(**lowerCamelCase__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _lowerCAmelCase = model_outputs['pred_masks'] _lowerCAmelCase = self.image_processor.post_process_masks( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , binarize=lowerCamelCase__ ) _lowerCAmelCase = model_outputs['iou_scores'] _lowerCAmelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case ( self , _snake_case , _snake_case=False , _snake_case=False , _snake_case=0.7 , ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _lowerCAmelCase = torch.cat(lowerCamelCase__ ) _lowerCAmelCase = torch.cat(lowerCamelCase__ ) _lowerCAmelCase = self.image_processor.post_process_for_mask_generation( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _lowerCAmelCase = defaultdict(lowerCamelCase__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCamelCase__ ) _lowerCAmelCase = {} if output_rle_mask: _lowerCAmelCase = rle_mask if output_bboxes_mask: _lowerCAmelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
82
'''simple docstring''' import os from datetime import datetime as dt from github import Github snake_case_ : Any = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def A__ ( ): _UpperCamelCase : Tuple = Github(os.environ['GITHUB_TOKEN'] ) _UpperCamelCase : List[Any] = g.get_repo('huggingface/diffusers' ) _UpperCamelCase : List[Any] = repo.get_issues(state='open' ) for issue in open_issues: _UpperCamelCase : Dict = sorted(issue.get_comments() , key=lambda UpperCAmelCase_ : i.created_at , reverse=UpperCAmelCase_ ) _UpperCamelCase : List[str] = comments[0] if len(UpperCAmelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
83
0
'''simple docstring''' from typing import Any class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : List[str] = data A : str = None def __repr__( self ) -> List[str]: """simple docstring""" return F'Node({self.data})' class A : def __init__( self ) -> List[str]: """simple docstring""" A : List[Any] = None def __iter__( self ) -> Any: """simple docstring""" A : List[str] = self.head while node: yield node.data A : int = node.next def __len__( self ) -> Dict: """simple docstring""" return sum(1 for _ in self ) def __repr__( self ) -> Optional[int]: """simple docstring""" return "->".join([str(_lowerCamelCase ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) A : List[Any] = self.head for _ in range(_lowerCamelCase ): A : Dict = current.next A : Union[str, Any] = data def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" self.insert_nth(len(self ) , _lowerCamelCase ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" self.insert_nth(0 , _lowerCamelCase ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) A : Optional[Any] = Node(_lowerCamelCase ) if self.head is None: A : Tuple = new_node elif index == 0: A : str = self.head # link new_node to head A : List[Any] = new_node else: A : str = self.head for _ in range(index - 1 ): A : Dict = temp.next A : str = temp.next A : Optional[int] = new_node def __lowerCAmelCase ( self ) -> Any: # print every node data """simple docstring""" print(self ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return self.delete_nth(0 ) def __lowerCAmelCase ( self ) -> str: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = 0 ) -> Optional[Any]: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) A : Optional[Any] = self.head # default first node if index == 0: A : Union[str, Any] = self.head.next else: A : str = self.head for _ in range(index - 1 ): A : Optional[int] = temp.next A : Optional[Any] = temp.next A : Optional[Any] = temp.next.next return delete_node.data def __lowerCAmelCase ( self ) -> str: """simple docstring""" return self.head is None def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : List[Any] = None A : Optional[int] = self.head while current: # Store the current node's next node. A : int = current.next # Make the current node's next point backwards A : Any = prev # Make the previous node be the current node A : int = current # Make the current node the next node (to progress iteration) A : Dict = next_node # Return prev in order to put the head at the end A : Union[str, Any] = prev def lowerCAmelCase_ ( ): '''simple docstring''' A : Dict = LinkedList() assert linked_list.is_empty() is True assert str(__lowerCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__lowerCamelCase ) == i linked_list.insert_nth(__lowerCamelCase , i + 1 ) assert str(__lowerCamelCase ) == "->".join(str(__lowerCamelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__lowerCamelCase ) == "->".join(str(__lowerCamelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__lowerCamelCase ) == 9 assert str(__lowerCamelCase ) == "->".join(str(__lowerCamelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): A : Optional[int] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__lowerCamelCase ) == "->".join(str(__lowerCamelCase ) for i in range(-8 , 1 ) ) def lowerCAmelCase_ ( ): '''simple docstring''' A : List[Any] = [ -9, 100, Node(7734_5112 ), '''dlrow olleH''', 7, 5555, 0, -1_92.5_55_55, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] A : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(__lowerCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__lowerCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head A : Optional[int] = linked_list.delete_head() assert result == -9 assert ( str(__lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail A : int = linked_list.delete_tail() assert result == 12.2 assert ( str(__lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list A : Union[str, Any] = linked_list.delete_nth(10 ) assert result is None assert ( str(__lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(__lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__lowerCamelCase ) assert ( str(__lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__lowerCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCAmelCase_ ( ): '''simple docstring''' from doctest import testmod testmod() A : str = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(__lowerCamelCase ) print('''\nReading/changing Node data using indexing:''' ) print(F'Element at Position 1: {linked_list[1]}' ) A : int = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(__lowerCamelCase ) print(F'length of linked_list is : {len(__lowerCamelCase )}' ) if __name__ == "__main__": main()
368
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM A : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE ): A : List[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A : int = self.scheduler.step( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample A : Dict = (image / 2 + 0.5).clamp(0 , 1 ) A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
311
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path a = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) a = [ord(letter) for letter in string.ascii_lowercase] a = {ord(char) for char in VALID_CHARS} a = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ) -> str | None: '''simple docstring''' lowerCAmelCase = "" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ): lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case__ ) return decoded def lowercase (snake_case__ : list[int] ) -> list[str]: '''simple docstring''' lowerCAmelCase = [] for key in product(snake_case__ , repeat=3 ): lowerCAmelCase = try_key(snake_case__ , snake_case__ ) if encoded is not None: possibles.append(snake_case__ ) return possibles def lowercase (snake_case__ : list[str] , snake_case__ : str ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def lowercase (snake_case__ : str = "p059_cipher.txt" ) -> int: '''simple docstring''' lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" ) lowerCAmelCase = [int(snake_case__ ) for number in data.strip().split(""",""" )] lowerCAmelCase = filter_valid_chars(snake_case__ ) for common_word in COMMON_WORDS: lowerCAmelCase = filter_common_word(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: break lowerCAmelCase = possibles[0] return sum(ord(snake_case__ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
155
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup a = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase (snake_case__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' lowerCAmelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowerCAmelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowerCAmelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
155
1
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowerCAmelCase__ ( __lowercase , __lowercase ): a__ : List[str] = """pixel_values""" a__ : Any = False a__ : str = TimmBackboneConfig def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ) -> Tuple: requires_backends(self , '''timm''' ) super().__init__(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , '''use_pretrained_backbone''' , SCREAMING_SNAKE_CASE__ ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCamelCase = config.out_indices if getattr(SCREAMING_SNAKE_CASE__ , '''out_indices''' , SCREAMING_SNAKE_CASE__ ) is not None else (-1,) __lowerCamelCase = timm.create_model( config.backbone , pretrained=SCREAMING_SNAKE_CASE__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCamelCase = self._backbone.return_layers __lowerCamelCase = {layer['''module''']: str(SCREAMING_SNAKE_CASE__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(SCREAMING_SNAKE_CASE__ ) @classmethod def __A ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCamelCase = kwargs.pop('''config''' , TimmBackboneConfig() ) __lowerCamelCase = kwargs.pop('''use_timm_backbone''' , SCREAMING_SNAKE_CASE__ ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) __lowerCamelCase = kwargs.pop('''num_channels''' , config.num_channels ) __lowerCamelCase = kwargs.pop('''features_only''' , config.features_only ) __lowerCamelCase = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) __lowerCamelCase = kwargs.pop('''out_indices''' , config.out_indices ) __lowerCamelCase = TimmBackboneConfig( backbone=SCREAMING_SNAKE_CASE__ , num_channels=SCREAMING_SNAKE_CASE__ , features_only=SCREAMING_SNAKE_CASE__ , use_pretrained_backbone=SCREAMING_SNAKE_CASE__ , out_indices=SCREAMING_SNAKE_CASE__ , ) return super()._from_config(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: pass def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , **SCREAMING_SNAKE_CASE__ : str ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCamelCase = self._all_layers __lowerCamelCase = self._backbone(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self._return_layers __lowerCamelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCamelCase = self._backbone(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = None __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) if hidden_states is not None else None if not return_dict: __lowerCamelCase = (feature_maps,) if output_hidden_states: __lowerCamelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ , attentions=SCREAMING_SNAKE_CASE__ )
351
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
0
from sklearn.metrics import matthews_corrcoef import datasets lowerCAmelCase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowerCAmelCase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowerCAmelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def _A (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): return { "matthews_correlation": float(matthews_corrcoef(lowerCAmelCase , lowerCAmelCase , sample_weight=lowerCAmelCase ) ), }
295
from math import isqrt def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase__ ) + 1 ) ) def _lowerCamelCase( lowercase__ = 1_0**6 ) -> int: '''simple docstring''' __lowercase= 0 __lowercase= 1 __lowercase= 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
295
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Dict=False ) -> Tuple: """simple docstring""" __magic_name__ : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'module.blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'module.blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'module.blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'module.blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'module.blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __magic_name__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Any=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __magic_name__ : int = '' else: __magic_name__ : int = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : List[Any] = state_dict.pop(f'module.blocks.{i}.attn.qkv.weight' ) __magic_name__ : Dict = state_dict.pop(f'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : List[str] = in_proj_weight[ : config.hidden_size, : ] __magic_name__ : str = in_proj_bias[: config.hidden_size] __magic_name__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : List[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( lowerCAmelCase : Optional[int] ) -> Dict: """simple docstring""" __magic_name__ : List[Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" __magic_name__ : Tuple = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict ) -> List[Any]: """simple docstring""" __magic_name__ : Dict = dct.pop(lowerCAmelCase ) __magic_name__ : List[Any] = val def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ) -> Any: """simple docstring""" __magic_name__ : List[str] = ViTMSNConfig() __magic_name__ : List[Any] = 1000 __magic_name__ : Optional[int] = 'datasets/huggingface/label-files' __magic_name__ : Optional[Any] = 'imagenet-1k-id2label.json' __magic_name__ : Any = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase ) , 'r' ) ) __magic_name__ : Optional[int] = {int(lowerCAmelCase ): v for k, v in idalabel.items()} __magic_name__ : List[Any] = idalabel __magic_name__ : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __magic_name__ : str = 384 __magic_name__ : Dict = 1536 __magic_name__ : str = 6 elif "l16" in checkpoint_url: __magic_name__ : Tuple = 1024 __magic_name__ : List[str] = 4096 __magic_name__ : Union[str, Any] = 24 __magic_name__ : Optional[int] = 16 __magic_name__ : List[str] = 0.1 elif "b4" in checkpoint_url: __magic_name__ : Optional[int] = 4 elif "l7" in checkpoint_url: __magic_name__ : Tuple = 7 __magic_name__ : str = 1024 __magic_name__ : int = 4096 __magic_name__ : List[str] = 24 __magic_name__ : Tuple = 16 __magic_name__ : Dict = 0.1 __magic_name__ : Optional[int] = ViTMSNModel(lowerCAmelCase ) __magic_name__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location='cpu' )['target_encoder'] __magic_name__ : Union[str, Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCAmelCase ) __magic_name__ : Any = create_rename_keys(lowerCAmelCase , base_model=lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , base_model=lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() __magic_name__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' __magic_name__ : Optional[Any] = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) __magic_name__ : Optional[Any] = ViTImageProcessor( size=config.image_size , image_mean=lowerCAmelCase , image_std=lowerCAmelCase ) __magic_name__ : Any = image_processor(images=lowerCAmelCase , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __magic_name__ : str = model(**lowerCAmelCase ) __magic_name__ : Tuple = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __magic_name__ : Dict = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: __magic_name__ : Tuple = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: __magic_name__ : str = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: __magic_name__ : Union[str, Any] = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: __magic_name__ : Optional[Any] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCAmelCase , atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase :str = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
366
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase :Tuple = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : int = ["""pixel_values"""] def __init__( self : Any , _A : bool = True , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[Any] , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 256} __magic_name__ : str = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[str] = crop_size if crop_size is not None else {'height': 224, 'width': 224} __magic_name__ : Optional[int] = get_size_dict(_A ) __magic_name__ : Union[str, Any] = do_resize __magic_name__ : List[Any] = size __magic_name__ : List[str] = resample __magic_name__ : Dict = do_center_crop __magic_name__ : List[str] = crop_size __magic_name__ : int = do_rescale __magic_name__ : Tuple = rescale_factor __magic_name__ : List[str] = do_normalize __magic_name__ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: __magic_name__ : Optional[Any] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __magic_name__ : Dict = get_resize_output_image_size(_A , size=size['shortest_edge'] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ) -> np.ndarray: __magic_name__ : int = get_size_dict(_A ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : np.ndarray , _A : float , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple ) -> np.ndarray: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : ImageInput , _A : Optional[bool] = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_A : List[Any] , ) -> List[str]: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Tuple = size if size is not None else self.size __magic_name__ : Optional[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : Dict = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ : Dict = crop_size if crop_size is not None else self.crop_size __magic_name__ : List[str] = get_size_dict(_A ) __magic_name__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : Any = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : Tuple = image_mean if image_mean is not None else self.image_mean __magic_name__ : Union[str, Any] = image_std if image_std is not None else self.image_std __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : List[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : Union[str, Any] = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: __magic_name__ : Union[str, Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: __magic_name__ : List[Any] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : Optional[Any] = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Union[str, Any] = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : List[str] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
275
0
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCamelCase : int = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""OwlViTFeatureExtractor"""] __lowerCamelCase : Optional[int] = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
286
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : str , __A : Optional[Any]=1_3 , __A : Dict=7 , __A : List[str]=True , __A : Any=True , __A : str=True , __A : Optional[Any]=True , __A : List[str]=9_9 , __A : Dict=3_2 , __A : Tuple=2 , __A : Tuple=4 , __A : Dict=3_7 , __A : Tuple="gelu" , __A : Any=0.1 , __A : str=0.1 , __A : int=5_1_2 , __A : Union[str, Any]=1_6 , __A : Optional[int]=2 , __A : Union[str, Any]=0.0_2 , __A : Tuple=3 , __A : Union[str, Any]=4 , __A : Optional[int]=None , ): snake_case__ : Optional[int] = parent snake_case__ : Optional[Any] = 1_3 snake_case__ : int = 7 snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = True snake_case__ : List[str] = True snake_case__ : int = True snake_case__ : Optional[int] = 9_9 snake_case__ : Union[str, Any] = 3_8_4 snake_case__ : Optional[Any] = 2 snake_case__ : Union[str, Any] = 4 snake_case__ : Any = 3_7 snake_case__ : Any = "gelu" snake_case__ : str = 0.1 snake_case__ : Optional[Any] = 0.1 snake_case__ : Union[str, Any] = 5_1_2 snake_case__ : Optional[Any] = 1_6 snake_case__ : List[Any] = 2 snake_case__ : Optional[int] = 0.0_2 snake_case__ : Dict = 3 snake_case__ : Any = 4 snake_case__ : int = 1_2_8 snake_case__ : Dict = 2 snake_case__ : Any = 9 snake_case__ : List[str] = 1 snake_case__ : List[Any] = None def _lowercase ( self : List[str] ): snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : str = None if self.use_input_mask: snake_case__ : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Optional[Any] = None snake_case__ : Any = None snake_case__ : Tuple = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : int = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : int = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Dict , __A : Dict , __A : Dict , __A : Union[str, Any] , __A : Optional[int] , __A : Any , __A : Union[str, Any] , __A : Tuple ): snake_case__ : Optional[int] = TFConvBertModel(config=__A ) snake_case__ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : List[str] = [input_ids, input_mask] snake_case__ : Union[str, Any] = model(__A ) snake_case__ : str = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Union[str, Any] , __A : List[Any] , __A : Any , __A : Union[str, Any] , __A : int , __A : Optional[Any] , __A : Dict , __A : Optional[int] ): snake_case__ : List[str] = TFConvBertForMaskedLM(config=__A ) snake_case__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : int = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Tuple , __A : Union[str, Any] , __A : List[Any] , __A : Any , __A : List[Any] , __A : List[Any] , __A : Optional[int] , __A : List[str] ): snake_case__ : Any = self.num_labels snake_case__ : List[Any] = TFConvBertForSequenceClassification(config=__A ) snake_case__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : Optional[int] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : int , __A : List[Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : List[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : Optional[int] ): snake_case__ : Optional[Any] = self.num_choices snake_case__ : Any = TFConvBertForMultipleChoice(config=__A ) snake_case__ : Optional[int] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[Any] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[int] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } snake_case__ : Optional[Any] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : List[str] , __A : Tuple , __A : str , __A : Union[str, Any] , __A : Union[str, Any] , __A : Any , __A : int , __A : Tuple ): snake_case__ : Dict = self.num_labels snake_case__ : str = TFConvBertForTokenClassification(config=__A ) snake_case__ : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : List[str] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[int] , __A : Union[str, Any] , __A : List[Any] , __A : List[str] , __A : Any , __A : Any , __A : Optional[int] , __A : Optional[Any] ): snake_case__ : Any = TFConvBertForQuestionAnswering(config=__A ) snake_case__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : int = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Any ): snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : List[str] = config_and_inputs snake_case__ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a_ = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False a_ = False def _lowercase ( self : int ): snake_case__ : Optional[Any] = TFConvBertModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowercase ( self : List[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Any ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def _lowercase ( self : Dict ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def _lowercase ( self : Optional[int] ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _lowercase ( self : Dict ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def _lowercase ( self : Dict ): snake_case__, snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True snake_case__ : int = True if hasattr(__A , "use_cache" ): snake_case__ : Optional[Any] = True snake_case__ : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case__ : List[str] = getattr(self.model_tester , "key_length" , __A ) for model_class in self.all_model_classes: snake_case__ : Tuple = self._prepare_for_class(__A , __A ) snake_case__ : List[str] = model_class(__A ) snake_case__ : List[Any] = len(model(__A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A , saved_model=__A ) snake_case__ : str = os.path.join(__A , "saved_model" , "1" ) snake_case__ : str = tf.keras.models.load_model(__A ) snake_case__ : Optional[Any] = model(__A ) if self.is_encoder_decoder: snake_case__ : Tuple = outputs["encoder_hidden_states"] snake_case__ : str = outputs["encoder_attentions"] else: snake_case__ : Dict = outputs["hidden_states"] snake_case__ : Tuple = outputs["attentions"] self.assertEqual(len(__A ) , __A ) snake_case__ : int = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self : Tuple ): snake_case__ : Optional[Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__A ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[Any] = True snake_case__ : List[Any] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) snake_case__ : int = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case__ : Any = getattr(self.model_tester , "key_length" , __A ) snake_case__ : List[Any] = getattr(self.model_tester , "key_length" , __A ) def check_decoder_attentions_output(__A : Optional[int] ): snake_case__ : Optional[Any] = len(__A ) self.assertEqual(out_len % 2 , 0 ) snake_case__ : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__A : Any ): snake_case__ : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: snake_case__ : Optional[int] = True snake_case__ : Any = False snake_case__ : Dict = model_class(__A ) snake_case__ : List[Any] = model(self._prepare_for_class(__A , __A ) ) snake_case__ : Dict = len(__A ) self.assertEqual(config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) if self.is_encoder_decoder: snake_case__ : str = model_class(__A ) snake_case__ : List[Any] = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(config.output_hidden_states , __A ) check_decoder_attentions_output(__A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = model_class(__A ) snake_case__ : Union[str, Any] = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) # Check attention is always last and order is fine snake_case__ : Optional[int] = True snake_case__ : List[Any] = True snake_case__ : Any = model_class(__A ) snake_case__ : str = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__A ) ) self.assertEqual(model.config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : int ): snake_case__ : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) snake_case__ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : str = model(__A )[0] snake_case__ : int = [1, 6, 7_6_8] self.assertEqual(output.shape , __A ) snake_case__ : List[Any] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __A , atol=1e-4 )
