code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
def SCREAMING_SNAKE_CASE_ ( _snake_case :list[int] , _snake_case :list[int] , _snake_case :int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] , _snake_case :int , _snake_case :list[int] , _snake_case :int ) -> bool: # Base Case if index == len(_snake_case ): return True # Recursive Step for i in range(_snake_case ): if valid_coloring(graph[index] , _snake_case , _snake_case ): # Color current vertex _A = i # Validate coloring if util_color(_snake_case , _snake_case , _snake_case , index + 1 ): return True # Backtrack _A = -1 return False def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] , _snake_case :int ) -> list[int]: _A = [-1] * len(_snake_case ) if util_color(_snake_case , _snake_case , _snake_case , 0 ): return colored_vertices return []
2
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _A = 0 _A = len(_snake_case ) - 1 _A = 0 while mid <= high: if sequence[mid] == colors[0]: _A , _A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _A , _A = sequence[high], sequence[mid] high -= 1 else: _A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
2
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> List[Any]: _A = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): _A = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): _A = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _A = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] _A = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_snake_case )-1}''' ) if "norm" in key: _A = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _A = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] _A = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_snake_case )-1}''' ) if "layer_norm1" in key: _A = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: _A = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 _A = key[key.find('''block''' ) + len('''block''' )] _A = key.replace(F'''block{idx}''' , F'''block.{int(_snake_case )-1}''' ) if "attn.q" in key: _A = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: _A = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: _A = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: _A = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: _A = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: _A = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: _A = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) _A = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _A = key[key.find('''linear_c''' ) + len('''linear_c''' )] _A = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_snake_case )-1}''' ) if "bot_conv" in key: _A = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: _A = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: _A = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: _A = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: _A = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: _A = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: _A = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): _A = key.replace('''module.last_layer_depth''' , '''head.head''' ) _A = value return new_state_dict def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :Any ) -> str: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _A = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _A = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _A = kv_weight[ : config.hidden_sizes[i], : ] _A = kv_bias[: config.hidden_sizes[i]] _A = kv_weight[ config.hidden_sizes[i] :, : ] _A = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: _A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :Any , _snake_case :str=False , _snake_case :Tuple=None ) -> Any: _A = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _A = GLPNImageProcessor() # prepare image _A = prepare_img() _A = image_processor(images=_snake_case , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict _A = torch.load(_snake_case , map_location=torch.device('''cpu''' ) ) # rename keys _A = rename_keys(_snake_case ) # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict _A = GLPNForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass _A = model(_snake_case ) _A = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _A = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: _A = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) _A = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _snake_case , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) UpperCAmelCase_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
2
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
2
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Any: if _re_test_backend.search(_snake_case ) is None: return None _A = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Any: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() _A = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): _A = _re_one_line_import_struct.search(_snake_case ).groups()[0] _A = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _A = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _A = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: _A = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: _A = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict ) -> Any: def find_duplicates(_snake_case :Any ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> int: _A = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: _A = os.path.join(_snake_case , '''__init__.py''' ) _A = parse_init(_snake_case ) if objects is not None: _A = analyze_results(*_snake_case ) if len(_snake_case ) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue _A = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) _A = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue _A = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) _A = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A = direct_transformers_import(_snake_case ) _A = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: _A = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: _A = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
2
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = PegasusTokenizer a__ : Any = PegasusTokenizerFast a__ : int = True a__ : Union[str, Any] = True def snake_case_ ( self : Tuple ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing _A = PegasusTokenizer(__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case_ ( self : Union[str, Any] ) -> int: return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def snake_case_ ( self : Union[str, Any] , **__lowerCAmelCase : Any ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> List[Any]: return ("This is a test", "This is a test") def snake_case_ ( self : Dict ) -> Dict: _A = '''</s>''' _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> List[str]: _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(__lowerCAmelCase ) , 11_03 ) def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def snake_case_ ( self : Any ) -> int: _A = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) _A = rust_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] _A = py_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : List[str] ) -> Optional[Any]: _A = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' _A = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _A = tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: _A = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 _A = '''To ensure a smooth flow of bank resolutions.''' _A = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _A = tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def snake_case_ ( self : Dict ) -> Any: _A = ['''This is going to be way too long.''' * 1_50, '''short example'''] _A = ['''not super long but more than 5 tokens''', '''tiny'''] _A = self._large_tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) _A = self._large_tokenizer( text_target=__lowerCAmelCase , max_length=5 , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCAmelCase ) == 2 # input_ids, attention_mask. @slow def snake_case_ ( self : Union[str, Any] ) -> Tuple: # fmt: off _A = {'''input_ids''': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : List[str] = PegasusTokenizer a__ : Dict = PegasusTokenizerFast a__ : Optional[int] = True a__ : Any = True def snake_case_ ( self : int ) -> Any: super().setUp() # We have a SentencePiece fixture for testing _A = PegasusTokenizer(__lowerCAmelCase , offset=0 , mask_token_sent=__lowerCAmelCase , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case_ ( self : Dict ) -> str: return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def snake_case_ ( self : Any , **__lowerCAmelCase : Tuple ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: return ("This is a test", "This is a test") def snake_case_ ( self : Any ) -> Optional[Any]: _A = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) _A = rust_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] _A = py_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @require_torch def snake_case_ ( self : List[Any] ) -> str: _A = ['''This is going to be way too long.''' * 10_00, '''short example'''] _A = ['''not super long but more than 5 tokens''', '''tiny'''] _A = self._large_tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) _A = self._large_tokenizer( text_target=__lowerCAmelCase , max_length=5 , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCAmelCase ) == 2 # input_ids, attention_mask. def snake_case_ ( self : Optional[int] ) -> Dict: _A = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) _A = self._large_tokenizer(__lowerCAmelCase ).input_ids self.assertListEqual( __lowerCAmelCase , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
2
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase__ ( _A): """simple docstring""" a__ : str = "realm" def __init__( self : List[Any] , __lowerCAmelCase : List[Any]=3_05_22 , __lowerCAmelCase : List[str]=7_68 , __lowerCAmelCase : str=1_28 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Union[str, Any]=8 , __lowerCAmelCase : Tuple=30_72 , __lowerCAmelCase : Optional[int]="gelu_new" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=5_12 , __lowerCAmelCase : str=2 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : str=1E-12 , __lowerCAmelCase : Tuple=2_56 , __lowerCAmelCase : List[str]=10 , __lowerCAmelCase : Union[str, Any]=1E-3 , __lowerCAmelCase : Optional[Any]=5 , __lowerCAmelCase : List[Any]=3_20 , __lowerCAmelCase : Any=13_35_37_18 , __lowerCAmelCase : Tuple=50_00 , __lowerCAmelCase : str=1 , __lowerCAmelCase : List[str]=0 , __lowerCAmelCase : Union[str, Any]=2 , **__lowerCAmelCase : Dict , ) -> int: super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) # Common config _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = retriever_proj_size _A = num_hidden_layers _A = num_attention_heads _A = num_candidates _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = type_vocab_size _A = layer_norm_eps # Reader config _A = span_hidden_size _A = max_span_width _A = reader_layer_norm_eps _A = reader_beam_size _A = reader_seq_len # Retrieval config _A = num_block_records _A = searcher_beam_size
2
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) UpperCAmelCase_ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') UpperCAmelCase_ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) UpperCAmelCase_ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) UpperCAmelCase_ = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) UpperCAmelCase_ = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions UpperCAmelCase_ = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(6_4, 6_4) ) UpperCAmelCase_ = tf.keras.preprocessing.image.img_to_array(test_image) UpperCAmelCase_ = np.expand_dims(test_image, axis=0) UpperCAmelCase_ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: UpperCAmelCase_ = """Normal""" if result[0][0] == 1: UpperCAmelCase_ = """Abnormality detected"""
2
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = 9 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _A = kruskal(_snake_case , _snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_snake_case ) == sorted(_snake_case )
2
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCamelCase__ : """simple docstring""" def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ) -> Dict: return None class lowerCamelCase__ : """simple docstring""" def snake_case_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] ) -> List[str]: return None class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" a__ : Optional[int] = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case_ ( self : Tuple ) -> Dict: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCAmelCase , '''tf''' , 12 , **__lowerCAmelCase ) @require_torch @slow def snake_case_ ( self : Dict ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCAmelCase , '''pt''' , 12 , **__lowerCAmelCase ) @require_torch @slow def snake_case_ ( self : Union[str, Any] ) -> List[Any]: from transformers import BertModel _A = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(__lowerCAmelCase ) ) vocab_file.flush() _A = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _A = BertModel(BertConfig(vocab_size=len(__lowerCAmelCase ) ) ) model.save_pretrained(__lowerCAmelCase ) self._test_export(__lowerCAmelCase , '''pt''' , 12 , __lowerCAmelCase ) @require_tf @slow def snake_case_ ( self : Optional[int] ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _A = self._test_export(__lowerCAmelCase , '''tf''' , 12 , **__lowerCAmelCase ) _A = quantize(Path(__lowerCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCAmelCase ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def snake_case_ ( self : Tuple ) -> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _A = self._test_export(__lowerCAmelCase , '''pt''' , 12 , **__lowerCAmelCase ) _A = quantize(__lowerCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCAmelCase ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Any ) -> Any: try: # Compute path with TemporaryDirectory() as tempdir: _A = Path(__lowerCAmelCase ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return path except Exception as e: self.fail(__lowerCAmelCase ) @require_torch @require_tokenizers @slow def snake_case_ ( self : Union[str, Any] ) -> Optional[Any]: from transformers import BertModel _A = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _A = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__lowerCAmelCase , __lowerCAmelCase , '''pt''' ) @require_tf @require_tokenizers @slow def snake_case_ ( self : int ) -> str: from transformers import TFBertModel _A = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _A = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__lowerCAmelCase , __lowerCAmelCase , '''tf''' ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ) -> Union[str, Any]: _A = FeatureExtractionPipeline(__lowerCAmelCase , __lowerCAmelCase ) _A = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] _A , _A , _A , _A = infer_shapes(__lowerCAmelCase , __lowerCAmelCase ) # Assert all variables are present self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCAmelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def snake_case_ ( self : int ) -> List[str]: _A = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] _A = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} _A , _A = ensure_valid_input(FuncContiguousArgs() , __lowerCAmelCase , __lowerCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCAmelCase ) , set(__lowerCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCAmelCase , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _A , _A = ensure_valid_input(FuncNonContiguousArgs() , __lowerCAmelCase , __lowerCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCAmelCase ) , 1 ) self.assertEqual(len(__lowerCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def snake_case_ ( self : List[Any] ) -> int: _A = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase_ = 1_0_0 UpperCAmelCase_ = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase_ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _A = set() _A = 42 _A = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 5_000 ) -> int | None: for number_to_partition in range(1 , _snake_case ): if len(partition(_snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'{solution() = }')
2
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
1
def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if any(not isinstance(_snake_case , _snake_case ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(_snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
2
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> YolosConfig: _A = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _A = 192 _A = 768 _A = 12 _A = 3 _A = [800, 1_333] _A = False elif yolos_name == "yolos_s_dWr": _A = 330 _A = 14 _A = 6 _A = 1_320 elif "yolos_s" in yolos_name: _A = 384 _A = 1_536 _A = 12 _A = 6 elif "yolos_b" in yolos_name: _A = [800, 1_344] _A = 91 _A = '''huggingface/label-files''' _A = '''coco-detection-id2label.json''' _A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) _A = {int(_snake_case ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :YolosConfig , _snake_case :bool = False ) -> Optional[int]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _A = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[: config.hidden_size, :] _A = in_proj_bias[: config.hidden_size] _A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A = in_proj_weight[-config.hidden_size :, :] _A = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> str: if "backbone" in name: _A = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: _A = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: _A = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: _A = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: _A = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: _A = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: _A = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _A = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _A = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _A = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _A = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _A = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: _A = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: _A = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: _A = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :YolosForObjectDetection ) -> dict: for key in orig_state_dict.copy().keys(): _A = orig_state_dict.pop(_snake_case ) if "qkv" in key: _A = key.split('''.''' ) _A = int(key_split[2] ) _A = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _A = val[:dim, :] _A = val[ dim : dim * 2, : ] _A = val[-dim:, :] else: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] else: _A = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( ) -> torch.Tensor: _A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str , _snake_case :str , _snake_case :bool = False ) -> Dict: _A = get_yolos_config(_snake_case ) # load original state_dict _A = torch.load(_snake_case , map_location='''cpu''' )['''model'''] # load 🤗 model _A = YolosForObjectDetection(_snake_case ) model.eval() _A = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by YolosImageProcessor _A = 800 if yolos_name != '''yolos_ti''' else 512 _A = YolosImageProcessor(format='''coco_detection''' , size=_snake_case ) _A = image_processor(images=prepare_img() , return_tensors='''pt''' ) _A = model(**_snake_case ) _A , _A = outputs.logits, outputs.pred_boxes _A , _A = None, None if yolos_name == "yolos_ti": _A = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) _A = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": _A = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) _A = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": _A = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) _A = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": _A = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) _A = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": _A = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) _A = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1E-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: _A = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) _A = model_mapping[yolos_name] image_processor.push_to_hub(_snake_case , organization='''hustvl''' ) model.push_to_hub(_snake_case , organization='''hustvl''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
2
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple=13 , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : List[Any]=[10, 20, 30, 40] , __lowerCAmelCase : str=[2, 2, 3, 2] , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[Any]=37 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : List[Any]=10 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : Any=["stage2", "stage3", "stage4"] , __lowerCAmelCase : List[Any]=[2, 3, 4] , __lowerCAmelCase : List[Any]=None , ) -> Optional[int]: _A = parent _A = batch_size _A = image_size _A = num_channels _A = num_stages _A = hidden_sizes _A = depths _A = is_training _A = use_labels _A = intermediate_size _A = hidden_act _A = num_labels _A = initializer_range _A = out_features _A = out_indices _A = scope def snake_case_ ( self : Any ) -> List[Any]: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels def snake_case_ ( self : Tuple ) -> List[str]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def snake_case_ ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> List[str]: _A = ConvNextVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model(__lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : Any ) -> Optional[Any]: _A = ConvNextVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self : str , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ) -> int: _A = ConvNextVaBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model(__lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A = None _A = ConvNextVaBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case_ ( self : Any ) -> Union[str, Any]: _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {'''pixel_values''': pixel_values} return config, inputs_dict def snake_case_ ( self : Optional[int] ) -> Optional[Any]: _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class lowerCamelCase__ ( _A , _A , unittest.TestCase): """simple docstring""" a__ : Optional[int] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) a__ : Tuple = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) a__ : Optional[Any] = False a__ : Any = False a__ : Dict = False a__ : Optional[Any] = False a__ : Optional[Any] = False def snake_case_ ( self : Optional[int] ) -> List[str]: _A = ConvNextVaModelTester(self ) _A = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self : Optional[Any] ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self : Any ) -> str: return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def snake_case_ ( self : Any ) -> Any: pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def snake_case_ ( self : List[Any] ) -> Optional[int]: pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def snake_case_ ( self : Union[str, Any] ) -> Tuple: pass def snake_case_ ( self : int ) -> List[Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _A , _A = self.model_tester.prepare_config_and_inputs_with_labels() _A = True if model_class.__name__ in [ *get_values(__lowerCAmelCase ), *get_values(__lowerCAmelCase ), ]: continue _A = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _A = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _A = model(**__lowerCAmelCase ).loss loss.backward() def snake_case_ ( self : List[str] ) -> Any: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _A , _A = self.model_tester.prepare_config_and_inputs_with_labels() _A = False _A = True if ( model_class.__name__ in [*get_values(__lowerCAmelCase ), *get_values(__lowerCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue _A = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() _A = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _A = model(**__lowerCAmelCase ).loss loss.backward() def snake_case_ ( self : Union[str, Any] ) -> str: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__lowerCAmelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> Any: def check_hidden_states_output(__lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : List[str] ): _A = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Optional[int] ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def snake_case_ ( self : List[str] ) -> Union[str, Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = ConvNextVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @cached_property def snake_case_ ( self : List[str] ) -> Dict: return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def snake_case_ ( self : Tuple ) -> int: _A = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(__lowerCAmelCase ) _A = self.default_image_processor _A = prepare_img() _A = preprocessor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _A = model(**__lowerCAmelCase ) # verify the logits _A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) _A = torch.tensor([0.9996, 0.1966, -0.4386] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
2
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Union[str, Any] , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : str ) -> None: warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
2
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( _A): """simple docstring""" a__ : Tuple = ["image_processor", "tokenizer"] a__ : Optional[Any] = "BlipImageProcessor" a__ : Any = ("BertTokenizer", "BertTokenizerFast") def __init__( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: _A = False super().__init__(__lowerCAmelCase , __lowerCAmelCase ) _A = self.image_processor def __call__( self : List[Any] , __lowerCAmelCase : ImageInput = None , __lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : Union[str, Any] , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A = self.tokenizer _A = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) return text_encoding # add pixel_values _A = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) if text is not None: _A = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) else: _A = None if text_encoding is not None: encoding_image_processor.update(__lowerCAmelCase ) return encoding_image_processor def snake_case_ ( self : str , *__lowerCAmelCase : Any , **__lowerCAmelCase : Any ) -> int: return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : int , *__lowerCAmelCase : int , **__lowerCAmelCase : Optional[int] ) -> Tuple: return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[int] ) -> Dict: _A = self.tokenizer.model_input_names _A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
2
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
1
from heapq import heappop, heappush import numpy as np def SCREAMING_SNAKE_CASE_ ( _snake_case :np.ndarray , _snake_case :tuple[int, int] , _snake_case :tuple[int, int] , _snake_case :bool , ) -> tuple[float | int, list[tuple[int, int]]]: _A , _A = grid.shape _A = [-1, 1, 0, 0] _A = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _A , _A = [(0, source)], set() _A = np.full((rows, cols) , np.inf ) _A = 0 _A = np.empty((rows, cols) , dtype=_snake_case ) _A = None while queue: ((_A) , (_A)) = heappop(_snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _A = [] while (x, y) != source: path.append((x, y) ) _A , _A = predecessors[x, y] path.append(_snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_snake_case ) ): _A , _A = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _A = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_snake_case , (dist + 1, (nx, ny)) ) _A = dist + 1 _A = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
2
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
1
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :list[int] , _snake_case :int ) -> list[int]: _A = 0 _A = len(_snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _A = i + 1 else: _A = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'{two_pointer([2, 7, 1_1, 1_5], 9) = }')
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> bool: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(_snake_case ) == 1: return True _A = series[1] - series[0] for index in range(len(_snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> float: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) _A = 0 for val in series: answer += val return answer / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _A = QuantumRegister(_snake_case , '''qr''' ) _A = ClassicalRegister(_snake_case , '''cr''' ) _A = QuantumCircuit(_snake_case , _snake_case ) _A = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case ) # simulate with 10000 shots _A = Aer.get_backend('''qasm_simulator''' ) _A = execute(_snake_case , _snake_case , shots=10_000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
2
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_A) , "Tatoeba directory does not exist.") class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @cached_property def snake_case_ ( self : Union[str, Any] ) -> Optional[Any]: _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowerCAmelCase ) @slow def snake_case_ ( self : Union[str, Any] ) -> Optional[Any]: self.resolver.convert_models(['''heb-eng'''] ) @slow def snake_case_ ( self : List[str] ) -> Optional[Any]: _A , _A = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=__lowerCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
2
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str , _snake_case :Any , _snake_case :int , _snake_case :List[Any] ) -> Optional[int]: for attribute in key.split('''.''' ): _A = getattr(_snake_case , _snake_case ) if weight_type is not None: _A = getattr(_snake_case , _snake_case ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any , _snake_case :int ) -> Any: _A = [] _A = fairseq_model.state_dict() _A = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _A = True if "*" in mapped_key: _A = name.split(_snake_case )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight" in name: _A = '''weight''' elif "bias" in name: _A = '''bias''' else: _A = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[str] , _snake_case :List[str] , _snake_case :Optional[int] , _snake_case :List[Any] ) -> Any: _A = full_name.split('''conv_layers.''' )[-1] _A = name.split('''.''' ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict ) -> Tuple: _A = SEWConfig() if is_finetuned: _A = model.wav_encoder.wav_model.cfg else: _A = model.cfg _A = fs_config.conv_bias _A = eval(fs_config.conv_feature_layers ) _A = [x[0] for x in conv_layers] _A = [x[1] for x in conv_layers] _A = [x[2] for x in conv_layers] _A = '''gelu''' _A = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _A = 0.0 _A = fs_config.activation_fn.name _A = fs_config.encoder_embed_dim _A = 0.02 _A = fs_config.encoder_ffn_embed_dim _A = 1E-5 _A = fs_config.encoder_layerdrop _A = fs_config.encoder_attention_heads _A = fs_config.conv_pos_groups _A = fs_config.conv_pos _A = len(_snake_case ) _A = fs_config.encoder_layers _A = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _A = model.cfg _A = fs_config.final_dropout _A = fs_config.layerdrop _A = fs_config.activation_dropout _A = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _A = fs_config.attention_dropout _A = fs_config.dropout_input _A = fs_config.dropout _A = fs_config.mask_channel_length _A = fs_config.mask_channel_prob _A = fs_config.mask_length _A = fs_config.mask_prob _A = '''Wav2Vec2FeatureExtractor''' _A = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Union[str, Any] , _snake_case :Optional[Any]=None , _snake_case :Optional[int]=None , _snake_case :Dict=True ) -> List[Any]: if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _A = SEWConfig.from_pretrained(_snake_case ) else: _A = convert_config(model[0] , _snake_case ) _A = model[0].eval() _A = True if config.feat_extract_norm == '''layer''' else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) if is_finetuned: if dict_path: _A = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) _A = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) _A = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) _A = SEWForCTC(_snake_case ) else: _A = SEWModel(_snake_case ) feature_extractor.save_pretrained(_snake_case ) recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
2
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : int=3 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : str=99 , __lowerCAmelCase : int=36 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : Dict=37 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : Any=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : int=6 , __lowerCAmelCase : Tuple=6 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=10_00 , ) -> List[str]: _A = parent _A = batch_size _A = num_channels _A = image_size _A = patch_size _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = coordinate_size _A = shape_size _A = num_labels _A = num_choices _A = scope _A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _A = text_seq_length _A = (image_size // patch_size) ** 2 + 1 _A = self.text_seq_length + self.image_seq_length def snake_case_ ( self : List[Any] ) -> Dict: _A = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _A = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) _A = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _A = bbox[i, j, 3] _A = bbox[i, j, 1] _A = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _A = bbox[i, j, 2] _A = bbox[i, j, 0] _A = tmp_coordinate _A = tf.constant(__lowerCAmelCase ) _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.text_seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _A = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: _A = TFLayoutLMvaModel(config=__lowerCAmelCase ) # text + image _A = model(__lowerCAmelCase , pixel_values=__lowerCAmelCase , training=__lowerCAmelCase ) _A = model( __lowerCAmelCase , bbox=__lowerCAmelCase , pixel_values=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , training=__lowerCAmelCase , ) _A = model(__lowerCAmelCase , bbox=__lowerCAmelCase , pixel_values=__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _A = model(__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _A = model({'''pixel_values''': pixel_values} , training=__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def snake_case_ ( self : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ) -> List[str]: _A = self.num_labels _A = TFLayoutLMvaForSequenceClassification(config=__lowerCAmelCase ) _A = model( __lowerCAmelCase , bbox=__lowerCAmelCase , pixel_values=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , training=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = self.num_labels _A = TFLayoutLMvaForTokenClassification(config=__lowerCAmelCase ) _A = model( __lowerCAmelCase , bbox=__lowerCAmelCase , pixel_values=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , training=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def snake_case_ ( self : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> Optional[int]: _A = 2 _A = TFLayoutLMvaForQuestionAnswering(config=__lowerCAmelCase ) _A = model( __lowerCAmelCase , bbox=__lowerCAmelCase , pixel_values=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , training=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : Tuple ) -> Union[str, Any]: _A = self.prepare_config_and_inputs() ((_A) , (_A) , (_A) , (_A) , (_A) , (_A) , (_A) , (_A)) = config_and_inputs _A = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class lowerCamelCase__ ( _A , _A , unittest.TestCase): """simple docstring""" a__ : Any = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) a__ : str = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) a__ : Tuple = False a__ : List[Any] = False a__ : int = False def snake_case_ ( self : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: return True def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=False ) -> dict: _A = copy.deepcopy(__lowerCAmelCase ) if model_class in get_values(__lowerCAmelCase ): _A = { k: tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__lowerCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__lowerCAmelCase ): _A = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__lowerCAmelCase ): _A = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) _A = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__lowerCAmelCase ): _A = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__lowerCAmelCase ): _A = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def snake_case_ ( self : Any ) -> List[str]: _A = TFLayoutLMvaModelTester(self ) _A = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self : Dict ) -> Dict: self.config_tester.run_common_tests() def snake_case_ ( self : str ) -> int: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__lowerCAmelCase ) if getattr(__lowerCAmelCase , '''hf_compute_loss''' , __lowerCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label _A = self._prepare_for_class(inputs_dict.copy() , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _A = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__lowerCAmelCase )[0] ] _A = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _A = self._prepare_for_class(inputs_dict.copy() , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _A = prepared_for_class.pop('''input_ids''' ) _A = model(__lowerCAmelCase , **__lowerCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _A = self._prepare_for_class(inputs_dict.copy() , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _A = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: _A = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _A = -1_00 _A = tf.convert_to_tensor(__lowerCAmelCase ) _A = model(__lowerCAmelCase , **__lowerCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _A = self._prepare_for_class(inputs_dict.copy() , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _A = model(__lowerCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _A = self._prepare_for_class(inputs_dict.copy() , __lowerCAmelCase , return_labels=__lowerCAmelCase ) # Get keys that were added with the _prepare_for_class function _A = prepared_for_class.keys() - inputs_dict.keys() _A = inspect.signature(model.call ).parameters _A = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _A = {0: '''input_ids'''} for label_key in label_keys: _A = signature_names.index(__lowerCAmelCase ) _A = label_key _A = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _A = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _A = prepared_for_class[value] _A = tuple(__lowerCAmelCase ) # Send to model _A = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def snake_case_ ( self : Tuple ) -> Optional[int]: ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict ) -> int: ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> Dict: ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict ) -> List[str]: ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> Optional[Any]: ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @slow def snake_case_ ( self : Dict ) -> Union[str, Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFLayoutLMvaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @cached_property def snake_case_ ( self : List[Any] ) -> Union[str, Any]: return LayoutLMvaImageProcessor(apply_ocr=__lowerCAmelCase ) if is_vision_available() else None @slow def snake_case_ ( self : Union[str, Any] ) -> Any: _A = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=__lowerCAmelCase , return_tensors='''tf''' ).pixel_values _A = tf.constant([[1, 2]] ) _A = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass _A = model(input_ids=__lowerCAmelCase , bbox=__lowerCAmelCase , pixel_values=__lowerCAmelCase , training=__lowerCAmelCase ) # verify the logits _A = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __lowerCAmelCase ) _A = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) )
2
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def snake_case_ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any ) -> Any: pass @is_pipeline_test @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @require_torch def snake_case_ ( self : Tuple ) -> Tuple: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def snake_case_ ( self : int ) -> Optional[int]: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def snake_case_ ( self : Optional[int] ) -> int: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case_ ( self : Optional[int] ) -> Dict: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
2
1
import numpy as np def SCREAMING_SNAKE_CASE_ ( _snake_case :np.array ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
2
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Tuple ) -> Optional[int]: _A = tempfile.mkdtemp() _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict , **__lowerCAmelCase : int ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , **__lowerCAmelCase : Optional[Any] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : str ) -> Union[str, Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : int ) -> Optional[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> List[str]: _A = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Optional[Any] ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
2
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : List[str] , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : int ) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
2
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
2
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Dict=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=1 / 2_55 , __lowerCAmelCase : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def snake_case_ ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> Dict: if not batched: _A = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Any: _A = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def snake_case_ ( self : List[str] ) -> int: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[Any] ) -> Optional[int]: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def snake_case_ ( self : List[str] ) -> List[str]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
2
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCAmelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCAmelCase_ = { """YituTech/conv-bert-base""": 5_1_2, """YituTech/conv-bert-medium-small""": 5_1_2, """YituTech/conv-bert-small""": 5_1_2, } UpperCAmelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : List[str] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION a__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : int = ConvBertTokenizer def __init__( self : str , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Any="[UNK]" , __lowerCAmelCase : Optional[Any]="[SEP]" , __lowerCAmelCase : Optional[int]="[PAD]" , __lowerCAmelCase : Optional[Any]="[CLS]" , __lowerCAmelCase : Optional[Any]="[MASK]" , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Any=None , **__lowerCAmelCase : List[str] , ) -> Tuple: super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , tokenize_chinese_chars=__lowerCAmelCase , strip_accents=__lowerCAmelCase , **__lowerCAmelCase , ) _A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowerCAmelCase ) != tokenize_chinese_chars ): _A = getattr(__lowerCAmelCase , normalizer_state.pop('''type''' ) ) _A = do_lower_case _A = strip_accents _A = tokenize_chinese_chars _A = normalizer_class(**__lowerCAmelCase ) _A = do_lower_case def snake_case_ ( self : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any=None ) -> List[str]: _A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: _A = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase )
2
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _A = 0 _A = len(_snake_case ) - 1 _A = 0 while mid <= high: if sequence[mid] == colors[0]: _A , _A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _A , _A = sequence[high], sequence[mid] high -= 1 else: _A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
2
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Union[str, Any] = "unispeech-sat" def __init__( self : Tuple , __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : List[Any]=7_68 , __lowerCAmelCase : Optional[Any]=12 , __lowerCAmelCase : Optional[Any]=12 , __lowerCAmelCase : Dict=30_72 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Any=1E-5 , __lowerCAmelCase : List[Any]="group" , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : List[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __lowerCAmelCase : Any=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase : int=(10, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : int=1_28 , __lowerCAmelCase : Tuple=16 , __lowerCAmelCase : int=False , __lowerCAmelCase : int=True , __lowerCAmelCase : Union[str, Any]=0.05 , __lowerCAmelCase : str=10 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : Any=10 , __lowerCAmelCase : str=0 , __lowerCAmelCase : List[str]=3_20 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Dict=1_00 , __lowerCAmelCase : Optional[int]=2_56 , __lowerCAmelCase : List[Any]=2_56 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[Any]="mean" , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Union[str, Any]=2_56 , __lowerCAmelCase : int=(5_12, 5_12, 5_12, 5_12, 15_00) , __lowerCAmelCase : Optional[Any]=(5, 3, 3, 1, 1) , __lowerCAmelCase : str=(1, 2, 3, 1, 1) , __lowerCAmelCase : Union[str, Any]=5_12 , __lowerCAmelCase : List[str]=0 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Dict=5_04 , **__lowerCAmelCase : Optional[Any] , ) -> int: super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) _A = hidden_size _A = feat_extract_norm _A = feat_extract_activation _A = list(__lowerCAmelCase ) _A = list(__lowerCAmelCase ) _A = list(__lowerCAmelCase ) _A = conv_bias _A = num_conv_pos_embeddings _A = num_conv_pos_embedding_groups _A = len(self.conv_dim ) _A = num_hidden_layers _A = intermediate_size _A = hidden_act _A = num_attention_heads _A = hidden_dropout _A = attention_dropout _A = activation_dropout _A = feat_proj_dropout _A = final_dropout _A = layerdrop _A = layer_norm_eps _A = initializer_range _A = vocab_size _A = num_clusters _A = do_stable_layer_norm _A = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A = apply_spec_augment _A = mask_time_prob _A = mask_time_length _A = mask_time_min_masks _A = mask_feature_prob _A = mask_feature_length _A = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _A = num_codevectors_per_group _A = num_codevector_groups _A = contrastive_logits_temperature _A = feat_quantizer_dropout _A = num_negatives _A = codevector_dim _A = proj_codevector_dim _A = diversity_loss_weight # ctc loss _A = ctc_loss_reduction _A = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _A = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _A = list(__lowerCAmelCase ) _A = list(__lowerCAmelCase ) _A = list(__lowerCAmelCase ) _A = xvector_output_dim @property def snake_case_ ( self : Tuple ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
2
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
1
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :list[int] , _snake_case :int ) -> bool: if len(_snake_case ) == 0: return False _A = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": UpperCAmelCase_ = input("""Enter numbers separated by comma:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] UpperCAmelCase_ = int(input("""Enter the number to be found in the list:\n""").strip()) UpperCAmelCase_ = """""" if binary_search(sequence, target) else """not """ print(f'{target} was {not_str}found in {sequence}')
2
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Any: if _re_test_backend.search(_snake_case ) is None: return None _A = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Any: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() _A = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): _A = _re_one_line_import_struct.search(_snake_case ).groups()[0] _A = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _A = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _A = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: _A = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: _A = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict ) -> Any: def find_duplicates(_snake_case :Any ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> int: _A = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: _A = os.path.join(_snake_case , '''__init__.py''' ) _A = parse_init(_snake_case ) if objects is not None: _A = analyze_results(*_snake_case ) if len(_snake_case ) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue _A = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) _A = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue _A = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) _A = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A = direct_transformers_import(_snake_case ) _A = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: _A = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: _A = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
2
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :Dict , _snake_case :Optional[int] ) -> List[Any]: _A = hf_hub_url(repo_id=_snake_case , path=_snake_case , revision=_snake_case ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(_snake_case )}'''
2
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
1
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 4 ) -> list[list[int]]: _A = abs(_snake_case ) or 4 return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )] def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: return reverse_row(transpose(_snake_case ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: return reverse_row(reverse_column(_snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: return reverse_column(transpose(_snake_case ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: _A = [list(_snake_case ) for x in zip(*_snake_case )] return matrix def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: _A = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: _A = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> None: for i in matrix: print(*_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) UpperCAmelCase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) UpperCAmelCase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
2
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCAmelCase_ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( _snake_case :torch.nn.Module , _snake_case :BnbQuantizationConfig , _snake_case :Union[str, os.PathLike] = None , _snake_case :Optional[Dict[str, Union[int, str, torch.device]]] = None , _snake_case :Optional[List[str]] = None , _snake_case :Optional[Dict[Union[int, str], Union[int, str]]] = None , _snake_case :Optional[Union[str, os.PathLike]] = None , _snake_case :bool = False , ) -> Dict: _A = bnb_quantization_config.load_in_abit _A = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) _A = [] # custom device map if isinstance(_snake_case , _snake_case ) and len(device_map.keys() ) > 1: _A = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _A = get_keys_to_not_convert(_snake_case ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_snake_case ) _A = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _A = [] _A = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_snake_case ) # compatibility with peft _A = load_in_abit _A = load_in_abit _A = get_parameter_device(_snake_case ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) _A = replace_with_bnb_layers(_snake_case , _snake_case , modules_to_not_convert=_snake_case ) # convert param to the right dtype _A = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _A = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) _A = getattr(_snake_case , _snake_case , _snake_case ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_snake_case ): param.to(_snake_case ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): _A = replace_with_bnb_layers( _snake_case , _snake_case , modules_to_not_convert=_snake_case ) _A = get_quantized_model_device_map( _snake_case , _snake_case , _snake_case , max_memory=_snake_case , no_split_module_classes=_snake_case , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _A = True _A = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( _snake_case , _snake_case , _snake_case , dtype=bnb_quantization_config.torch_dtype , offload_folder=_snake_case , offload_state_dict=_snake_case , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_snake_case , device_map=_snake_case , offload_dir=_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Optional[Any] , _snake_case :Tuple=None , _snake_case :Union[str, Any]=None , _snake_case :Tuple=None ) -> Optional[Any]: if device_map is None: if torch.cuda.is_available(): _A = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(_snake_case , _snake_case ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) _A = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _A = {} _A = special_dtypes _A = no_split_module_classes _A = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _A = get_balanced_memory( _snake_case , low_zero=(device_map == '''balanced_low_0''') , max_memory=_snake_case , **_snake_case , ) _A = max_memory _A = infer_auto_device_map(_snake_case , **_snake_case ) if isinstance(_snake_case , _snake_case ): # check if don't have any quantized module on the cpu _A = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _A = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :Tuple , _snake_case :Dict=None , _snake_case :Optional[Any]=None ) -> int: if modules_to_not_convert is None: _A = [] _A , _A = _replace_with_bnb_layers( _snake_case , _snake_case , _snake_case , _snake_case ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Any , _snake_case :List[str]=None , _snake_case :Optional[int]=None , ) -> int: _A = False for name, module in model.named_children(): if current_key_name is None: _A = [] current_key_name.append(_snake_case ) if isinstance(_snake_case , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _A = '''.'''.join(_snake_case ) _A = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _A = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _A = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_snake_case , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _A = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) _A = module.weight.data if module.bias is not None: _A = module.bias.data bnb_module.requires_grad_(_snake_case ) setattr(_snake_case , _snake_case , _snake_case ) _A = True if len(list(module.children() ) ) > 0: _A , _A = _replace_with_bnb_layers( _snake_case , _snake_case , _snake_case , _snake_case ) _A = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> List[str]: # Create a copy of the model with init_empty_weights(): _A = deepcopy(_snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _A = find_tied_parameters(_snake_case ) # For compatibility with Accelerate < 0.18 if isinstance(_snake_case , _snake_case ): _A = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _A = sum(_snake_case , [] ) _A = len(_snake_case ) > 0 # Check if it is a base model _A = False if hasattr(_snake_case , '''base_model_prefix''' ): _A = not hasattr(_snake_case , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _A = list(model.named_children() ) _A = [list_modules[-1][0]] # add last module together with tied weights _A = set(_snake_case ) - set(_snake_case ) _A = list(set(_snake_case ) ) + list(_snake_case ) # remove ".weight" from the keys _A = ['''.weight''', '''.bias'''] _A = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _A = name.replace(_snake_case , '''''' ) filtered_module_names.append(_snake_case ) return filtered_module_names def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> Union[str, Any]: for m in model.modules(): if isinstance(_snake_case , bnb.nn.Linearabit ): return True return False def SCREAMING_SNAKE_CASE_ ( _snake_case :nn.Module ) -> int: return next(parameter.parameters() ).device def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :Optional[Any] , _snake_case :Optional[int] , _snake_case :Optional[int] , _snake_case :List[str] , _snake_case :Dict , _snake_case :Optional[int] ) -> Dict: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(_snake_case , _snake_case , 0 , dtype=_snake_case , value=_snake_case ) _A = param_name _A = model if "." in tensor_name: _A = tensor_name.split('''.''' ) for split in splits[:-1]: _A = getattr(_snake_case , _snake_case ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) _A = new_module _A = splits[-1] # offload weights _A = False offload_weight(module._parameters[tensor_name] , _snake_case , _snake_case , index=_snake_case ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , _snake_case , index=_snake_case , ) else: offload_weight(_snake_case , _snake_case , _snake_case , index=_snake_case ) offload_weight(_snake_case , param_name.replace('''weight''' , '''SCB''' ) , _snake_case , index=_snake_case ) set_module_tensor_to_device(_snake_case , _snake_case , '''meta''' , dtype=_snake_case , value=torch.empty(*param.size() ) )
2
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = 9 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _A = kruskal(_snake_case , _snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_snake_case ) == sorted(_snake_case )
2