286
1
import math def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [True] * n SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : str = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE_ : Any = i * 2 while index < n: SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Any = index + i SCREAMING_SNAKE_CASE_ : Dict = [2] for i in range(3 , lowerCAmelCase , 2 ): if is_prime[i]: primes.append(lowerCAmelCase ) return primes def _snake_case ( lowerCAmelCase : int = 9_9_9_9_6_6_6_6_3_3_3_3 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = math.floor(math.sqrt(lowerCAmelCase ) ) + 1_0_0 SCREAMING_SNAKE_CASE_ : List[str] = prime_sieve(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Tuple = primes[prime_index] while (last_prime**2) <= limit: SCREAMING_SNAKE_CASE_ : Union[str, Any] = primes[prime_index + 1] SCREAMING_SNAKE_CASE_ : Dict = last_prime**2 SCREAMING_SNAKE_CASE_ : Dict = next_prime**2 # Get numbers divisible by lps(current) SCREAMING_SNAKE_CASE_ : str = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) SCREAMING_SNAKE_CASE_ : Optional[int] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps SCREAMING_SNAKE_CASE_ : List[Any] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair SCREAMING_SNAKE_CASE_ : List[str] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
18
def _lowerCamelCase( lowercase__ , lowercase__ = " " ) -> list: '''simple docstring''' __lowercase= [] __lowercase= 0 for index, char in enumerate(lowercase__ ): if char == separator: split_words.append(string[last_index:index] ) __lowercase= index + 1 elif index + 1 == len(lowercase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
295
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __magic_name__ ( snake_case ): def __init__( self , _lowercase , _lowercase )-> int: super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = None , _lowercase = 0.0 , _lowercase = 50 , _lowercase = None , _lowercase = "pil" , _lowercase = True , )-> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , _lowercase ): UpperCamelCase_ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCamelCase_ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) UpperCamelCase_ = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
350
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :int = KandinskyVaaImgaImgPipeline UpperCamelCase_ :Union[str, Any] = ["""image_embeds""", """negative_image_embeds""", """image"""] UpperCamelCase_ :Dict = [ """image_embeds""", """negative_image_embeds""", """image""", ] UpperCamelCase_ :Tuple = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase_ :int = False @property def UpperCAmelCase_ ( self )-> List[str]: return 32 @property def UpperCAmelCase_ ( self )-> List[Any]: return 32 @property def UpperCAmelCase_ ( self )-> Tuple: return self.time_input_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self )-> Any: return 100 @property def UpperCAmelCase_ ( self )-> Tuple: torch.manual_seed(0 ) UpperCamelCase_ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase_ = UNetaDConditionModel(**_lowercase ) return model @property def UpperCAmelCase_ ( self )-> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self )-> Any: torch.manual_seed(0 ) UpperCamelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = self.dummy_unet UpperCamelCase_ = self.dummy_movq UpperCamelCase_ = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCamelCase_ = DDIMScheduler(**_lowercase ) UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self , _lowercase , _lowercase=0 )-> Tuple: UpperCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) UpperCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_ = Image.fromarray(np.uinta(_lowercase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowercase ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_lowercase ) else: UpperCamelCase_ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) UpperCamelCase_ = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_lowercase ) UpperCamelCase_ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = pipe(**self.get_dummy_inputs(_lowercase ) ) UpperCamelCase_ = output.images UpperCamelCase_ = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCamelCase_ = "A red cartoon frog, 4k" UpperCamelCase_ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) UpperCamelCase_ = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase_ , UpperCamelCase_ = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase_ = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
60
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """BlipImageProcessor""" lowercase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict, lowerCamelCase : Dict, lowerCamelCase : str ): '''simple docstring''' lowercase__ = False super().__init__(lowerCamelCase, lowerCamelCase ) lowercase__ = self.image_processor def __call__( self : int, lowerCamelCase : ImageInput = None, lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCamelCase : bool = True, lowerCamelCase : Union[bool, str, PaddingStrategy] = False, lowerCamelCase : Union[bool, str, TruncationStrategy] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : int = 0, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : Any, ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowercase__ = self.tokenizer lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) return text_encoding # add pixel_values lowercase__ = self.image_processor(lowerCamelCase, return_tensors=lowerCamelCase ) if text is not None: lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def lowercase__ ( self : Tuple, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[str], *lowerCamelCase : int, **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase ) @property def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
207
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Dict, lowerCamelCase : pyspark.sql.DataFrame, lowerCamelCase : Optional[NamedSplit] = None, lowerCamelCase : Optional[Features] = None, lowerCamelCase : bool = True, lowerCamelCase : str = None, lowerCamelCase : bool = False, lowerCamelCase : str = None, lowerCamelCase : bool = True, lowerCamelCase : str = "arrow", **lowerCamelCase : str, ): '''simple docstring''' super().__init__( split=lowerCamelCase, features=lowerCamelCase, cache_dir=lowerCamelCase, keep_in_memory=lowerCamelCase, streaming=lowerCamelCase, **lowerCamelCase, ) lowercase__ = load_from_cache_file lowercase__ = file_format lowercase__ = Spark( df=lowerCamelCase, features=lowerCamelCase, cache_dir=lowerCamelCase, working_dir=lowerCamelCase, **lowerCamelCase, ) def lowercase__ ( self : List[Any] ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCamelCase, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split )
207
1
from __future__ import annotations def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None): if start is None: SCREAMING_SNAKE_CASE = 0 if end is None: SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1 if start >= end: return SCREAMING_SNAKE_CASE = (start + end) // 2 slowsort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) slowsort(_UpperCAmelCase , mid + 1 , _UpperCAmelCase) if sequence[end] < sequence[mid]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sequence[mid], sequence[end] slowsort(_UpperCAmelCase , _UpperCAmelCase , end - 1) if __name__ == "__main__": from doctest import testmod testmod()
371
import baseaa def lowerCamelCase__ (_UpperCAmelCase): return baseaa.aaaencode(string.encode('utf-8')) def lowerCamelCase__ (_UpperCAmelCase): return baseaa.aaadecode(_UpperCAmelCase).decode('utf-8') if __name__ == "__main__": import doctest doctest.testmod()
327
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a_ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) a_ = logging.get_logger(__name__) # pylint: disable=invalid-name def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = "https://pypi.org/pypi/diffusers/json" lowerCAmelCase__ = json.loads(request.urlopen(UpperCamelCase_ ).read() )["releases"].keys() return sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : version.Version(UpperCamelCase_ ) ) def _a ( ) -> int: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) lowerCAmelCase__ = Path(UpperCamelCase_ ) / "__init__.py" if not init_path.exists(): init_path.touch() def _a ( UpperCamelCase_ : Union[str, os.PathLike] ) -> List[str]: """simple docstring""" init_hf_modules() lowerCAmelCase__ = Path(UpperCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) lowerCAmelCase__ = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def _a ( UpperCamelCase_ : Dict ) -> int: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: lowerCAmelCase__ = f.read() # Imports of the form `import .xxx` lowerCAmelCase__ = re.findall("^\s*import\s+\.(\S+)\s*$" , UpperCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , UpperCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(UpperCamelCase_ ) ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = False lowerCAmelCase__ = [module_file] lowerCAmelCase__ = [] # Let's recurse through all relative imports while not no_change: lowerCAmelCase__ = [] for f in files_to_check: new_imports.extend(get_relative_imports(UpperCamelCase_ ) ) lowerCAmelCase__ = Path(UpperCamelCase_ ).parent lowerCAmelCase__ = [str(module_path / m ) for m in new_imports] lowerCAmelCase__ = [f for f in new_import_files if f not in all_relative_imports] lowerCAmelCase__ = [F"{f}.py" for f in new_import_files] lowerCAmelCase__ = len(UpperCamelCase_ ) == 0 all_relative_imports.extend(UpperCamelCase_ ) return all_relative_imports def _a ( UpperCamelCase_ : int ) -> Optional[int]: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: lowerCAmelCase__ = f.read() # Imports of the form `import xxx` lowerCAmelCase__ = re.findall("^\s*import\s+(\S+)\s*$" , UpperCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , UpperCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module lowerCAmelCase__ = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all lowerCAmelCase__ = list(set(UpperCamelCase_ ) ) lowerCAmelCase__ = [] for imp in imports: try: importlib.import_module(UpperCamelCase_ ) except ImportError: missing_packages.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F"{', '.join(UpperCamelCase_ )}. Run `pip install {' '.join(UpperCamelCase_ )}`" ) return get_relative_imports(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = module_path.replace(os.path.sep , "." ) lowerCAmelCase__ = importlib.import_module(UpperCamelCase_ ) if class_name is None: return find_pipeline_class(UpperCamelCase_ ) return getattr(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Dict ) -> Any: """simple docstring""" from ..pipelines import DiffusionPipeline lowerCAmelCase__ = dict(inspect.getmembers(UpperCamelCase_ , inspect.isclass ) ) lowerCAmelCase__ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , UpperCamelCase_ ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) lowerCAmelCase__ = cls return pipeline_class def _a ( UpperCamelCase_ : Union[str, os.PathLike] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Union[str, os.PathLike]] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[Dict[str, str]] = None , UpperCamelCase_ : Optional[Union[bool, str]] = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : bool = False , ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = str(UpperCamelCase_ ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): lowerCAmelCase__ = module_file_or_url lowerCAmelCase__ = "local" elif pretrained_model_name_or_path.count("/" ) == 0: lowerCAmelCase__ = get_diffusers_versions() # cut ".dev0" lowerCAmelCase__ = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: lowerCAmelCase__ = latest_version if latest_version[1:] in available_versions else "main" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: lowerCAmelCase__ = F"v{revision}" elif revision == "main": lowerCAmelCase__ = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub lowerCAmelCase__ = COMMUNITY_PIPELINES_URL.format(revision=UpperCamelCase_ , pipeline=UpperCamelCase_ ) try: lowerCAmelCase__ = cached_download( UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , ) lowerCAmelCase__ = "git" lowerCAmelCase__ = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached lowerCAmelCase__ = hf_hub_download( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , ) lowerCAmelCase__ = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment lowerCAmelCase__ = check_imports(UpperCamelCase_ ) # Now we move the module inside our cached dynamic modules. lowerCAmelCase__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(UpperCamelCase_ ) lowerCAmelCase__ = Path(UpperCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(UpperCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: lowerCAmelCase__ = F"{module_needed}.py" shutil.copy(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = use_auth_token elif use_auth_token is True: lowerCAmelCase__ = HfFolder.get_token() else: lowerCAmelCase__ = None lowerCAmelCase__ = model_info(UpperCamelCase_ , revision=UpperCamelCase_ , token=UpperCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowerCAmelCase__ = submodule_path / commit_hash lowerCAmelCase__ = full_submodule + os.path.sep + commit_hash create_dynamic_module(UpperCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(UpperCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( UpperCamelCase_ , F"{module_needed}.py" , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) return os.path.join(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, os.PathLike] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[Union[str, os.PathLike]] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[Dict[str, str]] = None , UpperCamelCase_ : Optional[Union[bool, str]] = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : bool = False , **UpperCamelCase_ : Optional[int] , ) -> Tuple: """simple docstring""" lowerCAmelCase__ = get_cached_module_file( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) return get_class_in_module(UpperCamelCase_ , final_module.replace(".py" , "" ) )
340
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
1
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): return 1 if input_a == input_a else 0 def __UpperCAmelCase ( ): assert xnor_gate(0, 0 ) == 1 assert xnor_gate(0, 1 ) == 0 assert xnor_gate(1, 0 ) == 0 assert xnor_gate(1, 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
def SCREAMING_SNAKE_CASE_ ( __A : str ) -> bool: """simple docstring""" return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def SCREAMING_SNAKE_CASE_ ( __A : str ) -> bool: """simple docstring""" a_ : List[Any] = credit_card_number a_ : Optional[int] = 0 a_ : str = len(__A ) - 2 for i in range(__A , -1 , -2 ): # double the value of every second digit a_ : Union[str, Any] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 a_ : List[Any] = cc_number[:i] + str(__A ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE_ ( __A : str ) -> bool: """simple docstring""" a_ : List[Any] = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(__A ) <= 16: print(F"""{error_message} of its length.""" ) return False if not validate_initial_digits(__A ): print(F"""{error_message} of its first two digits.""" ) return False if not luhn_validation(__A ): print(F"""{error_message} it fails the Luhn check.""" ) return False print(F"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
32
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __UpperCAmelCase =logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class a__ ( UpperCAmelCase__ ): def __init__( self : List[str] , *a : Union[str, Any] , **a : Optional[Any] ): """simple docstring""" super().__init__(*a , **a ) requires_backends(self , '''vision''' ) self.check_model_type(a ) def __call__( self : Any , a : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a : Optional[int] ): """simple docstring""" return super().__call__(a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **a : Any ): """simple docstring""" return {}, {}, {} def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : List[str] ): """simple docstring""" __lowerCamelCase = load_image(a ) __lowerCamelCase = image.size __lowerCamelCase = self.image_processor(images=a , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self : int , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.model(**a ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Any ): """simple docstring""" __lowerCamelCase = model_outputs.predicted_depth __lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a ) __lowerCamelCase = prediction.squeeze().cpu().numpy() __lowerCamelCase = (output * 2_55 / np.max(a )).astype('''uint8''' ) __lowerCamelCase = Image.fromarray(a ) __lowerCamelCase = {} __lowerCamelCase = predicted_depth __lowerCamelCase = depth return output_dict
67
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ): __A : List[Any] = "focalnet" def __init__( self : Union[str, Any] , snake_case__ : Optional[Any]=2_2_4 , snake_case__ : int=4 , snake_case__ : Tuple=3 , snake_case__ : str=9_6 , snake_case__ : List[Any]=False , snake_case__ : str=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , snake_case__ : Optional[int]=[2, 2, 6, 2] , snake_case__ : Any=[2, 2, 2, 2] , snake_case__ : List[Any]=[3, 3, 3, 3] , snake_case__ : int="gelu" , snake_case__ : str=4.0 , snake_case__ : Tuple=0.0 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Union[str, Any]=False , snake_case__ : Any=1e-4 , snake_case__ : Any=False , snake_case__ : Dict=False , snake_case__ : Optional[int]=False , snake_case__ : List[str]=0.02 , snake_case__ : Dict=1e-5 , snake_case__ : Tuple=3_2 , snake_case__ : List[str]=None , snake_case__ : Optional[int]=None , **snake_case__ : Dict , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase :Optional[int] = image_size lowercase :Tuple = patch_size lowercase :str = num_channels lowercase :Any = embed_dim lowercase :List[Any] = use_conv_embed lowercase :int = hidden_sizes lowercase :List[Any] = depths lowercase :int = focal_levels lowercase :Optional[int] = focal_windows lowercase :Optional[Any] = hidden_act lowercase :List[Any] = mlp_ratio lowercase :Optional[Any] = hidden_dropout_prob lowercase :Dict = drop_path_rate lowercase :Tuple = use_layerscale lowercase :List[str] = layerscale_value lowercase :int = use_post_layernorm lowercase :Any = use_post_layernorm_in_modulation lowercase :List[Any] = normalize_modulator lowercase :List[Any] = initializer_range lowercase :str = layer_norm_eps lowercase :List[Any] = encoder_stride lowercase :str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowercase , lowercase :Any = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
172
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class __magic_name__ ( __UpperCAmelCase ): __A : str = "imagegpt" __A : str = ["past_key_values"] __A : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=5_1_2 + 1 , snake_case__ : Optional[int]=3_2 * 3_2 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[str]=2_4 , snake_case__ : Any=8 , snake_case__ : str=None , snake_case__ : Any="quick_gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=1e-5 , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=True , snake_case__ : Dict=True , snake_case__ : str=False , snake_case__ : Optional[int]=False , snake_case__ : Union[str, Any]=False , **snake_case__ : Union[str, Any] , ): '''simple docstring''' lowercase :int = vocab_size lowercase :str = n_positions lowercase :List[str] = n_embd lowercase :int = n_layer lowercase :List[str] = n_head lowercase :Tuple = n_inner lowercase :Tuple = activation_function lowercase :Optional[Any] = resid_pdrop lowercase :Tuple = embd_pdrop lowercase :Dict = attn_pdrop lowercase :List[Any] = layer_norm_epsilon lowercase :List[Any] = initializer_range lowercase :List[Any] = scale_attn_weights lowercase :Dict = use_cache lowercase :List[str] = scale_attn_by_inverse_layer_idx lowercase :List[str] = reorder_and_upcast_attn lowercase :Dict = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case__ , **snake_case__ ) class __magic_name__ ( __UpperCAmelCase ): @property def __snake_case ( self : Any ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __snake_case ( self : Union[str, Any] , snake_case__ : "FeatureExtractionMixin" , snake_case__ : int = 1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 3_2 , snake_case__ : int = 3_2 , ): '''simple docstring''' lowercase :Union[str, Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase :List[str] = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) return inputs
172
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCamelCase_ : List[str] = None lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase_ : str = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } lowerCamelCase_ : List[Any] = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } lowerCamelCase_ : List[Any] = '▁' # Segments (not really needed) lowerCamelCase_ : Tuple = 0 lowerCamelCase_ : Any = 1 lowerCamelCase_ : Optional[int] = 2 lowerCamelCase_ : List[str] = 3 lowerCamelCase_ : List[Any] = 4 class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : List[str] = VOCAB_FILES_NAMES lowercase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = """left""" lowercase_ : Any = XLNetTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=True , snake_case_=False , snake_case_="<s>" , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<sep>" , snake_case_="<pad>" , snake_case_="<cls>" , snake_case_="<mask>" , snake_case_=["<eop>", "<eod>"] , **snake_case_ , ): """simple docstring""" A_ : Union[str, Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( vocab_file=snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , ) A_ : Dict = 3 A_ : Optional[Any] = do_lower_case A_ : Optional[Any] = remove_space A_ : Union[str, Any] = keep_accents A_ : Tuple = vocab_file A_ : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None ): """simple docstring""" A_ : Optional[Any] = [self.sep_token_id] A_ : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : List[Any] = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