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict , _snake_case :Union[str, Any] , _snake_case :List[str] , _snake_case :Union[str, Any] , _snake_case :List[Any]=True , _snake_case :Optional[Any]="pt" ) -> Optional[Any]: _A = {'''add_prefix_space''': True} if isinstance(_snake_case , _snake_case ) and not line.startswith(''' ''' ) else {} _A = padding_side return tokenizer( [line] , max_length=_snake_case , padding='''max_length''' if pad_to_max_length else None , truncation=_snake_case , return_tensors=_snake_case , add_special_tokens=_snake_case , **_snake_case , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Optional[Any] , _snake_case :List[Any]=None , ) -> List[str]: _A = input_ids.ne(_snake_case ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict="train" , __lowerCAmelCase : int=None , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Any="" , ) -> Optional[Any]: super().__init__() _A = Path(__lowerCAmelCase ).joinpath(type_path + '''.source''' ) _A = Path(__lowerCAmelCase ).joinpath(type_path + '''.target''' ) _A = self.get_char_lens(self.src_file ) _A = max_source_length _A = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' _A = tokenizer _A = prefix if n_obs is not None: _A = self.src_lens[:n_obs] _A = src_lang _A = tgt_lang def __len__( self : Union[str, Any] ) -> List[Any]: return len(self.src_lens ) def __getitem__( self : Optional[int] , __lowerCAmelCase : Optional[int] ) -> Dict[str, torch.Tensor]: _A = index + 1 # linecache starts at 1 _A = self.prefix + linecache.getline(str(self.src_file ) , __lowerCAmelCase ).rstrip('''\n''' ) _A = linecache.getline(str(self.tgt_file ) , __lowerCAmelCase ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _A = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer ) _A = self.tokenizer.generator if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer _A = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_source_length , '''right''' ) _A = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_target_length , '''right''' ) _A = source_inputs['''input_ids'''].squeeze() _A = target_inputs['''input_ids'''].squeeze() _A = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( __lowerCAmelCase : int ) -> List[Any]: return [len(__lowerCAmelCase ) for x in Path(__lowerCAmelCase ).open().readlines()] def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Dict ) -> Dict[str, torch.Tensor]: _A = torch.stack([x['''input_ids'''] for x in batch] ) _A = torch.stack([x['''attention_mask'''] for x in batch] ) _A = torch.stack([x['''decoder_input_ids'''] for x in batch] ) _A = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) _A = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) _A = trim_batch(__lowerCAmelCase , __lowerCAmelCase ) _A , _A = trim_batch(__lowerCAmelCase , __lowerCAmelCase , attention_mask=__lowerCAmelCase ) _A = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch UpperCAmelCase_ = getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[List] ) -> List[str]: return list(itertools.chain.from_iterable(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> None: _A = get_git_info() save_json(_snake_case , os.path.join(_snake_case , '''git_log.json''' ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :Dict , _snake_case :Any=4 , **_snake_case :Optional[Any] ) -> str: with open(_snake_case , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> List[str]: with open(_snake_case ) as f: return json.load(_snake_case ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: _A = git.Repo(search_parent_directories=_snake_case ) _A = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def SCREAMING_SNAKE_CASE_ ( _snake_case :Callable , _snake_case :Iterable ) -> List: return list(map(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any] , _snake_case :int ) -> Optional[Any]: with open(_snake_case , '''wb''' ) as f: return pickle.dump(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] ) -> Any: def remove_articles(_snake_case :Optional[int] ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , _snake_case ) def white_space_fix(_snake_case :Tuple ): return " ".join(text.split() ) def remove_punc(_snake_case :str ): _A = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_snake_case :Any ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_snake_case ) ) ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :Optional[int] ) -> Optional[int]: _A = normalize_answer(_snake_case ).split() _A = normalize_answer(_snake_case ).split() _A = Counter(_snake_case ) & Counter(_snake_case ) _A = sum(common.values() ) if num_same == 0: return 0 _A = 1.0 * num_same / len(_snake_case ) _A = 1.0 * num_same / len(_snake_case ) _A = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :Optional[int] ) -> int: return normalize_answer(_snake_case ) == normalize_answer(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :List[str] ) -> Dict: assert len(_snake_case ) == len(_snake_case ) _A = 0 for hypo, pred in zip(_snake_case , _snake_case ): em += exact_match_score(_snake_case , _snake_case ) if len(_snake_case ) > 0: em /= len(_snake_case ) return {"em": em} def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> str: return model_prefix.startswith('''rag''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any] , _snake_case :List[Any] , _snake_case :Union[str, Any] ) -> Union[str, Any]: _A = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _A = '''dropout_rate''' for p in extra_params: if getattr(_snake_case , _snake_case , _snake_case ): if not hasattr(_snake_case , _snake_case ) and not hasattr(_snake_case , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(_snake_case ) ) delattr(_snake_case , _snake_case ) continue _A = p if hasattr(_snake_case , _snake_case ) else equivalent_param[p] setattr(_snake_case , _snake_case , getattr(_snake_case , _snake_case ) ) delattr(_snake_case , _snake_case ) return hparams, config
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
import math UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 7 UpperCAmelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 20 ) -> str: _A = math.comb(_snake_case , _snake_case ) _A = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _snake_case ) _A = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
2
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
1
import argparse import os import re import packaging.version UpperCAmelCase_ = """examples/""" UpperCAmelCase_ = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCAmelCase_ = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCAmelCase_ = """README.md""" def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :int , _snake_case :List[str] ) -> Dict: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.read() _A , _A = REPLACE_PATTERNS[pattern] _A = replace.replace('''VERSION''' , _snake_case ) _A = re_pattern.sub(_snake_case , _snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> List[Any]: for folder, directories, fnames in os.walk(_snake_case ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_snake_case , _snake_case ) , _snake_case , pattern='''examples''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Optional[int]=False ) -> Optional[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_snake_case , _snake_case , _snake_case ) if not patch: update_version_in_examples(_snake_case ) def SCREAMING_SNAKE_CASE_ ( ) -> Any: _A = '''🤗 Transformers currently provides the following architectures''' _A = '''1. Want to contribute a new model?''' with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() # Find the start of the list. _A = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _A = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _A = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(_snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_snake_case ) def SCREAMING_SNAKE_CASE_ ( ) -> str: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: _A = f.read() _A = REPLACE_PATTERNS['''init'''][0].search(_snake_case ).groups()[0] return packaging.version.parse(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any]=False ) -> Dict: _A = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _A = default_version.base_version elif patch: _A = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _A = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _A = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_snake_case ) == 0: _A = default_version print(F'''Updating version to {version}.''' ) global_version_update(_snake_case , patch=_snake_case ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def SCREAMING_SNAKE_CASE_ ( ) -> str: _A = get_version() _A = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _A = current_version.base_version # Check with the user we got that right. _A = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_snake_case ) == 0: _A = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_snake_case ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCAmelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
2
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[List, PIL.Image.Image, torch.Tensor] ) -> List[Any]: warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): _A = [image] if isinstance(image[0] , PIL.Image.Image ): _A , _A = image[0].size _A , _A = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _A = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] _A = np.concatenate(_snake_case , axis=0 ) _A = np.array(_snake_case ).astype(np.floataa ) / 255.0 _A = image.transpose(0 , 3 , 1 , 2 ) _A = 2.0 * image - 1.0 _A = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): _A = torch.cat(_snake_case , dim=0 ) return image def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[List, PIL.Image.Image, torch.Tensor] ) -> Optional[Any]: if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): _A = [mask] if isinstance(mask[0] , PIL.Image.Image ): _A , _A = mask[0].size _A , _A = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] _A = np.concatenate(_snake_case , axis=0 ) _A = mask.astype(np.floataa ) / 255.0 _A = 0 _A = 1 _A = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): _A = torch.cat(_snake_case , dim=0 ) return mask class lowerCamelCase__ ( _A): """simple docstring""" a__ : UNetaDModel a__ : RePaintScheduler def __init__( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ) -> Optional[Any]: super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , __lowerCAmelCase : Union[torch.Tensor, PIL.Image.Image] , __lowerCAmelCase : Union[torch.Tensor, PIL.Image.Image] , __lowerCAmelCase : int = 2_50 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : int = 10 , __lowerCAmelCase : int = 10 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: _A = image _A = _preprocess_image(__lowerCAmelCase ) _A = original_image.to(device=self.device , dtype=self.unet.dtype ) _A = _preprocess_mask(__lowerCAmelCase ) _A = mask_image.to(device=self.device , dtype=self.unet.dtype ) _A = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _A = original_image.shape _A = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.device ) _A = eta _A = self.scheduler.timesteps[0] + 1 _A = generator[0] if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual _A = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample # compute previous image: x_t -> x_t-1 _A = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t _A = self.scheduler.undo_step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = t _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
2
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase_ = None UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase_ = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase_ = { """facebook/nllb-large-en-ro""": 1_0_2_4, """facebook/nllb-200-distilled-600M""": 1_0_2_4, } # fmt: off UpperCAmelCase_ = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCamelCase__ ( _A): """simple docstring""" a__ : Tuple = VOCAB_FILES_NAMES a__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = ["input_ids", "attention_mask"] a__ : List[Any] = NllbTokenizer a__ : List[int] = [] a__ : List[int] = [] def __init__( self : List[str] , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : Dict="<s>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Optional[int]="</s>" , __lowerCAmelCase : Optional[int]="<s>" , __lowerCAmelCase : Optional[int]="<unk>" , __lowerCAmelCase : Dict="<pad>" , __lowerCAmelCase : List[str]="<mask>" , __lowerCAmelCase : str=None , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Union[str, Any]=False , **__lowerCAmelCase : int , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = legacy_behaviour super().__init__( vocab_file=__lowerCAmelCase , tokenizer_file=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , legacy_behaviour=__lowerCAmelCase , **__lowerCAmelCase , ) _A = vocab_file _A = False if not self.vocab_file else True _A = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) _A = { lang_code: self.convert_tokens_to_ids(__lowerCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A = src_lang if src_lang is not None else '''eng_Latn''' _A = self.convert_tokens_to_ids(self._src_lang ) _A = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case_ ( self : Any ) -> str: return self._src_lang @src_lang.setter def snake_case_ ( self : int , __lowerCAmelCase : str ) -> None: _A = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case_ ( self : str , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] , __lowerCAmelCase : Optional[str] , **__lowerCAmelCase : Dict ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _A = src_lang _A = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) _A = self.convert_tokens_to_ids(__lowerCAmelCase ) _A = tgt_lang_id return inputs def snake_case_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : str = "eng_Latn" , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : str = "fra_Latn" , **__lowerCAmelCase : str , ) -> BatchEncoding: _A = src_lang _A = tgt_lang return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Dict ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def snake_case_ ( self : Any ) -> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_ ( self : str , __lowerCAmelCase : Dict ) -> None: _A = self.convert_tokens_to_ids(__lowerCAmelCase ) if self.legacy_behaviour: _A = [] _A = [self.eos_token_id, self.cur_lang_code] else: _A = [self.cur_lang_code] _A = [self.eos_token_id] _A = self.convert_ids_to_tokens(self.prefix_tokens ) _A = self.convert_ids_to_tokens(self.suffix_tokens ) _A = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> None: _A = self.convert_tokens_to_ids(__lowerCAmelCase ) if self.legacy_behaviour: _A = [] _A = [self.eos_token_id, self.cur_lang_code] else: _A = [self.cur_lang_code] _A = [self.eos_token_id] _A = self.convert_ids_to_tokens(self.prefix_tokens ) _A = self.convert_ids_to_tokens(self.suffix_tokens ) _A = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case_ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
2
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowerCamelCase__ ( _A): """simple docstring""" a__ : torch.FloatTensor a__ : Optional[torch.FloatTensor] = None def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :List[Any]=0.999 , _snake_case :Optional[int]="cosine" , ) -> Dict: if alpha_transform_type == "cosine": def alpha_bar_fn(_snake_case :Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_snake_case :str ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _A = [] for i in range(_snake_case ): _A = i / num_diffusion_timesteps _A = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class lowerCamelCase__ ( _A , _A): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , __lowerCAmelCase : int = 10_00 , __lowerCAmelCase : str = "fixed_small_log" , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[float] = 1.0 , __lowerCAmelCase : str = "epsilon" , __lowerCAmelCase : str = "squaredcos_cap_v2" , ) -> Optional[int]: if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) _A = betas_for_alpha_bar(__lowerCAmelCase ) _A = 1.0 - self.betas _A = torch.cumprod(self.alphas , dim=0 ) _A = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _A = 1.0 # setable values _A = None _A = torch.from_numpy(np.arange(0 , __lowerCAmelCase )[::-1].copy() ) _A = variance_type def snake_case_ ( self : List[Any] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : Optional[int] = None ) -> torch.FloatTensor: return sample def snake_case_ ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, torch.device] = None ) -> Optional[Any]: _A = num_inference_steps _A = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _A = (np.arange(0 , __lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _A = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def snake_case_ ( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Tuple=None ) -> List[str]: if prev_timestep is None: _A = t - 1 _A = self.alphas_cumprod[t] _A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _A = 1 - alpha_prod_t _A = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _A = self.betas[t] else: _A = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _A = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _A = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _A = torch.log(torch.clamp(__lowerCAmelCase , min=1E-20 ) ) _A = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _A = variance.log() _A = beta.log() _A = (predicted_variance + 1) / 2 _A = frac * max_log + (1 - frac) * min_log return variance def snake_case_ ( self : Optional[int] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : int , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: _A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _A , _A = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: _A = None # 1. compute alphas, betas if prev_timestep is None: _A = t - 1 _A = self.alphas_cumprod[t] _A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _A = 1 - alpha_prod_t _A = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _A = self.betas[t] _A = self.alphas[t] else: _A = 1 - alpha_prod_t / alpha_prod_t_prev _A = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _A = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _A = torch.clamp( __lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _A = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _A = 0 if t > 0: _A = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase , device=model_output.device ) _A = self._get_variance( __lowerCAmelCase , predicted_variance=__lowerCAmelCase , prev_timestep=__lowerCAmelCase , ) if self.variance_type == "fixed_small_log": _A = variance elif self.variance_type == "learned_range": _A = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) _A = variance * variance_noise _A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def snake_case_ ( self : List[str] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : torch.IntTensor , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples _A = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) _A = timesteps.to(original_samples.device ) _A = alphas_cumprod[timesteps] ** 0.5 _A = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _A = sqrt_alpha_prod.unsqueeze(-1 ) _A = (1 - alphas_cumprod[timesteps]) ** 0.5 _A = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _A = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _A = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
2
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
2
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
2
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> Dict: # A local function to see if a dot lands in the circle. def is_in_circle(_snake_case :float , _snake_case :float ) -> bool: _A = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_snake_case ) ) # The ratio of the area for circle to square is pi/4. _A = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :Callable[[float], float] , _snake_case :float = 0.0 , _snake_case :float = 1.0 , ) -> float: return mean( function_to_integrate(uniform(_snake_case , _snake_case ) ) for _ in range(_snake_case ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :float = 0.0 , _snake_case :float = 1.0 ) -> None: def identity_function(_snake_case :float ) -> float: return x _A = area_under_curve_estimator( _snake_case , _snake_case , _snake_case , _snake_case ) _A = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> None: def function_to_integrate(_snake_case :float ) -> float: return sqrt(4.0 - x * x ) _A = area_under_curve_estimator( _snake_case , _snake_case , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> bool: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(_snake_case ) == 1: return True _A = series[1] - series[0] for index in range(len(_snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> float: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) _A = 0 for val in series: answer += val return answer / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str = "geglu" , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : str = "layer_norm" , __lowerCAmelCase : bool = False , ) -> Tuple: super().__init__() _A = only_cross_attention _A = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' _A = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _A = AdaLayerNorm(__lowerCAmelCase , __lowerCAmelCase ) elif self.use_ada_layer_norm_zero: _A = AdaLayerNormZero(__lowerCAmelCase , __lowerCAmelCase ) else: _A = nn.LayerNorm(__lowerCAmelCase , elementwise_affine=__lowerCAmelCase ) _A = Attention( query_dim=__lowerCAmelCase , heads=__lowerCAmelCase , dim_head=__lowerCAmelCase , dropout=__lowerCAmelCase , bias=__lowerCAmelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__lowerCAmelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _A = ( AdaLayerNorm(__lowerCAmelCase , __lowerCAmelCase ) if self.use_ada_layer_norm else nn.LayerNorm(__lowerCAmelCase , elementwise_affine=__lowerCAmelCase ) ) _A = Attention( query_dim=__lowerCAmelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__lowerCAmelCase , dim_head=__lowerCAmelCase , dropout=__lowerCAmelCase , bias=__lowerCAmelCase , upcast_attention=__lowerCAmelCase , ) # is self-attn if encoder_hidden_states is none else: _A = None _A = None # 3. Feed-forward _A = nn.LayerNorm(__lowerCAmelCase , elementwise_affine=__lowerCAmelCase ) _A = FeedForward(__lowerCAmelCase , dropout=__lowerCAmelCase , activation_fn=__lowerCAmelCase , final_dropout=__lowerCAmelCase ) # let chunk size default to None _A = None _A = 0 def snake_case_ ( self : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ) -> Union[str, Any]: # Sets chunk feed-forward _A = chunk_size _A = dim def snake_case_ ( self : int , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[torch.LongTensor] = None , __lowerCAmelCase : Dict[str, Any] = None , __lowerCAmelCase : Optional[torch.LongTensor] = None , ) -> Dict: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _A = self.norma(__lowerCAmelCase , __lowerCAmelCase ) elif self.use_ada_layer_norm_zero: _A , _A , _A , _A , _A = self.norma( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hidden_dtype=hidden_states.dtype ) else: _A = self.norma(__lowerCAmelCase ) _A = cross_attention_kwargs if cross_attention_kwargs is not None else {} _A = self.attna( __lowerCAmelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) if self.use_ada_layer_norm_zero: _A = gate_msa.unsqueeze(1 ) * attn_output _A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _A = ( self.norma(__lowerCAmelCase , __lowerCAmelCase ) if self.use_ada_layer_norm else self.norma(__lowerCAmelCase ) ) _A = self.attna( __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) _A = attn_output + hidden_states # 3. Feed-forward _A = self.norma(__lowerCAmelCase ) if self.use_ada_layer_norm_zero: _A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) _A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _A = torch.cat( [self.ff(__lowerCAmelCase ) for hid_slice in norm_hidden_states.chunk(__lowerCAmelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _A = self.ff(__lowerCAmelCase ) if self.use_ada_layer_norm_zero: _A = gate_mlp.unsqueeze(1 ) * ff_output _A = ff_output + hidden_states return hidden_states class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 4 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : str = "geglu" , __lowerCAmelCase : bool = False , ) -> int: super().__init__() _A = int(dim * mult ) _A = dim_out if dim_out is not None else dim if activation_fn == "gelu": _A = GELU(__lowerCAmelCase , __lowerCAmelCase ) if activation_fn == "gelu-approximate": _A = GELU(__lowerCAmelCase , __lowerCAmelCase , approximate='''tanh''' ) elif activation_fn == "geglu": _A = GEGLU(__lowerCAmelCase , __lowerCAmelCase ) elif activation_fn == "geglu-approximate": _A = ApproximateGELU(__lowerCAmelCase , __lowerCAmelCase ) _A = nn.ModuleList([] ) # project in self.net.append(__lowerCAmelCase ) # project dropout self.net.append(nn.Dropout(__lowerCAmelCase ) ) # project out self.net.append(nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__lowerCAmelCase ) ) def snake_case_ ( self : Tuple , __lowerCAmelCase : List[Any] ) -> Dict: for module in self.net: _A = module(__lowerCAmelCase ) return hidden_states class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : str = "none" ) -> Optional[Any]: super().__init__() _A = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) _A = approximate def snake_case_ ( self : Dict , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: if gate.device.type != "mps": return F.gelu(__lowerCAmelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def snake_case_ ( self : int , __lowerCAmelCase : str ) -> List[Any]: _A = self.proj(__lowerCAmelCase ) _A = self.gelu(__lowerCAmelCase ) return hidden_states class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Any: super().__init__() _A = nn.Linear(__lowerCAmelCase , dim_out * 2 ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: if gate.device.type != "mps": return F.gelu(__lowerCAmelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Any ) -> Optional[int]: _A , _A = self.proj(__lowerCAmelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__lowerCAmelCase ) class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Optional[int]: super().__init__() _A = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : int , __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: _A = self.proj(__lowerCAmelCase ) return x * torch.sigmoid(1.702 * x ) class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ) -> str: super().__init__() _A = nn.Embedding(__lowerCAmelCase , __lowerCAmelCase ) _A = nn.SiLU() _A = nn.Linear(__lowerCAmelCase , embedding_dim * 2 ) _A = nn.LayerNorm(__lowerCAmelCase , elementwise_affine=__lowerCAmelCase ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] ) -> int: _A = self.linear(self.silu(self.emb(__lowerCAmelCase ) ) ) _A , _A = torch.chunk(__lowerCAmelCase , 2 ) _A = self.norm(__lowerCAmelCase ) * (1 + scale) + shift return x class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__( self : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ) -> str: super().__init__() _A = CombinedTimestepLabelEmbeddings(__lowerCAmelCase , __lowerCAmelCase ) _A = nn.SiLU() _A = nn.Linear(__lowerCAmelCase , 6 * embedding_dim , bias=__lowerCAmelCase ) _A = nn.LayerNorm(__lowerCAmelCase , elementwise_affine=__lowerCAmelCase , eps=1E-6 ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str=None ) -> Optional[Any]: _A = self.linear(self.silu(self.emb(__lowerCAmelCase , __lowerCAmelCase , hidden_dtype=__lowerCAmelCase ) ) ) _A , _A , _A , _A , _A , _A = emb.chunk(6 , dim=1 ) _A = self.norm(__lowerCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : float = 1E-5 ) -> Optional[Any]: super().__init__() _A = num_groups _A = eps if act_fn is None: _A = None else: _A = get_activation(__lowerCAmelCase ) _A = nn.Linear(__lowerCAmelCase , out_dim * 2 ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: if self.act: _A = self.act(__lowerCAmelCase ) _A = self.linear(__lowerCAmelCase ) _A = emb[:, :, None, None] _A , _A = emb.chunk(2 , dim=1 ) _A = F.group_norm(__lowerCAmelCase , self.num_groups , eps=self.eps ) _A = x * (1 + scale) + shift return x
2
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _A = QuantumRegister(_snake_case , '''qr''' ) _A = ClassicalRegister(_snake_case , '''cr''' ) _A = QuantumCircuit(_snake_case , _snake_case ) _A = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case ) # simulate with 10000 shots _A = Aer.get_backend('''qasm_simulator''' ) _A = execute(_snake_case , _snake_case , shots=10_000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
2
1
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """https://openaipublic.azureedge.net/jukebox/models/""" UpperCAmelCase_ = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any] ) -> Dict: if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: _A = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: _A = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: _A = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: _A = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: _A = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: _A = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _A = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: _A = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :str , _snake_case :Any , _snake_case :Optional[int] ) -> Optional[Any]: _A = {} import re _A = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) _A = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _A = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) _A = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) _A = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _A = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) _A = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) _A = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _A = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_snake_case ): _A = re_encoder_block_conv_in.match(_snake_case ) _A = regex_match.groups() _A = int(groups[2] ) * 2 + int(groups[3] ) _A = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' _A = re_encoder_block_conv_in.sub(_snake_case , _snake_case ) elif re_encoder_block_resnet.fullmatch(_snake_case ): _A = re_encoder_block_resnet.match(_snake_case ) _A = regex_match.groups() _A = int(groups[2] ) * 2 + int(groups[3] ) _A = {'''1''': 1, '''3''': 2}[groups[-2]] _A = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' _A = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _A = prefix + resnet_block _A = re_encoder_block_resnet.sub(_snake_case , _snake_case ) elif re_encoder_block_proj_out.fullmatch(_snake_case ): _A = re_encoder_block_proj_out.match(_snake_case ) _A = regex_match.groups() _A = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' _A = re_encoder_block_proj_out.sub(_snake_case , _snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_snake_case ): _A = re_decoder_block_conv_out.match(_snake_case ) _A = regex_match.groups() _A = int(groups[2] ) * 2 + int(groups[3] ) - 2 _A = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' _A = re_decoder_block_conv_out.sub(_snake_case , _snake_case ) elif re_decoder_block_resnet.fullmatch(_snake_case ): _A = re_decoder_block_resnet.match(_snake_case ) _A = regex_match.groups() _A = int(groups[2] ) * 2 + int(groups[3] ) - 2 _A = {'''1''': 1, '''3''': 2}[groups[-2]] _A = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' _A = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _A = prefix + resnet_block _A = re_decoder_block_resnet.sub(_snake_case , _snake_case ) elif re_decoder_block_proj_in.fullmatch(_snake_case ): _A = re_decoder_block_proj_in.match(_snake_case ) _A = regex_match.groups() _A = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' _A = re_decoder_block_proj_in.sub(_snake_case , _snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_snake_case ): _A = re_prior_cond_conv_out.match(_snake_case ) _A = regex_match.groups() _A = int(groups[1] ) * 2 + int(groups[2] ) - 2 _A = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' _A = re_prior_cond_conv_out.sub(_snake_case , _snake_case ) elif re_prior_cond_resnet.fullmatch(_snake_case ): _A = re_prior_cond_resnet.match(_snake_case ) _A = regex_match.groups() _A = int(groups[1] ) * 2 + int(groups[2] ) - 2 _A = {'''1''': 1, '''3''': 2}[groups[-2]] _A = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' _A = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _A = prefix + resnet_block _A = re_prior_cond_resnet.sub(_snake_case , _snake_case ) elif re_prior_cond_proj_in.fullmatch(_snake_case ): _A = re_prior_cond_proj_in.match(_snake_case ) _A = regex_match.groups() _A = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' _A = re_prior_cond_proj_in.sub(_snake_case , _snake_case ) # keep original key else: _A = original_key _A = replace_key(_snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: _A = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) _A = original_key _A = original_key _A = value return new_dict @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any]=None , _snake_case :Union[str, Any]=None ) -> Dict: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): _A = requests.get(F'''{PREFIX}{file}''' , allow_redirects=_snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=_snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) _A = MODEL_MAPPING[model_name.split('''/''' )[-1]] _A = JukeboxConfig.from_pretrained(_snake_case ) _A = JukeboxModel(_snake_case ) _A = [] _A = {} for i, dict_name in enumerate(_snake_case ): _A = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] _A = {} for k in old_dic.keys(): if k.endswith('''.b''' ): _A = old_dic[k] elif k.endswith('''.w''' ): _A = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _A = old_dic[k] else: _A = old_dic[k] _A = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' _A = fix_jukebox_keys(_snake_case , model.state_dict() , _snake_case , _snake_case ) weight_dict.append(_snake_case ) _A = weight_dict.pop(0 ) model.vqvae.load_state_dict(_snake_case ) for i in range(len(_snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(_snake_case , _snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) return weight_dict if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) UpperCAmelCase_ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
2
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str , _snake_case :Any , _snake_case :int , _snake_case :List[Any] ) -> Optional[int]: for attribute in key.split('''.''' ): _A = getattr(_snake_case , _snake_case ) if weight_type is not None: _A = getattr(_snake_case , _snake_case ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any , _snake_case :int ) -> Any: _A = [] _A = fairseq_model.state_dict() _A = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _A = True if "*" in mapped_key: _A = name.split(_snake_case )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight" in name: _A = '''weight''' elif "bias" in name: _A = '''bias''' else: _A = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[str] , _snake_case :List[str] , _snake_case :Optional[int] , _snake_case :List[Any] ) -> Any: _A = full_name.split('''conv_layers.''' )[-1] _A = name.split('''.''' ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict ) -> Tuple: _A = SEWConfig() if is_finetuned: _A = model.wav_encoder.wav_model.cfg else: _A = model.cfg _A = fs_config.conv_bias _A = eval(fs_config.conv_feature_layers ) _A = [x[0] for x in conv_layers] _A = [x[1] for x in conv_layers] _A = [x[2] for x in conv_layers] _A = '''gelu''' _A = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _A = 0.0 _A = fs_config.activation_fn.name _A = fs_config.encoder_embed_dim _A = 0.02 _A = fs_config.encoder_ffn_embed_dim _A = 1E-5 _A = fs_config.encoder_layerdrop _A = fs_config.encoder_attention_heads _A = fs_config.conv_pos_groups _A = fs_config.conv_pos _A = len(_snake_case ) _A = fs_config.encoder_layers _A = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _A = model.cfg _A = fs_config.final_dropout _A = fs_config.layerdrop _A = fs_config.activation_dropout _A = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _A = fs_config.attention_dropout _A = fs_config.dropout_input _A = fs_config.dropout _A = fs_config.mask_channel_length _A = fs_config.mask_channel_prob _A = fs_config.mask_length _A = fs_config.mask_prob _A = '''Wav2Vec2FeatureExtractor''' _A = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Union[str, Any] , _snake_case :Optional[Any]=None , _snake_case :Optional[int]=None , _snake_case :Dict=True ) -> List[Any]: if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _A = SEWConfig.from_pretrained(_snake_case ) else: _A = convert_config(model[0] , _snake_case ) _A = model[0].eval() _A = True if config.feat_extract_norm == '''layer''' else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) if is_finetuned: if dict_path: _A = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) _A = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) _A = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) _A = SEWForCTC(_snake_case ) else: _A = SEWModel(_snake_case ) feature_extractor.save_pretrained(_snake_case ) recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
2
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> Dict: _A = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) _A = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _A = components[:-1] + [test_fn.replace('''.py''' , '''''' )] _A = '''.'''.join(_snake_case ) return test_module_path def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] ) -> Any: _A = get_module_path(_snake_case ) _A = importlib.import_module(_snake_case ) return test_module def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> int: _A = [] _A = get_test_module(_snake_case ) for attr in dir(_snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(_snake_case , _snake_case ) ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> Union[str, Any]: _A = [] _A = get_test_module(_snake_case ) for attr in dir(_snake_case ): _A = getattr(_snake_case , _snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _A = getattr(_snake_case , '''all_model_classes''' , [] ) if len(_snake_case ) > 0: test_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Union[str, Any]: _A = get_test_classes(_snake_case ) _A = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> Optional[int]: _A = test_class() if hasattr(_snake_case , '''setUp''' ): test.setUp() _A = None if hasattr(_snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _A = test.model_tester.__class__ return model_tester def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Tuple ) -> List[str]: _A = get_test_classes(_snake_case ) _A = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :List[Any] ) -> Dict: _A = get_test_classes_for_model(_snake_case , _snake_case ) _A = [] for test_class in test_classes: _A = get_model_tester_from_test_class(_snake_case ) if tester_class is not None: tester_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Tuple: _A = get_test_classes(_snake_case ) _A = {test_class: get_model_tester_from_test_class(_snake_case ) for test_class in test_classes} return test_tester_mapping def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> Any: _A = get_model_classes(_snake_case ) _A = { model_class: get_test_classes_for_model(_snake_case , _snake_case ) for model_class in model_classes } return model_test_mapping def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any] ) -> int: _A = get_model_classes(_snake_case ) _A = { model_class: get_tester_classes_for_model(_snake_case , _snake_case ) for model_class in model_classes } return model_to_tester_mapping def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> List[Any]: if isinstance(_snake_case , _snake_case ): return o elif isinstance(_snake_case , _snake_case ): return o.__name__ elif isinstance(_snake_case , (list, tuple) ): return [to_json(_snake_case ) for x in o] elif isinstance(_snake_case , _snake_case ): return {to_json(_snake_case ): to_json(_snake_case ) for k, v in o.items()} else: return o
2
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def snake_case_ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any ) -> Any: pass @is_pipeline_test @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @require_torch def snake_case_ ( self : Tuple ) -> Tuple: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def snake_case_ ( self : int ) -> Optional[int]: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def snake_case_ ( self : Optional[int] ) -> int: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case_ ( self : Optional[int] ) -> Dict: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
2
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Optional[int] = KandinskyVaaControlnetPipeline a__ : Any = ["image_embeds", "negative_image_embeds", "hint"] a__ : str = ["image_embeds", "negative_image_embeds", "hint"] a__ : List[Any] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a__ : Union[str, Any] = False @property def snake_case_ ( self : str ) -> List[Any]: return 32 @property def snake_case_ ( self : Optional[int] ) -> Optional[int]: return 32 @property def snake_case_ ( self : Union[str, Any] ) -> Tuple: return self.time_input_dim @property def snake_case_ ( self : str ) -> Any: return self.time_input_dim * 4 @property def snake_case_ ( self : Optional[int] ) -> Tuple: return 1_00 @property def snake_case_ ( self : Tuple ) -> Union[str, Any]: torch.manual_seed(0 ) _A = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _A = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def snake_case_ ( self : Tuple ) -> List[Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ ( self : int ) -> List[str]: torch.manual_seed(0 ) _A = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self : List[str] ) -> Dict: _A = self.dummy_unet _A = self.dummy_movq _A = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCAmelCase , ) _A = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=0 ) -> Optional[Any]: _A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCAmelCase ) # create hint _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('''mps''' ): _A = torch.manual_seed(__lowerCAmelCase ) else: _A = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _A = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def snake_case_ ( self : Any ) -> Union[str, Any]: _A = '''cpu''' _A = self.get_dummy_components() _A = self.pipeline_class(**__lowerCAmelCase ) _A = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _A = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) _A = output.images _A = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Any ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self : Tuple ) -> List[Any]: _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) _A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) _A = torch.from_numpy(np.array(__lowerCAmelCase ) ).float() / 255.0 _A = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _A = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) _A = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) _A = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) _A = '''A robot, 4k photo''' _A = torch.Generator(device='''cuda''' ).manual_seed(0 ) _A , _A = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _A = torch.Generator(device='''cuda''' ).manual_seed(0 ) _A = pipeline( image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , hint=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=1_00 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
2
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Tuple ) -> Optional[int]: _A = tempfile.mkdtemp() _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict , **__lowerCAmelCase : int ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , **__lowerCAmelCase : Optional[Any] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : str ) -> Union[str, Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : int ) -> Optional[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> List[str]: _A = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Optional[Any] ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
2
1
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
1
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Dict=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=1 / 2_55 , __lowerCAmelCase : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def snake_case_ ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> Dict: if not batched: _A = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Any: _A = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def snake_case_ ( self : List[str] ) -> int: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[Any] ) -> Optional[int]: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def snake_case_ ( self : List[str] ) -> List[str]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
2
1
UpperCAmelCase_ = """Input must be a string of 8 numbers plus letter""" UpperCAmelCase_ = """TRWAGMYFPDXBNJZSQVHLCKE""" def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bool: if not isinstance(_snake_case , _snake_case ): _A = F'''Expected string as input, found {type(_snake_case ).__name__}''' raise TypeError(_snake_case ) _A = spanish_id.replace('''-''' , '''''' ).upper() if len(_snake_case ) != 9: raise ValueError(_snake_case ) try: _A = int(spanish_id_clean[0:8] ) _A = spanish_id_clean[8] except ValueError as ex: raise ValueError(_snake_case ) from ex if letter.isdigit(): raise ValueError(_snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
2
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _A = 0 _A = len(_snake_case ) - 1 _A = 0 while mid <= high: if sequence[mid] == colors[0]: _A , _A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _A , _A = sequence[high], sequence[mid] high -= 1 else: _A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
2
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Optional[int]=30 , __lowerCAmelCase : Optional[int]=4_00 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[Any]=0.9 , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=True , __lowerCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , ) -> List[Any]: _A = size if size is not None else {'''shortest_edge''': 30} _A = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize_and_center_crop _A = size _A = crop_pct _A = crop_size _A = do_normalize _A = image_mean _A = image_std def snake_case_ ( self : Tuple ) -> int: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Dict = PoolFormerImageProcessor if is_vision_available() else None def snake_case_ ( self : List[str] ) -> Optional[int]: _A = PoolFormerImageProcessingTester(self ) @property def snake_case_ ( self : List[Any] ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''crop_pct''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) def snake_case_ ( self : List[Any] ) -> Optional[int]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) _A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case_ ( self : List[Any] ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> List[Any]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : Any ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : int ) -> List[str]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
2
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Optional[Any] ) -> Optional[Any]: _A = tempfile.mkdtemp() _A = BlipImageProcessor() _A = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) _A = BlipProcessor(__lowerCAmelCase , __lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : Tuple ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).tokenizer def snake_case_ ( self : List[Any] , **__lowerCAmelCase : int ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def snake_case_ ( self : Any ) -> List[str]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : List[Any] ) -> str: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Any ) -> Union[str, Any]: _A = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Union[str, Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : Union[str, Any] ) -> Union[str, Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Any ) -> List[str]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : List[str] ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
2
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Any: if _re_test_backend.search(_snake_case ) is None: return None _A = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Any: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() _A = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): _A = _re_one_line_import_struct.search(_snake_case ).groups()[0] _A = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _A = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _A = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: _A = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: _A = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict ) -> Any: def find_duplicates(_snake_case :Any ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> int: _A = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: _A = os.path.join(_snake_case , '''__init__.py''' ) _A = parse_init(_snake_case ) if objects is not None: _A = analyze_results(*_snake_case ) if len(_snake_case ) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue _A = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) _A = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue _A = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) _A = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A = direct_transformers_import(_snake_case ) _A = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: _A = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: _A = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
2
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup UpperCAmelCase_ = { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "dhaka" , _snake_case :int = 5 ) -> int: _A = min(_snake_case , 50 ) # Prevent abuse! _A = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _A = requests.get('''https://www.google.com/search''' , params=_snake_case , headers=_snake_case ) _A = BeautifulSoup(html.text , '''html.parser''' ) _A = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) _A = json.dumps(_snake_case ) _A = json.loads(_snake_case ) _A = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , _snake_case , ) if not matched_google_image_data: return 0 _A = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(_snake_case ) , ) _A = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , _snake_case , ) for index, fixed_full_res_image in enumerate(_snake_case ): if index >= max_images: return index _A = bytes(_snake_case , '''ascii''' ).decode( '''unicode-escape''' ) _A = bytes(_snake_case , '''ascii''' ).decode( '''unicode-escape''' ) _A = urllib.request.build_opener() _A = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(_snake_case ) _A = F'''query_{query.replace(' ' , '_' )}''' if not os.path.exists(_snake_case ): os.makedirs(_snake_case ) urllib.request.urlretrieve( # noqa: S310 _snake_case , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: UpperCAmelCase_ = download_images_from_google_query(sys.argv[1]) print(f'{image_count} images were downloaded to disk.') except IndexError: print("""Please provide a search term.""") raise
2
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : int=3 , __lowerCAmelCase : int=18 , __lowerCAmelCase : Tuple=30 , __lowerCAmelCase : List[str]=4_00 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Tuple=False , ) -> List[str]: _A = size if size is not None else {'''height''': 20, '''width''': 20} _A = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_center_crop _A = crop_size _A = do_normalize _A = image_mean _A = image_std _A = do_reduce_labels def snake_case_ ( self : Optional[int] ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _A = Image.open(dataset[0]['''file'''] ) _A = Image.open(dataset[1]['''file'''] ) return image, map def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _A = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _A = Image.open(ds[0]['''file'''] ) _A = Image.open(ds[1]['''file'''] ) _A = Image.open(ds[2]['''file'''] ) _A = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : List[Any] = BeitImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[Any] ) -> Optional[Any]: _A = BeitImageProcessingTester(self ) @property def snake_case_ ( self : Dict ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : int ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) def snake_case_ ( self : int ) -> List[str]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , __lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> Optional[Any]: pass def snake_case_ ( self : Union[str, Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : Optional[Any] ) -> Any: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : int ) -> str: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) _A = [] for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _A = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched _A = image_processing(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) _A , _A = prepare_semantic_single_inputs() _A = image_processing(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) _A , _A = prepare_semantic_batch_inputs() _A = image_processing(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def snake_case_ ( self : List[str] ) -> Dict: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _A , _A = prepare_semantic_single_inputs() _A = image_processing(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) _A = True _A = image_processing(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
2
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple=7 , __lowerCAmelCase : Any=3 , __lowerCAmelCase : str=18 , __lowerCAmelCase : Union[str, Any]=30 , __lowerCAmelCase : Optional[Any]=4_00 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : str=True , ) -> Dict: _A = size if size is not None else {'''height''': 18, '''width''': 18} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize def snake_case_ ( self : Dict ) -> Union[str, Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Union[str, Any] = ImageGPTImageProcessor if is_vision_available() else None def snake_case_ ( self : List[str] ) -> str: _A = ImageGPTImageProcessingTester(self ) @property def snake_case_ ( self : List[Any] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''clusters''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) def snake_case_ ( self : List[Any] ) -> Any: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def snake_case_ ( self : str ) -> Optional[int]: _A = self.image_processing_class(**self.image_processor_dict ) _A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , __lowerCAmelCase ) def snake_case_ ( self : int ) -> Tuple: _A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(__lowerCAmelCase , '''image_processor.json''' ) image_processor_first.to_json_file(__lowerCAmelCase ) _A = self.image_processing_class.from_json_file(__lowerCAmelCase ).to_dict() _A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowerCAmelCase ) def snake_case_ ( self : Dict ) -> int: _A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__lowerCAmelCase ) _A = self.image_processing_class.from_pretrained(__lowerCAmelCase ).to_dict() _A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowerCAmelCase ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def snake_case_ ( self : Union[str, Any] ) -> Dict: pass def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) _A = Image.open(dataset[4]['''file'''] ) _A = Image.open(dataset[5]['''file'''] ) _A = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def snake_case_ ( self : Optional[Any] ) -> str: _A = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) _A = prepare_images() # test non-batched _A = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) _A = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , __lowerCAmelCase ) # test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) _A = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __lowerCAmelCase )
2
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = 9 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _A = kruskal(_snake_case , _snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_snake_case ) == sorted(_snake_case )
2
1
import datasets UpperCAmelCase_ = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ UpperCAmelCase_ = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ UpperCAmelCase_ = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :List[Any] ) -> List[str]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): """simple docstring""" def snake_case_ ( self : Union[str, Any] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def snake_case_ ( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> Optional[int]: return {"accuracy": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )}
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): UpperCAmelCase_ = yaml.safe_load( """\ name: \"\" allow_empty: false allow_empty_text: true subsections: - name: \"Dataset Card for X\" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: \"Table of Contents\" allow_empty: false allow_empty_text: false subsections: null - name: \"Dataset Description\" allow_empty: false allow_empty_text: false subsections: - name: \"Dataset Summary\" allow_empty: false allow_empty_text: false subsections: null - name: \"Supported Tasks and Leaderboards\" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null """ ) UpperCAmelCase_ = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } UpperCAmelCase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ UpperCAmelCase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text """ UpperCAmelCase_ = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Extra Ignored Subsection""", """text""": """""", """is_empty_text""": True, """subsections""": [], } ], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } UpperCAmelCase_ = """\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ UpperCAmelCase_ = ( """The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.""" ) UpperCAmelCase_ = """\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ UpperCAmelCase_ = ( """The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.""" ) UpperCAmelCase_ = """\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ UpperCAmelCase_ = """The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.""" UpperCAmelCase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text """ UpperCAmelCase_ = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).""" UpperCAmelCase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset """ UpperCAmelCase_ = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'.""" UpperCAmelCase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text """ UpperCAmelCase_ = """The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.""" UpperCAmelCase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages """ UpperCAmelCase_ = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.""" UpperCAmelCase_ = """\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ UpperCAmelCase_ = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.""" UpperCAmelCase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset """ UpperCAmelCase_ = """The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.""" UpperCAmelCase_ = """\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ UpperCAmelCase_ = """The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.""" UpperCAmelCase_ = """""" UpperCAmelCase_ = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.""" UpperCAmelCase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ UpperCAmelCase_ = """The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.""" @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Tuple ) -> List[str]: assert ReadMe.from_string(_snake_case , _snake_case ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :Any ) -> Union[str, Any]: with pytest.raises(_snake_case , match=re.escape(expected_error.format(path='''root''' ) ) ): _A = ReadMe.from_string(_snake_case , _snake_case ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :Union[str, Any] ) -> Tuple: with pytest.raises(_snake_case , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(_snake_case , _snake_case ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> Union[str, Any]: ReadMe.from_string(_snake_case , _snake_case , suppress_parsing_errors=_snake_case ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Dict ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_snake_case ) / '''README.md''' with open(_snake_case , '''w+''' ) as readme_file: readme_file.write(_snake_case ) _A = ReadMe.from_readme(_snake_case , _snake_case ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :str ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_snake_case ) / '''README.md''' with open(_snake_case , '''w+''' ) as readme_file: readme_file.write(_snake_case ) _A = expected_error.format(path=_snake_case ) with pytest.raises(_snake_case , match=re.escape(_snake_case ) ): _A = ReadMe.from_readme(_snake_case , _snake_case ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :str ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_snake_case ) / '''README.md''' with open(_snake_case , '''w+''' ) as readme_file: readme_file.write(_snake_case ) _A = expected_error.format(path=_snake_case ) with pytest.raises(_snake_case , match=re.escape(_snake_case ) ): ReadMe.from_readme(_snake_case , _snake_case ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_snake_case ) / '''README.md''' with open(_snake_case , '''w+''' ) as readme_file: readme_file.write(_snake_case ) ReadMe.from_readme(_snake_case , _snake_case , suppress_parsing_errors=_snake_case )