286
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : List[str] = CustomTokenizer pass
286
1
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" a = len(__lowerCamelCase ), len(grid[0] ) if ( min(__lowerCamelCase, __lowerCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) a = 0 count += depth_first_search(__lowerCamelCase, row + 1, __lowerCamelCase, __lowerCamelCase ) count += depth_first_search(__lowerCamelCase, row - 1, __lowerCamelCase, __lowerCamelCase ) count += depth_first_search(__lowerCamelCase, __lowerCamelCase, col + 1, __lowerCamelCase ) count += depth_first_search(__lowerCamelCase, __lowerCamelCase, col - 1, __lowerCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
360
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } UpperCamelCase__ : Union[str, Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } UpperCamelCase__ : str = { """jukebox""": 512, } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,): '''simple docstring''' a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token super().__init__( unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,) a = version a = max_n_lyric_tokens a = n_genres with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: a = oov.replace(r'''\-\'''' ,r'''\-+\'''' ) a = regex.compile(__lowerCamelCase ) a = {v: k for k, v in self.artists_encoder.items()} a = {v: k for k, v in self.genres_encoder.items()} a = {v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists] for genres in range(len(__lowerCamelCase ) ): a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]] a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ): '''simple docstring''' return list(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = self._tokenize(__lowerCamelCase ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": a = artists[idx].lower() a = [genres[idx].lower()] else: a = self._normalize(artists[idx] ) + '''.v2''' a = [ self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )} a = 0 a = len(__lowerCamelCase ) + 1 a = self.vocab a = {v: k for k, v in self.vocab.items()} a = '''''' else: a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) a = self._run_strip_accents(__lowerCamelCase ) a = lyrics.replace('''\\''' ,'''\n''' ) a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ): '''simple docstring''' a = unicodedata.normalize('''NFD''' ,__lowerCamelCase ) a = [] for char in text: a = unicodedata.category(__lowerCamelCase ) if cat == "Mn": continue output.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ): '''simple docstring''' a = ( [chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )] + ['''.'''] ) a = frozenset(__lowerCamelCase ) a = re.compile(r'''_+''' ) a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' ) return text def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ): '''simple docstring''' return " ".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ): '''simple docstring''' if not isinstance(__lowerCamelCase ,__lowerCamelCase ): a = TensorType(__lowerCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf a = tf.constant a = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch a = torch.tensor a = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 a = jnp.array a = _is_jax else: a = np.asarray a = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: a = [inputs] if not is_tensor(__lowerCamelCase ): a = as_tensor(__lowerCamelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ): '''simple docstring''' a = [0, 0, 0] a = [artist] * len(self.version ) a = [genres] * len(self.version ) a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = [-INFINITY] * len(full_tokens[-1] ) a = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ): '''simple docstring''' a = self.artists_decoder.get(__lowerCamelCase ) a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index] a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index] return artist, genres, lyrics
330
0
import numpy as np def lowerCamelCase__ ( a__ : Tuple , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Union[str, Any] ) -> Optional[int]: UpperCamelCase_ = int(np.ceil((x_end - xa) / h ) ) UpperCamelCase_ = np.zeros((n + 1,) ) UpperCamelCase_ = ya UpperCamelCase_ = xa for k in range(a__ ): UpperCamelCase_ = f(a__ , y[k] ) UpperCamelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCamelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCamelCase_ = f(x + h , y[k] + h * ka ) UpperCamelCase_ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
122
_A = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) _A = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def lowerCamelCase__ ( a__ : float , a__ : str , a__ : str ) -> float: UpperCamelCase_ = from_type.lower().strip("""s""" ) UpperCamelCase_ = to_type.lower().strip("""s""" ) UpperCamelCase_ = UNIT_SYMBOL.get(a__ , a__ ) UpperCamelCase_ = UNIT_SYMBOL.get(a__ , a__ ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase_ = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(a__ )}''' ) raise ValueError(a__ ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase_ = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(a__ )}''' ) raise ValueError(a__ ) UpperCamelCase_ = METRIC_CONVERSION[from_sanitized] UpperCamelCase_ = METRIC_CONVERSION[to_sanitized] UpperCamelCase_ = 1 if from_exponent > to_exponent: UpperCamelCase_ = from_exponent - to_exponent else: UpperCamelCase_ = -(to_exponent - from_exponent) return value * pow(10 , a__ ) if __name__ == "__main__": from doctest import testmod testmod()
122
1
def __A ( __lowerCamelCase = 200_0000 ) -> int: a = [0 for i in range(n + 1 )] a = 1 a = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __lowerCamelCase ): a = 1 a = 0 for i in range(__lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'{solution() = }')
347
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): UpperCamelCase__ = '''nat''' UpperCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ): '''simple docstring''' super().__init__(**__magic_name__ ) a = patch_size a = num_channels a = embed_dim a = depths a = len(__magic_name__ ) a = num_heads a = kernel_size a = mlp_ratio a = qkv_bias a = hidden_dropout_prob a = attention_probs_dropout_prob a = drop_path_rate a = hidden_act a = layer_norm_eps a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) ) a = layer_scale_init_value a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
347
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : str, lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = 3 lowercase__ = 250 lowercase__ = ids_tensor((batch_size, length), _A ) lowercase__ = torch.ones((batch_size, length), device=_A, dtype=torch.float ) / length return input_ids, scores def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self._get_tensors(5 ) lowercase__ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_A, _A ) ) lowercase__ = self._get_tensors(9 ) self.assertFalse(criteria(_A, _A ) ) lowercase__ = self._get_tensors(10 ) self.assertTrue(criteria(_A, _A ) ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = MaxLengthCriteria(max_length=10 ) lowercase__ = self._get_tensors(5 ) self.assertFalse(criteria(_A, _A ) ) lowercase__ = self._get_tensors(9 ) self.assertFalse(criteria(_A, _A ) ) lowercase__ = self._get_tensors(10 ) self.assertTrue(criteria(_A, _A ) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = MaxNewTokensCriteria(start_length=5, max_new_tokens=5 ) lowercase__ = self._get_tensors(5 ) self.assertFalse(criteria(_A, _A ) ) lowercase__ = self._get_tensors(9 ) self.assertFalse(criteria(_A, _A ) ) lowercase__ = self._get_tensors(10 ) self.assertTrue(criteria(_A, _A ) ) lowercase__ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length, 10 ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self._get_tensors(5 ) lowercase__ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_A, _A ) ) lowercase__ = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_A, _A ) ) def lowercase__ ( self : Dict ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ), 10 ) with self.assertWarns(_A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ), 11 ) lowercase__ = validate_stopping_criteria(StoppingCriteriaList(), 11 ) self.assertEqual(len(_A ), 1 )
207
"""simple docstring""" import math lowerCamelCase__ : List[Any] = 10 lowerCamelCase__ : Optional[int] = 7 lowerCamelCase__ : Dict = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( _lowerCAmelCase : int = 20 ) -> str: _UpperCAmelCase : List[str] = math.comb(_lowerCAmelCase, _lowerCAmelCase ) _UpperCAmelCase : Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, _lowerCAmelCase ) _UpperCAmelCase : List[str] = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
246
0
"""simple docstring""" import math def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __lowerCamelCase = "Enter the base and the power separated by a comma: " __lowerCamelCase , __lowerCamelCase = map(int, input(prompt).split(",")) __lowerCamelCase , __lowerCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. __lowerCamelCase = res(xa, ya) __lowerCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
154
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) A__ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
154
1
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" @property def __snake_case ( self : Tuple): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __snake_case ( self : List[str]): a : Optional[int] = ort.SessionOptions() a : str = False return options def __snake_case ( self : Optional[int]): a : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") a : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") a : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default a : List[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a : int = "A red cat sitting on a park bench" a : Optional[Any] = np.random.RandomState(0) a : Optional[Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__UpperCAmelCase , output_type="np" , ) a : str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1e-2
40
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :str = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __magic_name__ ( UpperCamelCase__ ): UpperCamelCase_ :str = """efficientnet""" def __init__( self , _lowercase = 3 , _lowercase = 600 , _lowercase = 2.0 , _lowercase = 3.1 , _lowercase = 8 , _lowercase = [3, 3, 5, 3, 5, 5, 3] , _lowercase = [32, 16, 24, 40, 80, 112, 192] , _lowercase = [16, 24, 40, 80, 112, 192, 320] , _lowercase = [] , _lowercase = [1, 2, 2, 2, 1, 2, 1] , _lowercase = [1, 2, 2, 3, 3, 4, 1] , _lowercase = [1, 6, 6, 6, 6, 6, 6] , _lowercase = 0.25 , _lowercase = "swish" , _lowercase = 2_560 , _lowercase = "mean" , _lowercase = 0.02 , _lowercase = 0.001 , _lowercase = 0.99 , _lowercase = 0.5 , _lowercase = 0.2 , **_lowercase , )-> Dict: super().__init__(**__a ) UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = width_coefficient UpperCamelCase_ = depth_coefficient UpperCamelCase_ = depth_divisor UpperCamelCase_ = kernel_sizes UpperCamelCase_ = in_channels UpperCamelCase_ = out_channels UpperCamelCase_ = depthwise_padding UpperCamelCase_ = strides UpperCamelCase_ = num_block_repeats UpperCamelCase_ = expand_ratios UpperCamelCase_ = squeeze_expansion_ratio UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dim UpperCamelCase_ = pooling_type UpperCamelCase_ = initializer_range UpperCamelCase_ = batch_norm_eps UpperCamelCase_ = batch_norm_momentum UpperCamelCase_ = dropout_rate UpperCamelCase_ = drop_connect_rate UpperCamelCase_ = sum(__a ) * 4 class __magic_name__ ( UpperCamelCase__ ): UpperCamelCase_ :Any = version.parse("""1.11""" ) @property def UpperCAmelCase_ ( self )-> Tuple: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self )-> List[str]: return 1e-5
367
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) SCREAMING_SNAKE_CASE :Tuple = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = None , _lowercase = None )-> Any: UpperCamelCase_ = None UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCamelCase_ = os.path.abspath("examples" ) for item in os.listdir(_lowercase ): if item not in EXCLUDE_EXAMPLES: UpperCamelCase_ = os.path.join(_lowercase , _lowercase ) if os.path.isfile(_lowercase ) and ".py" in item_path: with self.subTest( tested_script=_lowercase , feature_script=_lowercase , tested_section="main()" if parser_only else "training_function()" , ): UpperCamelCase_ = compare_against_test( os.path.join(_lowercase , _lowercase ) , _lowercase , _lowercase , _lowercase ) UpperCamelCase_ = "\n".join(_lowercase ) if special_strings is not None: for string in special_strings: UpperCamelCase_ = diff.replace(_lowercase , "" ) self.assertEqual(_lowercase , "" ) def UpperCAmelCase_ ( self )-> Union[str, Any]: self.one_complete_example("complete_nlp_example.py" , _lowercase ) self.one_complete_example("complete_nlp_example.py" , _lowercase ) def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCamelCase_ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , _lowercase , _lowercase , _lowercase ) self.one_complete_example("complete_cv_example.py" , _lowercase , _lowercase , _lowercase ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = False @classmethod def UpperCAmelCase_ ( cls )-> List[str]: super().setUpClass() UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def UpperCAmelCase_ ( cls )-> List[Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) self.assertNotIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) if torch.cuda.is_available(): UpperCamelCase_ = torch.cuda.device_count() else: UpperCamelCase_ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) else: self.assertIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) @slow def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) UpperCamelCase_ = re.findall("({.+})" , _lowercase ) UpperCamelCase_ = [r for r in results if "accuracy" in r][-1] UpperCamelCase_ = ast.literal_eval(_lowercase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase_ ( self )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: UpperCamelCase_ = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowercase , "tracking" ) ) ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
60
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging a : str = logging.get_logger(__name__) # pylint: disable=invalid-name class a ( _lowerCamelCase ): def __init__( self : Dict , lowercase_ : AutoencoderKL , lowercase_ : CLIPTextModel , lowercase_ : CLIPTokenizer , lowercase_ : UNetaDConditionModel , lowercase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase_ : StableDiffusionSafetyChecker , lowercase_ : CLIPImageProcessor , ): super().__init__() self.register_modules( vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , ) def A_ ( self : Optional[Any] , lowercase_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_ ) def A_ ( self : List[str] ): self.enable_attention_slicing(lowercase_ ) @torch.no_grad() def __call__( self : int , lowercase_ : Union[str, List[str]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , lowercase_ : Optional[torch.FloatTensor] = None , **lowercase_ : Optional[int] , ): if isinstance(lowercase_ , lowercase_ ): snake_case_ = 1 elif isinstance(lowercase_ , lowercase_ ): snake_case_ = len(lowercase_ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_ )}." ) # get prompt text embeddings snake_case_ = self.tokenizer( lowercase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) snake_case_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) snake_case_ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: snake_case_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method snake_case_ ,snake_case_ ,snake_case_ = text_embeddings.shape snake_case_ = text_embeddings.repeat(1 , lowercase_ , 1 ) snake_case_ = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case_ = 42 if negative_prompt is None: snake_case_ = [''''''] elif type(lowercase_ ) is not type(lowercase_ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_ )} !=" F" {type(lowercase_ )}." ) elif isinstance(lowercase_ , lowercase_ ): snake_case_ = [negative_prompt] elif batch_size != len(lowercase_ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: snake_case_ = negative_prompt snake_case_ = text_input_ids.shape[-1] snake_case_ = self.tokenizer( lowercase_ , padding='''max_length''' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='''pt''' , ) snake_case_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ = uncond_embeddings.shape[1] snake_case_ = uncond_embeddings.repeat(lowercase_ , lowercase_ , 1 ) snake_case_ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) snake_case_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) snake_case_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps snake_case_ = torch.randn( lowercase_ , generator=lowercase_ , device='''cpu''' , dtype=lowercase_ ).to(self.device ) snake_case_ = torch.randn(lowercase_ , generator=lowercase_ , device='''cpu''' , dtype=lowercase_ ).to( self.device ) else: snake_case_ = torch.randn( lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) snake_case_ = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) else: if latents_reference.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) snake_case_ = latents_reference.to(self.device ) snake_case_ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images snake_case_ = (latents_shape[3] - latents_shape_reference[3]) // 2 snake_case_ = (latents_shape[2] - latents_shape_reference[2]) // 2 snake_case_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx snake_case_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy snake_case_ = 0 if dx < 0 else dx snake_case_ = 0 if dy < 0 else dy snake_case_ = max(-dx , 0 ) snake_case_ = max(-dy , 0 ) # import pdb # pdb.set_trace() snake_case_ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand snake_case_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case_ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case_ = {} if accepts_eta: snake_case_ = eta for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual snake_case_ = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_ ).sample # perform guidance if do_classifier_free_guidance: snake_case_ ,snake_case_ = noise_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_ ) snake_case_ = 1 / 0.1_8215 * latents snake_case_ = self.vae.decode(lowercase_ ).sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: snake_case_ = self.feature_extractor(self.numpy_to_pil(lowercase_ ) , return_tensors='''pt''' ).to( self.device ) snake_case_ ,snake_case_ = self.safety_checker( images=lowercase_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: snake_case_ = None if output_type == "pil": snake_case_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_ )
56
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ = SqlDatasetReader( '''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase, keep_in_memory=__UpperCAmelCase ).read() _check_sql_dataset(__UpperCAmelCase, __UpperCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, features=__UpperCAmelCase, cache_dir=__UpperCAmelCase ).read() _check_sql_dataset(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' with contextlib.closing(sqlitea.connect(__UpperCAmelCase ) ) as con: snake_case_ = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[Any]: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = os.path.join(__UpperCAmelCase, '''tmp.sql''' ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase ).read() SqlDatasetWriter(__UpperCAmelCase, '''dataset''', '''sqlite:///''' + output_sqlite_path, num_proc=1 ).write() snake_case_ = iter_sql_file(__UpperCAmelCase ) snake_case_ = iter_sql_file(__UpperCAmelCase ) for rowa, rowa in zip(__UpperCAmelCase, __UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = os.path.join(__UpperCAmelCase, '''tmp.sql''' ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase ).read() SqlDatasetWriter(__UpperCAmelCase, '''dataset''', '''sqlite:///''' + output_sqlite_path, num_proc=2 ).write() snake_case_ = iter_sql_file(__UpperCAmelCase ) snake_case_ = iter_sql_file(__UpperCAmelCase ) for rowa, rowa in zip(__UpperCAmelCase, __UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = os.path.join(__UpperCAmelCase, '''tmp.sql''' ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase ).read() with pytest.raises(__UpperCAmelCase ): SqlDatasetWriter(__UpperCAmelCase, '''dataset''', '''sqlite:///''' + output_sqlite_path, num_proc=0 ).write()
56
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @require_torch def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) UpperCAmelCase_ : Tuple = load_dataset('ashraq/esc50' ) UpperCAmelCase_ : str = dataset['train']['audio'][-1]['array'] UpperCAmelCase_ : List[str] = audio_classifier(__lowerCAmelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'score': 0.5_01, 'label': 'Sound of a dog'}, {'score': 0.4_99, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def __UpperCAmelCase ( self ) -> int: pass @slow @require_torch def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog UpperCAmelCase_ : Union[str, Any] = load_dataset('ashraq/esc50' ) UpperCAmelCase_ : List[str] = dataset['train']['audio'][-1]['array'] UpperCAmelCase_ : Union[str, Any] = audio_classifier(__lowerCAmelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ] , ) UpperCAmelCase_ : int = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) UpperCAmelCase_ : Union[str, Any] = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def __UpperCAmelCase ( self ) -> Tuple: pass
371
from collections import defaultdict from math import ceil, sqrt def lowercase__ ( __snake_case : int = 1_000_000 , __snake_case : int = 10 ): '''simple docstring''' UpperCAmelCase_ : defaultdict = defaultdict(__snake_case ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase_ : Union[str, Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase_ : int = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__snake_case , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'{solution() = }')
145
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1000 ): '''simple docstring''' __lowerCamelCase = p_stop __lowerCamelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCamelCase = random.random() < self.p_stop class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowerCamelCase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCamelCase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ): '''simple docstring''' random.seed(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowerCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowerCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowerCamelCase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 42 __lowerCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowerCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowerCamelCase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): '''simple docstring''' Accelerator() __lowerCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
330
0