2
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore UpperCAmelCase_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" UpperCAmelCase_ = [file for file in filepaths if file != file.lower()] if upper_files: print(f'{len(upper_files)} files contain uppercase characters:') print("""\n""".join(upper_files) + """\n""") UpperCAmelCase_ = [file for file in filepaths if """ """ in file] if space_files: print(f'{len(space_files)} files contain space characters:') print("""\n""".join(space_files) + """\n""") UpperCAmelCase_ = [file for file in filepaths if """-""" in file] if hyphen_files: print(f'{len(hyphen_files)} files contain hyphen characters:') print("""\n""".join(hyphen_files) + """\n""") UpperCAmelCase_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'{len(nodir_files)} files are not in a directory:') print("""\n""".join(nodir_files) + """\n""") UpperCAmelCase_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
2
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=7 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=18 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Any=4_00 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : List[Any]=True , ) -> Optional[Any]: _A = size if size is not None else {'''shortest_edge''': 20} _A = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_center_crop _A = crop_size _A = do_flip_channel_order def snake_case_ ( self : Any ) -> Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Tuple = MobileViTImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Tuple: _A = MobileViTImageProcessingTester(self ) @property def snake_case_ ( self : List[Any] ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Dict ) -> Optional[Any]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_flip_channel_order''' ) ) def snake_case_ ( self : int ) -> Optional[int]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: pass def snake_case_ ( self : str ) -> Any: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : Union[str, Any] ) -> List[str]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : Optional[int] ) -> str: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
2
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "ctrl" a__ : Tuple = ["past_key_values"] a__ : Union[str, Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , __lowerCAmelCase : Tuple=24_65_34 , __lowerCAmelCase : str=2_56 , __lowerCAmelCase : int=12_80 , __lowerCAmelCase : int=81_92 , __lowerCAmelCase : str=48 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : List[Any]=1E-6 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : str=True , **__lowerCAmelCase : List[Any] , ) -> List[str]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = dff _A = resid_pdrop _A = embd_pdrop _A = layer_norm_epsilon _A = initializer_range _A = use_cache super().__init__(**__lowerCAmelCase )
2
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :Dict ) -> Any: _A = b.T _A = np.sum(np.square(_snake_case ) , axis=1 ) _A = np.sum(np.square(_snake_case ) , axis=0 ) _A = np.matmul(_snake_case , _snake_case ) _A = aa[:, None] - 2 * ab + ba[None, :] return d def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :Optional[Any] ) -> Optional[Any]: _A = x.reshape(-1 , 3 ) _A = squared_euclidean_distance(_snake_case , _snake_case ) return np.argmin(_snake_case , axis=1 ) class lowerCamelCase__ ( _A): """simple docstring""" a__ : Union[str, Any] = ["pixel_values"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , **__lowerCAmelCase : Any , ) -> None: super().__init__(**__lowerCAmelCase ) _A = size if size is not None else {'''height''': 2_56, '''width''': 2_56} _A = get_size_dict(__lowerCAmelCase ) _A = np.array(__lowerCAmelCase ) if clusters is not None else None _A = do_resize _A = size _A = resample _A = do_normalize _A = do_color_quantize def snake_case_ ( self : List[Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : List[Any] , ) -> np.ndarray: _A = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __lowerCAmelCase , size=(size['''height'''], size['''width''']) , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: _A = rescale(image=__lowerCAmelCase , scale=1 / 127.5 , data_format=__lowerCAmelCase ) _A = image - 1 return image def snake_case_ ( self : int , __lowerCAmelCase : ImageInput , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__lowerCAmelCase : int , ) -> PIL.Image.Image: _A = do_resize if do_resize is not None else self.do_resize _A = size if size is not None else self.size _A = get_size_dict(__lowerCAmelCase ) _A = resample if resample is not None else self.resample _A = do_normalize if do_normalize is not None else self.do_normalize _A = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _A = clusters if clusters is not None else self.clusters _A = np.array(__lowerCAmelCase ) _A = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. _A = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: _A = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_normalize: _A = [self.normalize(image=__lowerCAmelCase ) for image in images] if do_color_quantize: _A = [to_channel_dimension_format(__lowerCAmelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _A = np.array(__lowerCAmelCase ) _A = color_quantize(__lowerCAmelCase , __lowerCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _A = images.shape[0] _A = images.reshape(__lowerCAmelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _A = list(__lowerCAmelCase ) else: _A = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] _A = {'''input_ids''': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
2
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict=False ) -> Dict: try: _A = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _A = default else: # KEY is set, convert it to True or False. try: _A = strtobool(_snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value UpperCAmelCase_ = parse_flag_from_env("""RUN_SLOW""", default=False) def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict ) -> str: return unittest.skip('''Test was skipped''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] ) -> Union[str, Any]: return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Tuple: return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> List[str]: return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> Tuple: return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] ) -> Optional[Any]: return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Optional[Any]: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> Union[str, Any]: return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> Union[str, Any]: return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> Any: return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> Optional[Any]: return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> List[Any]: return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> Optional[Any]: return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> Dict: return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> str: return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> Union[str, Any]: return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any]=None , _snake_case :Optional[Any]=None ) -> Any: if test_case is None: return partial(_snake_case , version=_snake_case ) return unittest.skipUnless(is_torch_version('''>=''' , _snake_case ) , F'''test requires torch version >= {version}''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Dict: return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> Optional[Any]: return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> List[Any]: return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(_snake_case ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] ) -> List[Any]: return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(_snake_case ) class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" a__ : Dict = True @classmethod def snake_case_ ( cls : str ) -> Any: _A = tempfile.mkdtemp() @classmethod def snake_case_ ( cls : Dict ) -> int: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def snake_case_ ( self : str ) -> Optional[Any]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__lowerCAmelCase ) class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Union[str, Any] ) -> str: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Union[mock.Mock, List[mock.Mock]] ) -> List[str]: _A = mocks if isinstance(__lowerCAmelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> Optional[int]: _A = AcceleratorState() _A = tensor[None].clone().to(state.device ) _A = gather(_snake_case ).cpu() _A = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _snake_case ): return False return True class lowerCamelCase__ : """simple docstring""" def __init__( self : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Any: _A = returncode _A = stdout _A = stderr async def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any ) -> Any: while True: _A = await stream.readline() if line: callback(_snake_case ) else: break async def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict=None , _snake_case :Optional[Any]=None , _snake_case :Tuple=None , _snake_case :Optional[int]=False , _snake_case :Optional[Any]=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(_snake_case ) ) _A = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _A = [] _A = [] def tee(_snake_case :Dict , _snake_case :int , _snake_case :Union[str, Any] , _snake_case :Optional[Any]="" ): _A = line.decode('''utf-8''' ).rstrip() sink.append(_snake_case ) if not quiet: print(_snake_case , _snake_case , file=_snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _snake_case : tee(_snake_case , _snake_case , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _snake_case : tee(_snake_case , _snake_case , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=_snake_case , ) return _RunOutput(await p.wait() , _snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :int=None , _snake_case :Tuple=None , _snake_case :Union[str, Any]=180 , _snake_case :str=False , _snake_case :Dict=True ) -> _RunOutput: _A = asyncio.get_event_loop() _A = loop.run_until_complete( _stream_subprocess(_snake_case , env=_snake_case , stdin=_snake_case , timeout=_snake_case , quiet=_snake_case , echo=_snake_case ) ) _A = ''' '''.join(_snake_case ) if result.returncode > 0: _A = '''\n'''.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class lowerCamelCase__ ( _A): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :List[str]=False ) -> List[Any]: try: _A = subprocess.check_output(_snake_case , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_snake_case , '''decode''' ): _A = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(_snake_case )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
2
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCAmelCase_ = """\ Text data. Second line of data.""" UpperCAmelCase_ = """file""" @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any] ) -> Optional[int]: _A = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') _A = bytes(_snake_case , '''utf-8''' ) with zstd.open(_snake_case , '''wb''' ) as f: f.write(_snake_case ) return path @pytest.fixture def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> Any: with open(os.path.join(tmpfs.local_root_dir , _snake_case ) , '''w''' ) as f: f.write(_snake_case ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :str , _snake_case :str , _snake_case :List[str] , _snake_case :int , _snake_case :List[Any] ) -> Optional[int]: _A = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} _A = input_paths[compression_format] _A = tmp_path / '''cache''' _A = DownloadConfig(cache_dir=_snake_case , extract_compressed_file=_snake_case ) _A = cached_path(_snake_case , download_config=_snake_case ) with open(_snake_case ) as f: _A = f.read() with open(_snake_case ) as f: _A = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :Tuple , _snake_case :Dict , _snake_case :Union[str, Any] , _snake_case :List[Any] ) -> str: _A = '''custom_cache''' _A = '''custom_extracted_dir''' _A = tmp_path / '''custom_extracted_path''' if default_extracted: _A = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , _snake_case ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_snake_case ) ) _A = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _A = xz_file _A = ( DownloadConfig(extract_compressed_file=_snake_case ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_snake_case ) ) _A = cached_path(_snake_case , download_config=_snake_case ) assert Path(_snake_case ).parent.parts[-2:] == expected def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> Tuple: # absolute path _A = str(Path(_snake_case ).resolve() ) assert cached_path(_snake_case ) == text_file # relative path _A = str(Path(_snake_case ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_snake_case ) == text_file def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any] ) -> List[Any]: # absolute path _A = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(_snake_case ): cached_path(_snake_case ) # relative path _A = '''./__missing_file__.txt''' with pytest.raises(_snake_case ): cached_path(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict ) -> Any: _A = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(_snake_case ) as f: _A = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _snake_case ) def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: with pytest.raises(_snake_case ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> Dict: _A = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_snake_case ): http_get('''https://huggingface.co''' , temp_file=_snake_case ) with pytest.raises(_snake_case ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Union[str, Any]: _A = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_snake_case ): ftp_get('''ftp://huggingface.co''' , temp_file=_snake_case ) with pytest.raises(_snake_case ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Optional[int]: _A = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_snake_case ): fsspec_get('''s3://huggingface.co''' , temp_file=_snake_case ) with pytest.raises(_snake_case ): fsspec_head('''s3://huggingface.co''' )
2
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str=10 ) -> Optional[Any]: _A = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict=10 ) -> Optional[int]: _A = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) _A = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ) -> Any: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase ) def snake_case_ ( self : int ) -> Union[str, Any]: _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_00 ): _A = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def snake_case_ ( self : int ) -> Union[str, Any]: _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCAmelCase , weight_decay=0.0 , relative_step=__lowerCAmelCase , scale_parameter=__lowerCAmelCase , warmup_init=__lowerCAmelCase , ) for _ in range(10_00 ): _A = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" a__ : Optional[Any] = nn.Linear(50 , 50) if is_torch_available() else None a__ : Dict = AdamW(m.parameters() , lr=10.0) if is_torch_available() else None a__ : List[Any] = 10 def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=None ) -> List[Any]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase , msg=__lowerCAmelCase ) def snake_case_ ( self : Any ) -> str: _A = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A , _A = data _A = scheduler_func(self.optimizer , **__lowerCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A = unwrap_schedule(__lowerCAmelCase , self.num_steps ) self.assertListAlmostEqual( __lowerCAmelCase , __lowerCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _A = scheduler_func(self.optimizer , **__lowerCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCAmelCase ) # wrap to test picklability of the schedule _A = unwrap_and_save_reload_schedule(__lowerCAmelCase , self.num_steps ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class lowerCamelCase__ : """simple docstring""" def __init__( self : List[Any] , __lowerCAmelCase : Any ) -> List[Any]: _A = fn def __call__( self : Union[str, Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : List[str] ) -> Dict: return self.fn(*__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def snake_case_ ( self : Any , __lowerCAmelCase : Optional[Any] ) -> List[str]: _A = list(map(self , scheduler.lr_lambdas ) )
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def SCREAMING_SNAKE_CASE_ ( ) -> None: print('''Making key files...''' ) make_key_files('''rsa''' , 1_024 ) print('''Key files generation successful.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> tuple[tuple[int, int], tuple[int, int]]: print('''Generating prime p...''' ) _A = rabinMiller.generate_large_prime(_snake_case ) print('''Generating prime q...''' ) _A = rabinMiller.generate_large_prime(_snake_case ) _A = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: _A = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_snake_case , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) _A = cryptoMath.find_mod_inverse(_snake_case , (p - 1) * (q - 1) ) _A = (n, e) _A = (n, d) return (public_key, private_key) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :int ) -> None: if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() _A , _A = generate_key(_snake_case ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , '''w''' ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , '''w''' ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> bool: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(_snake_case ) == 1: return True _A = series[1] - series[0] for index in range(len(_snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> float: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) _A = 0 for val in series: answer += val return answer / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : str ) -> Any: _A = tempfile.mkdtemp() _A = SamImageProcessor() _A = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case_ ( self : Any , **__lowerCAmelCase : Any ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def snake_case_ ( self : Tuple ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : Any ) -> Dict: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Union[str, Any] ) -> int: _A = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> Tuple: _A = self.get_image_processor() _A = SamProcessor(image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def snake_case_ ( self : Dict ) -> Any: _A = self.get_image_processor() _A = SamProcessor(image_processor=__lowerCAmelCase ) _A = [torch.ones((1, 3, 5, 5) )] _A = [[17_64, 26_46]] _A = [[6_83, 10_24]] _A = processor.post_process_masks(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _A = processor.post_process_masks( __lowerCAmelCase , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np _A = [np.ones((1, 3, 5, 5) )] _A = processor.post_process_masks(__lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _A = [[1, 0], [0, 1]] with self.assertRaises(__lowerCAmelCase ): _A = processor.post_process_masks(__lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) ) @require_vision @require_tf class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : int ) -> Any: _A = tempfile.mkdtemp() _A = SamImageProcessor() _A = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case_ ( self : int , **__lowerCAmelCase : Optional[Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def snake_case_ ( self : List[str] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : List[Any] ) -> int: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : str ) -> Tuple: _A = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Optional[int]: _A = self.get_image_processor() _A = SamProcessor(image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def snake_case_ ( self : Optional[int] ) -> Any: _A = self.get_image_processor() _A = SamProcessor(image_processor=__lowerCAmelCase ) _A = [tf.ones((1, 3, 5, 5) )] _A = [[17_64, 26_46]] _A = [[6_83, 10_24]] _A = processor.post_process_masks(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _A = processor.post_process_masks( __lowerCAmelCase , tf.convert_to_tensor(__lowerCAmelCase ) , tf.convert_to_tensor(__lowerCAmelCase ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np _A = [np.ones((1, 3, 5, 5) )] _A = processor.post_process_masks( __lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _A = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _A = processor.post_process_masks( __lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) , return_tensors='''tf''' ) @require_vision @require_torchvision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Optional[int] ) -> str: _A = tempfile.mkdtemp() _A = SamImageProcessor() _A = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case_ ( self : List[str] , **__lowerCAmelCase : Union[str, Any] ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def snake_case_ ( self : List[str] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : str ) -> Union[str, Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def snake_case_ ( self : Any ) -> str: _A = self.get_image_processor() _A = SamProcessor(image_processor=__lowerCAmelCase ) _A = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _A = [tf.convert_to_tensor(__lowerCAmelCase )] _A = [torch.tensor(__lowerCAmelCase )] _A = [[17_64, 26_46]] _A = [[6_83, 10_24]] _A = processor.post_process_masks( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors='''tf''' ) _A = processor.post_process_masks( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def snake_case_ ( self : Optional[int] ) -> List[Any]: _A = self.get_image_processor() _A = SamProcessor(image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''pt''' )['''pixel_values'''].numpy() _A = processor(images=__lowerCAmelCase , return_tensors='''pt''' )['''pixel_values'''].numpy() _A = image_processor(__lowerCAmelCase , return_tensors='''tf''' )['''pixel_values'''].numpy() _A = processor(images=__lowerCAmelCase , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) )
2
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _A = QuantumRegister(_snake_case , '''qr''' ) _A = ClassicalRegister(_snake_case , '''cr''' ) _A = QuantumCircuit(_snake_case , _snake_case ) _A = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case ) # simulate with 10000 shots _A = Aer.get_backend('''qasm_simulator''' ) _A = execute(_snake_case , _snake_case , shots=10_000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
2
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict ) -> str: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> Optional[int]: # word like '180' or '身高' or '神' for char in word: _A = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> List[Any]: _A = set() for token in tokens: _A = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) _A = list(_snake_case ) return word_list def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :set() ) -> Optional[int]: if not chinese_word_set: return bert_tokens _A = max([len(_snake_case ) for w in chinese_word_set] ) _A = bert_tokens _A , _A = 0, len(_snake_case ) while start < end: _A = True if is_chinese(bert_word[start] ): _A = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): _A = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _A = '''##''' + bert_word[j] _A = start + i _A = False break if single_word: start += 1 return bert_word def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :LTP , _snake_case :BertTokenizer ) -> int: _A = [] for i in range(0 , len(_snake_case ) , 100 ): _A = ltp_tokenizer.seg(lines[i : i + 100] )[0] _A = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) _A = [] for i in range(0 , len(_snake_case ) , 100 ): _A = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) _A = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): _A = [] for id in input_ids: _A = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) _A = add_sub_symbol(_snake_case , _snake_case ) _A = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": _A = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Optional[int]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: _A = f.readlines() _A = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _A = LTP(args.ltp ) # faster in GPU device _A = BertTokenizer.from_pretrained(args.bert ) _A = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: _A = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") UpperCAmelCase_ = parser.parse_args() main(args)
2
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str , _snake_case :Any , _snake_case :int , _snake_case :List[Any] ) -> Optional[int]: for attribute in key.split('''.''' ): _A = getattr(_snake_case , _snake_case ) if weight_type is not None: _A = getattr(_snake_case , _snake_case ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any , _snake_case :int ) -> Any: _A = [] _A = fairseq_model.state_dict() _A = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _A = True if "*" in mapped_key: _A = name.split(_snake_case )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight" in name: _A = '''weight''' elif "bias" in name: _A = '''bias''' else: _A = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[str] , _snake_case :List[str] , _snake_case :Optional[int] , _snake_case :List[Any] ) -> Any: _A = full_name.split('''conv_layers.''' )[-1] _A = name.split('''.''' ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict ) -> Tuple: _A = SEWConfig() if is_finetuned: _A = model.wav_encoder.wav_model.cfg else: _A = model.cfg _A = fs_config.conv_bias _A = eval(fs_config.conv_feature_layers ) _A = [x[0] for x in conv_layers] _A = [x[1] for x in conv_layers] _A = [x[2] for x in conv_layers] _A = '''gelu''' _A = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _A = 0.0 _A = fs_config.activation_fn.name _A = fs_config.encoder_embed_dim _A = 0.02 _A = fs_config.encoder_ffn_embed_dim _A = 1E-5 _A = fs_config.encoder_layerdrop _A = fs_config.encoder_attention_heads _A = fs_config.conv_pos_groups _A = fs_config.conv_pos _A = len(_snake_case ) _A = fs_config.encoder_layers _A = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _A = model.cfg _A = fs_config.final_dropout _A = fs_config.layerdrop _A = fs_config.activation_dropout _A = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _A = fs_config.attention_dropout _A = fs_config.dropout_input _A = fs_config.dropout _A = fs_config.mask_channel_length _A = fs_config.mask_channel_prob _A = fs_config.mask_length _A = fs_config.mask_prob _A = '''Wav2Vec2FeatureExtractor''' _A = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Union[str, Any] , _snake_case :Optional[Any]=None , _snake_case :Optional[int]=None , _snake_case :Dict=True ) -> List[Any]: if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _A = SEWConfig.from_pretrained(_snake_case ) else: _A = convert_config(model[0] , _snake_case ) _A = model[0].eval() _A = True if config.feat_extract_norm == '''layer''' else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) if is_finetuned: if dict_path: _A = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) _A = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) _A = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) _A = SEWForCTC(_snake_case ) else: _A = SEWModel(_snake_case ) feature_extractor.save_pretrained(_snake_case ) recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
2
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def snake_case_ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any ) -> Any: pass @is_pipeline_test @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @require_torch def snake_case_ ( self : Tuple ) -> Tuple: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def snake_case_ ( self : int ) -> Optional[int]: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def snake_case_ ( self : Optional[int] ) -> int: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case_ ( self : Optional[int] ) -> Dict: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
2