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCamelCase: Dict = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class a__ ( unittest.TestCase ): def __init__( self : str, lowerCAmelCase : Union[str, Any], lowerCAmelCase : int=7, lowerCAmelCase : Tuple=3, lowerCAmelCase : Any=18, lowerCAmelCase : Dict=30, lowerCAmelCase : Dict=400, lowerCAmelCase : List[Any]=None, lowerCAmelCase : Dict=True, lowerCAmelCase : List[Any]=True, lowerCAmelCase : List[str]=None, ) -> str: lowercase : int = size if size is not None else {'height': 20, 'width': 20} lowercase : Optional[int] = parent lowercase : Optional[Any] = batch_size lowercase : Optional[Any] = num_channels lowercase : Optional[int] = image_size lowercase : int = min_resolution lowercase : Optional[int] = max_resolution lowercase : List[str] = size lowercase : List[str] = do_normalize lowercase : str = do_convert_rgb lowercase : Dict = [512, 1024, 2048, 4096] lowercase : Optional[Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def lowercase ( self : List[str] ) -> Optional[Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase : Dict = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' lowercase : Union[str, Any] = Image.open(requests.get(lowerCAmelCase, stream=lowerCAmelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.', ) @require_torch @require_vision class a__ ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = PixaStructImageProcessor if is_vision_available() else None def lowercase ( self : int ) -> str: lowercase : Any = PixaStructImageProcessingTester(self ) @property def lowercase ( self : Any ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : int ) -> str: lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase, 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase, 'do_convert_rgb' ) ) def lowercase ( self : str ) -> int: lowercase : Union[str, Any] = self.image_processor_tester.prepare_dummy_image() lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) lowercase : int = 2048 lowercase : Optional[Any] = image_processor(lowerCAmelCase, return_tensors='pt', max_patches=lowerCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0606 ), atol=1e-3, rtol=1e-3 ) ) def lowercase ( self : List[str] ) -> Tuple: # Initialize image_processor lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, Image.Image ) # Test not batched input lowercase : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase : int = image_processor( image_inputs[0], return_tensors='pt', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase : Any = image_processor( lowerCAmelCase, return_tensors='pt', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase ( self : str ) -> Optional[int]: # Initialize image_processor lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, Image.Image ) # Test not batched input lowercase : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 lowercase : Optional[Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase ): lowercase : List[str] = image_processor( image_inputs[0], return_tensors='pt', max_patches=lowerCAmelCase ).flattened_patches lowercase : List[Any] = 'Hello' lowercase : List[Any] = image_processor( image_inputs[0], return_tensors='pt', max_patches=lowerCAmelCase, header_text=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase : Union[str, Any] = image_processor( lowerCAmelCase, return_tensors='pt', max_patches=lowerCAmelCase, header_text=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase ( self : int ) -> Optional[int]: # Initialize image_processor lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, np.ndarray ) lowercase : Optional[int] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase : List[str] = image_processor( image_inputs[0], return_tensors='pt', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase : List[str] = image_processor( lowerCAmelCase, return_tensors='pt', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase ( self : Any ) -> Optional[Any]: # Initialize image_processor lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, torch.Tensor ) # Test not batched input lowercase : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase : str = image_processor( image_inputs[0], return_tensors='pt', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase : List[str] = image_processor( lowerCAmelCase, return_tensors='pt', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.', ) @require_torch @require_vision class a__ ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = PixaStructImageProcessor if is_vision_available() else None def lowercase ( self : Any ) -> List[str]: lowercase : Optional[Any] = PixaStructImageProcessingTester(self, num_channels=4 ) lowercase : str = 3 @property def lowercase ( self : str ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : str ) -> List[str]: lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase, 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase, 'do_convert_rgb' ) ) def lowercase ( self : List[Any] ) -> List[str]: # Initialize image_processor lowercase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, Image.Image ) # Test not batched input lowercase : Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase : Union[str, Any] = image_processor( image_inputs[0], return_tensors='pt', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase : Optional[Any] = image_processor( lowerCAmelCase, return_tensors='pt', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
360
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _UpperCamelCase: Any = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
53
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCAmelCase : Optional[int] =logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( __lowerCamelCase : int ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Dict ,__lowerCamelCase : Optional[int] ): return max(metric_fn(__lowerCamelCase ,__lowerCamelCase ) for gt in ground_truths ) def UpperCAmelCase_ ( __lowerCamelCase : Any ,__lowerCamelCase : str ,__lowerCamelCase : Dict ): lowercase_ :int = [line.strip() for line in open(__lowerCamelCase ,"r" ).readlines()] lowercase_ :Optional[int] = [] if args.gold_data_mode == "qa": lowercase_ :List[Any] = pd.read_csv(__lowerCamelCase ,sep="\t" ,header=__lowerCamelCase ) for answer_list in data[1]: lowercase_ :Dict = ast.literal_eval(__lowerCamelCase ) answers.append(__lowerCamelCase ) else: lowercase_ :Tuple = [line.strip() for line in open(__lowerCamelCase ,"r" ).readlines()] lowercase_ :Any = [[reference] for reference in references] lowercase_ :Dict = 0 for prediction, ground_truths in zip(__lowerCamelCase ,__lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) fa += metric_max_over_ground_truths(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowercase_ :str = 100.0 * em / total lowercase_ :List[str] = 100.0 * fa / total logger.info(F'F1: {fa:.2f}' ) logger.info(F'EM: {em:.2f}' ) def UpperCAmelCase_ ( __lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : int ): lowercase_ :Tuple = args.k lowercase_ :Optional[Any] = [line.strip() for line in open(__lowerCamelCase ,"r" ).readlines()] lowercase_ :Optional[int] = [line.strip() for line in open(__lowerCamelCase ,"r" ).readlines()] lowercase_ :Dict = 0 for hypo, reference in zip(__lowerCamelCase ,__lowerCamelCase ): lowercase_ :List[Any] = set(hypo.split("\t" )[:k] ) lowercase_ :int = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowercase_ :Tuple = 100.0 * em / total logger.info(F'Precision@{k}: {em: .2f}' ) def UpperCAmelCase_ ( __lowerCamelCase : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Any] ): def strip_title(__lowerCamelCase : List[str] ): if title.startswith("\"" ): lowercase_ :List[str] = title[1:] if title.endswith("\"" ): lowercase_ :Optional[Any] = title[:-1] return title lowercase_ :int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase ,return_tensors="pt" ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,)["input_ids"].to(args.device ) lowercase_ :Dict = rag_model.rag.question_encoder(__lowerCamelCase ) lowercase_ :Optional[Any] = question_enc_outputs[0] lowercase_ :List[str] = rag_model.retriever( __lowerCamelCase ,question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() ,prefix=rag_model.rag.generator.config.prefix ,n_docs=rag_model.config.n_docs ,return_tensors="pt" ,) lowercase_ :str = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowercase_ :List[str] = [] for docs in all_docs: lowercase_ :Any = [strip_title(__lowerCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(__lowerCamelCase ) ) return provenance_strings def UpperCAmelCase_ ( __lowerCamelCase : Any ,__lowerCamelCase : List[str] ,__lowerCamelCase : List[str] ): with torch.no_grad(): lowercase_ :List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase ,return_tensors="pt" ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ) lowercase_ :str = inputs_dict.input_ids.to(args.device ) lowercase_ :Optional[Any] = inputs_dict.attention_mask.to(args.device ) lowercase_ :int = rag_model.generate( # rag_model overwrites generate __lowerCamelCase ,attention_mask=__lowerCamelCase ,num_beams=args.num_beams ,min_length=args.min_length ,max_length=args.max_length ,early_stopping=__lowerCamelCase ,num_return_sequences=1 ,bad_words_ids=[[0, 0]] ,) lowercase_ :int = rag_model.retriever.generator_tokenizer.batch_decode(__lowerCamelCase ,skip_special_tokens=__lowerCamelCase ) if args.print_predictions: for q, a in zip(__lowerCamelCase ,__lowerCamelCase ): logger.info("Q: {} - A: {}".format(__lowerCamelCase ,__lowerCamelCase ) ) return answers def UpperCAmelCase_ ( ): lowercase_ :Dict = argparse.ArgumentParser() parser.add_argument( "--model_type" ,choices=["rag_sequence", "rag_token", "bart"] ,type=__lowerCamelCase ,help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) ,) parser.add_argument( "--index_name" ,default=__lowerCamelCase ,choices=["exact", "compressed", "legacy"] ,type=__lowerCamelCase ,help="RAG model retriever type" ,) parser.add_argument( "--index_path" ,default=__lowerCamelCase ,type=__lowerCamelCase ,help="Path to the retrieval index" ,) parser.add_argument("--n_docs" ,default=5 ,type=__lowerCamelCase ,help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" ,default=__lowerCamelCase ,type=__lowerCamelCase ,required=__lowerCamelCase ,help="Path to pretrained checkpoints or model identifier from huggingface.co/models" ,) parser.add_argument( "--eval_mode" ,choices=["e2e", "retrieval"] ,default="e2e" ,type=__lowerCamelCase ,help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) ,) parser.add_argument("--k" ,default=1 ,type=__lowerCamelCase ,help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" ,default=__lowerCamelCase ,type=__lowerCamelCase ,required=__lowerCamelCase ,help="Path to a file containing evaluation samples" ,) parser.add_argument( "--gold_data_path" ,default=__lowerCamelCase ,type=__lowerCamelCase ,required=__lowerCamelCase ,help="Path to a tab-separated file with gold samples" ,) parser.add_argument( "--gold_data_mode" ,default="qa" ,type=__lowerCamelCase ,choices=["qa", "ans"] ,help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) ,) parser.add_argument( "--predictions_path" ,type=__lowerCamelCase ,default="predictions.txt" ,help="Name of the predictions file, to be stored in the checkpoints directory" ,) parser.add_argument( "--eval_all_checkpoints" ,action="store_true" ,help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" ,) parser.add_argument( "--eval_batch_size" ,default=8 ,type=__lowerCamelCase ,help="Batch size per GPU/CPU for evaluation." ,) parser.add_argument( "--recalculate" ,help="Recalculate predictions even if the prediction file exists" ,action="store_true" ,) parser.add_argument( "--num_beams" ,default=4 ,type=__lowerCamelCase ,help="Number of beams to be used when generating answers" ,) parser.add_argument("--min_length" ,default=1 ,type=__lowerCamelCase ,help="Min length of the generated answers" ) parser.add_argument("--max_length" ,default=50 ,type=__lowerCamelCase ,help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" ,action="store_true" ,help="If True, prints predictions while evaluating." ,) parser.add_argument( "--print_docs" ,action="store_true" ,help="If True, prints docs retried while generating." ,) lowercase_ :Optional[Any] = parser.parse_args() lowercase_ :int = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ): lowercase_ :Optional[int] = {} if args.model_type is None: lowercase_ :Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): lowercase_ :Tuple = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration lowercase_ :int = args.n_docs if args.index_name is not None: lowercase_ :str = args.index_name if args.index_path is not None: lowercase_ :List[Any] = args.index_path else: lowercase_ :int = BartForConditionalGeneration lowercase_ :int = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" ,__lowerCamelCase ) lowercase_ :Dict = get_scores if args.eval_mode == "e2e" else get_precision_at_k lowercase_ :Tuple = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__lowerCamelCase ,args.predictions_path ,args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__lowerCamelCase ) ) logger.info(" Batch size = %d" ,args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): lowercase_ :List[Any] = RagRetriever.from_pretrained(__lowerCamelCase ,**__lowerCamelCase ) lowercase_ :Tuple = model_class.from_pretrained(__lowerCamelCase ,retriever=__lowerCamelCase ,**__lowerCamelCase ) model.retriever.init_retrieval() else: lowercase_ :Tuple = model_class.from_pretrained(__lowerCamelCase ,**__lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set ,"r" ) as eval_file, open(args.predictions_path ,"w" ) as preds_file: lowercase_ :Tuple = [] for line in tqdm(__lowerCamelCase ): questions.append(line.strip() ) if len(__lowerCamelCase ) == args.eval_batch_size: lowercase_ :Any = evaluate_batch_fn(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) + "\n" ) preds_file.flush() lowercase_ :List[Any] = [] if len(__lowerCamelCase ) > 0: lowercase_ :int = evaluate_batch_fn(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) ) preds_file.flush() score_fn(__lowerCamelCase ,args.predictions_path ,args.gold_data_path ) if __name__ == "__main__": lowerCAmelCase : Dict =get_args() main(args)
223
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int = 1_00 ): lowercase_ :Tuple = n * (n + 1) * (2 * n + 1) / 6 lowercase_ :List[str] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
223
1
import baseaa def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' return baseaa.baaencode(string.encode('''utf-8''' ) ) def lowerCamelCase_ ( UpperCamelCase__ : bytes ): '''simple docstring''' return baseaa.baadecode(UpperCamelCase__ ).decode('''utf-8''' ) if __name__ == "__main__": lowercase = """Hello World!""" lowercase = baseaa_encode(test) print(encoded) lowercase = baseaa_decode(encoded) print(decoded)
35
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { """configuration_xlm_roberta""": [ """XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaConfig""", """XLMRobertaOnnxConfig""", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""XLMRobertaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""XLMRobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaForCausalLM""", """XLMRobertaForMaskedLM""", """XLMRobertaForMultipleChoice""", """XLMRobertaForQuestionAnswering""", """XLMRobertaForSequenceClassification""", """XLMRobertaForTokenClassification""", """XLMRobertaModel""", """XLMRobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMRobertaForCausalLM""", """TFXLMRobertaForMaskedLM""", """TFXLMRobertaForMultipleChoice""", """TFXLMRobertaForQuestionAnswering""", """TFXLMRobertaForSequenceClassification""", """TFXLMRobertaForTokenClassification""", """TFXLMRobertaModel""", """TFXLMRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxXLMRobertaForMaskedLM""", """FlaxXLMRobertaForCausalLM""", """FlaxXLMRobertaForMultipleChoice""", """FlaxXLMRobertaForQuestionAnswering""", """FlaxXLMRobertaForSequenceClassification""", """FlaxXLMRobertaForTokenClassification""", """FlaxXLMRobertaModel""", """FlaxXLMRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> int: '''simple docstring''' A__ = 384 A__ = 7 if "tiny" in model_name: A__ = 96 A__ = (2, 2, 6, 2) A__ = (3, 6, 12, 24) elif "small" in model_name: A__ = 96 A__ = (2, 2, 18, 2) A__ = (3, 6, 12, 24) elif "base" in model_name: A__ = 128 A__ = (2, 2, 18, 2) A__ = (4, 8, 16, 32) A__ = 12 A__ = 512 elif "large" in model_name: A__ = 192 A__ = (2, 2, 18, 2) A__ = (6, 12, 24, 48) A__ = 12 A__ = 768 # set label information A__ = 150 A__ = 'huggingface/label-files' A__ = 'ade20k-id2label.json' A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = SwinConfig( embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , window_size=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) A__ = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , ) return config def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: '''simple docstring''' A__ = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]: '''simple docstring''' A__ = dct.pop(SCREAMING_SNAKE_CASE__ ) A__ = val def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: '''simple docstring''' A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:dim, :] A__ = in_proj_bias[: dim] A__ = in_proj_weight[ dim : dim * 2, : ] A__ = in_proj_bias[ dim : dim * 2 ] A__ = in_proj_weight[ -dim :, : ] A__ = in_proj_bias[-dim :] # fmt: on def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A__ , A__ = x.shape A__ = x.reshape(SCREAMING_SNAKE_CASE__ , 4 , in_channel // 4 ) A__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: '''simple docstring''' A__ , A__ = x.shape A__ = x.reshape(SCREAMING_SNAKE_CASE__ , in_channel // 4 , 4 ) A__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: '''simple docstring''' A__ = x.shape[0] A__ = x.reshape(4 , in_channel // 4 ) A__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: '''simple docstring''' A__ = x.shape[0] A__ = x.reshape(in_channel // 4 , 4 ) A__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } A__ = model_name_to_url[model_name] A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' , file_name=SCREAMING_SNAKE_CASE__ )[ 'state_dict' ] for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE__ , param.shape ) A__ = get_upernet_config(SCREAMING_SNAKE_CASE__ ) A__ = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "bn" in key: A__ = key.replace('bn' , 'batch_norm' ) A__ = val # rename keys A__ = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A__ = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE__ ) if "norm" in key: A__ = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify on image A__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('RGB' ) A__ = SegformerImageProcessor() A__ = processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A__ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": A__ = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": A__ = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": A__ = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
7
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """transfo-xl""" __UpperCamelCase = ["""mems"""] __UpperCamelCase = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self :List[Any] , lowercase_ :Optional[int]=26_77_35 , lowercase_ :Union[str, Any]=[2_00_00, 4_00_00, 20_00_00] , lowercase_ :List[Any]=10_24 , lowercase_ :Optional[Any]=10_24 , lowercase_ :Tuple=16 , lowercase_ :Tuple=64 , lowercase_ :Any=40_96 , lowercase_ :int=4 , lowercase_ :List[str]=False , lowercase_ :Union[str, Any]=18 , lowercase_ :Optional[Any]=16_00 , lowercase_ :Dict=10_00 , lowercase_ :Optional[int]=True , lowercase_ :Tuple=True , lowercase_ :Dict=0 , lowercase_ :Tuple=-1 , lowercase_ :Optional[int]=True , lowercase_ :Optional[int]=0.1 , lowercase_ :str=0.0 , lowercase_ :List[str]=True , lowercase_ :int="normal" , lowercase_ :Dict=0.01 , lowercase_ :Optional[Any]=0.01 , lowercase_ :Dict=0.02 , lowercase_ :Tuple=1E-5 , lowercase_ :str=0 , **lowercase_ :Tuple , ) -> List[str]: UpperCAmelCase = vocab_size UpperCAmelCase = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: UpperCAmelCase = [False] + [True] * len(self.cutoffs ) else: UpperCAmelCase = [False] + [False] * len(self.cutoffs ) UpperCAmelCase = d_model UpperCAmelCase = d_embed UpperCAmelCase = d_head UpperCAmelCase = d_inner UpperCAmelCase = div_val UpperCAmelCase = pre_lnorm UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = mem_len UpperCAmelCase = same_length UpperCAmelCase = attn_type UpperCAmelCase = clamp_len UpperCAmelCase = sample_softmax UpperCAmelCase = adaptive UpperCAmelCase = dropout UpperCAmelCase = dropatt UpperCAmelCase = untie_r UpperCAmelCase = init UpperCAmelCase = init_range UpperCAmelCase = proj_init_std UpperCAmelCase = init_std UpperCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def UpperCAmelCase__ ( self :Union[str, Any] ) -> Any: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Any ) -> Tuple: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
78
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :List[str] = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Any = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase__ :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCAmelCase__ ( a__: Dict , a__: Dict , a__: Any , a__: Optional[int]=None , a__: str=None , a__: List[Any]=None , a__: Optional[int]=None , a__: Union[str, Any]=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=a__ ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , ) -> Any: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.eos_token_id # Eos Token _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = prepare_mam_aaa_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, inputs_dict def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = MaMaaaModel(config=_SCREAMING_SNAKE_CASE ).get_decoder().to(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = inputs_dict['input_ids'] _UpperCAmelCase = inputs_dict['attention_mask'] _UpperCAmelCase = inputs_dict['head_mask'] # first forward pass _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )['last_hidden_state'] _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[ 'last_hidden_state' ] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-2 ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = MaMaaaModel(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.encoder_last_hidden_state _UpperCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_encoder() encoder.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaEncoder.from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_decoder() decoder.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaDecoder.from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : List[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _a : List[str] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _a : int = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _a : str = True _a : Union[str, Any] = True _a : Optional[int] = False _a : Union[str, Any] = False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = MaMaaaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertEqual(info['missing_keys'] , [] ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = copy.deepcopy(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if not self.is_encoder_decoder: _UpperCAmelCase = inputs['input_ids'] del inputs["input_ids"] else: _UpperCAmelCase = inputs['input_ids'] _UpperCAmelCase = inputs.get('decoder_input_ids' , _SCREAMING_SNAKE_CASE ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.get_input_embeddings() if not self.is_encoder_decoder: _UpperCAmelCase = wte(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = wte(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = wte(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE )[0] def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = input_dict['input_ids'] _UpperCAmelCase = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval().to(_SCREAMING_SNAKE_CASE ) if torch_device == "cuda": model.half() model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) model.generate(num_beams=4 , do_sample=_SCREAMING_SNAKE_CASE , early_stopping=_SCREAMING_SNAKE_CASE , num_return_sequences=3 ) def lowerCAmelCase__ ( a__: Tuple ) -> Optional[int]: '''simple docstring''' return torch.tensor(a__ , dtype=torch.long , device=a__ ) lowerCAmelCase__ :str = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) _UpperCAmelCase = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) _UpperCAmelCase = prepare_mam_aaa_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here _UpperCAmelCase = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_SCREAMING_SNAKE_CASE ) # change to intended input _UpperCAmelCase = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) _UpperCAmelCase = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) _UpperCAmelCase = prepare_mam_aaa_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here _UpperCAmelCase = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) _UpperCAmelCase = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) _UpperCAmelCase = model.generate( input_ids=dct['input_ids'].to(_SCREAMING_SNAKE_CASE ) , attention_mask=dct['attention_mask'].to(_SCREAMING_SNAKE_CASE ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) _UpperCAmelCase = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] _UpperCAmelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) assert generated == expected_en
185
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Any = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : int = False def A ( self : Dict , A : Dict , A : List[Any] , A : Tuple=False ) -> int: lowercase_ : str = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): lowercase_ : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _UpperCAmelCase ( _A ): def __init__( self : Any , A : int , A : int=13 , A : Any=7 , A : Optional[Any]=True , A : List[str]=True , A : List[Any]=True , A : Dict=True , A : List[str]=99 , A : str=32 , A : str=32 , A : List[Any]=2 , A : Tuple=4 , A : Optional[Any]=37 , A : Tuple="gelu" , A : Optional[int]=0.1 , A : Tuple=0.1 , A : Optional[int]=5_12 , A : List[Any]=16 , A : Optional[Any]=2 , A : Any=0.02 , A : List[str]=3 , A : Dict=4 , A : Tuple=None , ) -> List[Any]: lowercase_ : Optional[int] = parent lowercase_ : Optional[int] = batch_size lowercase_ : Union[str, Any] = seq_length lowercase_ : List[str] = is_training lowercase_ : str = use_input_mask lowercase_ : Tuple = use_token_type_ids lowercase_ : Any = use_labels lowercase_ : Optional[int] = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Tuple = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : str = type_vocab_size lowercase_ : Tuple = type_sequence_label_size lowercase_ : str = initializer_range lowercase_ : str = num_labels lowercase_ : Optional[Any] = num_choices lowercase_ : Any = scope lowercase_ : int = embedding_size def A ( self : List[Any] ) -> Any: lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Any = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : int = None if self.use_token_type_ids: lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : str = None lowercase_ : Dict = None lowercase_ : Any = None if self.use_labels: lowercase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[str] , A : List[str] , A : Optional[int] , A : str , A : Union[str, Any] , A : List[str] , A : Optional[Any] , A : Union[str, Any] ) -> Optional[Any]: lowercase_ : Optional[int] = TFMobileBertModel(config=A ) lowercase_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Tuple = model(A ) lowercase_ : Optional[int] = [input_ids, input_mask] lowercase_ : int = model(A ) lowercase_ : Optional[int] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : List[Any] , A : int , A : int , A : int , A : int , A : Optional[int] , A : List[str] , A : Dict ) -> List[Any]: lowercase_ : List[Any] = TFMobileBertForMaskedLM(config=A ) lowercase_ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Optional[int] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , A : Optional[Any] , A : int , A : Dict , A : Union[str, Any] , A : List[Any] , A : List[str] , A : List[Any] ) -> Union[str, Any]: lowercase_ : Optional[int] = TFMobileBertForNextSentencePrediction(config=A ) lowercase_ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Optional[int] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A ( self : Any , A : List[str] , A : Union[str, Any] , A : Any , A : Any , A : Tuple , A : Optional[Any] , A : str ) -> List[str]: lowercase_ : Optional[Any] = TFMobileBertForPreTraining(config=A ) lowercase_ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : List[Any] = model(A ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A ( self : Dict , A : Optional[int] , A : List[Any] , A : List[Any] , A : Union[str, Any] , A : Optional[Any] , A : Any , A : str ) -> str: lowercase_ : Tuple = self.num_labels lowercase_ : Optional[Any] = TFMobileBertForSequenceClassification(config=A ) lowercase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Optional[int] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[str] , A : Optional[int] , A : Union[str, Any] , A : int , A : Optional[int] , A : List[Any] , A : Any , A : Tuple ) -> str: lowercase_ : Tuple = self.num_choices lowercase_ : List[str] = TFMobileBertForMultipleChoice(config=A ) lowercase_ : Tuple = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Dict = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : List[str] = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Optional[int] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase_ : Union[str, Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Tuple , A : Optional[int] , A : Optional[Any] , A : Any , A : Dict , A : Optional[int] , A : Dict , A : str ) -> str: lowercase_ : Optional[Any] = self.num_labels lowercase_ : Optional[int] = TFMobileBertForTokenClassification(config=A ) lowercase_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Tuple = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Dict , A : Dict , A : Optional[Any] , A : List[Any] , A : Union[str, Any] , A : List[str] , A : int , A : str ) -> Optional[Any]: lowercase_ : Optional[int] = TFMobileBertForQuestionAnswering(config=A ) lowercase_ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Union[str, Any] = model(A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : int ) -> Union[str, Any]: lowercase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Any = config_and_inputs lowercase_ : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def A ( self : Tuple ) -> Tuple: lowercase_ : List[Any] = TFMobileBertModelTest.TFMobileBertModelTester(self ) lowercase_ : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def A ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def A ( self : List[str] ) -> Tuple: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*A ) def A ( self : List[Any] ) -> Union[str, Any]: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*A ) def A ( self : List[str] ) -> List[Any]: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*A ) def A ( self : str ) -> Any: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*A ) def A ( self : Optional[int] ) -> int: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*A ) def A ( self : str ) -> int: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*A ) def A ( self : Optional[Any] ) -> List[str]: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*A ) def A ( self : str ) -> Any: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*A ) @slow def A ( self : Optional[Any] ) -> Optional[Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: lowercase_ : Any = TFMobileBertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ) -> List[Any]: lowercase_ : Any = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) lowercase_ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[Any] = model(A )[0] lowercase_ : Optional[int] = [1, 6, 3_05_22] self.assertEqual(output.shape , A ) lowercase_ : Tuple = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A , atol=1e-4 )
33
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False): UpperCAmelCase__ : str = scheduler UpperCAmelCase__ : Dict = optimizers if isinstance(_lowerCamelCase , (list, tuple)) else [optimizers] UpperCAmelCase__ : List[Any] = split_batches UpperCAmelCase__ : Tuple = step_with_optimizer UpperCAmelCase__ : Union[str, Any] = GradientState() def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCAmelCase__ : Dict = AcceleratorState().num_processes for _ in range(_lowerCamelCase): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps"""): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self): return self.scheduler.get_last_lr() def snake_case__ ( self): return self.scheduler.state_dict() def snake_case__ ( self , _lowerCamelCase): self.scheduler.load_state_dict(_lowerCamelCase) def snake_case__ ( self): return self.scheduler.get_lr() def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase)
163
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__(self : Union[str, Any] , __a : Tuple , __a : Union[str, Any]=7 , __a : Tuple=3 , __a : List[str]=18 , __a : Optional[int]=30 , __a : Optional[int]=400 , __a : str=True , __a : int=None , __a : List[str]=True , __a : Tuple=None , ): UpperCAmelCase_ = size if size is not None else {"shortest_edge": 20} UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size def _lowercase (self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = MobileNetVaImageProcessor if is_vision_available() else None def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = MobileNetVaImageProcessingTester(self ) @property def _lowercase (self : int ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase (self : Tuple ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) self.assertTrue(hasattr(__a , "do_center_crop" ) ) self.assertTrue(hasattr(__a , "crop_size" ) ) def _lowercase (self : List[str] ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _lowercase (self : Dict ): pass def _lowercase (self : Any ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase (self : Union[str, Any] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase (self : Dict ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
106
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Dict ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE_: List[str] =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Any ) -> Optional[int]: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ) if weight_type is not None: UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase_ = None for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True elif name.split("." )[0] == "proj": UpperCAmelCase_ = fairseq_model.proj UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(snake_case_ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: UpperCAmelCase_ = "weight" else: UpperCAmelCase_ = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCAmelCase_ = emb.weight.data return lin_layer def lowerCAmelCase_ ( snake_case_ : int ) -> List[str]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [line.split(" " )[0] for line in lines] UpperCAmelCase_ = len(snake_case_ ) UpperCAmelCase_ = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(snake_case_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Any , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = WavaVecaConfig.from_pretrained(snake_case_ ) UpperCAmelCase_ = SpeechaTextaConfig.from_pretrained( snake_case_ , vocab_size=snake_case_ , decoder_layers=snake_case_ , do_stable_layer_norm=snake_case_ ) UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) UpperCAmelCase_ = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase_ = WavaVecaModel(snake_case_ ) UpperCAmelCase_ = recursively_load_weights_wavaveca(model.encoder , snake_case_ ) UpperCAmelCase_ = SpeechaTextaForCausalLM(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case_ ) # set output linear layer unexpected_keys.remove("embed_out" ) UpperCAmelCase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase_ = SpeechEncoderDecoderModel(encoder=snake_case_ , decoder=snake_case_ ) UpperCAmelCase_ = False # add projection layer UpperCAmelCase_ = nn.Parameter(projection_layer.weight ) UpperCAmelCase_ = nn.Parameter(projection_layer.bias ) UpperCAmelCase_ = create_vocab_dict(snake_case_ ) with open(os.path.join(snake_case_ , "vocab.json" ) , "w" ) as fp: json.dump(snake_case_ , snake_case_ ) UpperCAmelCase_ = SpeechaTextaTokenizer(os.path.join(snake_case_ , "vocab.json" ) ) tokenizer.save_pretrained(snake_case_ ) UpperCAmelCase_ = hf_wavavec.config.to_dict() UpperCAmelCase_ = tokenizer.pad_token_id UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = tokenizer.eos_token_id UpperCAmelCase_ = "speech_to_text_2" UpperCAmelCase_ = "wav2vec2" UpperCAmelCase_ = SpeechEncoderDecoderConfig.from_dict(snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) feature_extractor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') SCREAMING_SNAKE_CASE_: Dict =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
106
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( lowercase ): """simple docstring""" def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return self[-1] < other[-1] def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self[-1] == other[-1] def _A ( SCREAMING_SNAKE_CASE__ : list ): UpperCamelCase :list[Stack] = [] # sort into stacks for element in collection: UpperCamelCase :Union[str, Any] = Stack([element] ) UpperCamelCase :List[str] = bisect_left(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if i != len(SCREAMING_SNAKE_CASE__ ): stacks[i].append(SCREAMING_SNAKE_CASE__ ) else: stacks.append(SCREAMING_SNAKE_CASE__ ) # use a heap-based merge to merge stack efficiently UpperCamelCase :str = merge(*(reversed(SCREAMING_SNAKE_CASE__ ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case = input("""Enter numbers separated by a comma:\n""").strip() __snake_case = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
259
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __snake_case = """__DUMMY_TRANSFORMERS_USER__""" __snake_case = """Dummy User""" __snake_case = """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""" __snake_case = """https://hub-ci.huggingface.co""" __snake_case = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" __snake_case = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" __snake_case = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def _A ( SCREAMING_SNAKE_CASE__ : Tuple ): monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _A ( SCREAMING_SNAKE_CASE__ : Any ): monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , SCREAMING_SNAKE_CASE__ ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _A ( SCREAMING_SNAKE_CASE__ : List[str] ): monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _A ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ): HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def _A ( ): return HfApi(endpoint=SCREAMING_SNAKE_CASE__ ) @pytest.fixture(scope='''session''' ) def _A ( SCREAMING_SNAKE_CASE__ : HfApi ): UpperCamelCase :Tuple = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _A ( SCREAMING_SNAKE_CASE__ : Dict ): def _cleanup_repo(SCREAMING_SNAKE_CASE__ : Tuple ): hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def _A ( SCREAMING_SNAKE_CASE__ : Tuple ): @contextmanager def _temporary_repo(SCREAMING_SNAKE_CASE__ : Any ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE__ ) return _temporary_repo @pytest.fixture(scope='''session''' ) def _A ( SCREAMING_SNAKE_CASE__ : HfApi , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): UpperCamelCase :Union[str, Any] = F'''repo_txt_data-{int(time.time() * 1_0e3 )}''' UpperCamelCase :int = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='''data/text_data.txt''' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def _A ( SCREAMING_SNAKE_CASE__ : HfApi , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any ): UpperCamelCase :Optional[int] = F'''repo_zipped_txt_data-{int(time.time() * 1_0e3 )}''' UpperCamelCase :Any = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='''data.zip''' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def _A ( SCREAMING_SNAKE_CASE__ : HfApi , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): UpperCamelCase :Dict = F'''repo_zipped_img_data-{int(time.time() * 1_0e3 )}''' UpperCamelCase :Dict = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='''data.zip''' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): return hf_private_dataset_repo_zipped_img_data_
259
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'dandelin/vilt-b32-finetuned-vqa' lowercase__ = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) lowercase__ = 'image_qa' lowercase__ = AutoProcessor lowercase__ = AutoModelForVisualQuestionAnswering lowercase__ = ['image', 'text'] lowercase__ = ['text'] def __init__( self , *__a , **__a) -> int: '''simple docstring''' requires_backends(self , ['''vision''']) super().__init__(*__a , **__a) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' return self.pre_processor(__a , __a , return_tensors='''pt''') def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' with torch.no_grad(): return self.model(**__a).logits def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = outputs.argmax(-1).item() return self.model.config.idalabel[idx]
100
1
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = MobileBertTokenizer lowercase__ = MobileBertTokenizerFast lowercase__ = True lowercase__ = True lowercase__ = filter_non_english lowercase__ = "google/mobilebert-uncased" def __lowerCAmelCase ( self : Any ): super().setUp() lowerCAmelCase__ : Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase__ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCAmelCase__ : str = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __lowerCAmelCase ( self : str ,lowercase_ : Optional[int] ): lowerCAmelCase__ : Optional[int] = '''UNwant\u00E9d,running''' lowerCAmelCase__ : Tuple = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[Any] = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ : int = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowercase_ ,['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) ,[9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self : Optional[Any] ): if not self.test_rust_tokenizer: return lowerCAmelCase__ : List[Any] = self.get_tokenizer() lowerCAmelCase__ : Dict = self.get_rust_tokenizer() lowerCAmelCase__ : str = '''UNwant\u00E9d,running''' lowerCAmelCase__ : Dict = tokenizer.tokenize(lowercase_ ) lowerCAmelCase__ : str = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) lowerCAmelCase__ : List[str] = tokenizer.encode(lowercase_ ,add_special_tokens=lowercase_ ) lowerCAmelCase__ : Any = rust_tokenizer.encode(lowercase_ ,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() lowerCAmelCase__ : str = tokenizer.encode(lowercase_ ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) # With lower casing lowerCAmelCase__ : int = self.get_tokenizer(do_lower_case=lowercase_ ) lowerCAmelCase__ : Optional[Any] = self.get_rust_tokenizer(do_lower_case=lowercase_ ) lowerCAmelCase__ : Optional[Any] = '''UNwant\u00E9d,running''' lowerCAmelCase__ : List[Any] = tokenizer.tokenize(lowercase_ ) lowerCAmelCase__ : Any = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = tokenizer.encode(lowercase_ ,add_special_tokens=lowercase_ ) lowerCAmelCase__ : Tuple = rust_tokenizer.encode(lowercase_ ,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) lowerCAmelCase__ : int = self.get_rust_tokenizer() lowerCAmelCase__ : str = tokenizer.encode(lowercase_ ) lowerCAmelCase__ : List[str] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : int = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) ,['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[str] = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : Union[str, Any] = BasicTokenizer(do_lower_case=lowercase_ ,strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''h\u00E9llo'''] ) def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Any = BasicTokenizer(do_lower_case=lowercase_ ,strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[Any] = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Optional[Any] = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Union[str, Any] = BasicTokenizer(do_lower_case=lowercase_ ,strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Optional[int] = BasicTokenizer(do_lower_case=lowercase_ ,strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = BasicTokenizer(do_lower_case=lowercase_ ,never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCAmelCase__ : Tuple = {} for i, token in enumerate(lowercase_ ): lowerCAmelCase__ : Optional[Any] = i lowerCAmelCase__ : List[Any] = WordpieceTokenizer(vocab=lowercase_ ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) ,['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) ,['''[UNK]''', '''runn''', '''##ing'''] ) def __lowerCAmelCase ( self : Dict ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __lowerCAmelCase ( self : List[Any] ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __lowerCAmelCase ( self : Any ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Any = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase_ ) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase_ ) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : int = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) lowerCAmelCase__ : Union[str, Any] = tokenizer.encode('''sequence builders''' ,add_special_tokens=lowercase_ ) lowerCAmelCase__ : Any = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=lowercase_ ) lowerCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowerCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase_ ,lowercase_ ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def __lowerCAmelCase ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ ,**lowercase_ ) lowerCAmelCase__ : List[str] = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowerCAmelCase__ : Union[str, Any] = tokenizer_r.encode_plus( lowercase_ ,return_attention_mask=lowercase_ ,return_token_type_ids=lowercase_ ,return_offsets_mapping=lowercase_ ,add_special_tokens=lowercase_ ,) lowerCAmelCase__ : List[Any] = tokenizer_r.do_lower_case if hasattr(lowercase_ ,'''do_lower_case''' ) else False lowerCAmelCase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['''offset_mapping'''] ) def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Union[str, Any] = ['''的''', '''人''', '''有'''] lowerCAmelCase__ : Optional[Any] = ''''''.join(lowercase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained(lowercase_ ,**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ ,**lowercase_ ) lowerCAmelCase__ : Dict = tokenizer_p.encode(lowercase_ ,add_special_tokens=lowercase_ ) lowerCAmelCase__ : Tuple = tokenizer_r.encode(lowercase_ ,add_special_tokens=lowercase_ ) lowerCAmelCase__ : Tuple = tokenizer_r.convert_ids_to_tokens(lowercase_ ) lowerCAmelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(lowercase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase_ ,lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Dict = self.rust_tokenizer_class.from_pretrained(lowercase_ ,**lowercase_ ) lowerCAmelCase__ : Tuple = self.tokenizer_class.from_pretrained(lowercase_ ,**lowercase_ ) lowerCAmelCase__ : Any = tokenizer_r.encode(lowercase_ ,add_special_tokens=lowercase_ ) lowerCAmelCase__ : List[str] = tokenizer_p.encode(lowercase_ ,add_special_tokens=lowercase_ ) lowerCAmelCase__ : Any = tokenizer_r.convert_ids_to_tokens(lowercase_ ) lowerCAmelCase__ : Dict = tokenizer_p.convert_ids_to_tokens(lowercase_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase__ : int = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(lowercase_ ) ] self.assertListEqual(lowercase_ ,lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ )
106