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Dict , **__lowerCAmelCase : Union[str, Any] ) -> Dict: super().__init__(**__lowerCAmelCase ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : Tuple , __lowerCAmelCase : Union[np.ndarray, bytes, str] , **__lowerCAmelCase : Union[str, Any] ) -> Dict: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , **__lowerCAmelCase : Optional[int] ) -> Optional[int]: _A = {} if "candidate_labels" in kwargs: _A = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: _A = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def snake_case_ ( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : str="This is a sound of {}." ) -> Optional[Any]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _A = requests.get(__lowerCAmelCase ).content else: with open(__lowerCAmelCase , '''rb''' ) as f: _A = f.read() if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = ffmpeg_read(__lowerCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(__lowerCAmelCase , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) _A = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) _A = candidate_labels _A = [hypothesis_template.format(__lowerCAmelCase ) for x in candidate_labels] _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework , padding=__lowerCAmelCase ) _A = [text_inputs] return inputs def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Dict: _A = model_inputs.pop('''candidate_labels''' ) _A = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __lowerCAmelCase ): _A = text_inputs[0] else: # Batching case. _A = text_inputs[0][0] _A = self.model(**__lowerCAmelCase , **__lowerCAmelCase ) _A = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def snake_case_ ( self : Tuple , __lowerCAmelCase : List[str] ) -> Tuple: _A = model_outputs.pop('''candidate_labels''' ) _A = model_outputs['''logits'''][0] if self.framework == "pt": _A = logits.softmax(dim=0 ) _A = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) _A = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda __lowerCAmelCase : -x[0] ) ] return result
2
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Tuple ) -> Optional[int]: _A = tempfile.mkdtemp() _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict , **__lowerCAmelCase : int ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , **__lowerCAmelCase : Optional[Any] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : str ) -> Union[str, Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : int ) -> Optional[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> List[str]: _A = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Optional[Any] ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
2
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @property def snake_case_ ( self : List[str] ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case_ ( self : Dict ) -> Any: _A = ort.SessionOptions() _A = False return options def snake_case_ ( self : str ) -> List[Any]: _A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy''' ) # using the PNDM scheduler by default _A = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _A = '''A red cat sitting on a park bench''' _A = np.random.RandomState(0 ) _A = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__lowerCAmelCase , output_type='''np''' , ) _A = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-2
2
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class lowerCamelCase__ : """simple docstring""" def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = False ) -> Union[str, Any]: _A = scheduler _A = optimizers if isinstance(__lowerCAmelCase , (list, tuple) ) else [optimizers] _A = split_batches _A = step_with_optimizer _A = GradientState() def snake_case_ ( self : List[str] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : List[Any] ) -> Optional[int]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__lowerCAmelCase , **__lowerCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__lowerCAmelCase , **__lowerCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _A = AcceleratorState().num_processes for _ in range(__lowerCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__lowerCAmelCase , **__lowerCAmelCase ) else: self.scheduler.step(*__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : int ) -> List[Any]: return self.scheduler.get_last_lr() def snake_case_ ( self : str ) -> Optional[int]: return self.scheduler.state_dict() def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[int] ) -> Optional[Any]: self.scheduler.load_state_dict(__lowerCAmelCase ) def snake_case_ ( self : str ) -> int: return self.scheduler.get_lr() def snake_case_ ( self : Optional[Any] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[Any] ) -> Tuple: return self.scheduler.print_lr(*__lowerCAmelCase , **__lowerCAmelCase )
2
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Dict=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=1 / 2_55 , __lowerCAmelCase : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def snake_case_ ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> Dict: if not batched: _A = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Any: _A = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def snake_case_ ( self : List[str] ) -> int: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[Any] ) -> Optional[int]: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def snake_case_ ( self : List[str] ) -> List[str]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
2
1
import os def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> List[Any]: _A = len(grid[0] ) _A = len(_snake_case ) _A = 0 _A = 0 _A = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_snake_case ): for j in range(n_rows - 3 ): _A = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _A = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _A = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _A = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _A = max( _snake_case , _snake_case , _snake_case , _snake_case ) if max_product > largest: _A = max_product return largest def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _A = [] with open(os.path.dirname(_snake_case ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) _A = [[int(_snake_case ) for i in grid[j]] for j in range(len(_snake_case ) )] return largest_product(_snake_case ) if __name__ == "__main__": print(solution())
2
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _A = 0 _A = len(_snake_case ) - 1 _A = 0 while mid <= high: if sequence[mid] == colors[0]: _A , _A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _A , _A = sequence[high], sequence[mid] high -= 1 else: _A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
2
1
UpperCAmelCase_ = range(2, 2_0 + 1) UpperCAmelCase_ = [1_0**k for k in range(ks[-1] + 1)] UpperCAmelCase_ = {} def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[str] , _snake_case :int , _snake_case :str ) -> int: _A = sum(a_i[j] for j in range(_snake_case , len(_snake_case ) ) ) _A = sum(a_i[j] * base[j] for j in range(min(len(_snake_case ) , _snake_case ) ) ) _A , _A = 0, 0 _A = n - i _A = memo.get(_snake_case ) if sub_memo is not None: _A = sub_memo.get(_snake_case ) if jumps is not None and len(_snake_case ) > 0: # find and make the largest jump without going over _A = -1 for _k in range(len(_snake_case ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _A = _k break if max_jump >= 0: _A , _A , _A = jumps[max_jump] # since the difference between jumps is cached, add c _A = diff + c for j in range(min(_snake_case , len(_snake_case ) ) ): _A , _A = divmod(_snake_case , 10 ) if new_c > 0: add(_snake_case , _snake_case , _snake_case ) else: _A = [] else: _A = {c: []} _A = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _A , _A = next_term(_snake_case , k - 1 , i + dn , _snake_case ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _A , _A = compute(_snake_case , _snake_case , i + dn , _snake_case ) diff += _diff dn += terms_jumped _A = sub_memo[c] # keep jumps sorted by # of terms skipped _A = 0 while j < len(_snake_case ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_snake_case , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str , _snake_case :Dict , _snake_case :int ) -> Dict: if i >= n: return 0, i if k > len(_snake_case ): a_i.extend([0 for _ in range(k - len(_snake_case ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _A = i _A , _A , _A = 0, 0, 0 for j in range(len(_snake_case ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _A = ds_c + ds_b diff += addend _A = 0 for j in range(_snake_case ): _A = a_i[j] + addend _A , _A = divmod(_snake_case , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_snake_case , _snake_case , _snake_case ) return diff, i - start_i def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :int , _snake_case :Optional[int] ) -> str: for j in range(_snake_case , len(_snake_case ) ): _A = digits[j] + addend if s >= 10: _A , _A = divmod(_snake_case , 10 ) _A = addend // 10 + quotient else: _A = s _A = addend // 10 if addend == 0: break while addend > 0: _A , _A = divmod(_snake_case , 10 ) digits.append(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10**15 ) -> int: _A = [1] _A = 1 _A = 0 while True: _A , _A = next_term(_snake_case , 20 , i + dn , _snake_case ) dn += terms_jumped if dn == n - i: break _A = 0 for j in range(len(_snake_case ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'{solution() = }')
2
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = "new-model" if is_tf_available(): class lowerCamelCase__ ( _A): """simple docstring""" a__ : Optional[Any] = NewModelConfig @require_tf class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def snake_case_ ( self : Optional[int] ) -> List[str]: _A = '''bert-base-cased''' _A = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _A = TFAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = '''bert-base-cased''' _A = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _A = TFAutoModelForPreTraining.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def snake_case_ ( self : List[Any] ) -> Tuple: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _A = TFAutoModelForCausalLM.from_pretrained(__lowerCAmelCase ) _A , _A = TFAutoModelForCausalLM.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def snake_case_ ( self : str ) -> Optional[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _A = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def snake_case_ ( self : List[str] ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _A = TFAutoModelForMaskedLM.from_pretrained(__lowerCAmelCase ) _A , _A = TFAutoModelForMaskedLM.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def snake_case_ ( self : str ) -> Dict: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _A = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ) _A , _A = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def snake_case_ ( self : int ) -> Dict: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _A = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _A = TFAutoModelForSequenceClassification.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def snake_case_ ( self : Any ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _A = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _A = TFAutoModelForQuestionAnswering.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow @require_tensorflow_probability def snake_case_ ( self : List[Any] ) -> str: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _A = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _A = TFAutoModelForTableQuestionAnswering.from_pretrained(__lowerCAmelCase ) _A , _A = TFAutoModelForTableQuestionAnswering.from_pretrained( __lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[str]: _A = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCAmelCase ) , 1_44_10 ) def snake_case_ ( self : List[str] ) -> Tuple: _A = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCAmelCase ) , 1_44_10 ) def snake_case_ ( self : Optional[int] ) -> Dict: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel _A = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _A = copy.deepcopy(model.config ) _A = ['''FunnelBaseModel'''] _A = TFAutoModel.from_config(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCAmelCase ) _A = TFAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : List[str] ) -> Optional[int]: try: AutoConfig.register('''new-model''' , __lowerCAmelCase ) _A = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__lowerCAmelCase ): auto_class.register(__lowerCAmelCase , __lowerCAmelCase ) auto_class.register(__lowerCAmelCase , __lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): auto_class.register(__lowerCAmelCase , __lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _A = BertModelTester(self ).get_config() _A = NewModelConfig(**tiny_config.to_dict() ) _A = auto_class.from_config(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCAmelCase ) _A = auto_class.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def snake_case_ ( self : Optional[int] ) -> Optional[int]: with self.assertRaisesRegex( __lowerCAmelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): _A = TFAutoModel.from_pretrained('''bert-base''' ) def snake_case_ ( self : int ) -> str: with self.assertRaisesRegex( __lowerCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _A = TFAutoModel.from_pretrained(__lowerCAmelCase , revision='''aaaaaa''' ) def snake_case_ ( self : Any ) -> List[str]: with self.assertRaisesRegex( __lowerCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): _A = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def snake_case_ ( self : List[str] ) -> Any: with self.assertRaisesRegex(__lowerCAmelCase , '''Use `from_pt=True` to load this model''' ): _A = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def snake_case_ ( self : List[Any] ) -> Dict: # Make sure we have cached the model. _A = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: _A = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint _A = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: _A = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
2
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Any: if _re_test_backend.search(_snake_case ) is None: return None _A = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Any: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() _A = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): _A = _re_one_line_import_struct.search(_snake_case ).groups()[0] _A = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _A = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _A = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: _A = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: _A = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict ) -> Any: def find_duplicates(_snake_case :Any ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> int: _A = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: _A = os.path.join(_snake_case , '''__init__.py''' ) _A = parse_init(_snake_case ) if objects is not None: _A = analyze_results(*_snake_case ) if len(_snake_case ) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue _A = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) _A = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue _A = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) _A = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A = direct_transformers_import(_snake_case ) _A = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: _A = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: _A = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
2
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> Dict: _A = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict ) -> Tuple: _A = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _A = s_dict.pop(_snake_case ) elif "subsample" in key: _A = s_dict.pop(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> str: _A , _A = emb.weight.shape _A = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) _A = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Union[str, Any] ) -> Optional[Any]: _A = torch.load(_snake_case , map_location='''cpu''' ) _A = mam_aaa['''args'''] _A = mam_aaa['''model'''] _A = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(_snake_case ) rename_keys(_snake_case ) _A = state_dict['''decoder.embed_tokens.weight'''].shape[0] _A = args.share_decoder_input_output_embed _A = [int(_snake_case ) for i in args.conv_kernel_sizes.split(''',''' )] _A = SpeechaTextConfig( vocab_size=_snake_case , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(_snake_case ) , conv_channels=args.conv_channels , conv_kernel_sizes=_snake_case , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_snake_case , num_beams=5 , max_length=200 , use_cache=_snake_case , decoder_start_token_id=2 , early_stopping=_snake_case , ) _A = SpeechaTextForConditionalGeneration(_snake_case ) _A , _A = model.model.load_state_dict(_snake_case , strict=_snake_case ) if len(_snake_case ) > 0 and not set(_snake_case ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''' ) if tie_embeds: _A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _A = lm_head_weights model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCAmelCase_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
2
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__ ( _A): """simple docstring""" a__ : Union[str, Any] = ["pixel_values"] def __init__( self : List[str] , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[int, float] = 1 / 2_55 , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : bool = True , **__lowerCAmelCase : List[Any] , ) -> None: super().__init__(**__lowerCAmelCase ) _A = size if size is not None else {'''shortest_edge''': 2_24} _A = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) _A = crop_size if crop_size is not None else {'''height''': 2_56, '''width''': 2_56} _A = get_size_dict(__lowerCAmelCase , param_name='''crop_size''' ) _A = do_resize _A = size _A = resample _A = do_rescale _A = rescale_factor _A = do_center_crop _A = crop_size _A = do_flip_channel_order def snake_case_ ( self : Any , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : PILImageResampling = PIL.Image.BILINEAR , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Optional[int] , ) -> np.ndarray: _A = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) _A = get_resize_output_image_size(__lowerCAmelCase , size=size['''shortest_edge'''] , default_to_square=__lowerCAmelCase ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Dict , ) -> np.ndarray: _A = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(__lowerCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Dict , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Union[int, float] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Any , ) -> Optional[int]: return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: return flip_channel_order(__lowerCAmelCase , data_format=__lowerCAmelCase ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : ImageInput , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : float = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCAmelCase : Optional[int] , ) -> PIL.Image.Image: _A = do_resize if do_resize is not None else self.do_resize _A = resample if resample is not None else self.resample _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_center_crop if do_center_crop is not None else self.do_center_crop _A = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _A = size if size is not None else self.size _A = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) _A = crop_size if crop_size is not None else self.crop_size _A = get_size_dict(__lowerCAmelCase , param_name='''crop_size''' ) _A = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. _A = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: _A = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_center_crop: _A = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase ) for image in images] if do_rescale: _A = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _A = [self.flip_channel_order(image=__lowerCAmelCase ) for image in images] _A = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] _A = {'''pixel_values''': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase ) def snake_case_ ( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Tuple] = None ) -> str: _A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__lowerCAmelCase ): _A = target_sizes.numpy() _A = [] for idx in range(len(__lowerCAmelCase ) ): _A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__lowerCAmelCase ) _A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowerCAmelCase ) else: _A = logits.argmax(dim=1 ) _A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
2
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def SCREAMING_SNAKE_CASE_ ( *_snake_case :Optional[Any] , _snake_case :Optional[Union[Dict, Any]] = None , _snake_case :Optional[int]=True , _snake_case :Optional[int]=2 ) -> str: from .. import __version__ _A = take_from _A = () if not isinstance(args[0] , _snake_case ): _A = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_snake_case ).base_version ) >= version.parse(_snake_case ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) _A = None if isinstance(_snake_case , _snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_snake_case ),) _A = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(_snake_case , _snake_case ): values += (getattr(_snake_case , _snake_case ),) _A = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: _A = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: _A = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , _snake_case , stacklevel=_snake_case ) if isinstance(_snake_case , _snake_case ) and len(_snake_case ) > 0: _A = inspect.getouterframes(inspect.currentframe() )[1] _A = call_frame.filename _A = call_frame.lineno _A = call_frame.function _A , _A = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(_snake_case ) == 0: return elif len(_snake_case ) == 1: return values[0] return values
2
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = 9 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _A = kruskal(_snake_case , _snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_snake_case ) == sorted(_snake_case )
2
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def snake_case_ ( *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Tuple ) -> List[Any]: pass @is_pipeline_test @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" a__ : Tuple = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def snake_case_ ( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] ) -> int: _A = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) _A = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> Tuple: _A = vqa_pipeline(__lowerCAmelCase , top_k=1 ) self.assertEqual( __lowerCAmelCase , [ [{'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}], [{'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}], ] , ) @require_torch def snake_case_ ( self : Dict ) -> Any: _A = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) _A = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _A = '''How many cats are there?''' _A = vqa_pipeline(image=__lowerCAmelCase , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( __lowerCAmelCase , [{'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}, {'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}] ) _A = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( __lowerCAmelCase , [{'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}, {'''score''': ANY(__lowerCAmelCase ), '''answer''': ANY(__lowerCAmelCase )}] ) @slow @require_torch def snake_case_ ( self : Dict ) -> List[str]: _A = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) _A = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _A = '''How many cats are there?''' _A = vqa_pipeline(image=__lowerCAmelCase , question=__lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}] ) _A = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}] ) _A = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [[{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def snake_case_ ( self : Union[str, Any] ) -> List[Any]: pass
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False, False, False @dataclass class lowerCamelCase__ : """simple docstring""" a__ : Optional[int] = None a__ : bool = True a__ : bool = True a__ : Optional[str] = None # Automatically constructed a__ : ClassVar[str] = "dict" a__ : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()}) a__ : str = field(default="Audio" , init=_A , repr=_A) def __call__( self : str ) -> List[str]: return self.pa_type def snake_case_ ( self : Any , __lowerCAmelCase : Union[str, bytes, dict] ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return {"bytes": None, "path": value} elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _A = BytesIO() sf.write(__lowerCAmelCase , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _A = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: _A = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_27_67 _A = BytesIO(bytes() ) sf.write(__lowerCAmelCase , __lowerCAmelCase , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : dict , __lowerCAmelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) _A , _A = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err _A = xsplitext(__lowerCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: _A = token_per_repo_id or {} _A = path.split('''::''' )[-1] try: _A = string_to_dict(__lowerCAmelCase , config.HUB_DATASETS_URL )['''repo_id'''] _A = token_per_repo_id[repo_id] except (ValueError, KeyError): _A = None with xopen(__lowerCAmelCase , '''rb''' , use_auth_token=__lowerCAmelCase ) as f: _A , _A = sf.read(__lowerCAmelCase ) else: _A , _A = sf.read(__lowerCAmelCase ) _A = array.T if self.mono: _A = librosa.to_mono(__lowerCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: _A = librosa.resample(__lowerCAmelCase , orig_sr=__lowerCAmelCase , target_sr=self.sampling_rate ) _A = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def snake_case_ ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): _A = pa.array([None] * len(__lowerCAmelCase ) , type=pa.binary() ) _A = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _A = pa.array([None] * len(__lowerCAmelCase ) , type=pa.string() ) _A = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): _A = pa.array([Audio().encode_example(__lowerCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: _A = storage.field('''bytes''' ) else: _A = pa.array([None] * len(__lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: _A = storage.field('''path''' ) else: _A = pa.array([None] * len(__lowerCAmelCase ) , type=pa.string() ) _A = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(__lowerCAmelCase , self.pa_type ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(__lowerCAmelCase : Union[str, Any] ): with xopen(__lowerCAmelCase , '''rb''' ) as f: _A = f.read() return bytes_ _A = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _A = pa.array( [os.path.basename(__lowerCAmelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) _A = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(__lowerCAmelCase , self.pa_type )
2
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCamelCase__ ( _A , _A , unittest.TestCase): """simple docstring""" a__ : Optional[Any] = VQModel a__ : Optional[int] = "sample" @property def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Any=(32, 32) ) -> int: _A = 4 _A = 3 _A = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) return {"sample": image} @property def snake_case_ ( self : Optional[Any] ) -> List[Any]: return (3, 32, 32) @property def snake_case_ ( self : Tuple ) -> Tuple: return (3, 32, 32) def snake_case_ ( self : Any ) -> Tuple: _A = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } _A = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self : Optional[Any] ) -> Tuple: pass def snake_case_ ( self : Any ) -> Optional[int]: pass def snake_case_ ( self : Union[str, Any] ) -> Any: _A , _A = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__lowerCAmelCase ) _A = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def snake_case_ ( self : List[Any] ) -> Optional[Any]: _A = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(__lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _A = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _A = image.to(__lowerCAmelCase ) with torch.no_grad(): _A = model(__lowerCAmelCase ).sample _A = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _A = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) )
2
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase_ = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict , _snake_case :List[str]=None ) -> Any: require_version(deps[pkg] , _snake_case )
2