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = ["pixel_values"] def __init__( self : str ,lowercase_ : bool = True ,lowercase_ : Dict[str, int] = None ,lowercase_ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase_ : bool = True ,lowercase_ : Dict[str, int] = None ,lowercase_ : bool = True ,lowercase_ : Union[int, float] = 1 / 2_5_5 ,lowercase_ : bool = True ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : bool = True ,**lowercase_ : Optional[Any] ,): super().__init__(**lowercase_ ) lowerCAmelCase__ : List[str] = size if size is not None else {'''shortest_edge''': 2_2_4} lowerCAmelCase__ : Tuple = get_size_dict(lowercase_ ,default_to_square=lowercase_ ) lowerCAmelCase__ : Optional[int] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase__ : Optional[Any] = get_size_dict(lowercase_ ,default_to_square=lowercase_ ,param_name='''crop_size''' ) lowerCAmelCase__ : Dict = do_resize lowerCAmelCase__ : Optional[int] = size lowerCAmelCase__ : Dict = resample lowerCAmelCase__ : Optional[Any] = do_center_crop lowerCAmelCase__ : Dict = crop_size lowerCAmelCase__ : Tuple = do_rescale lowerCAmelCase__ : str = rescale_factor lowerCAmelCase__ : List[str] = do_normalize lowerCAmelCase__ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ : Optional[Any] = do_convert_rgb def __lowerCAmelCase ( self : Dict ,lowercase_ : np.ndarray ,lowercase_ : Dict[str, int] ,lowercase_ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : Optional[Any] ,): lowerCAmelCase__ : Dict = get_size_dict(lowercase_ ,default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase__ : Optional[Any] = get_resize_output_image_size(lowercase_ ,size=size['''shortest_edge'''] ,default_to_square=lowercase_ ) return resize(lowercase_ ,size=lowercase_ ,resample=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : np.ndarray ,lowercase_ : Dict[str, int] ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : str ,): lowerCAmelCase__ : List[str] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowercase_ ,size=(size['''height'''], size['''width''']) ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : np.ndarray ,lowercase_ : Union[int, float] ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : Union[str, Any] ,): return rescale(lowercase_ ,scale=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : np.ndarray ,lowercase_ : Union[float, List[float]] ,lowercase_ : Union[float, List[float]] ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : int ,): return normalize(lowercase_ ,mean=lowercase_ ,std=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : ImageInput ,lowercase_ : bool = None ,lowercase_ : Dict[str, int] = None ,lowercase_ : PILImageResampling = None ,lowercase_ : bool = None ,lowercase_ : int = None ,lowercase_ : bool = None ,lowercase_ : float = None ,lowercase_ : bool = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : bool = None ,lowercase_ : Optional[Union[str, TensorType]] = None ,lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST ,**lowercase_ : List[Any] ,): lowerCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : Optional[int] = size if size is not None else self.size lowerCAmelCase__ : Union[str, Any] = get_size_dict(lowercase_ ,param_name='''size''' ,default_to_square=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase__ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : Dict = get_size_dict(lowercase_ ,param_name='''crop_size''' ,default_to_square=lowercase_ ) lowerCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : str = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : str = image_std if image_std is not None else self.image_std lowerCAmelCase__ : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ : Any = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ : Tuple = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ : Optional[int] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase__ : Optional[int] = [self.resize(image=lowercase_ ,size=lowercase_ ,resample=lowercase_ ) for image in images] if do_center_crop: lowerCAmelCase__ : Tuple = [self.center_crop(image=lowercase_ ,size=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase__ : Tuple = [self.rescale(image=lowercase_ ,scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase__ : Union[str, Any] = [self.normalize(image=lowercase_ ,mean=lowercase_ ,std=lowercase_ ) for image in images] lowerCAmelCase__ : Optional[Any] = [to_channel_dimension_format(lowercase_ ,lowercase_ ) for image in images] lowerCAmelCase__ : List[Any] = {'''pixel_values''': images} return BatchFeature(data=lowercase_ ,tensor_type=lowercase_ )
106
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
273
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: List[str] =inspect.getfile(accelerate.test_utils) lowerCamelCase__: str =os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps", "test_metrics.py"]) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase__: str =test_metrics @require_cpu def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1) @require_cpu def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' debug_launcher(self.test_metrics.main) @require_single_gpu def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""") lowerCamelCase__: Optional[Any] =["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy())
273
1
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Optional[int] = old_name if "patch_embed" in old_name: snake_case__ , snake_case__ , snake_case__ : Optional[int] = old_name.split(""".""" ) if layer == "0": snake_case__ : List[Any] = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": snake_case__ : Tuple = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": snake_case__ : Dict = old_name.replace("""3""" , """convolution2""" ) else: snake_case__ : Optional[int] = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , _lowerCAmelCase ): snake_case__ : Tuple = r"""\b\d{2}\b""" if bool(re.search(_lowerCAmelCase , _lowerCAmelCase ) ): snake_case__ : Optional[Any] = re.search(r"""\d\.\d\d.""" , _lowerCAmelCase ).group() else: snake_case__ : List[Any] = re.search(r"""\d\.\d.""" , _lowerCAmelCase ).group() if int(match[0] ) < 6: snake_case__ : Optional[Any] = old_name.replace(_lowerCAmelCase , """""" ) snake_case__ : Any = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) snake_case__ : Tuple = """intermediate_stages.""" + trimmed_name else: snake_case__ : Optional[int] = old_name.replace(_lowerCAmelCase , """""" ) if int(match[2] ) < num_meta4D_last_stage: snake_case__ : Dict = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: snake_case__ : Tuple = str(int(match[2] ) - num_meta4D_last_stage ) snake_case__ : List[str] = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: snake_case__ : Tuple = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: snake_case__ : Union[str, Any] = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: snake_case__ : Optional[int] = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: snake_case__ : Dict = trimmed_name.replace("""fc2""" , """linear_out""" ) snake_case__ : Any = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , _lowerCAmelCase ): snake_case__ : Dict = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: snake_case__ : Optional[Any] = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case__ : Optional[Any] = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case__ : Optional[int] = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: snake_case__ : str = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: snake_case__ : Any = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: snake_case__ : Any = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: snake_case__ : List[Any] = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case__ : Union[str, Any] = new_name.replace("""norm""" , """layernorm""" ) snake_case__ : int = """efficientformer.""" + new_name else: snake_case__ : Optional[int] = """efficientformer.encoder.""" + new_name return new_name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: for key in checkpoint.copy().keys(): snake_case__ : Dict = checkpoint.pop(_lowerCAmelCase ) snake_case__ : int = val return checkpoint def __snake_case( ) -> Any: snake_case__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : List[str] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return image def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Dict = torch.load(_lowerCAmelCase , map_location="""cpu""" )["""model"""] snake_case__ : Any = EfficientFormerConfig.from_json_file(_lowerCAmelCase ) snake_case__ : Any = EfficientFormerForImageClassificationWithTeacher(_lowerCAmelCase ) snake_case__ : List[Any] = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) snake_case__ : Optional[Any] = config.depths[-1] - config.num_metaad_blocks + 1 snake_case__ : Optional[int] = convert_torch_checkpoint(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() snake_case__ : Any = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image snake_case__ : List[Any] = prepare_img() snake_case__ : Dict = 256 snake_case__ : Any = 224 snake_case__ : Any = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) snake_case__ : Tuple = processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values # original processing pipeline snake_case__ : Union[str, Any] = Compose( [ Resize(_lowerCAmelCase , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(_lowerCAmelCase ), ToTensor(), Normalize(_lowerCAmelCase , _lowerCAmelCase ), ] ) snake_case__ : Optional[int] = image_transforms(_lowerCAmelCase ).unsqueeze(0 ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Any = model(_lowerCAmelCase ) snake_case__ : Union[str, Any] = outputs.logits snake_case__ : int = (1, 1_000) if "l1" in model_name: snake_case__ : List[Any] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , _lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case__ : str = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , _lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case__ : List[str] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(_lowerCAmelCase ) print(f"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" , commit_message="""Add model""" , use_temp_dir=_lowerCAmelCase , ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" , commit_message="""Add image processor""" , use_temp_dir=_lowerCAmelCase , ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) __a = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
35
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __a = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = field(default=_a , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=_a , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=_a , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def lowerCamelCase ( self : List[str] ): snake_case__ : int = super().to_dict() for k, v in d.items(): if isinstance(snake_case_ , snake_case_ ): snake_case__ : Optional[int] = v.to_dict() return d
35
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """deberta-v2""" def __init__(self , SCREAMING_SNAKE_CASE_=12_81_00 , SCREAMING_SNAKE_CASE_=15_36 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=61_44 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-7 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="gelu" , **SCREAMING_SNAKE_CASE_ , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = relative_attention UpperCamelCase__ = max_relative_positions UpperCamelCase__ = pad_token_id UpperCamelCase__ = position_biased_input # Backwards compatibility if type(SCREAMING_SNAKE_CASE_ ) == str: UpperCamelCase__ = [x.strip() for x in pos_att_type.lower().split("""|""" )] UpperCamelCase__ = pos_att_type UpperCamelCase__ = vocab_size UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = kwargs.get("""pooler_hidden_size""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = pooler_dropout UpperCamelCase__ = pooler_hidden_act class __A( __lowerCamelCase ): """simple docstring""" @property def UpperCAmelCase_ (self ): if self.task == "multiple-choice": UpperCamelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase__ = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def UpperCAmelCase_ (self ): return 12 def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 40 , SCREAMING_SNAKE_CASE_ = 40 , SCREAMING_SNAKE_CASE_ = None , ): UpperCamelCase__ = super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
178
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , **SCREAMING_SNAKE_CASE_ ): super().__init__(**SCREAMING_SNAKE_CASE_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = {} UpperCamelCase__ = {} UpperCamelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase__ = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: UpperCamelCase__ = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: UpperCamelCase__ = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: UpperCamelCase__ = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase__ = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase__ = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: UpperCamelCase__ = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: UpperCamelCase__ = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: UpperCamelCase__ = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: UpperCamelCase__ = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: UpperCamelCase__ = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: UpperCamelCase__ = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ): return super().__call__(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , num_workers=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 5_12 / 15_00 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 1 , ): UpperCamelCase__ = load_image(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.image_processor.size["""longest_edge"""] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.image_processor.generate_crop_boxes( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": UpperCamelCase__ = self.get_inference_context() with inference_context(): UpperCamelCase__ = self._ensure_tensor_on_device(SCREAMING_SNAKE_CASE_ , device=self.device ) UpperCamelCase__ = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) UpperCamelCase__ = image_embeddings UpperCamelCase__ = grid_points.shape[1] UpperCamelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase__ = input_labels[:, i : i + points_per_batch] UpperCamelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.88 , SCREAMING_SNAKE_CASE_=0.95 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , ): UpperCamelCase__ = model_inputs.pop("""input_boxes""" ) UpperCamelCase__ = model_inputs.pop("""is_last""" ) UpperCamelCase__ = model_inputs.pop("""original_sizes""" ).tolist() UpperCamelCase__ = model_inputs.pop("""reshaped_input_sizes""" ).tolist() UpperCamelCase__ = self.model(**SCREAMING_SNAKE_CASE_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase__ = model_outputs["""pred_masks"""] UpperCamelCase__ = self.image_processor.post_process_masks( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , binarize=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model_outputs["""iou_scores"""] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.7 , ): UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.image_processor.post_process_for_mask_generation( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = {} if output_rle_mask: UpperCamelCase__ = rle_mask if output_bboxes_mask: UpperCamelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
178
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ ( __A ): __A : Optional[Any] = "ClapFeatureExtractor" __A : Optional[Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : Optional[int] , lowercase_ : Any , lowercase_ : Optional[Any] ) -> Any: super().__init__(lowercase_ , lowercase_ ) def __call__( self : List[Any] , lowercase_ : List[Any]=None , lowercase_ : Optional[int]=None , lowercase_ : Any=None , **lowercase_ : Any ) -> Optional[Any]: lowercase__ : Any = kwargs.pop("sampling_rate" , lowercase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: lowercase__ : str = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if audios is not None: lowercase__ : Dict = self.feature_extractor( lowercase_ , sampling_rate=lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and audios is not None: lowercase__ : Dict = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def __UpperCamelCase ( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Tuple ) -> Union[str, Any]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: lowercase__ : Optional[Any] = self.tokenizer.model_input_names lowercase__ : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
87
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any]=False ) -> str: '''simple docstring''' try: _UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase = strtobool(_UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value UpperCAmelCase__ = parse_flag_from_env("RUN_SLOW", default=False) def A ( _UpperCAmelCase : List[str] ) -> List[str]: '''simple docstring''' return unittest.skip('Test was skipped' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Dict ) -> str: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> str: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : str ) -> str: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Tuple ) -> int: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Any=None , _UpperCAmelCase : List[Any]=None ) -> Dict: '''simple docstring''' if test_case is None: return partial(_UpperCAmelCase , version=_UpperCAmelCase ) return unittest.skipUnless(is_torch_version('>=' , _UpperCAmelCase ) , F"test requires torch version >= {version}" )(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> int: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_UpperCAmelCase ) UpperCAmelCase__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A ( _UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_UpperCAmelCase ) class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase = True @classmethod def _lowerCamelCase ( cls : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() @classmethod def _lowerCamelCase ( cls : Union[str, Any]) -> str: """simple docstring""" if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir).glob('**/*'): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int] , A : Union[mock.Mock, List[mock.Mock]]) -> Tuple: """simple docstring""" _UpperCAmelCase = mocks if isinstance(A , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = AcceleratorState() _UpperCAmelCase = tensor[None].clone().to(state.device ) _UpperCAmelCase = gather(_UpperCAmelCase ).cpu() _UpperCAmelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCAmelCase ): return False return True class __lowerCAmelCase : def __init__( self : Optional[Any] , A : Union[str, Any] , A : Optional[int] , A : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = returncode _UpperCAmelCase = stdout _UpperCAmelCase = stderr async def A ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' while True: _UpperCAmelCase = await stream.readline() if line: callback(_UpperCAmelCase ) else: break async def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Union[str, Any]=False ) -> _RunOutput: '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(_UpperCAmelCase ) ) _UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase = [] _UpperCAmelCase = [] def tee(_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str="" ): _UpperCAmelCase = line.decode('utf-8' ).rstrip() sink.append(_UpperCAmelCase ) if not quiet: print(_UpperCAmelCase , _UpperCAmelCase , file=_UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCAmelCase : tee(_UpperCAmelCase , _UpperCAmelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCAmelCase : tee(_UpperCAmelCase , _UpperCAmelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=_UpperCAmelCase , ) return _RunOutput(await p.wait() , _UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Dict=None , _UpperCAmelCase : str=None , _UpperCAmelCase : str=180 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : List[Any]=True ) -> _RunOutput: '''simple docstring''' _UpperCAmelCase = asyncio.get_event_loop() _UpperCAmelCase = loop.run_until_complete( _stream_subprocess(_UpperCAmelCase , env=_UpperCAmelCase , stdin=_UpperCAmelCase , timeout=_UpperCAmelCase , quiet=_UpperCAmelCase , echo=_UpperCAmelCase ) ) _UpperCAmelCase = ' '.join(_UpperCAmelCase ) if result.returncode > 0: _UpperCAmelCase = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class __lowerCAmelCase ( A ): pass def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str=False ) -> Tuple: '''simple docstring''' try: _UpperCAmelCase = subprocess.check_output(_UpperCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCAmelCase , 'decode' ): _UpperCAmelCase = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(_UpperCAmelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
339
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: Union[str, Any] = AlbertTokenizer lowercase__: int = AlbertTokenizerFast lowercase__: str = True lowercase__: List[Any] = True lowercase__: Optional[Any] = True def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case : List[Any] = AlbertTokenizer(__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any , __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : int = """this is a test""" __snake_case : List[str] = """this is a test""" return input_text, output_text def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : str = """<pad>""" __snake_case : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(__magic_name__ ) , 3_00_00 ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return __snake_case : Dict = self.get_tokenizer() __snake_case : Tuple = self.get_rust_tokenizer() __snake_case : Optional[Any] = """I was born in 92000, and this is falsé.""" __snake_case : str = tokenizer.tokenize(__magic_name__ ) __snake_case : Tuple = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : List[str] = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : List[str] = tokenizer.encode(__magic_name__ ) __snake_case : Optional[Any] = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : Dict = AlbertTokenizer(__magic_name__ , keep_accents=__magic_name__ ) __snake_case : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [48, 25, 21, 12_89] ) __snake_case : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) __snake_case : List[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) __snake_case : str = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = AlbertTokenizer(__magic_name__ ) __snake_case : List[Any] = tokenizer.encode("""sequence builders""" ) __snake_case : Optional[int] = tokenizer.encode("""multi-sequence build""" ) __snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) __snake_case : Any = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" __snake_case : Optional[Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( snake_case_ ): def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: super().__init__() UpperCamelCase : Union[str, Any] = nn.ModuleList(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = True, ) -> Any: for i, (image, scale, controlnet) in enumerate(zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.nets ) ): UpperCamelCase , UpperCamelCase : str = controlnet( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) # merge samples if i == 0: UpperCamelCase , UpperCamelCase : str = down_samples, mid_sample else: UpperCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Optional[int]: UpperCamelCase : Any = 0 UpperCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( SCREAMING_SNAKE_CASE_, is_main_process=SCREAMING_SNAKE_CASE_, save_function=SCREAMING_SNAKE_CASE_, safe_serialization=SCREAMING_SNAKE_CASE_, variant=SCREAMING_SNAKE_CASE_, ) idx += 1 UpperCamelCase : Union[str, Any] = model_path_to_save + F"""_{idx}""" @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Tuple = 0 UpperCamelCase : Tuple = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... UpperCamelCase : str = pretrained_model_path while os.path.isdir(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = ControlNetModel.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) controlnets.append(SCREAMING_SNAKE_CASE_ ) idx += 1 UpperCamelCase : str = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(SCREAMING_SNAKE_CASE_ )} controlnets loaded from {pretrained_model_path}.""" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(SCREAMING_SNAKE_CASE_ )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(SCREAMING_SNAKE_CASE_ )
119
import os from typing import Dict, List, Tuple, TypeVar, Union __a :Any = TypeVar('T') __a :Union[str, Any] = Union[List[T], Tuple[T, ...]] __a :List[str] = Union[T, List[T], Dict[str, T]] __a :Any = Union[str, bytes, os.PathLike]
312
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def A ( lowercase ) -> Dict: '''simple docstring''' UpperCamelCase = model.config UpperCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) UpperCamelCase = MBartConfig( is_decoder=lowercase , is_encoder_decoder=lowercase , add_cross_attention=lowercase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase , add_final_layer_norm=lowercase , ) return encoder_config, decoder_config def A ( lowercase ) -> Optional[Any]: '''simple docstring''' if "encoder.model" in name: UpperCamelCase = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: UpperCamelCase = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: UpperCamelCase = 'encoder.' + name if "attn.proj" in name: UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: UpperCamelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": UpperCamelCase = 'encoder.layernorm.weight' if name == "encoder.norm.bias": UpperCamelCase = 'encoder.layernorm.bias' return name def A ( lowercase , lowercase ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: UpperCamelCase = key.split('.' ) UpperCamelCase = int(key_split[3] ) UpperCamelCase = int(key_split[5] ) UpperCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: UpperCamelCase = val return orig_state_dict def A ( lowercase , lowercase=None , lowercase=False ) -> List[Any]: '''simple docstring''' UpperCamelCase = DonutModel.from_pretrained(lowercase ).eval() # load HuggingFace model UpperCamelCase , UpperCamelCase = get_configs(lowercase ) UpperCamelCase = DonutSwinModel(lowercase ) UpperCamelCase = MBartForCausalLM(lowercase ) UpperCamelCase = VisionEncoderDecoderModel(encoder=lowercase , decoder=lowercase ) model.eval() UpperCamelCase = original_model.state_dict() UpperCamelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) # verify results on scanned document UpperCamelCase = load_dataset('hf-internal-testing/example-documents' ) UpperCamelCase = dataset['test'][0]['image'].convert('RGB' ) UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained(lowercase , from_slow=lowercase ) UpperCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) UpperCamelCase = DonutProcessor(lowercase , lowercase ) UpperCamelCase = processor(lowercase , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": UpperCamelCase = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' UpperCamelCase = 'When is the coffee break?' UpperCamelCase = task_prompt.replace('{user_input}' , lowercase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": UpperCamelCase = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: UpperCamelCase = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": UpperCamelCase = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": UpperCamelCase = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt UpperCamelCase = 'hello world' else: raise ValueError('Model name not supported' ) UpperCamelCase = original_model.decoder.tokenizer(lowercase , add_special_tokens=lowercase , return_tensors='pt' )[ 'input_ids' ] UpperCamelCase = original_model.encoder.model.patch_embed(lowercase ) UpperCamelCase , UpperCamelCase = model.encoder.embeddings(lowercase ) assert torch.allclose(lowercase , lowercase , atol=1e-3 ) # verify encoder hidden states UpperCamelCase = original_model.encoder(lowercase ) UpperCamelCase = model.encoder(lowercase ).last_hidden_state assert torch.allclose(lowercase , lowercase , atol=1e-2 ) # verify decoder hidden states UpperCamelCase = original_model(lowercase , lowercase , lowercase ).logits UpperCamelCase = model(lowercase , decoder_input_ids=lowercase ).logits assert torch.allclose(lowercase , lowercase , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _UpperCAmelCase : List[str] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
352
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase : def __init__( self , A_ , A_=2 , A_=3 , A_=4 , A_=2 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=36 , A_=3 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=6 , A_=6 , A_=3 , A_=4 , A_=None , A_=1_000 , ) -> str: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = text_seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = coordinate_size UpperCamelCase = shape_size UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope UpperCamelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase = text_seq_length UpperCamelCase = (image_size // patch_size) ** 2 + 1 UpperCamelCase = self.text_seq_length + self.image_seq_length def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = LayoutLMvaModel(config=A_ ) model.to(A_ ) model.eval() # text + image UpperCamelCase = model(A_ , pixel_values=A_ ) UpperCamelCase = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ ) UpperCamelCase = model(A_ , bbox=A_ , pixel_values=A_ , token_type_ids=A_ ) UpperCamelCase = model(A_ , bbox=A_ , pixel_values=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase = model(pixel_values=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LayoutLMvaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LayoutLMvaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = LayoutLMvaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Tuple = False __lowercase : List[Any] = False __lowercase : str = False __lowercase : Tuple = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __lowercase : List[str] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = LayoutLMvaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase ( self , A_ , A_ , A_=False ) -> int: """simple docstring""" UpperCamelCase = copy.deepcopy(A_ ) if model_class in get_values(A_ ): UpperCamelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(A_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): UpperCamelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in get_values(A_ ): UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in [ *get_values(A_ ), ]: UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in [ *get_values(A_ ), ]: UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A_ , ) return inputs_dict def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> int: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Any: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) UpperCamelCase = torch.tensor([[1, 2]] ) UpperCamelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCamelCase = model( input_ids=input_ids.to(A_ ) , bbox=bbox.to(A_ ) , pixel_values=pixel_values.to(A_ ) , ) # verify the logits UpperCamelCase = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , A_ ) UpperCamelCase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A_ , atol=1e-4 ) )
110
0
"""simple docstring""" import os import string import sys __snake_case = 1 << 8 __snake_case = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __snake_case = KEYMAP["""up"""] __snake_case = KEYMAP["""left"""] if sys.platform == "win32": __snake_case = [] __snake_case = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __snake_case = ord(str(i)) def __lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": import msvcrt snake_case : Any = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke snake_case : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Union[str, Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : str = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[int] = cha[1] else: snake_case : str = ch.decode(_A ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : List[str] = sys.stdin.fileno() snake_case : str = termios.tcgetattr(_A ) try: tty.setraw(_A ) snake_case : str = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def __lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" snake_case : Dict = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: snake_case : Any = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: snake_case : Tuple = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
203
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, **lowercase_ ) -> Dict: """simple docstring""" super().__init__(**lowercase_ ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self, lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" return super().__call__(lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> int: """simple docstring""" a__ ={} if "candidate_labels" in kwargs: a__ =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: a__ =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _UpperCAmelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a sound of {}." ) -> Union[str, Any]: """simple docstring""" if isinstance(lowercase_, lowercase_ ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png a__ =requests.get(lowercase_ ).content else: with open(lowercase_, '''rb''' ) as f: a__ =f.read() if isinstance(lowercase_, lowercase_ ): a__ =ffmpeg_read(lowercase_, self.feature_extractor.sampling_rate ) if not isinstance(lowercase_, np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) a__ =self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='''pt''' ) a__ =candidate_labels a__ =[hypothesis_template.format(lowercase_ ) for x in candidate_labels] a__ =self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ ) a__ =[text_inputs] return inputs def _UpperCAmelCase ( self, lowercase_ ) -> str: """simple docstring""" a__ =model_inputs.pop('''candidate_labels''' ) a__ =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0], lowercase_ ): a__ =text_inputs[0] else: # Batching case. a__ =text_inputs[0][0] a__ =self.model(**lowercase_, **lowercase_ ) a__ ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def _UpperCAmelCase ( self, lowercase_ ) -> Any: """simple docstring""" a__ =model_outputs.pop('''candidate_labels''' ) a__ =model_outputs['''logits'''][0] if self.framework == "pt": a__ =logits.softmax(dim=0 ) a__ =probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) a__ =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] ) ] return result
188
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Any = LongformerTokenizer lowercase__ : int = True lowercase__ : Optional[int] = LongformerTokenizerFast lowercase__ : List[Any] = True def __SCREAMING_SNAKE_CASE ( self ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCAmelCase__ = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) lowerCAmelCase__ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCAmelCase__ = {'''unk_token''': '''<unk>'''} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> Any: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: lowerCAmelCase__ = '''lower newer''' lowerCAmelCase__ = '''lower newer''' return input_text, output_text def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase__ = '''lower newer''' lowerCAmelCase__ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowerCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowerCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) lowerCAmelCase__ = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = '''Encode this sequence.''' lowerCAmelCase__ = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) # Testing spaces after special tokens lowerCAmelCase__ = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ )} ) # mask token has a left space lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) lowerCAmelCase__ = '''Encode <mask> sequence''' lowerCAmelCase__ = '''Encode <mask>sequence''' lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ ) lowerCAmelCase__ = encoded.index(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ ) lowerCAmelCase__ = encoded.index(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = '''A, <mask> AllenNLP sentence.''' lowerCAmelCase__ = tokenizer_r.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCAmelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCAmelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowerCAmelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCAmelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowerCamelCase_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowerCamelCase_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase__ = F"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowerCAmelCase__ = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , )
228
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( A , A , A ) -> Optional[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = to_pil_image(A ) lowerCAmelCase__ , lowerCAmelCase__ = pil_image.size lowerCAmelCase__ = pytesseract.image_to_data(A , lang=A , output_type='''dict''' , config=A ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase__ = [idx for idx, word in enumerate(A ) if not word.strip()] lowerCAmelCase__ = [word for idx, word in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ = [] for x, y, w, h in zip(A , A , A , A ): lowerCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(A ) # finally, normalize the bounding boxes lowerCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A , A , A ) ) assert len(A ) == len(A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = ["pixel_values"] def __init__( self , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = True , lowerCamelCase_ = 1 / 2_55 , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = "" , **lowerCamelCase_ , ) -> None: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_value lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ = apply_ocr lowerCAmelCase__ = ocr_lang lowerCAmelCase__ = tesseract_config def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase__ = (size['''height'''], size['''width''']) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = ChannelDimension.FIRST , **lowerCamelCase_ , ) -> PIL.Image.Image: lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowerCamelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for image in images: lowerCAmelCase__ , lowerCAmelCase__ = apply_tesseract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) words_batch.append(lowerCamelCase_ ) boxes_batch.append(lowerCamelCase_ ) if do_resize: lowerCAmelCase__ = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCAmelCase__ = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCamelCase_ ) if apply_ocr: lowerCAmelCase__ = words_batch lowerCAmelCase__ = boxes_batch return data
228
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase : Optional[int] = logging.get_logger(__name__) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = b.T SCREAMING_SNAKE_CASE_ : List[Any] = np.sum(np.square(lowerCAmelCase ) , axis=1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.sum(np.square(lowerCAmelCase ) , axis=0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.matmul(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = x.reshape(-1 , 3 ) SCREAMING_SNAKE_CASE_ : Tuple = squared_euclidean_distance(lowerCAmelCase , lowerCAmelCase ) return np.argmin(lowerCAmelCase , axis=1 ) class a__ ( A__ ): A = ['pixel_values'] def __init__( self : Any,_A : Optional[Union[List[List[int]], np.ndarray]] = None,_A : bool = True,_A : Dict[str, int] = None,_A : PILImageResampling = PILImageResampling.BILINEAR,_A : bool = True,_A : bool = True,**_A : int,): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Any = size if size is not None else {"height": 256, "width": 256} SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(_A ) SCREAMING_SNAKE_CASE_ : str = np.array(_A ) if clusters is not None else None SCREAMING_SNAKE_CASE_ : int = do_resize SCREAMING_SNAKE_CASE_ : List[str] = size SCREAMING_SNAKE_CASE_ : Dict = resample SCREAMING_SNAKE_CASE_ : List[str] = do_normalize SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_color_quantize def __UpperCamelCase ( self : Any,_A : np.ndarray,_A : Dict[str, int],_A : PILImageResampling = PILImageResampling.BILINEAR,_A : Optional[Union[str, ChannelDimension]] = None,**_A : Union[str, Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( _A,size=(size["height"], size["width"]),resample=_A,data_format=_A,**_A ) def __UpperCamelCase ( self : str,_A : np.ndarray,_A : Optional[Union[str, ChannelDimension]] = None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = rescale(image=_A,scale=1 / 127.5,data_format=_A ) SCREAMING_SNAKE_CASE_ : Dict = image - 1 return image def __UpperCamelCase ( self : Optional[Any],_A : ImageInput,_A : bool = None,_A : Dict[str, int] = None,_A : PILImageResampling = None,_A : bool = None,_A : Optional[bool] = None,_A : Optional[Union[List[List[int]], np.ndarray]] = None,_A : Optional[Union[str, TensorType]] = None,_A : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,**_A : List[str],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : str = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(_A ) SCREAMING_SNAKE_CASE_ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : int = do_color_quantize if do_color_quantize is not None else self.do_color_quantize SCREAMING_SNAKE_CASE_ : int = clusters if clusters is not None else self.clusters SCREAMING_SNAKE_CASE_ : List[Any] = np.array(_A ) SCREAMING_SNAKE_CASE_ : Any = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : int = [to_numpy_array(_A ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : List[Any] = [self.resize(image=_A,size=_A,resample=_A ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : int = [self.normalize(image=_A ) for image in images] if do_color_quantize: SCREAMING_SNAKE_CASE_ : List[Any] = [to_channel_dimension_format(_A,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) SCREAMING_SNAKE_CASE_ : Dict = np.array(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = color_quantize(_A,_A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) SCREAMING_SNAKE_CASE_ : Optional[int] = images.shape[0] SCREAMING_SNAKE_CASE_ : List[Any] = images.reshape(_A,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. SCREAMING_SNAKE_CASE_ : str = list(_A ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [to_channel_dimension_format(_A,_A ) for image in images] SCREAMING_SNAKE_CASE_ : List[Any] = {"input_ids": images} return BatchFeature(data=_A,tensor_type=_A )
18
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""input_features""", """attention_mask"""] def __init__( self : Tuple , __lowercase : Optional[int]=80 , __lowercase : Optional[int]=1_60_00 , __lowercase : str=80 , __lowercase : Dict=0.0 , __lowercase : int=True , __lowercase : List[Any]=True , __lowercase : List[Any]=True , **__lowercase : int , ) -> int: super().__init__(feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =num_mel_bins SCREAMING_SNAKE_CASE__ : Optional[Any] =do_ceptral_normalize SCREAMING_SNAKE_CASE__ : List[str] =normalize_means SCREAMING_SNAKE_CASE__ : Optional[int] =normalize_vars SCREAMING_SNAKE_CASE__ : Tuple =True def __magic_name__ ( self : Tuple , __lowercase : np.ndarray , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : Any =waveform * (2**15) # Kaldi compliance: 16-bit signed integers SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.from_numpy(__lowercase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : List[str] =ta_kaldi.fbank(__lowercase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __magic_name__ ( __lowercase : np.ndarray , __lowercase : int , __lowercase : Optional[bool] = True , __lowercase : Optional[bool] = True , __lowercase : float = 0.0 , ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: SCREAMING_SNAKE_CASE__ : str =x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.subtract(__lowercase , __lowercase ) if normalize_vars: SCREAMING_SNAKE_CASE__ : Tuple =x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.divide(__lowercase , __lowercase ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE__ : Tuple =padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE__ : str =x.astype(np.floataa ) return x def __magic_name__ ( self : Optional[int] , __lowercase : List[np.ndarray] , __lowercase : Optional[np.ndarray] = None ) -> List[np.ndarray]: SCREAMING_SNAKE_CASE__ : int =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowercase , __lowercase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__lowercase , __lowercase ) ] def __call__( self : int , __lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowercase : Union[bool, str, PaddingStrategy] = False , __lowercase : Optional[int] = None , __lowercase : bool = False , __lowercase : Optional[int] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Optional[int] = None , __lowercase : Optional[bool] = None , **__lowercase : str , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE__ : List[str] =isinstance(__lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE__ : str =is_batched_numpy or ( isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ : Optional[Any] =[np.asarray(__lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowercase , np.ndarray ): SCREAMING_SNAKE_CASE__ : int =np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ : Tuple =raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ : List[str] =[raw_speech] # extract fbank features SCREAMING_SNAKE_CASE__ : Tuple =[self._extract_fbank_features(__lowercase ) for waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE__ : Optional[int] =BatchFeature({'''input_features''': features} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.pad( __lowercase , padding=__lowercase , max_length=__lowercase , truncation=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) # make sure list is in array format SCREAMING_SNAKE_CASE__ : Optional[Any] =padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __lowercase ): SCREAMING_SNAKE_CASE__ : Any =[np.asarray(__lowercase , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE__ : Dict =padded_inputs.get('''attention_mask''' ) if attention_mask is not None: SCREAMING_SNAKE_CASE__ : str =[np.asarray(__lowercase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: SCREAMING_SNAKE_CASE__ : str =( np.array(__lowercase , dtype=np.intaa ) if self._get_padding_strategies(__lowercase , max_length=__lowercase ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE__ : int =self.normalize( padded_inputs['''input_features'''] , attention_mask=__lowercase ) if return_tensors is not None: SCREAMING_SNAKE_CASE__ : Dict =padded_inputs.convert_to_tensors(__lowercase ) return padded_inputs
152
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {"vocab_file": "spiece.model"} UpperCAmelCase_ : Tuple = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__=False , UpperCAmelCase__="<s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<sep>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__="<cls>" , UpperCAmelCase__="<mask>" , UpperCAmelCase__=["<eop>", "<eod>"] , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = 3 A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) A__ = jieba A__ = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __A ( self ): return len(self.sp_model ) def __A ( self ): A__ = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A__ = self.__dict__.copy() A__ = None return state def __setstate__( self , UpperCAmelCase__ ): A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , UpperCAmelCase__ ): if self.remove_space: A__ = " ".join(inputs.strip().split() ) else: A__ = inputs A__ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: A__ = unicodedata.normalize("NFKD" , UpperCAmelCase__ ) A__ = "".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: A__ = outputs.lower() return outputs def __A ( self , UpperCAmelCase__ ): A__ = self.preprocess_text(UpperCAmelCase__ ) A__ = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) A__ = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): A__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ = cur_pieces[1:] else: A__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def __A ( self , UpperCAmelCase__ ): return self.sp_model.PieceToId(UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ ): return self.sp_model.IdToPiece(UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ ): A__ = "".join(UpperCAmelCase__ ).replace(UpperCAmelCase__ , " " ).strip() return out_string def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] return ([0] * len(UpperCAmelCase__ )) + [1, 1] def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = [self.sep_token_id] A__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def __A ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ): A__ = super()._decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
198
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCAmelCase_ : Dict = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } UpperCAmelCase_ : Any = { "169M": 768, "430M": 1_024, "1B5": 2_048, "3B": 2_560, "7B": 4_096, "14B": 5_120, } def UpperCamelCase ( _A : Dict )-> Optional[int]: """simple docstring""" A__ = list(state_dict.keys() ) for name in state_dict_keys: A__ = state_dict.pop(_A ) # emb -> embedding if name.startswith("emb." ): A__ = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): A__ = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention A__ = re.sub(R"blocks\.(\d+)\.att" , R"blocks.\1.attention" , _A ) # ffn -> feed_forward A__ = re.sub(R"blocks\.(\d+)\.ffn" , R"blocks.\1.feed_forward" , _A ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): A__ = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): A__ = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): A__ = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": A__ = "rwkv." + name A__ = weight return state_dict def UpperCamelCase ( _A : str , _A : List[Any] , _A : List[Any] , _A : int=None , _A : List[str]=None , _A : Dict=False , _A : List[Any]=None )-> str: """simple docstring""" if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) A__ = 50277 A__ = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: A__ = PreTrainedTokenizerFast(tokenizer_file=_A ) A__ = len(_A ) tokenizer.save_pretrained(_A ) # 2. Build the config A__ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: A__ = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) A__ = RwkvConfig( vocab_size=_A , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_A ) # 3. Download model file then convert state_dict A__ = hf_hub_download(_A , _A ) A__ = torch.load(_A , map_location="cpu" ) A__ = convert_state_dict(_A ) # 4. Split in shards and save A__ , A__ = shard_checkpoint(_A ) for shard_file, shard in shards.items(): torch.save(_A , os.path.join(_A , _A ) ) if index is not None: A__ = os.path.join(_A , _A ) # Save the index as well with open(_A , "w" , encoding="utf-8" ) as f: A__ = json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" f.write(_A ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) A__ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: A__ = torch.load(os.path.join(_A , _A ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_A , _A ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) A__ = AutoModelForCausalLM.from_pretrained(_A ) model.push_to_hub(_A , max_shard_size="2GB" ) tokenizer.push_to_hub(_A ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