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( datasets.BuilderConfig): """simple docstring""" a__ : Optional[datasets.Features] = None a__ : str = "utf-8" a__ : Optional[str] = None a__ : Optional[str] = None a__ : bool = True # deprecated a__ : Optional[int] = None # deprecated a__ : int = 10 << 20 # 10MB a__ : Optional[bool] = None class lowerCamelCase__ ( datasets.ArrowBasedBuilder): """simple docstring""" a__ : List[Any] = JsonConfig def snake_case_ ( self : Any ) -> List[str]: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) _A = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def snake_case_ ( self : int , __lowerCAmelCase : Dict ) -> Any: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _A = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCAmelCase , (str, list, tuple) ): _A = data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = [files] _A = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _A = [] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = [files] _A = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def snake_case_ ( self : Dict , __lowerCAmelCase : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _A = self.config.features.arrow_schema.field(__lowerCAmelCase ).type _A = pa_table.append_column(__lowerCAmelCase , pa.array([None] * len(__lowerCAmelCase ) , type=__lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _A = table_cast(__lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def snake_case_ ( self : Any , __lowerCAmelCase : str ) -> int: for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A = json.load(__lowerCAmelCase ) # We keep only the field we are interested in _A = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCAmelCase , (list, tuple) ): _A = set().union(*[row.keys() for row in dataset] ) _A = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} else: _A = dataset _A = pa.Table.from_pydict(__lowerCAmelCase ) yield file_idx, self._cast_table(__lowerCAmelCase ) # If the file has one json object per line else: with open(__lowerCAmelCase , '''rb''' ) as f: _A = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _A = max(self.config.chunksize // 32 , 16 << 10 ) _A = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: _A = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _A = batch.decode(self.config.encoding , errors=__lowerCAmelCase ).encode('''utf-8''' ) try: while True: try: _A = paj.read_json( io.BytesIO(__lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=__lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(__lowerCAmelCase ) or block_size > len(__lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(__lowerCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A = json.load(__lowerCAmelCase ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # list is the only sequence type supported in JSON try: _A = set().union(*[row.keys() for row in dataset] ) _A = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} _A = pa.Table.from_pydict(__lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__lowerCAmelCase ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCAmelCase ) batch_idx += 1
2
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
2
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
1
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=_A): """simple docstring""" a__ : Any = ["torch", "transformers", "onnx"] def __init__( self : Union[str, Any] , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : str ) -> int: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : Optional[Any] , *__lowerCAmelCase : str , **__lowerCAmelCase : int ) -> List[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : Optional[Any] , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Optional[int] ) -> str: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase__ ( metaclass=_A): """simple docstring""" a__ : str = ["torch", "transformers", "onnx"] def __init__( self : List[str] , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Optional[int] ) -> Dict: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : Any , *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Tuple ) -> Any: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase__ ( metaclass=_A): """simple docstring""" a__ : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : Dict , *__lowerCAmelCase : Dict , **__lowerCAmelCase : int ) -> List[Any]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : List[Any] , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Any ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : List[str] , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Any ) -> str: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase__ ( metaclass=_A): """simple docstring""" a__ : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : Any , *__lowerCAmelCase : int , **__lowerCAmelCase : Optional[int] ) -> Optional[int]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : Union[str, Any] , *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : List[str] ) -> str: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : Tuple , *__lowerCAmelCase : Dict , **__lowerCAmelCase : List[Any] ) -> List[str]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase__ ( metaclass=_A): """simple docstring""" a__ : Optional[Any] = ["torch", "transformers", "onnx"] def __init__( self : List[Any] , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : str ) -> List[Any]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : Union[str, Any] , *__lowerCAmelCase : str , **__lowerCAmelCase : str ) -> Any: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : Union[str, Any] , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase__ ( metaclass=_A): """simple docstring""" a__ : Any = ["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Tuple ) -> Optional[int]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : str , *__lowerCAmelCase : Any , **__lowerCAmelCase : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case_ ( cls : Dict , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
2
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCamelCase__ ( _A): """simple docstring""" a__ : Union[str, Any] = "" a__ : Optional[int] = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : List[str] , __lowerCAmelCase : Optional[DatasetInfo] = None , __lowerCAmelCase : Optional[str] = None , **__lowerCAmelCase : str , ) -> Tuple: super().__init__(self , **__lowerCAmelCase ) _A = repo_info _A = token _A = None def snake_case_ ( self : Dict ) -> str: if self.dir_cache is None: _A = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _A = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(__lowerCAmelCase ): {'''name''': str(__lowerCAmelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def snake_case_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str = "rb" , **__lowerCAmelCase : Tuple , ) -> Dict: if not isinstance(self.repo_info , __lowerCAmelCase ): raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) _A = hf_hub_url(self.repo_info.id , __lowerCAmelCase , revision=self.repo_info.sha ) return fsspec.open( __lowerCAmelCase , mode=__lowerCAmelCase , headers=get_authentication_headers_for_url(__lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def snake_case_ ( self : Optional[int] , __lowerCAmelCase : List[str] , **__lowerCAmelCase : int ) -> Optional[Any]: self._get_dirs() _A = self._strip_protocol(__lowerCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__lowerCAmelCase ) def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : int=False , **__lowerCAmelCase : Any ) -> Union[str, Any]: self._get_dirs() _A = PurePosixPath(path.strip('''/''' ) ) _A = {} for p, f in self.dir_cache.items(): _A = PurePosixPath(p.strip('''/''' ) ) _A = p.parent if root == path: _A = f _A = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
2
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" a__ : Tuple = JukeboxTokenizer a__ : Union[str, Any] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def snake_case_ ( self : str ) -> Union[str, Any]: import torch _A = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) _A = tokenizer(**self.metas )['''input_ids'''] # fmt: off _A = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def snake_case_ ( self : Tuple ) -> Tuple: import torch _A = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) _A = tokenizer(**self.metas )['''input_ids'''] # fmt: off _A = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCAmelCase_ = get_logger() UpperCAmelCase_ = None class lowerCamelCase__ ( TensorFormatter[Mapping, "jax.Array", Mapping]): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : int=None , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : int ) -> Optional[int]: super().__init__(features=__lowerCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Expected {device} to be a `str` not {type(__lowerCAmelCase )}, as `jaxlib.xla_extension.Device` ''' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) _A = device if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _A = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) _A = str(jax.devices()[0] ) _A = jnp_array_kwargs @staticmethod def snake_case_ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(__lowerCAmelCase ): device for device in jax.devices()} def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: import jax import jax.numpy as jnp if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and column: if all( isinstance(__lowerCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__lowerCAmelCase , axis=0 ) return column def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: import jax import jax.numpy as jnp if isinstance(__lowerCAmelCase , (str, bytes, type(__lowerCAmelCase )) ): return value elif isinstance(__lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _A = {} if isinstance(__lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _A = {'''dtype''': jnp.intaa} else: _A = {'''dtype''': jnp.intaa} elif isinstance(__lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _A = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCAmelCase , PIL.Image.Image ): _A = np.asarray(__lowerCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _A = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__lowerCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> Optional[int]: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__lowerCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__lowerCAmelCase , '''__array__''' ) and not isinstance(__lowerCAmelCase , jax.Array ): _A = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(__lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : dict ) -> Optional[Any]: return map_nested(self._recursive_tensorize , __lowerCAmelCase , map_list=__lowerCAmelCase ) def snake_case_ ( self : Tuple , __lowerCAmelCase : pa.Table ) -> Mapping: _A = self.numpy_arrow_extractor().extract_row(__lowerCAmelCase ) _A = self.python_features_decoder.decode_row(__lowerCAmelCase ) return self.recursive_tensorize(__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : pa.Table ) -> "jax.Array": _A = self.numpy_arrow_extractor().extract_column(__lowerCAmelCase ) _A = self.python_features_decoder.decode_column(__lowerCAmelCase , pa_table.column_names[0] ) _A = self.recursive_tensorize(__lowerCAmelCase ) _A = self._consolidate(__lowerCAmelCase ) return column def snake_case_ ( self : Any , __lowerCAmelCase : pa.Table ) -> Mapping: _A = self.numpy_arrow_extractor().extract_batch(__lowerCAmelCase ) _A = self.python_features_decoder.decode_batch(__lowerCAmelCase ) _A = self.recursive_tensorize(__lowerCAmelCase ) for column_name in batch: _A = self._consolidate(batch[column_name] ) return batch
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> bool: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(_snake_case ) == 1: return True _A = series[1] - series[0] for index in range(len(_snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> float: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) _A = 0 for val in series: answer += val return answer / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : List[str] ) -> int: debug_launcher(test_script.main ) def snake_case_ ( self : Optional[Any] ) -> str: debug_launcher(test_ops.main )
2
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _A = QuantumRegister(_snake_case , '''qr''' ) _A = ClassicalRegister(_snake_case , '''cr''' ) _A = QuantumCircuit(_snake_case , _snake_case ) _A = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case ) # simulate with 10000 shots _A = Aer.get_backend('''qasm_simulator''' ) _A = execute(_snake_case , _snake_case , shots=10_000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
2
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def SCREAMING_SNAKE_CASE_ ( _snake_case :dict ) -> tuple: return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE_ ( _snake_case :np.ndarray , _snake_case :np.ndarray , _snake_case :np.ndarray ) -> np.ndarray: _A = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_snake_case , _snake_case ) # Predict target for test data _A = xgb.predict(_snake_case ) _A = predictions.reshape(len(_snake_case ) , 1 ) return predictions def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = fetch_california_housing() _A , _A = data_handling(_snake_case ) _A , _A , _A , _A = train_test_split( _snake_case , _snake_case , test_size=0.25 , random_state=1 ) _A = xgboost(_snake_case , _snake_case , _snake_case ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(_snake_case , _snake_case )}''' ) print(F'''Mean Square Error : {mean_squared_error(_snake_case , _snake_case )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
2
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str , _snake_case :Any , _snake_case :int , _snake_case :List[Any] ) -> Optional[int]: for attribute in key.split('''.''' ): _A = getattr(_snake_case , _snake_case ) if weight_type is not None: _A = getattr(_snake_case , _snake_case ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any , _snake_case :int ) -> Any: _A = [] _A = fairseq_model.state_dict() _A = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _A = True if "*" in mapped_key: _A = name.split(_snake_case )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight" in name: _A = '''weight''' elif "bias" in name: _A = '''bias''' else: _A = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[str] , _snake_case :List[str] , _snake_case :Optional[int] , _snake_case :List[Any] ) -> Any: _A = full_name.split('''conv_layers.''' )[-1] _A = name.split('''.''' ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict ) -> Tuple: _A = SEWConfig() if is_finetuned: _A = model.wav_encoder.wav_model.cfg else: _A = model.cfg _A = fs_config.conv_bias _A = eval(fs_config.conv_feature_layers ) _A = [x[0] for x in conv_layers] _A = [x[1] for x in conv_layers] _A = [x[2] for x in conv_layers] _A = '''gelu''' _A = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _A = 0.0 _A = fs_config.activation_fn.name _A = fs_config.encoder_embed_dim _A = 0.02 _A = fs_config.encoder_ffn_embed_dim _A = 1E-5 _A = fs_config.encoder_layerdrop _A = fs_config.encoder_attention_heads _A = fs_config.conv_pos_groups _A = fs_config.conv_pos _A = len(_snake_case ) _A = fs_config.encoder_layers _A = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _A = model.cfg _A = fs_config.final_dropout _A = fs_config.layerdrop _A = fs_config.activation_dropout _A = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _A = fs_config.attention_dropout _A = fs_config.dropout_input _A = fs_config.dropout _A = fs_config.mask_channel_length _A = fs_config.mask_channel_prob _A = fs_config.mask_length _A = fs_config.mask_prob _A = '''Wav2Vec2FeatureExtractor''' _A = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Union[str, Any] , _snake_case :Optional[Any]=None , _snake_case :Optional[int]=None , _snake_case :Dict=True ) -> List[Any]: if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _A = SEWConfig.from_pretrained(_snake_case ) else: _A = convert_config(model[0] , _snake_case ) _A = model[0].eval() _A = True if config.feat_extract_norm == '''layer''' else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) if is_finetuned: if dict_path: _A = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) _A = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) _A = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) _A = SEWForCTC(_snake_case ) else: _A = SEWModel(_snake_case ) feature_extractor.save_pretrained(_snake_case ) recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
2
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[Any] , _snake_case :Optional[Any] ) -> List[str]: _A = UniSpeechSatForSequenceClassification.from_pretrained(_snake_case , config=_snake_case ) _A = downstream_dict['''projector.weight'''] _A = downstream_dict['''projector.bias'''] _A = downstream_dict['''model.post_net.linear.weight'''] _A = downstream_dict['''model.post_net.linear.bias'''] return model def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict , _snake_case :Union[str, Any] , _snake_case :List[str] ) -> str: _A = UniSpeechSatForAudioFrameClassification.from_pretrained(_snake_case , config=_snake_case ) _A = downstream_dict['''model.linear.weight'''] _A = downstream_dict['''model.linear.bias'''] return model def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :str , _snake_case :str ) -> List[str]: _A = UniSpeechSatForXVector.from_pretrained(_snake_case , config=_snake_case ) _A = downstream_dict['''connector.weight'''] _A = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _A = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _A = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _A = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] _A = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] _A = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] _A = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] _A = downstream_dict['''objective.W'''] return model @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :List[str] , _snake_case :Union[str, Any] , _snake_case :List[str] ) -> Any: _A = torch.load(_snake_case , map_location='''cpu''' ) _A = checkpoint['''Downstream'''] _A = UniSpeechSatConfig.from_pretrained(_snake_case ) _A = WavaVecaFeatureExtractor.from_pretrained( _snake_case , return_attention_mask=_snake_case , do_normalize=_snake_case ) _A = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): _A = convert_classification(_snake_case , _snake_case , _snake_case ) elif arch.endswith('''ForAudioFrameClassification''' ): _A = convert_diarization(_snake_case , _snake_case , _snake_case ) elif arch.endswith('''ForXVector''' ): _A = convert_xvector(_snake_case , _snake_case , _snake_case ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _A = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") UpperCAmelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
2
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def snake_case_ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any ) -> Any: pass @is_pipeline_test @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @require_torch def snake_case_ ( self : Tuple ) -> Tuple: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def snake_case_ ( self : int ) -> Optional[int]: _A = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) _A = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def snake_case_ ( self : Optional[int] ) -> int: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case_ ( self : Optional[int] ) -> Dict: _A = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
2
1
from functools import lru_cache @lru_cache def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
2
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Tuple ) -> Optional[int]: _A = tempfile.mkdtemp() _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict , **__lowerCAmelCase : int ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , **__lowerCAmelCase : Optional[Any] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : str ) -> Union[str, Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : int ) -> Optional[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> List[str]: _A = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Optional[Any] ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
2
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( _A , _A , unittest.TestCase): """simple docstring""" a__ : List[str] = IFPipeline a__ : Optional[Any] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} a__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self : Dict ) -> Optional[Any]: return self._get_dummy_components() def snake_case_ ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any]=0 ) -> List[str]: if str(__lowerCAmelCase ).startswith('''mps''' ): _A = torch.manual_seed(__lowerCAmelCase ) else: _A = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _A = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case_ ( self : str ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def snake_case_ ( self : Union[str, Any] ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case_ ( self : Union[str, Any] ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Union[str, Any]: self._test_save_load_local() def snake_case_ ( self : Dict ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case_ ( self : Dict ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : List[Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self : Tuple ) -> str: # if _A = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) _A = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) _A , _A = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _A = None _A = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _A = IFImgaImgPipeline(**pipe_a.components ) _A = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _A = IFInpaintingPipeline(**pipe_a.components ) _A = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] ) -> Tuple: # pipeline 1 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type='''np''' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (2_56, 2_56, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type='''np''' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , original_image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (2_56, 2_56, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ) -> Tuple: # pipeline 1 _start_torch_memory_measurement() _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__lowerCAmelCase ) _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type='''np''' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(__lowerCAmelCase ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , original_image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (2_56, 2_56, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
2
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase__ ( _A): """simple docstring""" a__ : Union[str, Any] = (DPMSolverSDEScheduler,) a__ : Any = 10 def snake_case_ ( self : List[Any] , **__lowerCAmelCase : List[Any] ) -> str: _A = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__lowerCAmelCase ) return config def snake_case_ ( self : Tuple ) -> str: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def snake_case_ ( self : Dict ) -> Any: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__lowerCAmelCase , beta_end=__lowerCAmelCase ) def snake_case_ ( self : Any ) -> int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def snake_case_ ( self : Any ) -> Optional[Any]: _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _A = model(__lowerCAmelCase , __lowerCAmelCase ) _A = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(__lowerCAmelCase ) ) _A = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def snake_case_ ( self : Dict ) -> str: _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _A = model(__lowerCAmelCase , __lowerCAmelCase ) _A = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(__lowerCAmelCase ) ) _A = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def snake_case_ ( self : int ) -> Any: _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowerCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(__lowerCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _A = model(__lowerCAmelCase , __lowerCAmelCase ) _A = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(__lowerCAmelCase ) ) _A = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def snake_case_ ( self : Tuple ) -> Optional[Any]: _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__lowerCAmelCase , use_karras_sigmas=__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowerCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(__lowerCAmelCase ) * scheduler.init_noise_sigma _A = sample.to(__lowerCAmelCase ) for t in scheduler.timesteps: _A = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _A = model(__lowerCAmelCase , __lowerCAmelCase ) _A = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(__lowerCAmelCase ) ) _A = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
2
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Dict=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=1 / 2_55 , __lowerCAmelCase : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def snake_case_ ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> Dict: if not batched: _A = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Any: _A = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def snake_case_ ( self : List[str] ) -> int: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[Any] ) -> Optional[int]: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def snake_case_ ( self : List[str] ) -> List[str]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
2
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :int ) -> Tuple: inspect_dataset(_snake_case , _snake_case ) _A = path + '''.py''' assert script_name in os.listdir(_snake_case ) assert "__pycache__" not in os.listdir(_snake_case ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any] , _snake_case :Union[str, Any] ) -> Any: inspect_metric(_snake_case , _snake_case ) _A = path + '''.py''' assert script_name in os.listdir(_snake_case ) assert "__pycache__" not in os.listdir(_snake_case ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :List[str] , _snake_case :str ) -> Union[str, Any]: _A = get_dataset_config_info(_snake_case , config_name=_snake_case ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :str , _snake_case :List[str] ) -> Any: with pytest.raises(_snake_case ): get_dataset_config_info(_snake_case , config_name=_snake_case ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :int ) -> List[str]: _A = get_dataset_config_names(_snake_case ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any , _snake_case :Any ) -> Optional[Any]: _A = get_dataset_infos(_snake_case ) assert list(infos.keys() ) == expected_configs _A = expected_configs[0] assert expected_config in infos _A = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :Optional[Any] , _snake_case :Any ) -> str: _A = get_dataset_infos(_snake_case ) assert expected_config in infos _A = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Tuple , _snake_case :Dict ) -> List[str]: with pytest.raises(_snake_case ): get_dataset_split_names(_snake_case , config_name=_snake_case )
2
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _A = 0 _A = len(_snake_case ) - 1 _A = 0 while mid <= high: if sequence[mid] == colors[0]: _A , _A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _A , _A = sequence[high], sequence[mid] high -= 1 else: _A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
2
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCAmelCase_ = get_logger(__name__) UpperCAmelCase_ = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class lowerCamelCase__ : """simple docstring""" @add_start_docstrings(__lowerCAmelCase ) def __call__( self : List[Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCamelCase__ : """simple docstring""" @add_start_docstrings(__lowerCAmelCase ) def __call__( self : List[str] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCamelCase__ ( _A): """simple docstring""" @add_start_docstrings(__lowerCAmelCase ) def __call__( self : Optional[int] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int , **__lowerCAmelCase : Tuple ) -> jnp.ndarray: for processor in self: _A = inspect.signature(processor.__call__ ).parameters if len(__lowerCAmelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) _A = processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) else: _A = processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return scores class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : float ) -> Tuple: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) _A = temperature def __call__( self : Optional[int] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray: _A = scores / self.temperature return scores class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : str , __lowerCAmelCase : float , __lowerCAmelCase : float = -float('''Inf''' ) , __lowerCAmelCase : int = 1 ) -> Any: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) _A = top_p _A = filter_value _A = min_tokens_to_keep def __call__( self : str , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray: _A , _A = lax.top_k(__lowerCAmelCase , scores.shape[-1] ) _A = jnp.full_like(__lowerCAmelCase , self.filter_value ) _A = jax.nn.softmax(__lowerCAmelCase , axis=-1 ).cumsum(axis=-1 ) _A = cumulative_probs < self.top_p # include the token that is higher than top_p as well _A = jnp.roll(__lowerCAmelCase , 1 ) score_mask |= score_mask.at[:, 0].set(__lowerCAmelCase ) # min tokens to keep _A = score_mask.at[:, : self.min_tokens_to_keep].set(__lowerCAmelCase ) _A = jnp.where(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = jax.lax.sort_key_val(__lowerCAmelCase , __lowerCAmelCase )[-1] return next_scores class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : float = -float('''Inf''' ) , __lowerCAmelCase : int = 1 ) -> Optional[Any]: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) _A = max(__lowerCAmelCase , __lowerCAmelCase ) _A = filter_value def __call__( self : Union[str, Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray: _A , _A = scores.shape _A = jnp.full(batch_size * vocab_size , self.filter_value ) _A = min(self.top_k , scores.shape[-1] ) # Safety check _A , _A = lax.top_k(__lowerCAmelCase , __lowerCAmelCase ) _A = jnp.broadcast_to((jnp.arange(__lowerCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() _A = topk_scores.flatten() _A = topk_indices.flatten() + shift _A = next_scores_flat.at[topk_indices_flat].set(__lowerCAmelCase ) _A = next_scores_flat.reshape(__lowerCAmelCase , __lowerCAmelCase ) return next_scores class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : str , __lowerCAmelCase : int ) -> int: _A = bos_token_id def __call__( self : Union[str, Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray: _A = jnp.full(scores.shape , -float('''inf''' ) ) _A = 1 - jnp.bool_(cur_len - 1 ) _A = jnp.where(__lowerCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , __lowerCAmelCase ) return scores class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Any: _A = max_length _A = eos_token_id def __call__( self : List[str] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray: _A = jnp.full(scores.shape , -float('''inf''' ) ) _A = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _A = jnp.where(__lowerCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , __lowerCAmelCase ) return scores class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Any: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) _A = min_length _A = eos_token_id def __call__( self : Dict , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied _A = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) _A = jnp.where(__lowerCAmelCase , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , __lowerCAmelCase ) return scores class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> Union[str, Any]: _A = list(__lowerCAmelCase ) _A = begin_index def __call__( self : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Optional[Any]: _A = 1 - jnp.bool_(cur_len - self.begin_index ) _A = jnp.where(__lowerCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , __lowerCAmelCase ) return scores class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : int , __lowerCAmelCase : list ) -> Dict: _A = list(__lowerCAmelCase ) def __call__( self : str , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray: _A = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : int , __lowerCAmelCase : Optional[Any] ) -> List[Any]: _A = dict(__lowerCAmelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _A = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _A = force_token_array.at[index].set(__lowerCAmelCase ) _A = jnp.intaa(__lowerCAmelCase ) def __call__( self : Optional[Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray: def _force_token(__lowerCAmelCase : List[Any] ): _A = scores.shape[0] _A = self.force_token_array[generation_idx] _A = jnp.ones_like(__lowerCAmelCase , dtype=scores.dtype ) * -float('''inf''' ) _A = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) _A = lax.dynamic_update_slice(__lowerCAmelCase , __lowerCAmelCase , (0, current_token) ) return new_scores _A = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__lowerCAmelCase ) , lambda: scores , ) , ) return scores class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> int: _A = generate_config.eos_token_id _A = generate_config.no_timestamps_token_id _A = generate_config.no_timestamps_token_id + 1 _A = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__lowerCAmelCase , '''max_initial_timestamp_index''' ): _A = generate_config.max_initial_timestamp_index else: _A = model_config.vocab_size if self.max_initial_timestamp_index is None: _A = model_config.vocab_size def __call__( self : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ) -> Union[str, Any]: # suppress <|notimestamps|> which is handled by without_timestamps _A = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(__lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ): _A = jnp.where((cur_len - self.begin_index) >= 1 , __lowerCAmelCase , __lowerCAmelCase ) _A = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __lowerCAmelCase , ) _A = jnp.where((cur_len - self.begin_index) < 2 , __lowerCAmelCase , __lowerCAmelCase ) _A = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __lowerCAmelCase , __lowerCAmelCase , ) return jnp.where( __lowerCAmelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , __lowerCAmelCase , ) _A = jax.vmap(__lowerCAmelCase )(__lowerCAmelCase , __lowerCAmelCase ) _A = jnp.where(cur_len == self.begin_index , __lowerCAmelCase , __lowerCAmelCase ) _A = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __lowerCAmelCase , ) _A = self.timestamp_begin + self.max_initial_timestamp_index _A = jnp.where( __lowerCAmelCase , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , __lowerCAmelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp _A = jax.nn.log_softmax(__lowerCAmelCase , axis=-1 ) def handle_cumulative_probs(__lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ): _A = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) _A = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , __lowerCAmelCase , ) _A = jax.vmap(__lowerCAmelCase )(__lowerCAmelCase , __lowerCAmelCase ) return scores
2
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Any: if _re_test_backend.search(_snake_case ) is None: return None _A = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> Any: with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A = f.readlines() _A = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): _A = _re_one_line_import_struct.search(_snake_case ).groups()[0] _A = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _A = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _A = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: _A = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: _A = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) _A = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _A = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _A = lines[line_index] _A = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict ) -> Any: def find_duplicates(_snake_case :Any ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> int: _A = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: _A = os.path.join(_snake_case , '''__init__.py''' ) _A = parse_init(_snake_case ) if objects is not None: _A = analyze_results(*_snake_case ) if len(_snake_case ) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue _A = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) _A = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue _A = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) _A = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A = direct_transformers_import(_snake_case ) _A = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: _A = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: _A = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
2
1
from pathlib import Path import fire def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str , _snake_case :int ) -> int: _A = Path(_snake_case ) _A = Path(_snake_case ) dest_dir.mkdir(exist_ok=_snake_case ) for path in src_dir.iterdir(): _A = [x.rstrip() for x in list(path.open().readlines() )][:n] _A = dest_dir.joinpath(path.name ) print(_snake_case ) dest_path.open('''w''' ).write('''\n'''.join(_snake_case ) ) if __name__ == "__main__": fire.Fire(minify)
2
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_A) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int: _A = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
2
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowerCamelCase__ ( _A): """simple docstring""" a__ : Optional[int] = "char" a__ : str = "bpe" a__ : Union[str, Any] = "wp" UpperCAmelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowerCamelCase__ ( _A): """simple docstring""" a__ : str = ["image_processor", "char_tokenizer"] a__ : Optional[int] = "ViTImageProcessor" a__ : Optional[Any] = "MgpstrTokenizer" def __init__( self : Any , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : Any ) -> Optional[int]: _A = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs.pop('''feature_extractor''' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) _A = tokenizer _A = AutoTokenizer.from_pretrained('''gpt2''' ) _A = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self : List[Any] , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : str=None , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : str ) -> Optional[int]: if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: _A = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: _A = self.char_tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _A = encodings['''input_ids'''] return inputs def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple ) -> Union[str, Any]: _A , _A , _A = sequences _A = char_preds.size(0 ) _A , _A = self._decode_helper(__lowerCAmelCase , '''char''' ) _A , _A = self._decode_helper(__lowerCAmelCase , '''bpe''' ) _A , _A = self._decode_helper(__lowerCAmelCase , '''wp''' ) _A = [] _A = [] for i in range(__lowerCAmelCase ): _A = [char_scores[i], bpe_scores[i], wp_scores[i]] _A = [char_strs[i], bpe_strs[i], wp_strs[i]] _A = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _A = {} _A = final_strs _A = final_scores _A = char_strs _A = bpe_strs _A = wp_strs return out def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ) -> List[str]: if format == DecodeType.CHARACTER: _A = self.char_decode _A = 1 _A = '''[s]''' elif format == DecodeType.BPE: _A = self.bpe_decode _A = 2 _A = '''#''' elif format == DecodeType.WORDPIECE: _A = self.wp_decode _A = 1_02 _A = '''[SEP]''' else: raise ValueError(f'''Format {format} is not supported.''' ) _A , _A = [], [] _A = pred_logits.size(0 ) _A = pred_logits.size(1 ) _A , _A = pred_logits.topk(1 , dim=-1 , largest=__lowerCAmelCase , sorted=__lowerCAmelCase ) _A = preds_index.view(-1 , __lowerCAmelCase )[:, 1:] _A = decoder(__lowerCAmelCase ) _A , _A = torch.nn.functional.softmax(__lowerCAmelCase , dim=2 ).max(dim=2 ) _A = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _A = preds_str[index].find(__lowerCAmelCase ) _A = preds_str[index][:pred_eos] _A = preds_index[index].cpu().tolist() _A = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _A = preds_max_prob[index][: pred_eos_index + 1] _A = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def snake_case_ ( self : Dict , __lowerCAmelCase : Tuple ) -> Dict: _A = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def snake_case_ ( self : Dict , __lowerCAmelCase : List[str] ) -> Union[str, Any]: return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def snake_case_ ( self : Any , __lowerCAmelCase : str ) -> List[Any]: _A = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
2
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : Any , __lowerCAmelCase : List[Any] , ) -> Tuple: _A = parent _A = 13 _A = 7 _A = True _A = True _A = False _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = '''gelu''' _A = 0.1 _A = 0.1 _A = 5_12 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def snake_case_ ( self : str ) -> Optional[int]: _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Any: _A = TFDistilBertModel(config=__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) _A = [input_ids, input_mask] _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = TFDistilBertForMaskedLM(config=__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> Optional[Any]: _A = TFDistilBertForQuestionAnswering(config=__lowerCAmelCase ) _A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : str , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> Tuple: _A = self.num_labels _A = TFDistilBertForSequenceClassification(__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ) -> str: _A = self.num_choices _A = TFDistilBertForMultipleChoice(__lowerCAmelCase ) _A = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ) -> Dict: _A = self.num_labels _A = TFDistilBertForTokenClassification(__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Optional[int] ) -> Any: _A = self.prepare_config_and_inputs() ((_A) , (_A) , (_A) , (_A) , (_A) , (_A)) = config_and_inputs _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( _A , _A , unittest.TestCase): """simple docstring""" a__ : Optional[int] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a__ : Dict = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a__ : str = False a__ : Optional[Any] = False def snake_case_ ( self : int ) -> Optional[int]: _A = TFDistilBertModelTester(self ) _A = ConfigTester(self , config_class=__lowerCAmelCase , dim=37 ) def snake_case_ ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def snake_case_ ( self : Optional[Any] ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__lowerCAmelCase ) @slow def snake_case_ ( self : List[str] ) -> List[str]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _A = TFDistilBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def snake_case_ ( self : Dict ) -> Union[str, Any]: _A = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(__lowerCAmelCase )[0] _A = [1, 6, 7_68] self.assertEqual(output.shape , __lowerCAmelCase ) _A = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 )
2
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _A = 9 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _A = kruskal(_snake_case , _snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_snake_case ) == sorted(_snake_case )
2
1
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : WhisperForConditionalGeneration , __lowerCAmelCase : WhisperProcessor , __lowerCAmelCase : AutoencoderKL , __lowerCAmelCase : CLIPTextModel , __lowerCAmelCase : CLIPTokenizer , __lowerCAmelCase : UNetaDConditionModel , __lowerCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCAmelCase : StableDiffusionSafetyChecker , __lowerCAmelCase : CLIPImageProcessor , ) -> Dict: super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=__lowerCAmelCase , speech_processor=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , ) def snake_case_ ( self : List[str] , __lowerCAmelCase : Optional[Union[str, int]] = "auto" ) -> List[str]: if slice_size == "auto": _A = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCAmelCase ) def snake_case_ ( self : int ) -> List[Any]: self.enable_attention_slicing(__lowerCAmelCase ) @torch.no_grad() def __call__( self : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any=1_60_00 , __lowerCAmelCase : int = 5_12 , __lowerCAmelCase : int = 5_12 , __lowerCAmelCase : int = 50 , __lowerCAmelCase : float = 7.5 , __lowerCAmelCase : Optional[Union[str, List[str]]] = None , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCAmelCase : int = 1 , **__lowerCAmelCase : Optional[int] , ) -> Optional[Any]: _A = self.speech_processor.feature_extractor( __lowerCAmelCase , return_tensors='''pt''' , sampling_rate=__lowerCAmelCase ).input_features.to(self.device ) _A = self.speech_model.generate(__lowerCAmelCase , max_length=48_00_00 ) _A = self.speech_processor.tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , normalize=__lowerCAmelCase )[ 0 ] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = 1 elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = len(__lowerCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__lowerCAmelCase )}.''' ) # get prompt text embeddings _A = self.tokenizer( __lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _A = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _A = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _A = text_input_ids[:, : self.tokenizer.model_max_length] _A = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _A , _A , _A = text_embeddings.shape _A = text_embeddings.repeat(1 , __lowerCAmelCase , 1 ) _A = text_embeddings.view(bs_embed * num_images_per_prompt , __lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _A = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _A = 42 if negative_prompt is None: _A = [''''''] * batch_size elif type(__lowerCAmelCase ) is not type(__lowerCAmelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCAmelCase )} !=''' f''' {type(__lowerCAmelCase )}.''' ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = [negative_prompt] elif batch_size != len(__lowerCAmelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__lowerCAmelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: _A = negative_prompt _A = text_input_ids.shape[-1] _A = self.tokenizer( __lowerCAmelCase , padding='''max_length''' , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' , ) _A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _A = uncond_embeddings.shape[1] _A = uncond_embeddings.repeat(1 , __lowerCAmelCase , 1 ) _A = uncond_embeddings.view(batch_size * num_images_per_prompt , __lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _A = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _A = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _A = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device='''cpu''' , dtype=__lowerCAmelCase ).to( self.device ) else: _A = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _A = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _A = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _A = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A = {} if accepts_eta: _A = eta for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # predict the noise residual _A = self.unet(__lowerCAmelCase , __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: _A , _A = noise_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = 1 / 0.1_8215 * latents _A = self.vae.decode(__lowerCAmelCase ).sample _A = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__lowerCAmelCase , nsfw_content_detected=__lowerCAmelCase )
2
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase_ = pytest.mark.integration UpperCAmelCase_ = {"""comet"""} UpperCAmelCase_ = importlib.util.find_spec("""fairseq""") is not None UpperCAmelCase_ = {"""code_eval"""} UpperCAmelCase_ = os.name == """nt""" UpperCAmelCase_ = {"""bertscore""", """frugalscore""", """perplexity"""} UpperCAmelCase_ = importlib.util.find_spec("""transformers""") is not None def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> List[str]: @wraps(_snake_case ) def wrapper(self :Optional[Any] , _snake_case :Dict ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , _snake_case ) return wrapper def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> str: @wraps(_snake_case ) def wrapper(self :Optional[int] , _snake_case :List[str] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , _snake_case ) return wrapper def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> Union[str, Any]: @wraps(_snake_case ) def wrapper(self :List[Any] , _snake_case :str ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , _snake_case ) return wrapper def SCREAMING_SNAKE_CASE_ ( ) -> str: _A = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names()) @for_all_test_methods( _A , _A , _A) @local class lowerCamelCase__ ( parameterized.TestCase): """simple docstring""" a__ : List[Any] = {} a__ : Tuple = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def snake_case_ ( self : Any , __lowerCAmelCase : Any ) -> List[Any]: _A = '''[...]''' _A = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , __lowerCAmelCase ) ).module_path ) _A = datasets.load.import_main_class(metric_module.__name__ , dataset=__lowerCAmelCase ) # check parameters _A = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__lowerCAmelCase , metric_module.__name__ ): with self.use_local_metrics(): try: _A = doctest.testmod(__lowerCAmelCase , verbose=__lowerCAmelCase , raise_on_error=__lowerCAmelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def snake_case_ ( self : int , __lowerCAmelCase : int ) -> Optional[Any]: _A = '''[...]''' _A = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , __lowerCAmelCase ) ).module_path ) # run doctest with self.use_local_metrics(): _A = doctest.testmod(__lowerCAmelCase , verbose=__lowerCAmelCase , raise_on_error=__lowerCAmelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ) -> Optional[int]: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__lowerCAmelCase ): yield else: yield @contextmanager def snake_case_ ( self : Optional[int] ) -> List[Any]: def load_local_metric(__lowerCAmelCase : List[str] , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Optional[int] ): return load_metric(os.path.join('''metrics''' , __lowerCAmelCase ) , *__lowerCAmelCase , **__lowerCAmelCase ) with patch('''datasets.load_metric''' ) as mock_load_metric: _A = load_local_metric yield @classmethod def snake_case_ ( cls : Dict , __lowerCAmelCase : Any ) -> List[str]: def wrapper(__lowerCAmelCase : Optional[int] ): _A = contextmanager(__lowerCAmelCase ) _A = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> Any: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class lowerCamelCase__ ( _A): """simple docstring""" def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Dict ) -> int: assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: _A = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> Any: import torch def bert_cos_score_idf(_snake_case :List[Any] , _snake_case :Optional[int] , *_snake_case :Union[str, Any] , **_snake_case :Optional[int] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_snake_case ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: _A = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> Union[str, Any]: def load_from_checkpoint(_snake_case :Dict ): class lowerCamelCase__ : """simple docstring""" def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Any , *__lowerCAmelCase : Any , **__lowerCAmelCase : str ) -> Tuple: assert len(__lowerCAmelCase ) == 2 _A = [0.19, 0.92] return scores, sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: _A = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: _A = load_from_checkpoint yield def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: _A = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) _A = '''ERROR''' _A = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(_snake_case , match=re.escape(_snake_case ) ): metric.compute(predictions=[] , references=[] , scheme=_snake_case )
2
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Dict , __lowerCAmelCase : List[str]=0.01 , __lowerCAmelCase : Optional[Any]=10_00 ) -> Tuple: _A = p_stop _A = max_length def __iter__( self : Tuple ) -> int: _A = 0 _A = False while not stop and count < self.max_length: yield count count += 1 _A = random.random() < self.p_stop class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : str=True ) -> Optional[int]: _A = [ BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 ) ] _A = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] , [len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> Dict: # Check the shards when the dataset is a round multiple of total batch size. _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) def snake_case_ ( self : str ) -> Dict: # Check the shards when the dataset is a round multiple of batch size. _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> Any: _A = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _A = [BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Any=2 , __lowerCAmelCase : str=False ) -> Any: random.seed(__lowerCAmelCase ) _A = list(__lowerCAmelCase ) _A = [ IterableDatasetShard( __lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase , num_processes=__lowerCAmelCase , process_index=__lowerCAmelCase , split_batches=__lowerCAmelCase , ) for i in range(__lowerCAmelCase ) ] _A = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) _A = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _A = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) _A = [] for idx in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase , reference[: len(__lowerCAmelCase )] ) def snake_case_ ( self : int ) -> str: _A = 42 _A = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) # Edge case with a very small dataset _A = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) def snake_case_ ( self : Dict ) -> str: _A = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _A = SkipBatchSampler(__lowerCAmelCase , 2 ) self.assertListEqual(list(__lowerCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def snake_case_ ( self : Dict ) -> List[str]: _A = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def snake_case_ ( self : Any ) -> List[Any]: _A = DataLoader(list(range(16 ) ) , batch_size=4 ) _A = skip_first_batches(__lowerCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def snake_case_ ( self : Dict ) -> Any: _A = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def snake_case_ ( self : List[Any] ) -> List[str]: Accelerator() _A = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
2
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
1
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _A = gray_code_sequence_string(_snake_case ) # # convert them to integers for i in range(len(_snake_case ) ): _A = int(sequence[i] , 2 ) return sequence def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _A = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _A = gray_code_sequence_string(bit_count - 1 ) _A = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _A = '''0''' + smaller_sequence[i] sequence.append(_snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _A = '''1''' + smaller_sequence[i] sequence.append(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
2
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase__ : """simple docstring""" a__ : str = PegasusConfig a__ : str = {} a__ : int = "gelu" def __init__( self : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict=13 , __lowerCAmelCase : Optional[Any]=7 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Any=False , __lowerCAmelCase : Union[str, Any]=99 , __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : Optional[int]=37 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : int=20 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Optional[Any]=1 , __lowerCAmelCase : Dict=0 , ) -> List[str]: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = eos_token_id _A = pad_token_id _A = bos_token_id def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: _A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _A = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _A = np.concatenate([input_ids, eos_tensor] , axis=1 ) _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A = prepare_pegasus_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def snake_case_ ( self : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] ) -> List[Any]: _A = 20 _A = model_class_name(__lowerCAmelCase ) _A = model.encode(inputs_dict['''input_ids'''] ) _A , _A = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _A = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) _A = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _A = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCAmelCase , ) _A = model.decode(__lowerCAmelCase , __lowerCAmelCase ) _A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ) -> str: _A = 20 _A = model_class_name(__lowerCAmelCase ) _A = model.encode(inputs_dict['''input_ids'''] ) _A , _A = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _A = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _A = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) _A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _A = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _A = model.decode(__lowerCAmelCase , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase ) _A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[Any] , _snake_case :Union[str, Any] , _snake_case :Union[str, Any]=None , _snake_case :str=None , ) -> List[str]: if attention_mask is None: _A = np.not_equal(_snake_case , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _A = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : List[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) a__ : Union[str, Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () a__ : Any = True a__ : Tuple = False a__ : Optional[int] = False a__ : Union[str, Any] = False def snake_case_ ( self : Union[str, Any] ) -> int: _A = FlaxPegasusModelTester(self ) _A = ConfigTester(self , config_class=__lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> Union[str, Any]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : List[str] ) -> List[Any]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) _A = model_class(__lowerCAmelCase ) @jax.jit def encode_jitted(__lowerCAmelCase : str , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Any ): return model.encode(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): _A = encode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A = encode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A = model_class(__lowerCAmelCase ) _A = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _A = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ): return model.decode( decoder_input_ids=__lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , encoder_outputs=__lowerCAmelCase , ) with self.subTest('''JIT Enabled''' ): _A = decode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A = decode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case_ ( self : Union[str, Any] ) -> Tuple: for model_class_name in self.all_model_classes: _A = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__lowerCAmelCase ) _A = np.ones((1, 1) ) _A = model(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow def snake_case_ ( self : List[str] ) -> str: _A = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) _A = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) _A = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _A = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _A = tokenizer(__lowerCAmelCase , return_tensors='''np''' , truncation=__lowerCAmelCase , max_length=5_12 , padding=__lowerCAmelCase ) _A = model.generate(**__lowerCAmelCase , num_beams=2 ).sequences _A = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) assert tgt_text == decoded
2
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :str ) -> set[str]: _A , _A = set(_snake_case ), [start] while stack: _A = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored UpperCAmelCase_ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
2
1