198
1
lowercase_ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.3_5_5_8_1_8, } def a ( A__ : str , A__ : str , A__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _lowercase =( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(A__ )}''' ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
205
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
1
from __future__ import annotations def UpperCamelCase ( snake_case__ : str ) -> list[int]: return [ord(snake_case__ ) - 96 for elem in plain] def UpperCamelCase ( snake_case__ : list[int] ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCamelCase ( ) -> None: UpperCamelCase : List[str] = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , snake_case__ ) print('Decoded:' , decode(snake_case__ ) ) if __name__ == "__main__": main()
103
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowerCAmelCase_ : @staticmethod def snake_case_ ( *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: pass def UpperCamelCase ( snake_case__ : Image ) -> str: UpperCamelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : str = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : List[str] = DepthEstimationPipeline(model=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, SCREAMING_SNAKE_CASE_ ) import datasets UpperCamelCase : int = datasets.load_dataset('hf-internal-testing/fixtures_image_utils', 'image', split='test' ) UpperCamelCase : Tuple = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ], SCREAMING_SNAKE_CASE_, ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def snake_case_ ( self ) -> Optional[int]: pass @slow @require_torch def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Optional[Any] = 'Intel/dpt-large' UpperCamelCase : Tuple = pipeline('depth-estimation', model=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) UpperCamelCase : int = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ), 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ), 2.6_62 ) @require_torch def snake_case_ ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
103
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=1_3 , snake_case=3_0 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_0 , snake_case=0.02 , snake_case=None , snake_case=2 , ): '''simple docstring''' UpperCAmelCase : str = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : str = image_size UpperCAmelCase : Tuple = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : List[str] = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : int = type_sequence_label_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Dict = scope UpperCAmelCase : Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase : Dict = num_patches + 1 def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def A_ ( self ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = ViTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase : Dict = 1 UpperCAmelCase : List[str] = ViTForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Tuple = self.type_sequence_label_size UpperCAmelCase : List[str] = ViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase : Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : List[str] = ViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( UpperCAmelCase ) : List[str] = config_and_inputs UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : List[str] = True SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Tuple = False def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = ViTModelTester(self ) UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def A_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ ) UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def A_ ( self ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def lowercase ( ): '''simple docstring''' UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(lowerCAmelCase__ ) UpperCAmelCase : Optional[Any] = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[int] = model(**lowerCAmelCase__ ) # verify the logits UpperCAmelCase : Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) UpperCAmelCase : List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = ViTModel.from_pretrained("facebook/dino-vits8" ).to(lowerCAmelCase__ ) UpperCAmelCase : List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=4_8_0 ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase : int = inputs.pixel_values.to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__ ) # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase : str = inputs.pixel_values.to(lowerCAmelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase : str = model(lowerCAmelCase__ )
311
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ (__snake_case , unittest.TestCase ): __lowerCamelCase : List[str] = GPTSanJapaneseTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = {"""do_clean_text""": False, """add_prefix_space""": False} def snake_case_ ( self): super().setUp() # fmt: off lowercase__ : List[Any] = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowercase__ : Any = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowercase__ : Optional[Any] = {'unk_token': '<unk>'} lowercase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) with open(self.emoji_file , 'w') as emoji_writer: emoji_writer.write(json.dumps(a)) def snake_case_ ( self , **a): kwargs.update(self.special_tokens_map) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **a) def snake_case_ ( self , a): lowercase__ : List[Any] = 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowercase__ : Optional[Any] = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def snake_case_ ( self , a): lowercase__ , lowercase__ : List[str] = self.get_input_output_texts(a) lowercase__ : Optional[Any] = tokenizer.encode(a , add_special_tokens=a) lowercase__ : Optional[Any] = tokenizer.decode(a , clean_up_tokenization_spaces=a) return text, ids def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): lowercase__ : Optional[Any] = self.get_tokenizer() # Testing tokenization lowercase__ : Tuple = 'こんにちは、世界。 こんばんは、㔺界。' lowercase__ : Any = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowercase__ : Optional[int] = tokenizer.tokenize(a) self.assertListEqual(a , a) # Testing conversion to ids without special tokens lowercase__ : List[str] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase__ : Dict = tokenizer.convert_tokens_to_ids(a) self.assertListEqual(a , a) # Testing conversion to ids with special tokens lowercase__ : Tuple = tokens + [tokenizer.unk_token] lowercase__ : Optional[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase__ : Tuple = tokenizer.convert_tokens_to_ids(a) self.assertListEqual(a , a) def snake_case_ ( self): lowercase__ : Any = self.get_tokenizer() # Testing tokenization lowercase__ : Dict = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowercase__ : Dict = 'こんにちは、、、、世界。こんばんは、、、、世界。' lowercase__ : Optional[int] = tokenizer.encode(a) lowercase__ : Union[str, Any] = tokenizer.decode(a) self.assertEqual(a , a) @slow def snake_case_ ( self): lowercase__ : Optional[int] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese') # Testing tokenization lowercase__ : List[Any] = 'こんにちは、世界。' lowercase__ : Tuple = 'こんばんは、㔺界。😀' lowercase__ : Tuple = 'こんにちは、世界。こんばんは、世界。😀' lowercase__ : List[Any] = tokenizer.encode(prefix_text + input_text) lowercase__ : Any = tokenizer.encode('' , prefix_text=prefix_text + input_text) lowercase__ : Optional[Any] = tokenizer.encode(a , prefix_text=a) lowercase__ : Optional[Any] = tokenizer.decode(a) lowercase__ : List[str] = tokenizer.decode(a) lowercase__ : List[str] = tokenizer.decode(a) self.assertEqual(a , a) self.assertEqual(a , a) self.assertEqual(a , a) @slow def snake_case_ ( self): lowercase__ : str = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese') # Testing tokenization lowercase__ : Optional[int] = 'こんにちは、世界。' lowercase__ : int = 'こんばんは、㔺界。😀' lowercase__ : Optional[int] = len(tokenizer.encode(a)) - 2 lowercase__ : Optional[int] = len(tokenizer.encode(a)) - 2 lowercase__ : int = [1] + [0] * (len_prefix + len_text + 1) lowercase__ : List[Any] = [1] * (len_prefix + len_text + 1) + [0] lowercase__ : Optional[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase__ : Tuple = tokenizer(prefix_text + input_text).token_type_ids lowercase__ : Optional[int] = tokenizer('' , prefix_text=prefix_text + input_text).token_type_ids lowercase__ : Union[str, Any] = tokenizer(a , prefix_text=a).token_type_ids self.assertListEqual(a , a) self.assertListEqual(a , a) self.assertListEqual(a , a) @slow def snake_case_ ( self): lowercase__ : List[str] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese') lowercase__ : Tuple = tokenizer.encode('あンいワ') lowercase__ : Any = tokenizer.encode('' , prefix_text='あンいワ') lowercase__ : List[Any] = tokenizer.encode('いワ' , prefix_text='あン') self.assertEqual(tokenizer.decode(a) , tokenizer.decode(a)) self.assertEqual(tokenizer.decode(a) , tokenizer.decode(a)) self.assertNotEqual(a , a) self.assertNotEqual(a , a) self.assertEqual(x_token_a[1] , x_token_a[-1]) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3]) # SEG token @slow def snake_case_ ( self): lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese') lowercase__ : str = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowercase__ : Any = tokenizer(a , padding=a) lowercase__ : Union[str, Any] = tokenizer.batch_encode_plus(a , padding=a) # fmt: off lowercase__ : str = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase__ : Any = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase__ : Optional[int] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , a) self.assertListEqual(x_token.token_type_ids , a) self.assertListEqual(x_token.attention_mask , a) self.assertListEqual(x_token_a.input_ids , a) self.assertListEqual(x_token_a.token_type_ids , a) self.assertListEqual(x_token_a.attention_mask , a) def snake_case_ ( self): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def snake_case_ ( self): # tokenizer has no padding token pass
216
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
216
1
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowercase_ = ["""small""", """medium""", """large"""] lowercase_ = """lm_head.decoder.weight""" lowercase_ = """lm_head.weight""" def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ) ->Any: _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = d.pop(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) lowercase_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowercase_ = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") lowercase_ = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
58
from __future__ import annotations import numpy as np def a__ ( snake_case ): """simple docstring""" return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) _UpperCAmelCase : List[Any] = sorted(string.lower() ) return len(__lowerCAmelCase ) == len(set(__lowerCAmelCase ) ) if __name__ == "__main__": lowerCamelCase__ = input('Enter a string ').strip() lowerCamelCase__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase_ ( _UpperCamelCase ): __lowerCamelCase : Any = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , **_lowerCAmelCase , ) -> Optional[int]: super().__init__(**_UpperCAmelCase ) _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 224} _lowerCAmelCase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _lowerCAmelCase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase = do_convert_rgb def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowerCAmelCase = get_resize_output_image_size(_UpperCAmelCase , size=size["shortest_edge"] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Optional[Any]: _lowerCAmelCase = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Optional[int]: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Optional[int]: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_UpperCAmelCase , param_name="size" , default_to_square=_UpperCAmelCase ) _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_UpperCAmelCase , param_name="crop_size" , default_to_square=_UpperCAmelCase ) _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] _lowerCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
158
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A = logging.get_logger('''transformers.models.encodec''') A = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } A = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } A = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } A = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } A = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A = [] A = [] def __A ( a_ :Optional[int] , a_ :str , a_ :Optional[Any] , a_ :Optional[Any] , a_ :Tuple) -> str: for attribute in key.split('''.'''): __a : Union[str, Any] = getattr(a_ , a_) if weight_type is not None: __a : Optional[Any] = getattr(a_ , a_).shape else: __a : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""") if weight_type == "weight": __a : Tuple = value elif weight_type == "weight_g": __a : List[str] = value elif weight_type == "weight_v": __a : Optional[int] = value elif weight_type == "bias": __a : List[str] = value elif weight_type == "running_mean": __a : List[str] = value elif weight_type == "running_var": __a : List[Any] = value elif weight_type == "num_batches_tracked": __a : List[Any] = value elif weight_type == "weight_ih_l0": __a : Optional[int] = value elif weight_type == "weight_hh_l0": __a : Any = value elif weight_type == "bias_ih_l0": __a : Union[str, Any] = value elif weight_type == "bias_hh_l0": __a : Optional[Any] = value elif weight_type == "weight_ih_l1": __a : Dict = value elif weight_type == "weight_hh_l1": __a : str = value elif weight_type == "bias_ih_l1": __a : Union[str, Any] = value elif weight_type == "bias_hh_l1": __a : Union[str, Any] = value else: __a : str = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""") def __A ( a_ :Dict , a_ :Any) -> Tuple: for key in ignore_keys: if key.endswith('''.*'''): if name.startswith(key[:-1]): return True elif ".*." in key: __a , __a : Union[str, Any] = key.split('''.*.''') if prefix in name and suffix in name: return True elif key in name: return True return False def __A ( a_ :Optional[Any] , a_ :Tuple , a_ :List[str]) -> Any: __a : Tuple = [] if model_name == "encodec_24khz" or "encodec_32khz": __a : int = MAPPING_24K elif model_name == "encodec_48khz": __a : List[str] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""") for name, value in orig_dict.items(): if should_ignore(a_ , a_): logger.info(F"""{name} was ignored""") continue __a : Tuple = False for key, mapped_key in MAPPING.items(): if "*" in key: __a , __a : Optional[Any] = key.split('''.*.''') if prefix in name and suffix in name: __a : int = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''') and name.endswith('''embed_avg'''): continue __a : List[str] = True if "*" in mapped_key: __a : Optional[Any] = name.split(a_)[0].split('''.''')[-2] __a : str = mapped_key.replace('''*''' , a_) if "weight_g" in name: __a : Optional[Any] = '''weight_g''' elif "weight_v" in name: __a : Optional[Any] = '''weight_v''' elif "weight_ih_l0" in name: __a : Tuple = '''weight_ih_l0''' elif "weight_hh_l0" in name: __a : Tuple = '''weight_hh_l0''' elif "bias_ih_l0" in name: __a : List[str] = '''bias_ih_l0''' elif "bias_hh_l0" in name: __a : int = '''bias_hh_l0''' elif "weight_ih_l1" in name: __a : Optional[int] = '''weight_ih_l1''' elif "weight_hh_l1" in name: __a : List[str] = '''weight_hh_l1''' elif "bias_ih_l1" in name: __a : List[str] = '''bias_ih_l1''' elif "bias_hh_l1" in name: __a : str = '''bias_hh_l1''' elif "bias" in name: __a : Union[str, Any] = '''bias''' elif "weight" in name: __a : Any = '''weight''' elif "running_mean" in name: __a : List[Any] = '''running_mean''' elif "running_var" in name: __a : int = '''running_var''' elif "num_batches_tracked" in name: __a : int = '''num_batches_tracked''' else: __a : List[str] = None set_recursively(a_ , a_ , a_ , a_ , a_) continue if not is_used: unused_weights.append(a_) logger.warning(F"""Unused weights: {unused_weights}""") @torch.no_grad() def __A ( a_ :Dict , a_ :Optional[int] , a_ :Union[str, Any] , a_ :Any=None , a_ :Tuple=None , ) -> List[Any]: if config_path is not None: __a : List[str] = EncodecConfig.from_pretrained(a_) else: __a : List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __a : List[Any] = [8, 5, 4, 4] __a : int = [2.2] __a : int = 64 __a : List[Any] = 3_20_00 __a : Union[str, Any] = 20_48 __a : Optional[int] = False __a : str = False __a : Dict = False elif model_name == "encodec_48khz": __a : Any = [8, 5, 4, 2] __a : Dict = [3.0, 6.0, 1_2.0, 2_4.0] __a : List[Any] = 4_80_00 __a : Dict = 2 __a : int = False __a : List[str] = '''time_group_norm''' __a : str = True __a : Dict = 1.0 __a : Optional[Any] = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""") __a : Union[str, Any] = EncodecModel(a_) __a : List[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(a_) __a : List[Any] = torch.load(a_) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __a : Optional[Any] = original_checkpoint['''best_state'''] recursively_load_weights(a_ , a_ , a_) model.save_pretrained(a_) if repo_id: print('''Pushing to the hub...''') feature_extractor.push_to_hub(a_) model.push_to_hub(a_) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
160
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCAmelCase__ = None lowerCAmelCase__ = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCAmelCase__ = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class a_ : '''simple docstring''' UpperCAmelCase_ = True UpperCAmelCase_ = None # Automatically constructed UpperCAmelCase_ = "PIL.Image.Image" UpperCAmelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) UpperCAmelCase_ = field(default='Image' , init=SCREAMING_SNAKE_CASE , repr=SCREAMING_SNAKE_CASE ) def __call__( self : Dict): '''simple docstring''' return self.pa_type def __snake_case ( self : str , lowercase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = np.array(lowercase__) if isinstance(lowercase__ , lowercase__): return {"path": value, "bytes": None} elif isinstance(lowercase__ , lowercase__): return {"path": None, "bytes": value} elif isinstance(lowercase__ , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase__) elif isinstance(lowercase__ , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase__) elif value.get('path') is not None and os.path.isfile(value['path']): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path')} elif value.get('bytes') is not None or value.get('path') is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes'), "path": value.get('path')} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""") def __snake_case ( self : List[Any] , lowercase__ : dict , lowercase__ : Optional[int]=None): '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.') if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.') if token_per_repo_id is None: lowerCAmelCase__ = {} lowerCAmelCase__ , lowerCAmelCase__ = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""") else: if is_local_path(lowercase__): lowerCAmelCase__ = PIL.Image.open(lowercase__) else: lowerCAmelCase__ = path.split('::')[-1] try: lowerCAmelCase__ = string_to_dict(lowercase__ , config.HUB_DATASETS_URL)['repo_id'] lowerCAmelCase__ = token_per_repo_id.get(lowercase__) except ValueError: lowerCAmelCase__ = None with xopen(lowercase__ , 'rb' , use_auth_token=lowercase__) as f: lowerCAmelCase__ = BytesIO(f.read()) lowerCAmelCase__ = PIL.Image.open(bytes_) else: lowerCAmelCase__ = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def __snake_case ( self : Dict): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('binary'), "path": Value('string'), } ) def __snake_case ( self : Union[str, Any] , lowercase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray]): '''simple docstring''' if pa.types.is_string(storage.type): lowerCAmelCase__ = pa.array([None] * len(lowercase__) , type=pa.binary()) lowerCAmelCase__ = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): lowerCAmelCase__ = pa.array([None] * len(lowercase__) , type=pa.string()) lowerCAmelCase__ = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('bytes') >= 0: lowerCAmelCase__ = storage.field('bytes') else: lowerCAmelCase__ = pa.array([None] * len(lowercase__) , type=pa.binary()) if storage.type.get_field_index('path') >= 0: lowerCAmelCase__ = storage.field('path') else: lowerCAmelCase__ = pa.array([None] * len(lowercase__) , type=pa.string()) lowerCAmelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_list(storage.type): lowerCAmelCase__ = pa.array( [encode_np_array(np.array(lowercase__))['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCAmelCase__ = pa.array([None] * len(lowercase__) , type=pa.string()) lowerCAmelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(lowercase__ , self.pa_type) def __snake_case ( self : List[Any] , lowercase__ : pa.StructArray): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowercase__ : Union[str, Any]): with xopen(lowercase__ , 'rb') as f: lowerCAmelCase__ = f.read() return bytes_ lowerCAmelCase__ = pa.array( [ (path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase__ = pa.array( [os.path.basename(lowercase__) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , ) lowerCAmelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(lowercase__ , self.pa_type) def __lowerCamelCase ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCAmelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = BytesIO() if image.format in list_image_compression_formats(): lowerCAmelCase__ = image.format else: lowerCAmelCase__ = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowerCAmelCase__ , format=lowerCAmelCase__ ) return buffer.getvalue() def __lowerCamelCase ( lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowerCAmelCase__ )} def __lowerCamelCase ( lowerCAmelCase__ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) lowerCAmelCase__ = array.dtype lowerCAmelCase__ = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER lowerCAmelCase__ = dtype.kind lowerCAmelCase__ = dtype.itemsize lowerCAmelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCAmelCase__ = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCAmelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCAmelCase__ = dtype_byteorder + dtype_kind + str(lowerCAmelCase__ ) lowerCAmelCase__ = np.dtype(lowerCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) lowerCAmelCase__ = PIL.Image.fromarray(array.astype(lowerCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(lowerCAmelCase__ )} def __lowerCamelCase ( lowerCAmelCase__ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: lowerCAmelCase__ , lowerCAmelCase__ = first_non_null_value(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowerCAmelCase__ , np.ndarray ): lowerCAmelCase__ = no_op_if_value_is_null(lowerCAmelCase__ ) return [obj_to_image_dict_func(lowerCAmelCase__ ) for obj in objs] elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): lowerCAmelCase__ = no_op_if_value_is_null(lowerCAmelCase__ ) return [obj_to_image_dict_func(lowerCAmelCase__ ) for obj in objs] else: return objs else: return objs
119
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
119
1